This file is indexed.

/usr/lib/hugs/packages/base/Control/Applicative.hs is in libhugs-base-bundled 98.200609.21-5.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
-----------------------------------------------------------------------------
-- |
-- Module      :  Control.Applicative
-- Copyright   :  Conor McBride and Ross Paterson 2005
-- License     :  BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer  :  ross@soi.city.ac.uk
-- Stability   :  experimental
-- Portability :  portable
--
-- This module describes a structure intermediate between a functor and
-- a monad: it provides pure expressions and sequencing, but no binding.
-- (Technically, a strong lax monoidal functor.)  For more details, see
-- /Applicative Programming with Effects/,
-- by Conor McBride and Ross Paterson, online at
-- <http://www.soi.city.ac.uk/~ross/papers/Applicative.html>.
--
-- This interface was introduced for parsers by Niklas R&#xF6;jemo, because
-- it admits more sharing than the monadic interface.  The names here are
-- mostly based on recent parsing work by Doaitse Swierstra.
--
-- This class is also useful with instances of the
-- 'Data.Traversable.Traversable' class.

module Control.Applicative (
	-- * Applicative functors
	Applicative(..),
	-- * Alternatives
	Alternative(..),
	-- * Instances
	Const(..), WrappedMonad(..), WrappedArrow(..), ZipList(..),
	-- * Utility functions
	(<$>), (<$), (*>), (<*), (<**>),
	liftA, liftA2, liftA3,
	optional, some, many
	) where





import Control.Arrow
	(Arrow(arr, (>>>), (&&&)), ArrowZero(zeroArrow), ArrowPlus((<+>)))
import Control.Monad (liftM, ap, MonadPlus(..))
import Control.Monad.Instances ()
import Data.Monoid (Monoid(..))

infixl 3 <|>
infixl 4 <$>, <$
infixl 4 <*>, <*, *>, <**>

-- | A functor with application.
--
-- Instances should satisfy the following laws:
--
-- [/identity/]
--	@'pure' 'id' '<*>' v = v@
--
-- [/composition/]
--	@'pure' (.) '<*>' u '<*>' v '<*>' w = u '<*>' (v '<*>' w)@
--
-- [/homomorphism/]
--	@'pure' f '<*>' 'pure' x = 'pure' (f x)@
--
-- [/interchange/]
--	@u '<*>' 'pure' y = 'pure' ('$' y) '<*>' u@
--
-- The 'Functor' instance should satisfy
--
-- @
--	'fmap' f x = 'pure' f '<*>' x
-- @
--
-- If @f@ is also a 'Monad', define @'pure' = 'return'@ and @('<*>') = 'ap'@.

class Functor f => Applicative f where
	-- | Lift a value.
	pure :: a -> f a

        -- | Sequential application.
	(<*>) :: f (a -> b) -> f a -> f b

-- | A monoid on applicative functors.
class Applicative f => Alternative f where
	-- | The identity of '<|>'
	empty :: f a
	-- | An associative binary operation
	(<|>) :: f a -> f a -> f a

-- instances for Prelude types

instance Applicative Maybe where
	pure = return
	(<*>) = ap

instance Alternative Maybe where
	empty = Nothing
	Nothing <|> p = p
	Just x <|> _ = Just x

instance Applicative [] where
	pure = return
	(<*>) = ap

instance Alternative [] where
	empty = []
	(<|>) = (++)

instance Applicative IO where
	pure = return
	(<*>) = ap

instance Applicative ((->) a) where
	pure = const
	(<*>) f g x = f x (g x)

instance Monoid a => Applicative ((,) a) where
	pure x = (mempty, x)
	(u, f) <*> (v, x) = (u `mappend` v, f x)

-- new instances

newtype Const a b = Const { getConst :: a }

instance Functor (Const m) where
	fmap _ (Const v) = Const v

instance Monoid m => Applicative (Const m) where
	pure _ = Const mempty
	Const f <*> Const v = Const (f `mappend` v)

newtype WrappedMonad m a = WrapMonad { unwrapMonad :: m a }

instance Monad m => Functor (WrappedMonad m) where
	fmap f (WrapMonad v) = WrapMonad (liftM f v)

instance Monad m => Applicative (WrappedMonad m) where
	pure = WrapMonad . return
	WrapMonad f <*> WrapMonad v = WrapMonad (f `ap` v)

instance MonadPlus m => Alternative (WrappedMonad m) where
	empty = WrapMonad mzero
	WrapMonad u <|> WrapMonad v = WrapMonad (u `mplus` v)

newtype WrappedArrow a b c = WrapArrow { unwrapArrow :: a b c }

instance Arrow a => Functor (WrappedArrow a b) where
	fmap f (WrapArrow a) = WrapArrow (a >>> arr f)

instance Arrow a => Applicative (WrappedArrow a b) where
	pure x = WrapArrow (arr (const x))
	WrapArrow f <*> WrapArrow v = WrapArrow (f &&& v >>> arr (uncurry id))

instance (ArrowZero a, ArrowPlus a) => Alternative (WrappedArrow a b) where
	empty = WrapArrow zeroArrow
	WrapArrow u <|> WrapArrow v = WrapArrow (u <+> v)

-- | Lists, but with an 'Applicative' functor based on zipping, so that
--
-- @f '<$>' 'ZipList' xs1 '<*>' ... '<*>' 'ZipList' xsn = 'ZipList' (zipWithn f xs1 ... xsn)@
--
newtype ZipList a = ZipList { getZipList :: [a] }

instance Functor ZipList where
	fmap f (ZipList xs) = ZipList (map f xs)

instance Applicative ZipList where
	pure x = ZipList (repeat x)
	ZipList fs <*> ZipList xs = ZipList (zipWith id fs xs)

-- extra functions

-- | A synonym for 'fmap'.
(<$>) :: Functor f => (a -> b) -> f a -> f b
f <$> a = fmap f a

-- | Replace the value.
(<$) :: Functor f => a -> f b -> f a
(<$) = (<$>) . const
 
-- | Sequence actions, discarding the value of the first argument.
(*>) :: Applicative f => f a -> f b -> f b
(*>) = liftA2 (const id)
 
-- | Sequence actions, discarding the value of the second argument.
(<*) :: Applicative f => f a -> f b -> f a
(<*) = liftA2 const
 
-- | A variant of '<*>' with the arguments reversed.
(<**>) :: Applicative f => f a -> f (a -> b) -> f b
(<**>) = liftA2 (flip ($))

-- | Lift a function to actions.
-- This function may be used as a value for `fmap` in a `Functor` instance.
liftA :: Applicative f => (a -> b) -> f a -> f b
liftA f a = pure f <*> a

-- | Lift a binary function to actions.
liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
liftA2 f a b = f <$> a <*> b

-- | Lift a ternary function to actions.
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 f a b c = f <$> a <*> b <*> c

-- | One or none.
optional :: Alternative f => f a -> f (Maybe a)
optional v = Just <$> v <|> pure Nothing

-- | One or more.
some :: Alternative f => f a -> f [a]
some v = some_v
  where many_v = some_v <|> pure []
	some_v = (:) <$> v <*> many_v

-- | Zero or more.
many :: Alternative f => f a -> f [a]
many v = many_v
  where many_v = some_v <|> pure []
	some_v = (:) <$> v <*> many_v