/usr/include/htdig_db/db_page.h is in htdig 1:3.2.0b6-12.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 | /*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1996, 1997, 1998, 1999
* Sleepycat Software. All rights reserved.
*
* @(#)db_page.h 11.2 (Sleepycat) 8/19/99
*/
#ifndef _DB_PAGE_H_
#define _DB_PAGE_H_
/*
* DB page formats.
*
* !!!
* This implementation requires that values within the following structures
* NOT be padded -- note, ANSI C permits random padding within structures.
* If your compiler pads randomly you can just forget ever making DB run on
* your system. In addition, no data type can require larger alignment than
* its own size, e.g., a 4-byte data element may not require 8-byte alignment.
*
* Note that key/data lengths are often stored in db_indx_t's -- this is
* not accidental, nor does it limit the key/data size. If the key/data
* item fits on a page, it's guaranteed to be small enough to fit into a
* db_indx_t, and storing it in one saves space.
*/
#define PGNO_INVALID 0 /* Invalid page number in any database. */
#define PGNO_BASE_MD 0 /* Base database: metadata page number. */
/* Page types. */
#define P_INVALID 0 /* Invalid page type. */
#define P_DUPLICATE 1 /* Duplicate. */
#define P_HASH 2 /* Hash. */
#define P_IBTREE 3 /* Btree internal. */
#define P_IRECNO 4 /* Recno internal. */
#define P_LBTREE 5 /* Btree leaf. */
#define P_LRECNO 6 /* Recno leaf. */
#define P_OVERFLOW 7 /* Overflow. */
#define P_HASHMETA 8 /* Hash metadata page. */
#define P_BTREEMETA 9 /* Btree metadata page. */
#define P_QAMMETA 10 /* Queue metadata page. */
#define P_QAMDATA 11 /* Queue data page. */
/*
* These page types are artificially built by io compression
* when trying to access a page number that is not the
* beginning of a page compression chain.
* Utilities that walk the file by incrementing the page
* number can make use of these page types or safely consider
* them as equivalent to P_INVALID.
*/
#define P_CMPR_INTERNAL 12 /* Compression internal page. */
#define P_CMPR_FREE 13 /* Compression free page. */
/*
* When we create pages in mpool, we ask mpool to clear some number of bytes
* in the header. This number must be at least as big as the regular page
* headers and cover enough of the btree and hash meta-data pages to obliterate
* the page type.
*/
#define DB_PAGE_DB_LEN 32
#define DB_PAGE_QUEUE_LEN 0
/************************************************************************
GENERIC METADATA PAGE HEADER
*
* !!!
* The magic and version numbers have to be in the same place in all versions
* of the metadata page as the application may not have upgraded the database.
************************************************************************/
typedef struct _dbmeta {
DB_LSN lsn; /* 00-07: LSN. */
db_pgno_t pgno; /* 08-11: Current page number. */
u_int32_t magic; /* 12-15: Magic number. */
u_int32_t version; /* 16-19: Version. */
u_int32_t pagesize; /* 20-23: Pagesize. */
u_int8_t unused1[1]; /* 24: Unused. */
u_int8_t type; /* 25: Page type. */
u_int8_t unused2[2]; /* 26-27: Unused. */
u_int32_t free; /* 28-31: Free list page number. */
u_int32_t flags; /* 32-35: Flags: unique to each AM. */
/* 36-55: Unique file ID. */
u_int8_t uid[DB_FILE_ID_LEN];
} DBMETA;
/************************************************************************
BTREE METADATA PAGE LAYOUT
************************************************************************/
typedef struct _btmeta {
#define BTM_DUP 0x001 /* Duplicates. */
#define BTM_RECNO 0x002 /* Recno tree. */
#define BTM_RECNUM 0x004 /* Btree: maintain record count. */
#define BTM_FIXEDLEN 0x008 /* Recno: fixed length records. */
#define BTM_RENUMBER 0x010 /* Recno: renumber on insert/delete. */
#define BTM_SUBDB 0x020 /* Subdatabases. */
#define BTM_MASK 0x03f
DBMETA dbmeta; /* 00-55: Generic meta-data header. */
u_int32_t maxkey; /* 56-59: Btree: Maxkey. */
u_int32_t minkey; /* 60-63: Btree: Minkey. */
u_int32_t re_len; /* 64-67: Recno: fixed-length record length. */
u_int32_t re_pad; /* 68-71: Recno: fixed-length record pad. */
u_int32_t root; /* 72-75: Root page. */
/*
* Minimum page size is 128.
*/
} BTMETA;
/************************************************************************
HASH METADATA PAGE LAYOUT
************************************************************************/
typedef struct _hashmeta {
#define DB_HASH_DUP 0x01 /* Duplicates. */
#define DB_HASH_SUBDB 0x02 /* Subdatabases. */
DBMETA dbmeta; /* 00-55: Generic meta-data page header. */
u_int32_t max_bucket; /* 56-59: ID of Maximum bucket in use */
u_int32_t high_mask; /* 60-63: Modulo mask into table */
u_int32_t low_mask; /* 64-67: Modulo mask into table lower half */
u_int32_t ffactor; /* 68-71: Fill factor */
u_int32_t nelem; /* 72-75: Number of keys in hash table */
u_int32_t h_charkey; /* 76-79: Value of hash(CHARKEY) */
#define NCACHED 32 /* number of spare points */
/* 80-207: Spare pages for overflow */
u_int32_t spares[NCACHED];
/*
* Minimum page size is 256.
*/
} HMETA;
/************************************************************************
QUEUE METADATA PAGE LAYOUT
************************************************************************/
/*
* QAM Meta data page structure
*
*/
typedef struct _qmeta {
DBMETA dbmeta; /* 00-55: Generic meta-data header. */
u_int32_t start; /* 56-59: Start offset. */
u_int32_t first_recno; /* 60-63: First not deleted record. */
u_int32_t cur_recno; /* 64-67: Last recno allocated. */
u_int32_t re_len; /* 68-71: Fixed-length record length. */
u_int32_t re_pad; /* 72-75: Fixed-length record pad. */
u_int32_t rec_page; /* 76-79: Records Per Page. */
/*
* Minimum page size is 128.
*/
} QMETA;
/************************************************************************
BTREE/HASH MAIN PAGE LAYOUT
************************************************************************/
/*
* +-----------------------------------+
* | lsn | pgno | prev pgno |
* +-----------------------------------+
* | next pgno | entries | hf offset |
* +-----------------------------------+
* | level | type | index |
* +-----------------------------------+
* | index | free --> |
* +-----------+-----------------------+
* | F R E E A R E A |
* +-----------------------------------+
* | <-- free | item |
* +-----------------------------------+
* | item | item | item |
* +-----------------------------------+
*
* sizeof(PAGE) == 26 bytes, and the following indices are guaranteed to be
* two-byte aligned.
*
* For hash and btree leaf pages, index items are paired, e.g., inp[0] is the
* key for inp[1]'s data. All other types of pages only contain single items.
*/
typedef struct _db_page {
DB_LSN lsn; /* 00-07: Log sequence number. */
db_pgno_t pgno; /* 08-11: Current page number. */
db_pgno_t prev_pgno; /* 12-15: Previous page number. */
db_pgno_t next_pgno; /* 16-19: Next page number. */
db_indx_t entries; /* 20-21: Number of items on the page. */
db_indx_t hf_offset; /* 22-23: High free byte page offset. */
/*
* The btree levels are numbered from the leaf to the root, starting
* with 1, so the leaf is level 1, its parent is level 2, and so on.
* We maintain this level on all btree pages, but the only place that
* we actually need it is on the root page. It would not be difficult
* to hide the byte on the root page once it becomes an internal page,
* so we could get this byte back if we needed it for something else.
*/
#define LEAFLEVEL 1
#define MAXBTREELEVEL 255
u_int8_t level; /* 24: Btree tree level. */
u_int8_t type; /* 25: Page type. */
db_indx_t inp[1]; /* Variable length index of items. */
} PAGE;
/************************************************************************
QUEUE MAIN PAGE LAYOUT
************************************************************************/
typedef struct _qpage {
DB_LSN lsn; /* 00-07: Log sequence number. */
db_pgno_t pgno; /* 08-11: Current page number. */
u_int32_t unused0[3]; /* 12-23: Unused. */
u_int8_t unused1[1]; /* 24: Unused. */
u_int8_t type; /* 25: Page type. */
u_int8_t unused2[2]; /* 26-27: Unused. */
} QPAGE;
/* Main page element macros. */
#define LSN(p) (((PAGE *)p)->lsn)
#define PGNO(p) (((PAGE *)p)->pgno)
#define PREV_PGNO(p) (((PAGE *)p)->prev_pgno)
#define NEXT_PGNO(p) (((PAGE *)p)->next_pgno)
#define NUM_ENT(p) (((PAGE *)p)->entries)
#define HOFFSET(p) (((PAGE *)p)->hf_offset)
#define LEVEL(p) (((PAGE *)p)->level)
#define TYPE(p) (((PAGE *)p)->type)
/*
* !!!
* The next_pgno and prev_pgno fields are not maintained for btree and recno
* internal pages. It's a minor performance improvement, and more, it's
* hard to do when deleting internal pages, and it decreases the chance of
* deadlock during deletes and splits.
*
* !!!
* The btree/recno access method needs db_recno_t bytes of space on the root
* page to specify how many records are stored in the tree. (The alternative
* is to store the number of records in the meta-data page, which will create
* a second hot spot in trees being actively modified, or recalculate it from
* the BINTERNAL fields on each access.) Overload the prev_pgno field.
*/
#define RE_NREC(p) \
(TYPE(p) == P_LBTREE ? NUM_ENT(p) / 2 : \
TYPE(p) == P_LRECNO ? NUM_ENT(p) : PREV_PGNO(p))
#define RE_NREC_ADJ(p, adj) \
PREV_PGNO(p) += adj;
#define RE_NREC_SET(p, num) \
PREV_PGNO(p) = num;
/*
* Initialize a page.
*
* !!!
* Don't modify the page's LSN, code depends on it being unchanged after a
* P_INIT call.
*/
#define P_INIT(pg, pg_size, n, pg_prev, pg_next, btl, pg_type) do { \
PGNO(pg) = n; \
PREV_PGNO(pg) = pg_prev; \
NEXT_PGNO(pg) = pg_next; \
NUM_ENT(pg) = 0; \
HOFFSET(pg) = pg_size; \
LEVEL(pg) = btl; \
TYPE(pg) = pg_type; \
} while (0)
/* Page header length (offset to first index). */
#define P_OVERHEAD (SSZA(PAGE, inp))
/* First free byte. */
#define LOFFSET(pg) (P_OVERHEAD + NUM_ENT(pg) * sizeof(db_indx_t))
/* Free space on a regular page. */
#define P_FREESPACE(pg) (HOFFSET(pg) - LOFFSET(pg))
/* Get a pointer to the bytes at a specific index. */
#define P_ENTRY(pg, indx) ((u_int8_t *)pg + ((PAGE *)pg)->inp[indx])
/************************************************************************
OVERFLOW PAGE LAYOUT
************************************************************************/
/*
* Overflow items are referenced by HOFFPAGE and BOVERFLOW structures, which
* store a page number (the first page of the overflow item) and a length
* (the total length of the overflow item). The overflow item consists of
* some number of overflow pages, linked by the next_pgno field of the page.
* A next_pgno field of PGNO_INVALID flags the end of the overflow item.
*
* Overflow page overloads:
* The amount of overflow data stored on each page is stored in the
* hf_offset field.
*
* The implementation reference counts overflow items as it's possible
* for them to be promoted onto btree internal pages. The reference
* count is stored in the entries field.
*/
#define OV_LEN(p) (((PAGE *)p)->hf_offset)
#define OV_REF(p) (((PAGE *)p)->entries)
/* Maximum number of bytes that you can put on an overflow page. */
#define P_MAXSPACE(psize) ((psize) - P_OVERHEAD)
/* Free space on an overflow page. */
#define P_OVFLSPACE(psize, pg) (P_MAXSPACE(psize) - HOFFSET(pg))
/************************************************************************
HASH PAGE LAYOUT
************************************************************************/
/* Each index references a group of bytes on the page. */
#define H_KEYDATA 1 /* Key/data item. */
#define H_DUPLICATE 2 /* Duplicate key/data item. */
#define H_OFFPAGE 3 /* Overflow key/data item. */
#define H_OFFDUP 4 /* Overflow page of duplicates. */
/*
* !!!
* Items on hash pages are (potentially) unaligned, so we can never cast the
* (page + offset) pointer to an HKEYDATA, HOFFPAGE or HOFFDUP structure, as
* we do with B+tree on-page structures. Because we frequently want the type
* field, it requires no alignment, and it's in the same location in all three
* structures, there's a pair of macros.
*/
#define HPAGE_PTYPE(p) (*(u_int8_t *)p)
#define HPAGE_TYPE(pg, indx) (*P_ENTRY(pg, indx))
/*
* The first and second types are H_KEYDATA and H_DUPLICATE, represented
* by the HKEYDATA structure:
*
* +-----------------------------------+
* | type | key/data ... |
* +-----------------------------------+
*
* For duplicates, the data field encodes duplicate elements in the data
* field:
*
* +---------------------------------------------------------------+
* | type | len1 | element1 | len1 | len2 | element2 | len2 |
* +---------------------------------------------------------------+
*
* Thus, by keeping track of the offset in the element, we can do both
* backward and forward traversal.
*/
typedef struct _hkeydata {
u_int8_t type; /* 00: Page type. */
u_int8_t data[1]; /* Variable length key/data item. */
} HKEYDATA;
#define HKEYDATA_DATA(p) (((u_int8_t *)p) + SSZA(HKEYDATA, data))
/*
* The length of any HKEYDATA item. Note that indx is an element index,
* not a PAIR index.
*/
#define LEN_HITEM(pg, pgsize, indx) \
(((indx) == 0 ? pgsize : pg->inp[indx - 1]) - pg->inp[indx])
#define LEN_HKEYDATA(pg, psize, indx) \
(((indx) == 0 ? psize : pg->inp[indx - 1]) - \
pg->inp[indx] - HKEYDATA_SIZE(0))
/*
* Page space required to add a new HKEYDATA item to the page, with and
* without the index value.
*/
#define HKEYDATA_SIZE(len) \
((len) + SSZA(HKEYDATA, data))
#define HKEYDATA_PSIZE(len) \
(HKEYDATA_SIZE(len) + sizeof(db_indx_t))
/* Put a HKEYDATA item at the location referenced by a page entry. */
#define PUT_HKEYDATA(pe, kd, len, type) { \
((HKEYDATA *)pe)->type = type; \
memcpy((u_int8_t *)pe + sizeof(u_int8_t), kd, len); \
}
/*
* Macros the describe the page layout in terms of key-data pairs.
* The use of "pindex" indicates that the argument is the index
* expressed in pairs instead of individual elements.
*/
#define H_NUMPAIRS(pg) (NUM_ENT(pg) / 2)
#define H_KEYINDEX(pindx) (2 * (pindx))
#define H_DATAINDEX(pindx) ((2 * (pindx)) + 1)
#define H_PAIRKEY(pg, pindx) P_ENTRY(pg, H_KEYINDEX(pindx))
#define H_PAIRDATA(pg, pindx) P_ENTRY(pg, H_DATAINDEX(pindx))
#define H_PAIRSIZE(pg, psize, pindx) \
(LEN_HITEM(pg, psize, H_KEYINDEX(pindx)) + \
LEN_HITEM(pg, psize, H_DATAINDEX(pindx)))
#define LEN_HDATA(p, psize, pindx) LEN_HKEYDATA(p, psize, H_DATAINDEX(pindx))
#define LEN_HKEY(p, psize, pindx) LEN_HKEYDATA(p, psize, H_KEYINDEX(pindx))
/*
* The third type is the H_OFFPAGE, represented by the HOFFPAGE structure:
*/
typedef struct _hoffpage {
u_int8_t type; /* 00: Page type and delete flag. */
u_int8_t unused[3]; /* 01-03: Padding, unused. */
db_pgno_t pgno; /* 04-07: Offpage page number. */
u_int32_t tlen; /* 08-11: Total length of item. */
} HOFFPAGE;
#define HOFFPAGE_PGNO(p) (((u_int8_t *)p) + SSZ(HOFFPAGE, pgno))
#define HOFFPAGE_TLEN(p) (((u_int8_t *)p) + SSZ(HOFFPAGE, tlen))
/*
* Page space required to add a new HOFFPAGE item to the page, with and
* without the index value.
*/
#define HOFFPAGE_SIZE (sizeof(HOFFPAGE))
#define HOFFPAGE_PSIZE (HOFFPAGE_SIZE + sizeof(db_indx_t))
/*
* The fourth type is H_OFFDUP represented by the HOFFDUP structure:
*/
typedef struct _hoffdup {
u_int8_t type; /* 00: Page type and delete flag. */
u_int8_t unused[3]; /* 01-03: Padding, unused. */
db_pgno_t pgno; /* 04-07: Offpage page number. */
} HOFFDUP;
#define HOFFDUP_PGNO(p) (((u_int8_t *)p) + SSZ(HOFFDUP, pgno))
/*
* Page space required to add a new HOFFDUP item to the page, with and
* without the index value.
*/
#define HOFFDUP_SIZE (sizeof(HOFFDUP))
#define HOFFDUP_PSIZE (HOFFDUP_SIZE + sizeof(db_indx_t))
/************************************************************************
BTREE PAGE LAYOUT
************************************************************************/
/* Each index references a group of bytes on the page. */
#define B_KEYDATA 1 /* Key/data item. */
#define B_DUPLICATE 2 /* Duplicate key/data item. */
#define B_OVERFLOW 3 /* Overflow key/data item. */
/*
* We have to store a deleted entry flag in the page. The reason is complex,
* but the simple version is that we can't delete on-page items referenced by
* a cursor -- the return order of subsequent insertions might be wrong. The
* delete flag is an overload of the top bit of the type byte.
*/
#define B_DELETE (0x80)
#define B_DCLR(t) (t) &= ~B_DELETE
#define B_DSET(t) (t) |= B_DELETE
#define B_DISSET(t) ((t) & B_DELETE)
#define B_TYPE(t) ((t) & ~B_DELETE)
#define B_TSET(t, type, deleted) { \
(t) = (type); \
if (deleted) \
B_DSET(t); \
}
/*
* The first type is B_KEYDATA, represented by the BKEYDATA structure:
*/
typedef struct _bkeydata {
db_indx_t len; /* 00-01: Key/data item length. */
u_int8_t type; /* 02: Page type AND DELETE FLAG. */
u_int8_t data[1]; /* Variable length key/data item. */
} BKEYDATA;
/* Get a BKEYDATA item for a specific index. */
#define GET_BKEYDATA(pg, indx) \
((BKEYDATA *)P_ENTRY(pg, indx))
/*
* Page space required to add a new BKEYDATA item to the page, with and
* without the index value.
*/
#define BKEYDATA_SIZE(len) \
ALIGN((len) + SSZA(BKEYDATA, data), 4)
#define BKEYDATA_PSIZE(len) \
(BKEYDATA_SIZE(len) + sizeof(db_indx_t))
/*
* The second and third types are B_DUPLICATE and B_OVERFLOW, represented
* by the BOVERFLOW structure.
*/
typedef struct _boverflow {
db_indx_t unused1; /* 00-01: Padding, unused. */
u_int8_t type; /* 02: Page type AND DELETE FLAG. */
u_int8_t unused2; /* 03: Padding, unused. */
db_pgno_t pgno; /* 04-07: Next page number. */
u_int32_t tlen; /* 08-11: Total length of item. */
} BOVERFLOW;
/* Get a BOVERFLOW item for a specific index. */
#define GET_BOVERFLOW(pg, indx) \
((BOVERFLOW *)P_ENTRY(pg, indx))
/*
* Page space required to add a new BOVERFLOW item to the page, with and
* without the index value.
*/
#define BOVERFLOW_SIZE \
ALIGN(sizeof(BOVERFLOW), 4)
#define BOVERFLOW_PSIZE \
(BOVERFLOW_SIZE + sizeof(db_indx_t))
/*
* Btree leaf and hash page layouts group indices in sets of two, one
* for the key and one for the data. Everything else does it in sets
* of one to save space. I use the following macros so that it's real
* obvious what's going on...
*/
#define O_INDX 1
#define P_INDX 2
/************************************************************************
BTREE INTERNAL PAGE LAYOUT
************************************************************************/
/*
* Btree internal entry.
*/
typedef struct _binternal {
db_indx_t len; /* 00-01: Key/data item length. */
u_int8_t type; /* 02: Page type AND DELETE FLAG. */
u_int8_t unused; /* 03: Padding, unused. */
db_pgno_t pgno; /* 04-07: Page number of referenced page. */
db_recno_t nrecs; /* 08-11: Subtree record count. */
u_int8_t data[1]; /* Variable length key item. */
} BINTERNAL;
/* Get a BINTERNAL item for a specific index. */
#define GET_BINTERNAL(pg, indx) \
((BINTERNAL *)P_ENTRY(pg, indx))
/*
* Page space required to add a new BINTERNAL item to the page, with and
* without the index value.
*/
#define BINTERNAL_SIZE(len) \
ALIGN((len) + SSZA(BINTERNAL, data), 4)
#define BINTERNAL_PSIZE(len) \
(BINTERNAL_SIZE(len) + sizeof(db_indx_t))
/************************************************************************
RECNO INTERNAL PAGE LAYOUT
************************************************************************/
/*
* The recno internal entry.
*
* XXX
* Why not fold this into the db_indx_t structure, it's fixed length?
*/
typedef struct _rinternal {
db_pgno_t pgno; /* 00-03: Page number of referenced page. */
db_recno_t nrecs; /* 04-07: Subtree record count. */
} RINTERNAL;
/* Get a RINTERNAL item for a specific index. */
#define GET_RINTERNAL(pg, indx) \
((RINTERNAL *)P_ENTRY(pg, indx))
/*
* Page space required to add a new RINTERNAL item to the page, with and
* without the index value.
*/
#define RINTERNAL_SIZE \
ALIGN(sizeof(RINTERNAL), 4)
#define RINTERNAL_PSIZE \
(RINTERNAL_SIZE + sizeof(db_indx_t))
#endif /* _DB_PAGE_H_ */
|