This file is indexed.

/usr/lib/hugs/packages/base/Data/ByteString/Lazy.hs is in libhugs-base-bundled 98.200609.21-5.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
{-# OPTIONS_GHC -cpp -fglasgow-exts -fno-warn-orphans -fno-warn-incomplete-patterns #-}
--
-- Module      : ByteString.Lazy
-- Copyright   : (c) Don Stewart 2006
--               (c) Duncan Coutts 2006
-- License     : BSD-style
--
-- Maintainer  : dons@cse.unsw.edu.au
-- Stability   : experimental
-- Portability : portable, requires ffi and cpp
-- Tested with : GHC 6.4.1 and Hugs March 2005
-- 

--
-- | A time and space-efficient implementation of lazy byte vectors
-- using lists of packed 'Word8' arrays, suitable for high performance
-- use, both in terms of large data quantities, or high speed
-- requirements. Byte vectors are encoded as lazy lists of strict 'Word8'
-- arrays of bytes. They provide a means to manipulate large byte vectors
-- without requiring the entire vector be resident in memory.
--
-- Some operations, such as concat, append, reverse and cons, have
-- better complexity than their "Data.ByteString" equivalents, due to
-- optimisations resulting from the list spine structure. And for other
-- operations Lazy ByteStrings are usually within a few percent of
-- strict ones, but with better heap usage. For data larger than the
-- available memory, or if you have tight memory constraints, this
-- module will be the only option. The default chunk size is 64k, which
-- should be good in most circumstances. For people with large L2
-- caches, you may want to increase this to fit your cache.
--
-- This module is intended to be imported @qualified@, to avoid name
-- clashes with "Prelude" functions.  eg.
--
-- > import qualified Data.ByteString.Lazy as B
--
-- Original GHC implementation by Bryan O\'Sullivan. Rewritten to use
-- UArray by Simon Marlow. Rewritten to support slices and use
-- ForeignPtr by David Roundy. Polished and extended by Don Stewart.
-- Lazy variant by Duncan Coutts and Don Stewart.
--

module Data.ByteString.Lazy (

        -- * The @ByteString@ type
        ByteString,             -- instances: Eq, Ord, Show, Read, Data, Typeable

        -- * Introducing and eliminating 'ByteString's
        empty,                  -- :: ByteString
        singleton,              -- :: Word8   -> ByteString
        pack,                   -- :: [Word8] -> ByteString
        unpack,                 -- :: ByteString -> [Word8]
        fromChunks,             -- :: [Strict.ByteString] -> ByteString
        toChunks,               -- :: ByteString -> [Strict.ByteString]

        -- * Basic interface
        cons,                   -- :: Word8 -> ByteString -> ByteString
        snoc,                   -- :: ByteString -> Word8 -> ByteString
        append,                 -- :: ByteString -> ByteString -> ByteString
        head,                   -- :: ByteString -> Word8
        last,                   -- :: ByteString -> Word8
        tail,                   -- :: ByteString -> ByteString
        init,                   -- :: ByteString -> ByteString
        null,                   -- :: ByteString -> Bool
        length,                 -- :: ByteString -> Int64

        -- * Transformating ByteStrings
        map,                    -- :: (Word8 -> Word8) -> ByteString -> ByteString
        reverse,                -- :: ByteString -> ByteString
--      intersperse,            -- :: Word8 -> ByteString -> ByteString
        transpose,              -- :: [ByteString] -> [ByteString]

        -- * Reducing 'ByteString's (folds)
        foldl,                  -- :: (a -> Word8 -> a) -> a -> ByteString -> a
        foldl',                 -- :: (a -> Word8 -> a) -> a -> ByteString -> a
        foldl1,                 -- :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8
        foldl1',                -- :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8
        foldr,                  -- :: (Word8 -> a -> a) -> a -> ByteString -> a
        foldr1,                 -- :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8

        -- ** Special folds
        concat,                 -- :: [ByteString] -> ByteString
        concatMap,              -- :: (Word8 -> ByteString) -> ByteString -> ByteString
        any,                    -- :: (Word8 -> Bool) -> ByteString -> Bool
        all,                    -- :: (Word8 -> Bool) -> ByteString -> Bool
        maximum,                -- :: ByteString -> Word8
        minimum,                -- :: ByteString -> Word8

        -- * Building ByteStrings
        -- ** Scans
        scanl,                  -- :: (Word8 -> Word8 -> Word8) -> Word8 -> ByteString -> ByteString
--      scanl1,                 -- :: (Word8 -> Word8 -> Word8) -> ByteString -> ByteString
--      scanr,                  -- :: (Word8 -> Word8 -> Word8) -> Word8 -> ByteString -> ByteString
--      scanr1,                 -- :: (Word8 -> Word8 -> Word8) -> ByteString -> ByteString

        -- ** Accumulating maps
        mapAccumL,  -- :: (acc -> Word8 -> (acc, Word8)) -> acc -> ByteString -> (acc, ByteString)
        mapIndexed, -- :: (Int64 -> Word8 -> Word8) -> ByteString -> ByteString

        -- ** Infinite ByteStrings
        repeat,                 -- :: Word8 -> ByteString
        replicate,              -- :: Int64 -> Word8 -> ByteString
        cycle,                  -- :: ByteString -> ByteString
        iterate,                -- :: (Word8 -> Word8) -> Word8 -> ByteString

        -- ** Unfolding
        unfoldr,                -- :: (a -> Maybe (Word8, a)) -> a -> ByteString

        -- * Substrings

        -- ** Breaking strings
        take,                   -- :: Int64 -> ByteString -> ByteString
        drop,                   -- :: Int64 -> ByteString -> ByteString
        splitAt,                -- :: Int64 -> ByteString -> (ByteString, ByteString)
        takeWhile,              -- :: (Word8 -> Bool) -> ByteString -> ByteString
        dropWhile,              -- :: (Word8 -> Bool) -> ByteString -> ByteString
        span,                   -- :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)
        break,                  -- :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)
        group,                  -- :: ByteString -> [ByteString]
        groupBy,                -- :: (Word8 -> Word8 -> Bool) -> ByteString -> [ByteString]
        inits,                  -- :: ByteString -> [ByteString]
        tails,                  -- :: ByteString -> [ByteString]

        -- ** Breaking into many substrings
        split,                  -- :: Word8 -> ByteString -> [ByteString]
        splitWith,              -- :: (Word8 -> Bool) -> ByteString -> [ByteString]

        -- ** Joining strings
        join,                   -- :: ByteString -> [ByteString] -> ByteString

        -- * Predicates
        isPrefixOf,             -- :: ByteString -> ByteString -> Bool
--      isSuffixOf,             -- :: ByteString -> ByteString -> Bool

        -- * Searching ByteStrings

        -- ** Searching by equality
        elem,                   -- :: Word8 -> ByteString -> Bool
        notElem,                -- :: Word8 -> ByteString -> Bool

        -- ** Searching with a predicate
        find,                   -- :: (Word8 -> Bool) -> ByteString -> Maybe Word8
        filter,                 -- :: (Word8 -> Bool) -> ByteString -> ByteString
--      partition               -- :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)

        -- * Indexing ByteStrings
        index,                  -- :: ByteString -> Int64 -> Word8
        elemIndex,              -- :: Word8 -> ByteString -> Maybe Int64
        elemIndices,            -- :: Word8 -> ByteString -> [Int64]
        findIndex,              -- :: (Word8 -> Bool) -> ByteString -> Maybe Int64
        findIndices,            -- :: (Word8 -> Bool) -> ByteString -> [Int64]
        count,                  -- :: Word8 -> ByteString -> Int64

        -- * Zipping and unzipping ByteStrings
        zip,                    -- :: ByteString -> ByteString -> [(Word8,Word8)]
        zipWith,                -- :: (Word8 -> Word8 -> c) -> ByteString -> ByteString -> [c]
--      unzip,                  -- :: [(Word8,Word8)] -> (ByteString,ByteString)

        -- * Ordered ByteStrings
--        sort,                   -- :: ByteString -> ByteString

        copy,                   -- :: ByteString -> ByteString

        -- * I\/O with 'ByteString's

        -- ** Standard input and output
        getContents,            -- :: IO ByteString
        putStr,                 -- :: ByteString -> IO ()
        putStrLn,               -- :: ByteString -> IO ()
        interact,               -- :: (ByteString -> ByteString) -> IO ()

        -- ** Files
        readFile,               -- :: FilePath -> IO ByteString
        writeFile,              -- :: FilePath -> ByteString -> IO ()
        appendFile,             -- :: FilePath -> ByteString -> IO ()

        -- ** I\/O with Handles
        hGetContents,           -- :: Handle -> IO ByteString
        hGet,                   -- :: Handle -> Int -> IO ByteString
        hPut,                   -- :: Handle -> ByteString -> IO ()
        hGetNonBlocking,        -- :: Handle -> IO ByteString

--      hGetN,                  -- :: Int -> Handle -> Int -> IO ByteString
--      hGetContentsN,          -- :: Int -> Handle -> IO ByteString
--      hGetNonBlockingN,       -- :: Int -> Handle -> IO ByteString

  ) where

import qualified Prelude
import Prelude hiding
    (reverse,head,tail,last,init,null,length,map,lines,foldl,foldr,unlines
    ,concat,any,take,drop,splitAt,takeWhile,dropWhile,span,break,elem,filter,maximum
    ,minimum,all,concatMap,foldl1,foldr1,scanl, scanl1, scanr, scanr1
    ,repeat, cycle, interact, iterate,readFile,writeFile,appendFile,replicate
    ,getContents,getLine,putStr,putStrLn ,zip,zipWith,unzip,notElem)

import qualified Data.List              as L  -- L for list/lazy
import qualified Data.ByteString        as P  -- P for packed
import qualified Data.ByteString.Base   as P
import Data.ByteString.Base (LazyByteString(..))
import qualified Data.ByteString.Fusion as P
import Data.ByteString.Fusion (PairS(..),loopL)

import Data.Monoid              (Monoid(..))

import Data.Word                (Word8)
import Data.Int                 (Int64)
import System.IO                (Handle,stdin,stdout,openBinaryFile,IOMode(..)
                                ,hClose,hWaitForInput,hIsEOF)
import System.IO.Unsafe
import Control.Exception        (bracket)

import Foreign.ForeignPtr       (withForeignPtr)
import Foreign.Ptr
import Foreign.Storable

-- -----------------------------------------------------------------------------
--
-- Useful macros, until we have bang patterns
--







-- -----------------------------------------------------------------------------

type ByteString = LazyByteString

--
-- hmm, what about getting the PS constructor unpacked into the cons cell?
--
-- data List = Nil | Cons {-# UNPACK #-} !P.ByteString List
--
-- Would avoid one indirection per chunk.
--

unLPS :: ByteString -> [P.ByteString]
unLPS (LPS xs) = xs
{-# INLINE unLPS #-}

instance Eq  ByteString
    where (==)    = eq

instance Ord ByteString
    where compare = compareBytes

instance Monoid ByteString where
    mempty  = empty
    mappend = append
    mconcat = concat

------------------------------------------------------------------------

-- XXX
-- The data type invariant:
-- Every ByteString is either empty or consists of non-null ByteStrings.
-- All functions must preserve this, and the QC properties must check this.
--
_invariant :: ByteString -> Bool
_invariant (LPS []) = True
_invariant (LPS xs) = L.all (not . P.null) xs

-- In a form useful for QC testing
_checkInvariant :: ByteString -> ByteString
_checkInvariant lps
    | _invariant lps = lps
    | otherwise      = moduleError "invariant" ("violation: " ++ show lps)

-- The Data abstraction function
--
_abstr :: ByteString -> P.ByteString
_abstr (LPS []) = P.empty
_abstr (LPS xs) = P.concat xs

-- The representation uses lists of packed chunks. When we have to convert from
-- a lazy list to the chunked representation, then by default we'll use this
-- chunk size. Some functions give you more control over the chunk size.
--
-- Measurements here:
--  http://www.cse.unsw.edu.au/~dons/tmp/chunksize_v_cache.png
--
-- indicate that a value around 0.5 to 1 x your L2 cache is best.
-- The following value assumes people have something greater than 128k,
-- and need to share the cache with other programs.
--
defaultChunkSize :: Int
defaultChunkSize = 32 * k - overhead
   where k = 1024
         overhead = 2 * sizeOf (undefined :: Int)

smallChunkSize :: Int
smallChunkSize = 4 * k - overhead
   where k = 1024
         overhead = 2 * sizeOf (undefined :: Int)

-- defaultChunkSize = 1

------------------------------------------------------------------------

eq :: ByteString -> ByteString -> Bool
eq (LPS xs) (LPS ys) = eq' xs ys
  where eq' [] [] = True
        eq' [] _  = False
        eq' _  [] = False
        eq' (a:as) (b:bs) =
          case compare (P.length a) (P.length b) of
            LT -> a == (P.take (P.length a) b) && eq' as (P.drop (P.length a) b : bs)
            EQ -> a == b                       && eq' as bs
            GT -> (P.take (P.length b) a) == b && eq' (P.drop (P.length b) a : as) bs

compareBytes :: ByteString -> ByteString -> Ordering
compareBytes (LPS xs) (LPS ys) = cmp xs ys
  where cmp [] [] = EQ
        cmp [] _  = LT
        cmp _  [] = GT
        cmp (a:as) (b:bs) =
          case compare (P.length a) (P.length b) of
            LT -> case compare a (P.take (P.length a) b) of
                    EQ     -> cmp as (P.drop (P.length a) b : bs)
                    result -> result
            EQ -> case compare a b of
                    EQ     -> cmp as bs
                    result -> result
            GT -> case compare (P.take (P.length b) a) b of
                    EQ     -> cmp (P.drop (P.length b) a : as) bs
                    result -> result

-- -----------------------------------------------------------------------------
-- Introducing and eliminating 'ByteString's

-- | /O(1)/ The empty 'ByteString'
empty :: ByteString
empty = LPS []
{-# NOINLINE empty #-}

-- | /O(1)/ Convert a 'Word8' into a 'ByteString'
singleton :: Word8 -> ByteString
singleton c = LPS [P.singleton c]
{-# NOINLINE singleton #-}

-- | /O(n)/ Convert a '[Word8]' into a 'ByteString'. 
pack :: [Word8] -> ByteString
pack str = LPS $ L.map P.pack (chunk defaultChunkSize str)

-- ?
chunk :: Int -> [a] -> [[a]]
chunk _    [] = []
chunk size xs = case L.splitAt size xs of (xs', xs'') -> xs' : chunk size xs''

-- | /O(n)/ Converts a 'ByteString' to a '[Word8]'.
unpack :: ByteString -> [Word8]
unpack (LPS ss) = L.concatMap P.unpack ss
{-# INLINE unpack #-}

-- | /O(c)/ Convert a list of strict 'ByteString' into a lazy 'ByteString'
fromChunks :: [P.ByteString] -> ByteString
fromChunks ls = LPS $ L.filter (not . P.null) ls

-- | /O(n)/ Convert a lazy 'ByteString' into a list of strict 'ByteString'
toChunks :: ByteString -> [P.ByteString]
toChunks (LPS s) = s

------------------------------------------------------------------------

{-
-- | /O(n)/ Convert a '[a]' into a 'ByteString' using some
-- conversion function
packWith :: (a -> Word8) -> [a] -> ByteString
packWith k str = LPS $ L.map (P.packWith k) (chunk defaultChunkSize str)
{-# INLINE packWith #-}
{-# SPECIALIZE packWith :: (Char -> Word8) -> [Char] -> ByteString #-}

-- | /O(n)/ Converts a 'ByteString' to a '[a]', using a conversion function.
unpackWith :: (Word8 -> a) -> ByteString -> [a]
unpackWith k (LPS ss) = L.concatMap (P.unpackWith k) ss
{-# INLINE unpackWith #-}
{-# SPECIALIZE unpackWith :: (Word8 -> Char) -> ByteString -> [Char] #-}
-}

-- ---------------------------------------------------------------------
-- Basic interface

-- | /O(1)/ Test whether a ByteString is empty.
null :: ByteString -> Bool
null (LPS []) = True
null (_)      = False
{-# INLINE null #-}

-- | /O(n\/c)/ 'length' returns the length of a ByteString as an 'Int64'
length :: ByteString -> Int64
length (LPS ss) = L.foldl' (\n ps -> n + fromIntegral (P.length ps)) 0 ss

-- avoid the intermediate list?
-- length (LPS ss) = L.foldl lengthF 0 ss
--     where lengthF n s = let m = n + fromIntegral (P.length s) in m `seq` m
{-# INLINE length #-}

-- | /O(1)/ 'cons' is analogous to '(:)' for lists. Unlike '(:)' however it is
-- strict in the ByteString that we are consing onto. More precisely, it forces
-- the head and the first chunk. It does this because, for space efficiency, it
-- may coalesce the new byte onto the first \'chunk\' rather than starting a
-- new \'chunk\'.
--
-- So that means you can't use a lazy recursive contruction like this:
--
-- > let xs = cons c xs in xs
--
-- You can however use 'repeat' and 'cycle' to build infinite lazy ByteStrings.
--
cons :: Word8 -> ByteString -> ByteString
cons c (LPS (s:ss)) | P.length s <= 16 = LPS (P.cons c s : ss)
cons c (LPS ss)                        = LPS (P.singleton c : ss)
{-# INLINE cons #-}

-- | /O(n\/c)/ Append a byte to the end of a 'ByteString'
snoc :: ByteString -> Word8 -> ByteString
snoc (LPS ss) c = LPS (ss ++ [P.singleton c])
{-# INLINE snoc #-}

-- | /O(1)/ Extract the first element of a ByteString, which must be non-empty.
head :: ByteString -> Word8
head (LPS [])    = errorEmptyList "head"
head (LPS (x:_)) = P.unsafeHead x
{-# INLINE head #-}

-- | /O(1)/ Extract the elements after the head of a ByteString, which must be non-empty.
tail :: ByteString -> ByteString
tail (LPS [])     = errorEmptyList "tail"
tail (LPS (x:xs))
  | P.length x == 1 = LPS xs
  | otherwise       = LPS (P.unsafeTail x : xs)
{-# INLINE tail #-}

-- | /O(n\/c)/ Extract the last element of a ByteString, which must be finite and non-empty.
last :: ByteString -> Word8
last (LPS []) = errorEmptyList "last"
last (LPS xs) = P.last (L.last xs)
{-# INLINE last #-}

-- | /O(n\/c)/ Return all the elements of a 'ByteString' except the last one.
init :: ByteString -> ByteString
init (LPS []) = errorEmptyList "init"
init (LPS xs)
    | P.length y == 1 = LPS ys
    | otherwise       = LPS (ys ++ [P.init y])
    where (y,ys) = (L.last xs, L.init xs)
{-# INLINE init #-}

-- | /O(n)/ Append two ByteStrings
append :: ByteString -> ByteString -> ByteString
append (LPS []) (LPS ys) = LPS ys
append (LPS xs) (LPS []) = LPS xs
append (LPS xs) (LPS ys) = LPS (xs ++ ys)
{-# INLINE append #-}

-- ---------------------------------------------------------------------
-- Transformations

-- | /O(n)/ 'map' @f xs@ is the ByteString obtained by applying @f@ to each
-- element of @xs@.
map :: (Word8 -> Word8) -> ByteString -> ByteString
--map f (LPS xs) = LPS (L.map (P.map' f) xs)
map f = LPS . P.loopArr . loopL (P.mapEFL f) P.NoAcc . unLPS
{-# INLINE map #-}

-- | /O(n)/ 'reverse' @xs@ efficiently returns the elements of @xs@ in reverse order.
reverse :: ByteString -> ByteString
reverse (LPS ps) = LPS (rev [] ps)
  where rev a []     = a
        rev a (x:xs) = rev (P.reverse x:a) xs
-- note, here is one example where the extra element lazyness is an advantage.
-- we can reerse the list of chunks strictly but reverse each chunk lazily
-- so while we may force the whole lot into memory we do not need to copy
-- each chunk until it is used.
{-# INLINE reverse #-}

-- The 'intersperse' function takes a 'Word8' and a 'ByteString' and
-- \`intersperses\' that byte between the elements of the 'ByteString'.
-- It is analogous to the intersperse function on Lists.
-- intersperse :: Word8 -> ByteString -> ByteString
-- intersperse = error "FIXME: not yet implemented"

{-
intersperse c (LPS [])     = LPS []
intersperse c (LPS (x:xs)) = LPS (P.intersperse c x : L.map intersperse')
  where intersperse' c ps@(PS x s l) =
          P.create (2*l) $ \p -> withForeignPtr x $ \f ->
                poke p c
                c_intersperse (p `plusPtr` 1) (f `plusPtr` s) l c
-}

-- | The 'transpose' function transposes the rows and columns of its
-- 'ByteString' argument.
transpose :: [ByteString] -> [ByteString]
transpose s = L.map (\ss -> LPS [P.pack ss]) (L.transpose (L.map unpack s))

-- ---------------------------------------------------------------------
-- Reducing 'ByteString's

-- | 'foldl', applied to a binary operator, a starting value (typically
-- the left-identity of the operator), and a ByteString, reduces the
-- ByteString using the binary operator, from left to right.
foldl :: (a -> Word8 -> a) -> a -> ByteString -> a
--foldl f z (LPS xs) = L.foldl (P.foldl f) z xs
foldl f z = P.loopAcc . loopL (P.foldEFL f) z . unLPS
{-# INLINE foldl #-}

-- | 'foldl\'' is like 'foldl', but strict in the accumulator.
foldl' :: (a -> Word8 -> a) -> a -> ByteString -> a
--foldl' f z (LPS xs) = L.foldl' (P.foldl' f) z xs
foldl' f z = P.loopAcc . loopL (P.foldEFL' f) z . unLPS
{-# INLINE foldl' #-}

-- | 'foldr', applied to a binary operator, a starting value
-- (typically the right-identity of the operator), and a ByteString,
-- reduces the ByteString using the binary operator, from right to left.
foldr :: (Word8 -> a -> a) -> a -> ByteString -> a
foldr k z (LPS xs) = L.foldr (flip (P.foldr k)) z xs
{-# INLINE foldr #-}

-- | 'foldl1' is a variant of 'foldl' that has no starting value
-- argument, and thus must be applied to non-empty 'ByteStrings'.
-- This function is subject to array fusion.
foldl1 :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8
foldl1 _ (LPS []) = errorEmptyList "foldl1"
foldl1 f (LPS (x:xs)) = foldl f (P.unsafeHead x) (LPS (P.unsafeTail x : xs))

-- | 'foldl1\'' is like 'foldl1', but strict in the accumulator.
foldl1' :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8
foldl1' _ (LPS []) = errorEmptyList "foldl1'"
foldl1' f (LPS (x:xs)) = foldl' f (P.unsafeHead x) (LPS (P.unsafeTail x : xs))

-- | 'foldr1' is a variant of 'foldr' that has no starting value argument,
-- and thus must be applied to non-empty 'ByteString's
foldr1 :: (Word8 -> Word8 -> Word8) -> ByteString -> Word8
foldr1 _ (LPS []) = errorEmptyList "foldr1"
foldr1 f (LPS ps) = foldr1' ps
  where foldr1' (x:[]) = P.foldr1 f x
        foldr1' (x:xs) = P.foldr  f (foldr1' xs) x

-- ---------------------------------------------------------------------
-- Special folds

-- | /O(n)/ Concatenate a list of ByteStrings.
concat :: [ByteString] -> ByteString
concat lpss = LPS (L.concatMap (\(LPS xs) -> xs) lpss)

-- | Map a function over a 'ByteString' and concatenate the results
concatMap :: (Word8 -> ByteString) -> ByteString -> ByteString
concatMap f (LPS lps) = LPS (filterMap (P.concatMap k) lps)
    where
      k w = case f w of LPS xs -> P.concat xs

-- | /O(n)/ Applied to a predicate and a ByteString, 'any' determines if
-- any element of the 'ByteString' satisfies the predicate.
any :: (Word8 -> Bool) -> ByteString -> Bool
any f (LPS xs) = L.or (L.map (P.any f) xs)
-- todo fuse

-- | /O(n)/ Applied to a predicate and a 'ByteString', 'all' determines
-- if all elements of the 'ByteString' satisfy the predicate.
all :: (Word8 -> Bool) -> ByteString -> Bool
all f (LPS xs) = L.and (L.map (P.all f) xs)
-- todo fuse

-- | /O(n)/ 'maximum' returns the maximum value from a 'ByteString'
maximum :: ByteString -> Word8
maximum (LPS [])     = errorEmptyList "maximum"
maximum (LPS (x:xs)) = L.foldl' (\n ps -> n `max` P.maximum ps) (P.maximum x) xs
{-# INLINE maximum #-}

-- | /O(n)/ 'minimum' returns the minimum value from a 'ByteString'
minimum :: ByteString -> Word8
minimum (LPS [])     = errorEmptyList "minimum"
minimum (LPS (x:xs)) = L.foldl' (\n ps -> n `min` P.minimum ps) (P.minimum x) xs
{-# INLINE minimum #-}

-- | The 'mapAccumL' function behaves like a combination of 'map' and
-- 'foldl'; it applies a function to each element of a ByteString,
-- passing an accumulating parameter from left to right, and returning a
-- final value of this accumulator together with the new ByteString.
mapAccumL :: (acc -> Word8 -> (acc, Word8)) -> acc -> ByteString -> (acc, ByteString)
mapAccumL f z = (\(a :*: ps) -> (a, LPS ps)) . loopL (P.mapAccumEFL f) z . unLPS

-- | /O(n)/ map Word8 functions, provided with the index at each position
mapIndexed :: (Int -> Word8 -> Word8) -> ByteString -> ByteString
mapIndexed f = LPS . P.loopArr . loopL (P.mapIndexEFL f) 0 . unLPS

-- ---------------------------------------------------------------------
-- Building ByteStrings

-- | 'scanl' is similar to 'foldl', but returns a list of successive
-- reduced values from the left. This function will fuse.
--
-- > scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
--
-- Note that
--
-- > last (scanl f z xs) == foldl f z xs.
scanl :: (Word8 -> Word8 -> Word8) -> Word8 -> ByteString -> ByteString
scanl f z ps = LPS . P.loopArr . loopL (P.scanEFL f) z . unLPS $ (ps `snoc` 0)
{-# INLINE scanl #-}

-- ---------------------------------------------------------------------
-- Unfolds and replicates

-- | @'iterate' f x@ returns an infinite ByteString of repeated applications
-- of @f@ to @x@:
--
-- > iterate f x == [x, f x, f (f x), ...]
--
iterate :: (Word8 -> Word8) -> Word8 -> ByteString
iterate f = unfoldr (\x -> case f x of x' -> x' `seq` Just (x', x'))

-- | @'repeat' x@ is an infinite ByteString, with @x@ the value of every
-- element.
--
repeat :: Word8 -> ByteString
repeat c = LPS (L.repeat block)
    where block =  P.replicate smallChunkSize c

-- | /O(n)/ @'replicate' n x@ is a ByteString of length @n@ with @x@
-- the value of every element.
--
replicate :: Int64 -> Word8 -> ByteString
replicate w c
    | w <= 0             = empty
    | w < fromIntegral smallChunkSize = LPS [P.replicate (fromIntegral w) c]
    | r == 0             = LPS (L.genericReplicate q s) -- preserve invariant
    | otherwise          = LPS (P.unsafeTake (fromIntegral r) s : L.genericReplicate q s)
 where
    s      = P.replicate smallChunkSize c
    (q, r) = quotRem w (fromIntegral smallChunkSize)

-- | 'cycle' ties a finite ByteString into a circular one, or equivalently,
-- the infinite repetition of the original ByteString.
--
cycle :: ByteString -> ByteString
cycle (LPS []) = errorEmptyList "cycle"
cycle (LPS xs) = LPS (L.cycle xs)

-- | /O(n)/ The 'unfoldr' function is analogous to the List \'unfoldr\'.
-- 'unfoldr' builds a ByteString from a seed value.  The function takes
-- the element and returns 'Nothing' if it is done producing the
-- ByteString or returns 'Just' @(a,b)@, in which case, @a@ is a
-- prepending to the ByteString and @b@ is used as the next element in a
-- recursive call.
unfoldr :: (a -> Maybe (Word8, a)) -> a -> ByteString
unfoldr f = LPS . unfoldChunk 32
  where unfoldChunk n x =
          case P.unfoldrN n f x of
            (s, Nothing)
              | P.null s  -> []
              | otherwise -> s : []
            (s, Just x')  -> s : unfoldChunk ((n*2) `min` smallChunkSize) x'

-- ---------------------------------------------------------------------
-- Substrings

-- | /O(n\/c)/ 'take' @n@, applied to a ByteString @xs@, returns the prefix
-- of @xs@ of length @n@, or @xs@ itself if @n > 'length' xs@.
take :: Int64 -> ByteString -> ByteString
take n _ | n < 0 = empty
take i (LPS ps)  = LPS (take' i ps)
  where take' _ []     = []
        take' 0 _      = []
        take' n (x:xs) =
          if n < fromIntegral (P.length x)
            then P.take (fromIntegral n) x : []
            else x : take' (n - fromIntegral (P.length x)) xs

-- | /O(n\/c)/ 'drop' @n xs@ returns the suffix of @xs@ after the first @n@
-- elements, or @[]@ if @n > 'length' xs@.
drop  :: Int64 -> ByteString -> ByteString
drop i p | i <= 0 = p
drop i (LPS ps) = LPS (drop' i ps)
  where drop' _ []     = []
        drop' 0 xs     = xs
        drop' n (x:xs) =
          if n < fromIntegral (P.length x)
            then P.drop (fromIntegral n) x : xs
            else drop' (n - fromIntegral (P.length x)) xs

-- | /O(n\/c)/ 'splitAt' @n xs@ is equivalent to @('take' n xs, 'drop' n xs)@.
splitAt :: Int64 -> ByteString -> (ByteString, ByteString)
splitAt i p        | i <= 0 = (empty, p)
splitAt i (LPS ps) = case splitAt' i ps of (a,b) -> (LPS a, LPS b)
  where splitAt' _ []     = ([], [])
        splitAt' 0 xs     = ([], xs)
        splitAt' n (x:xs) =
          if n < fromIntegral (P.length x)
            then (P.take (fromIntegral n) x : [], 
                  P.drop (fromIntegral n) x : xs)
            else let (xs', xs'') = splitAt' (n - fromIntegral (P.length x)) xs
                   in (x:xs', xs'')


-- | 'takeWhile', applied to a predicate @p@ and a ByteString @xs@,
-- returns the longest prefix (possibly empty) of @xs@ of elements that
-- satisfy @p@.
takeWhile :: (Word8 -> Bool) -> ByteString -> ByteString
takeWhile f (LPS ps) = LPS (takeWhile' ps)
  where takeWhile' []     = []
        takeWhile' (x:xs) =
          case findIndexOrEnd (not . f) x of
            0                  -> []
            n | n < P.length x -> P.take n x : []
              | otherwise      -> x : takeWhile' xs

-- | 'dropWhile' @p xs@ returns the suffix remaining after 'takeWhile' @p xs@.
dropWhile :: (Word8 -> Bool) -> ByteString -> ByteString
dropWhile f (LPS ps) = LPS (dropWhile' ps)
  where dropWhile' []     = []
        dropWhile' (x:xs) =
          case findIndexOrEnd (not . f) x of
            n | n < P.length x -> P.drop n x : xs
              | otherwise      -> dropWhile' xs

-- | 'break' @p@ is equivalent to @'span' ('not' . p)@.
break :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)
break f (LPS ps) = case (break' ps) of (a,b) -> (LPS a, LPS b)
  where break' []     = ([], [])
        break' (x:xs) =
          case findIndexOrEnd f x of
            0                  -> ([], x : xs)
            n | n < P.length x -> (P.take n x : [], P.drop n x : xs)
              | otherwise      -> let (xs', xs'') = break' xs
                                   in (x : xs', xs'')

--
-- TODO
--
-- Add rules
--

{-
-- | 'breakByte' breaks its ByteString argument at the first occurence
-- of the specified byte. It is more efficient than 'break' as it is
-- implemented with @memchr(3)@. I.e.
-- 
-- > break (=='c') "abcd" == breakByte 'c' "abcd"
--
breakByte :: Word8 -> ByteString -> (ByteString, ByteString)
breakByte c (LPS ps) = case (breakByte' ps) of (a,b) -> (LPS a, LPS b)
  where breakByte' []     = ([], [])
        breakByte' (x:xs) =
          case P.elemIndex c x of
            Just 0  -> ([], x : xs)
            Just n  -> (P.take n x : [], P.drop n x : xs)
            Nothing -> let (xs', xs'') = breakByte' xs
                        in (x : xs', xs'')

-- | 'spanByte' breaks its ByteString argument at the first
-- occurence of a byte other than its argument. It is more efficient
-- than 'span (==)'
--
-- > span  (=='c') "abcd" == spanByte 'c' "abcd"
--
spanByte :: Word8 -> ByteString -> (ByteString, ByteString)
spanByte c (LPS ps) = case (spanByte' ps) of (a,b) -> (LPS a, LPS b)
  where spanByte' []     = ([], [])
        spanByte' (x:xs) =
          case P.spanByte c x of
            (x', x'') | P.null x'  -> ([], x : xs)
                      | P.null x'' -> let (xs', xs'') = spanByte' xs
                                       in (x : xs', xs'')
                      | otherwise  -> (x' : [], x'' : xs)
-}

-- | 'span' @p xs@ breaks the ByteString into two segments. It is
-- equivalent to @('takeWhile' p xs, 'dropWhile' p xs)@
span :: (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)
span p = break (not . p)

-- | /O(n)/ Splits a 'ByteString' into components delimited by
-- separators, where the predicate returns True for a separator element.
-- The resulting components do not contain the separators.  Two adjacent
-- separators result in an empty component in the output.  eg.
--
-- > splitWith (=='a') "aabbaca" == ["","","bb","c",""]
-- > splitWith (=='a') []        == []
--
splitWith :: (Word8 -> Bool) -> ByteString -> [ByteString]
splitWith _ (LPS [])     = []
splitWith p (LPS (a:as)) = comb [] (P.splitWith p a) as

  where comb :: [P.ByteString] -> [P.ByteString] -> [P.ByteString] -> [ByteString]
        comb acc (s:[]) []     = LPS (L.reverse (cons' s acc)) : []
        comb acc (s:[]) (x:xs) = comb (cons' s acc) (P.splitWith p x) xs
        comb acc (s:ss) xs     = LPS (L.reverse (cons' s acc)) : comb [] ss xs

        cons' x xs | P.null x  = xs
                   | otherwise = x:xs
        {-# INLINE cons' #-}
{-# INLINE splitWith #-}

-- | /O(n)/ Break a 'ByteString' into pieces separated by the byte
-- argument, consuming the delimiter. I.e.
--
-- > split '\n' "a\nb\nd\ne" == ["a","b","d","e"]
-- > split 'a'  "aXaXaXa"    == ["","X","X","X"]
-- > split 'x'  "x"          == ["",""]
-- 
-- and
--
-- > join [c] . split c == id
-- > split == splitWith . (==)
-- 
-- As for all splitting functions in this library, this function does
-- not copy the substrings, it just constructs new 'ByteStrings' that
-- are slices of the original.
--
split :: Word8 -> ByteString -> [ByteString]
split _ (LPS [])     = []
split c (LPS (a:as)) = comb [] (P.split c a) as

  where comb :: [P.ByteString] -> [P.ByteString] -> [P.ByteString] -> [ByteString]
        comb acc (s:[]) []     = LPS (L.reverse (cons' s acc)) : []
        comb acc (s:[]) (x:xs) = comb (cons' s acc) (P.split c x) xs
        comb acc (s:ss) xs     = LPS (L.reverse (cons' s acc)) : comb [] ss xs

        cons' x xs | P.null x  = xs
                   | otherwise = x:xs
        {-# INLINE cons' #-}
{-# INLINE split #-}

{-
-- | Like 'splitWith', except that sequences of adjacent separators are
-- treated as a single separator. eg.
-- 
-- > tokens (=='a') "aabbaca" == ["bb","c"]
--
tokens :: (Word8 -> Bool) -> ByteString -> [ByteString]
tokens f = L.filter (not.null) . splitWith f
-}

-- | The 'group' function takes a ByteString and returns a list of
-- ByteStrings such that the concatenation of the result is equal to the
-- argument.  Moreover, each sublist in the result contains only equal
-- elements.  For example,
--
-- > group "Mississippi" = ["M","i","ss","i","ss","i","pp","i"]
--
-- It is a special case of 'groupBy', which allows the programmer to
-- supply their own equality test.
group :: ByteString -> [ByteString]
group (LPS [])     = []
group (LPS (a:as)) = group' [] (P.group a) as
  where group' :: [P.ByteString] -> [P.ByteString] -> [P.ByteString] -> [ByteString]
        group' acc@(s':_) ss@(s:_) xs
          | P.unsafeHead s'
         /= P.unsafeHead s       = LPS (L.reverse acc) : group' [] ss xs
        group' acc (s:[]) []     = LPS (L.reverse (s : acc)) : []
        group' acc (s:[]) (x:xs) = group' (s:acc) (P.group x) xs
        group' acc (s:ss) xs     = LPS (L.reverse (s : acc)) : group' [] ss xs

{-
TODO: check if something like this might be faster

group :: ByteString -> [ByteString]
group xs
    | null xs   = []
    | otherwise = ys : group zs
    where
        (ys, zs) = spanByte (unsafeHead xs) xs
-}

-- | The 'groupBy' function is the non-overloaded version of 'group'.
--
groupBy :: (Word8 -> Word8 -> Bool) -> ByteString -> [ByteString]
groupBy = error "Data.ByteString.Lazy.groupBy: unimplemented"
{-
groupBy _ (LPS [])     = []
groupBy k (LPS (a:as)) = groupBy' [] 0 (P.groupBy k a) as
  where groupBy' :: [P.ByteString] -> Word8 -> [P.ByteString] -> [P.ByteString] -> [ByteString]
        groupBy' acc@(_:_) c ss@(s:_) xs
          | not (c `k` P.unsafeHead s) = LPS (L.reverse acc) : groupBy' [] 0 ss xs
        groupBy' acc _ (s:[]) []       = LPS (L.reverse (s : acc)) : []
        groupBy' []  _ (s:[]) (x:xs)   = groupBy' (s:[]) (P.unsafeHead s) (P.groupBy k x) xs
        groupBy' acc c (s:[]) (x:xs)   = groupBy' (s:acc) c (P.groupBy k x) xs
        groupBy' acc _ (s:ss) xs       = LPS (L.reverse (s : acc)) : groupBy' [] 0 ss xs
-}

{-
TODO: check if something like this might be faster

groupBy :: (Word8 -> Word8 -> Bool) -> ByteString -> [ByteString]
groupBy k xs
    | null xs   = []
    | otherwise = take n xs : groupBy k (drop n xs)
    where
        n = 1 + findIndexOrEnd (not . k (head xs)) (tail xs)
-}

-- | /O(n)/ The 'join' function takes a 'ByteString' and a list of
-- 'ByteString's and concatenates the list after interspersing the first
-- argument between each element of the list.
join :: ByteString -> [ByteString] -> ByteString
join s = concat . (L.intersperse s)

-- ---------------------------------------------------------------------
-- Indexing ByteStrings

-- | /O(c)/ 'ByteString' index (subscript) operator, starting from 0.
index :: ByteString -> Int64 -> Word8
index _        i | i < 0 = moduleError "index" ("negative index: " ++ show i)
index (LPS ps) i         = index' ps i
  where index' []     n = moduleError "index" ("index too large: " ++ show n)
        index' (x:xs) n
          | n >= fromIntegral (P.length x) = 
              index' xs (n - fromIntegral (P.length x))
          | otherwise       = P.unsafeIndex x (fromIntegral n)

-- | /O(n)/ The 'elemIndex' function returns the index of the first
-- element in the given 'ByteString' which is equal to the query
-- element, or 'Nothing' if there is no such element. 
-- This implementation uses memchr(3).
elemIndex :: Word8 -> ByteString -> Maybe Int64
elemIndex c (LPS ps) = elemIndex' 0 ps
  where elemIndex' _ []     = Nothing
        elemIndex' n (x:xs) =
          case P.elemIndex c x of
            Nothing -> elemIndex' (n + fromIntegral (P.length x)) xs
            Just i  -> Just (n + fromIntegral i)

{-
-- | /O(n)/ The 'elemIndexEnd' function returns the last index of the
-- element in the given 'ByteString' which is equal to the query
-- element, or 'Nothing' if there is no such element. The following
-- holds:
--
-- > elemIndexEnd c xs == 
-- > (-) (length xs - 1) `fmap` elemIndex c (reverse xs)
--
elemIndexEnd :: Word8 -> ByteString -> Maybe Int
elemIndexEnd ch (PS x s l) = inlinePerformIO $ withForeignPtr x $ \p ->
    go (p `plusPtr` s) (l-1)
  where
    STRICT2(go)
    go p i | i < 0     = return Nothing
           | otherwise = do ch' <- peekByteOff p i
                            if ch == ch'
                                then return $ Just i
                                else go p (i-1)
-}
-- | /O(n)/ The 'elemIndices' function extends 'elemIndex', by returning
-- the indices of all elements equal to the query element, in ascending order.
-- This implementation uses memchr(3).
elemIndices :: Word8 -> ByteString -> [Int64]
elemIndices c (LPS ps) = elemIndices' 0 ps
  where elemIndices' _ []     = []
        elemIndices' n (x:xs) = L.map ((+n).fromIntegral) (P.elemIndices c x)
                             ++ elemIndices' (n + fromIntegral (P.length x)) xs

-- | count returns the number of times its argument appears in the ByteString
--
-- > count = length . elemIndices
--
-- But more efficiently than using length on the intermediate list.
count :: Word8 -> ByteString -> Int64
count w (LPS xs) = L.foldl' (\n ps -> n + fromIntegral (P.count w ps)) 0 xs

-- | The 'findIndex' function takes a predicate and a 'ByteString' and
-- returns the index of the first element in the ByteString
-- satisfying the predicate.
findIndex :: (Word8 -> Bool) -> ByteString -> Maybe Int64
findIndex k (LPS ps) = findIndex' 0 ps
  where findIndex' _ []     = Nothing
        findIndex' n (x:xs) =
          case P.findIndex k x of
            Nothing -> findIndex' (n + fromIntegral (P.length x)) xs
            Just i  -> Just (n + fromIntegral i)
{-# INLINE findIndex #-}

-- | /O(n)/ The 'find' function takes a predicate and a ByteString,
-- and returns the first element in matching the predicate, or 'Nothing'
-- if there is no such element.
--
-- > find f p = case findIndex f p of Just n -> Just (p ! n) ; _ -> Nothing
--
find :: (Word8 -> Bool) -> ByteString -> Maybe Word8
find f (LPS ps) = find' ps
  where find' []     = Nothing
        find' (x:xs) = case P.find f x of
            Nothing -> find' xs
            Just w  -> Just w
{-# INLINE find #-}

-- | The 'findIndices' function extends 'findIndex', by returning the
-- indices of all elements satisfying the predicate, in ascending order.
findIndices :: (Word8 -> Bool) -> ByteString -> [Int64]
findIndices k (LPS ps) = findIndices' 0 ps
  where findIndices' _ []     = []
        findIndices' n (x:xs) = L.map ((+n).fromIntegral) (P.findIndices k x)
                             ++ findIndices' (n + fromIntegral (P.length x)) xs

-- ---------------------------------------------------------------------
-- Searching ByteStrings

-- | /O(n)/ 'elem' is the 'ByteString' membership predicate.
elem :: Word8 -> ByteString -> Bool
elem c ps = case elemIndex c ps of Nothing -> False ; _ -> True

-- | /O(n)/ 'notElem' is the inverse of 'elem'
notElem :: Word8 -> ByteString -> Bool
notElem c ps = not (elem c ps)

-- | /O(n)/ 'filter', applied to a predicate and a ByteString,
-- returns a ByteString containing those characters that satisfy the
-- predicate.
filter :: (Word8 -> Bool) -> ByteString -> ByteString
--filter f (LPS xs) = LPS (filterMap (P.filter' f) xs)
filter p = LPS . P.loopArr . loopL (P.filterEFL p) P.NoAcc . unLPS
{-# INLINE filter #-}

{-
-- | /O(n)/ and /O(n\/c) space/ A first order equivalent of /filter .
-- (==)/, for the common case of filtering a single byte. It is more
-- efficient to use /filterByte/ in this case.
--
-- > filterByte == filter . (==)
--
-- filterByte is around 10x faster, and uses much less space, than its
-- filter equivalent
filterByte :: Word8 -> ByteString -> ByteString
filterByte w ps = replicate (count w ps) w
-- filterByte w (LPS xs) = LPS (filterMap (P.filterByte w) xs)

-- | /O(n)/ A first order equivalent of /filter . (\/=)/, for the common
-- case of filtering a single byte out of a list. It is more efficient
-- to use /filterNotByte/ in this case.
--
-- > filterNotByte == filter . (/=)
--
-- filterNotByte is around 2x faster than its filter equivalent.
filterNotByte :: Word8 -> ByteString -> ByteString
filterNotByte w (LPS xs) = LPS (filterMap (P.filterNotByte w) xs)
-}

-- ---------------------------------------------------------------------
-- Searching for substrings

-- | /O(n)/ The 'isPrefixOf' function takes two ByteStrings and returns 'True'
-- iff the first is a prefix of the second.
isPrefixOf :: ByteString -> ByteString -> Bool
isPrefixOf (LPS as) (LPS bs) = isPrefixL as bs
  where isPrefixL [] _  = True
        isPrefixL _ []  = False
        isPrefixL (x:xs) (y:ys) | P.length x == P.length y = x == y  && isPrefixL xs ys
                                | P.length x <  P.length y = x == yh && isPrefixL xs (yt:ys)
                                | otherwise                = xh == y && isPrefixL (xt:xs) ys
          where (xh,xt) = P.splitAt (P.length y) x
                (yh,yt) = P.splitAt (P.length x) y

-- | /O(n)/ The 'isSuffixOf' function takes two ByteStrings and returns 'True'
-- iff the first is a suffix of the second.
-- 
-- The following holds:
--
-- > isSuffixOf x y == reverse x `isPrefixOf` reverse y
--
-- However, the real implemenation uses memcmp to compare the end of the
-- string only, with no reverse required..
--
--isSuffixOf :: ByteString -> ByteString -> Bool
--isSuffixOf = error "not yet implemented"

-- ---------------------------------------------------------------------
-- Zipping

-- | /O(n)/ 'zip' takes two ByteStrings and returns a list of
-- corresponding pairs of bytes. If one input ByteString is short,
-- excess elements of the longer ByteString are discarded. This is
-- equivalent to a pair of 'unpack' operations.
zip :: ByteString -> ByteString -> [(Word8,Word8)]
zip = zipWith (,)

-- | 'zipWith' generalises 'zip' by zipping with the function given as
-- the first argument, instead of a tupling function.  For example,
-- @'zipWith' (+)@ is applied to two ByteStrings to produce the list of
-- corresponding sums.
zipWith :: (Word8 -> Word8 -> a) -> ByteString -> ByteString -> [a]
zipWith _ (LPS [])     (LPS _)  = []
zipWith _ (LPS _)      (LPS []) = []
zipWith f (LPS (a:as)) (LPS (b:bs)) = zipWith' a as b bs
  where zipWith' x xs y ys =
          (f (P.unsafeHead x) (P.unsafeHead y) : zipWith'' (P.unsafeTail x) xs (P.unsafeTail y) ys)

        zipWith'' x []      _ _       | P.null x       = []
        zipWith'' _ _       y []      | P.null y       = []
        zipWith'' x xs      y ys      | not (P.null x)
                                     && not (P.null y) = zipWith' x  xs y  ys
        zipWith'' x xs      _ (y':ys) | not (P.null x) = zipWith' x  xs y' ys
        zipWith'' _ (x':xs) y ys      | not (P.null y) = zipWith' x' xs y  ys
        zipWith'' _ (x':xs) _ (y':ys)                  = zipWith' x' xs y' ys

-- | /O(n)/ 'unzip' transforms a list of pairs of bytes into a pair of
-- ByteStrings. Note that this performs two 'pack' operations.
{-
unzip :: [(Word8,Word8)] -> (ByteString,ByteString)
unzip _ls = error "not yet implemented"
{-# INLINE unzip #-}
-}

-- ---------------------------------------------------------------------
-- Special lists

-- | /O(n)/ Return all initial segments of the given 'ByteString', shortest first.
inits :: ByteString -> [ByteString]
inits = (LPS [] :) . inits' . unLPS
  where inits' []     = []
        inits' (x:xs) = L.map (\x' -> LPS [x']) (L.tail (P.inits x))
                     ++ L.map (\(LPS xs') -> LPS (x:xs')) (inits' xs)

-- | /O(n)/ Return all final segments of the given 'ByteString', longest first.
tails :: ByteString -> [ByteString]
tails = tails' . unLPS
  where tails' []           = LPS [] : []
        tails' xs@(x:xs')
          | P.length x == 1 = LPS xs : tails' xs'
          | otherwise       = LPS xs : tails' (P.unsafeTail x : xs')

-- ---------------------------------------------------------------------
-- Low level constructors

-- | /O(n)/ Make a copy of the 'ByteString' with its own storage.
--   This is mainly useful to allow the rest of the data pointed
--   to by the 'ByteString' to be garbage collected, for example
--   if a large string has been read in, and only a small part of it
--   is needed in the rest of the program.
copy :: ByteString -> ByteString
copy (LPS lps) = LPS (L.map P.copy lps)
--TODO, we could coalese small blocks here
--FIXME: probably not strict enough, if we're doing this to avoid retaining
-- the parent blocks then we'd better copy strictly.

-- ---------------------------------------------------------------------

-- TODO defrag func that concatenates block together that are below a threshold
-- defrag :: Int -> ByteString -> ByteString

-- ---------------------------------------------------------------------
-- Lazy ByteString IO

-- | Read entire handle contents /lazily/ into a 'ByteString'. Chunks
-- are read on demand, in at most @k@-sized chunks. It does not block
-- waiting for a whole @k@-sized chunk, so if less than @k@ bytes are
-- available then they will be returned immediately as a smaller chunk.
hGetContentsN :: Int -> Handle -> IO ByteString
hGetContentsN k h = lazyRead >>= return . LPS
  where
    lazyRead = unsafeInterleaveIO loop

    loop = do
        ps <- P.hGetNonBlocking h k
        --TODO: I think this should distinguish EOF from no data available
        -- the otherlying POSIX call makes this distincion, returning either
        -- 0 or EAGAIN
        if P.null ps
          then do eof <- hIsEOF h
                  if eof then return []
                         else hWaitForInput h (-1)
                           >> loop
          else do pss <- lazyRead
                  return (ps : pss)

-- | Read @n@ bytes into a 'ByteString', directly from the
-- specified 'Handle', in chunks of size @k@.
hGetN :: Int -> Handle -> Int -> IO ByteString
hGetN _ _ 0 = return empty
hGetN k h n = readChunks n >>= return . LPS
  where
    readChunks a | a `seq` False = undefined
    readChunks i = do
        ps <- P.hGet h (min k i)
        case P.length ps of
            0 -> return []
            m -> do pss <- readChunks (i - m)
                    return (ps : pss)

-- | hGetNonBlockingN is similar to 'hGetContentsN', except that it will never block
-- waiting for data to become available, instead it returns only whatever data
-- is available. Chunks are read on demand, in @k@-sized chunks.
hGetNonBlockingN :: Int -> Handle -> Int -> IO ByteString












hGetNonBlockingN = hGetN


-- | Read entire handle contents /lazily/ into a 'ByteString'. Chunks
-- are read on demand, using the default chunk size.
hGetContents :: Handle -> IO ByteString
hGetContents = hGetContentsN defaultChunkSize

-- | Read @n@ bytes into a 'ByteString', directly from the specified 'Handle'.
hGet :: Handle -> Int -> IO ByteString
hGet = hGetN defaultChunkSize

-- | hGetNonBlocking is similar to 'hGet', except that it will never block
-- waiting for data to become available, instead it returns only whatever data
-- is available.




hGetNonBlocking = hGet


-- | Read an entire file /lazily/ into a 'ByteString'.
readFile :: FilePath -> IO ByteString
readFile f = openBinaryFile f ReadMode >>= hGetContents

-- | Write a 'ByteString' to a file.
writeFile :: FilePath -> ByteString -> IO ()
writeFile f txt = bracket (openBinaryFile f WriteMode) hClose
    (\hdl -> hPut hdl txt)

-- | Append a 'ByteString' to a file.
appendFile :: FilePath -> ByteString -> IO ()
appendFile f txt = bracket (openBinaryFile f AppendMode) hClose
    (\hdl -> hPut hdl txt)

-- | getContents. Equivalent to hGetContents stdin. Will read /lazily/
getContents :: IO ByteString
getContents = hGetContents stdin

-- | Outputs a 'ByteString' to the specified 'Handle'.
hPut :: Handle -> ByteString -> IO ()
hPut h (LPS xs) = mapM_ (P.hPut h) xs

-- | Write a ByteString to stdout
putStr :: ByteString -> IO ()
putStr = hPut stdout

-- | Write a ByteString to stdout, appending a newline byte
putStrLn :: ByteString -> IO ()
putStrLn ps = hPut stdout ps >> hPut stdout (singleton 0x0a)

-- | The interact function takes a function of type @ByteString -> ByteString@
-- as its argument. The entire input from the standard input device is passed
-- to this function as its argument, and the resulting string is output on the
-- standard output device. It's great for writing one line programs!
interact :: (ByteString -> ByteString) -> IO ()
interact transformer = putStr . transformer =<< getContents

-- ---------------------------------------------------------------------
-- Internal utilities

-- Common up near identical calls to `error' to reduce the number
-- constant strings created when compiled:
errorEmptyList :: String -> a
errorEmptyList fun = moduleError fun "empty ByteString"

moduleError :: String -> String -> a
moduleError fun msg = error ("Data.ByteString.Lazy." ++ fun ++ ':':' ':msg)

-- A manually fused version of "filter (not.null) . map f", since they
-- don't seem to fuse themselves. Really helps out filter*, concatMap.
--
-- TODO fuse.
--
filterMap :: (P.ByteString -> P.ByteString) -> [P.ByteString] -> [P.ByteString]
filterMap _ []     = []
filterMap f (x:xs) = case f x of
                    y | P.null y  ->     filterMap f xs      -- manually fuse the invariant filter
                      | otherwise -> y : filterMap f xs
{-# INLINE filterMap #-}


-- | 'findIndexOrEnd' is a variant of findIndex, that returns the length
-- of the string if no element is found, rather than Nothing.
findIndexOrEnd :: (Word8 -> Bool) -> P.ByteString -> Int
findIndexOrEnd k (P.PS x s l) = P.inlinePerformIO $ withForeignPtr x $ \f -> go (f `plusPtr` s) 0
  where
    go a b | a `seq` b `seq` False = undefined
    go ptr n | n >= l    = return l
             | otherwise = do w <- peek ptr
                              if k w
                                then return n
                                else go (ptr `plusPtr` 1) (n+1)
{-# INLINE findIndexOrEnd #-}