/usr/lib/amanda/perl/Amanda/MainLoop.pm is in amanda-common 1:3.3.1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.4
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
package Amanda::MainLoop;
use base qw(Exporter);
use base qw(DynaLoader);
package Amanda::MainLoopc;
bootstrap Amanda::MainLoop;
package Amanda::MainLoop;
@EXPORT = qw();
# ---------- BASE METHODS -------------
package Amanda::MainLoop;
sub TIEHASH {
my ($classname,$obj) = @_;
return bless $obj, $classname;
}
sub CLEAR { }
sub FIRSTKEY { }
sub NEXTKEY { }
sub FETCH {
my ($self,$field) = @_;
my $member_func = "swig_${field}_get";
$self->$member_func();
}
sub STORE {
my ($self,$field,$newval) = @_;
my $member_func = "swig_${field}_set";
$self->$member_func($newval);
}
sub this {
my $ptr = shift;
return tied(%$ptr);
}
# ------- FUNCTION WRAPPERS --------
package Amanda::MainLoop;
*run_c = *Amanda::MainLoopc::run_c;
*quit = *Amanda::MainLoopc::quit;
*timeout_source = *Amanda::MainLoopc::timeout_source;
*idle_source = *Amanda::MainLoopc::idle_source;
*child_watch_source = *Amanda::MainLoopc::child_watch_source;
*fd_source = *Amanda::MainLoopc::fd_source;
############# Class : Amanda::MainLoop::Source ##############
package Amanda::MainLoop::Source;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Amanda::MainLoop );
%OWNER = ();
%ITERATORS = ();
sub new {
my $pkg = shift;
my $self = Amanda::MainLoopc::new_Source(@_);
bless $self, $pkg if defined($self);
}
sub DESTROY {
return unless $_[0]->isa('HASH');
my $self = tied(%{$_[0]});
return unless defined $self;
delete $ITERATORS{$self};
if (exists $OWNER{$self}) {
Amanda::MainLoopc::delete_Source($self);
delete $OWNER{$self};
}
}
*set_callback = *Amanda::MainLoopc::Source_set_callback;
*remove = *Amanda::MainLoopc::Source_remove;
sub DISOWN {
my $self = shift;
my $ptr = tied(%$self);
delete $OWNER{$ptr};
}
sub ACQUIRE {
my $self = shift;
my $ptr = tied(%$self);
$OWNER{$ptr} = 1;
}
# ------- VARIABLE STUBS --------
package Amanda::MainLoop;
*G_IO_IN = *Amanda::MainLoopc::G_IO_IN;
*G_IO_OUT = *Amanda::MainLoopc::G_IO_OUT;
*G_IO_PRI = *Amanda::MainLoopc::G_IO_PRI;
*G_IO_ERR = *Amanda::MainLoopc::G_IO_ERR;
*G_IO_HUP = *Amanda::MainLoopc::G_IO_HUP;
*G_IO_NVAL = *Amanda::MainLoopc::G_IO_NVAL;
@EXPORT_OK = ();
%EXPORT_TAGS = ();
=head1 NAME
Amanda::MainLoop - Perl interface to the Glib MainLoop
=head1 SYNOPSIS
use Amanda::MainLoop;
my $to = Amanda::MainLoop::timeout_source(2000);
$to->set_callback(sub {
print "Time's Up!\n";
$to->remove(); # dont' re-queue this timeout
Amanda::MainLoop::quit(); # return from Amanda::MainLoop::run
});
Amanda::MainLoop::run();
Note that all functions in this module are individually available for
export, e.g.,
use Amanda::MainLoop qw(run quit);
=head1 OVERVIEW
The main event loop of an application is a tight loop which waits for
events, and calls functions to respond to those events. This design
allows an IO-bound application to multitask within a single thread, by
responding to IO events as they occur instead of blocking on
particular IO operations.
The Amanda security API, transfer API, and other components rely on
the event loop to allow them to respond to their own events in a
timely fashion.
The overall structure of an application, then, is to initialize its
state, register callbacks for some events, and begin looping. In each
iteration, the loop waits for interesting events to occur (data
available for reading or writing, timeouts, etc.), and then calls
functions to handle those interesting things. Thus, the application
spends most of its time waiting. When some application-defined state
is reached, the loop is terminated and the application cleans up and
exits.
The Glib main loop takes place within a call to
C<Amanda::MainLoop::run()>. This function executes until a call to
C<Amanda::MainLoop::quit()> occurs, at which point C<run()> returns.
You can check whether the loop is running with
C<Amanda::MainLoop::is_running()>.
=head1 HIGH-LEVEL INTERFACE
The functions in this section are intended to make asynchronous
programming as simple as possible. They are implemented on top of the
interfaces described in the LOW-LEVEL INTERFACE section.
=head3 call_later
In most cases, a callback does not need to be invoked immediately. In
fact, because Perl does not do tail-call optimization, a long chain of
callbacks may cause the perl stack to grow unnecessarily.
The solution is to queue the callback for execution on the next
iteration of the main loop, and C<call_later($cb, @args)> does exactly
this.
sub might_delay {
my ($cb) = @_;
if (can_do_it_now()) {
my $result = do_it();
Amanda::MainLoop::call_later($cb, $result)
} else {
# ..
}
}
When starting the main loop, an application usually has a sub that
should run after the loop has started. C<call_later> works in this
situation, too.
my $main = sub {
# ..
Amanda::MainLoop::quit();
};
Amanda::MainLoop::call_later($main);
# ..
Amanda::MainLoop::run();
=head3 make_cb
As an optimization, C<make_cb> wraps a sub with a call to call_later
while also naming the sub (using C<Sub::Name>, if available):
my $fetched_cb = make_cb(fetched_cb => sub {
# .. callback body
}
In general, C<make_cb> should be used whenever a callback is passed to
some other library. For example, the Changer API (see
L<Amanda::Changer>) might be invoked like this:
my $reset_finished_cb = make_cb(reset_finished_cb => sub {
my ($err) = @_;
die "while resetting: $err" if $err;
# ..
});
Be careful I<not> to use C<make_cb> in cases where some action must
take place before the next iteration of the main loop. In practice,
this means C<make_cb> should be avoided with file-descriptor
callbacks, which will trigger repeatedly until the descriptors' needs
are addressed.
C<make_cb> is exported automatically.
=head3 call_after
Sometimes you need the MainLoop equivalent of C<sleep()>. That comes
in the form of C<call_later($delay, $cb, @args)>, which takes a delay
(in milliseconds), a sub, and an arbitrary number of arguments. The
sub is called with the arguments after the delay has elapsed.
sub countdown {
my $counter;
$counter = sub {
print "$i..\n";
if ($i) {
Amanda::MainLoop::call_after(1000, $counter, $i-1);
}
}
$counter->(10);
}
The function returns the underlying event source (see below), enabling
the caller to cancel the pending call:
my $tosrc = Amanda::MainLoop::call_after(15000, $timeout_cb):
# ...data arrives before timeout...
$tosrc->remove();
=head3 call_on_child_termination
To monitor a child process for termination, give its pid to
C<call_on_child_termination($pid, $cb, @args)>. When the child exits
for any reason, this will collect its exit status (via C<waitpid>) and
call C<$cb> as
$cb->($exitstatus, @args);
Like C<call_after>, this function returns the event source to allow
early cancellation if desired.
=head3 async_read
async_read(
fd => $fd,
size => $size, # optional, default 0
async_read_cb => $async_read_cb,
args => [ .. ]); # optional
This function will read C<$size> bytes when they are available from
file descriptor C<$fd>, and invoke the callback with the results:
$async_read_cb->($err, $buf, @args);
If C<$size> is zero, then the callback will get whatever data is
available as soon as it is available, up to an arbitrary buffer size.
If C<$size> is nonzero, then a short read may still occur if C<$size>
bytes do not become available simultaneously. On EOF, C<$buf> will be
the empty string. It is the caller's responsibility to set C<$fd> to
non-blocking mode. Note that not all operating sytems generate errors
that might be reported here. For example, on Solaris an invalid file
descriptor will be silently ignored.
The return value is an event source, and calling its C<remove> method
will cancel the read. It is an error to have more than one
C<async_read> operation on a single file descriptor at any time, and
will lead to unpredictable results.
This function adds a new FdSource every time it is invoked, so it is
not well-suited to processing large amounts of data. For that
purpose, consider using the low-level interface or, better, the
transfer architecture (see L<Amanda::Xfer>).
=head3 async_write
async_write(
fd => $fd,
data => $data,
async_write_cb => $async_write_cb,
args => [ .. ]); # optional
This function will write C<$data> to file descriptor C<$fd> and invoke
the callback with the number of bytes written:
$cb->($err, $bytes_written, @args);
If C<$bytes_written> is less than then length of <$data>, then an
error occurred, and is given in C<$err>. As for C<async_read>, the
caller should set C<$fd> to non-blocking mode. Multiple parallel
invocations of this function for the same file descriptor are allowed
and will be serialized in the order the calls were made:
async_write($fd, "HELLO!\n",
async_write_cb => make_cb(wrote_hello => sub {
print "wrote 'HELLO!'\n";
}));
async_write($fd, "GOODBYE!\n",
async_write_cb => make_cb(wrote_goodbye => sub {
print "wrote 'GOODBYE!'\n";
}));
In this case, the two strings are guaranteed to be written in the same
order, and the callbacks will be called in the correct order.
Like async_read, this function may add a new FdSource every time it is
invoked, so it is not well-suited to processing large amounts of data.
=head3 synchronized
Java has the notion of a "synchronized" method, which can only execute in one
thread at any time. This is a particular application of a lock, in which the
lock is acquired when the method begins, and released when it finishes.
With C<Amanda::MainLoop>, this functionality is generally not needed because
there is no unexpected preemeption. However, if you break up a long-running
operation (that doesn't allow concurrency) into several callbacks, you'll need
to ensure that at most one of those operations is going on at a time. The
C<synchronized> function manages that for you.
The function takes a C<$lock> argument, which should be initialized to an empty
arrayref (C<[]>). It is used like this:
use Amanda::MainLoop 'synchronized';
# ..
sub dump_data {
my $self = shift;
my ($arg1, $arg2, $dump_cb) = @_;
synchronized($self->{'lock'}, $dump_cb, sub {
my ($dump_cb) = @_; # IMPORTANT! See below
$self->do_dump_data($arg1, $arg2, $dump_cb);
};
}
Here, C<do_dump_data> may take a long time to complete (perhaps it starts
a long-running data transfer) but only one such operation is allowed at any
time and other C<Amanda::MainLoop> callbacks may occur (e.g. a timeout).
When the critical operation is complete, it calls C<$dump_cb> which will
release the lock before transferring control to the caller.
Note that the C<$dump_cb> in the inner C<sub> shadows that in
C<dump_data> -- this is intentional, the a call to the the inner
C<$dump_cb> is how C<synchronized> knows that the operation has completed.
Several methods may be synchronized with one another by simply sharing the same
lock.
=head1 ASYNCHRONOUS STYLE
When writing asynchronous code, it's easy to write code that is *very*
difficult to read or debug. The suggestions in this section will help
write code that is more readable, and also ensure that all asynchronous
code in Amanda uses similar, common idioms.
=head2 USING CALLBACKS
Most often, callbacks are short, and can be specified as anonymous
subs. They should be specified with make_cb, like this:
some_async_function(make_cb(foo_cb => sub {
my ($x, $y) = @_;
# ...
}));
If a callback is more than about two lines, specify it in a named
variable, rather than directly in the function call:
my $foo_cb = make_cb(foo_cb => sub {
my ($src) = @_;
# .
# . long function
# .
});
some_async_function($foo_cb);
When using callbacks from an object-oriented package, it is often
useful to treat a method as a callback. This requires an anonymous
sub "wrapper", which can be written on one line:
some_async_function(sub { $self->foo_cb(@_) });
=head2 LINEARITY
The single most important factor in readability is linearity. If a function
that performs operations A, B, and C in that order, then the code for A, B, and
C should appear in that order in the source file. This seems obvious, but it's
all too easy to write
sub three_ops {
my $do_c = sub { .. };
my $do_b = sub { .. $do_c->() .. };
my $do_a = sub { .. $do_b->() .. };
$do_a->();
}
Which isn't very readable. Be readable.
=head2 SINGLE ENTRY AND EXIT
Amanda's use of callbacks emulates continuation-passing style. As such, when a
function finishes -- whether successfully or with an error -- it should call a
single callback. This ensures that the function has a simple control
interface: perform the operation and call the callback.
=head2 MULTIPLE STEPS
Some operations require a long squence of asynchronous operations. For
example, often the results of one operation are required to initiate
another. The I<step> syntax is useful to make this much more readable, and
also eliminate some nasty reference-counting bugs. The idea is that each "step"
in the process gets its own sub, and then each step calls the next step. The
first step defined will be called automatically.
sub send_file {
my ($hostname, $port, $data, $sendfile_cb) = @_;
my ($addr, $socket); # shared lexical variables
my $steps = define_steps
cb_ref => \$sendfile_cb;
step lookup_addr => sub {
return async_gethostbyname(hostname => $hostname,
ghbn_cb => $steps->{'got_addr'});
};
step ghbn_cb => sub {
my ($err, $hostinfo) = @_;
die $err if $err;
$addr = $hostinfo->{'ipaddr'};
return $steps->{'connect'}->();
};
step connect => sub {
return async_connect(
ipaddr => $addr,
port => $port,
connect_cb => $steps->{'connect_cb'},
);
};
step connect_cb => sub {
my ($err, $conn_sock) = @_;
die $err if $err;
$socket = $conn_sock;
return $steps->{'write_block'}->();
};
# ...
}
The C<define_steps> function sets the stage. It is given a reference to the
callback for this function (recall there is only one exit point!), and
"patches" that reference to free C<$steps>, which otherwise forms a reference
loop, on exit.
WARNING: if the function or method needs to do any kind of setup before its
first step, that setup should be done either in a C<setup> step or I<before>
the C<define_steps> invocation. Do not write any statements other than step
declarations after the C<define_steps> call.
Note that there are more steps in this example than are strictly necessary: the
body of C<connect> could be appended to C<ghbn_cb>. The extra steps make the
overall operation more readable by adding "punctuation" to separate the task of
handling a callback (C<ghbn_cb>) from starting the next operation (C<connect>).
Also note that the enclosing scope contains some lexical (C<my>)
variables which are shared by several of the callbacks.
All of the steps are wrapped by C<make_cb>, so each step will be executed on a
separate iteration of the MainLoop. This generally has the effect of making
asynchronous functions share CPU time more fairly. Sometimes, especially when
using the low-level interface, a callback must be called immediately. To
achieve this for all callbacks, add C<< immediate => 1 >> to the C<define_steps>
invocation:
my $steps = define_steps
cb_ref => \$finished_cb,
immediate => 1;
To do the same for a single step, add the same keyword to the C<step> invocation:
step immediate => 1,
connect => sub { .. };
In some case, you want to execute some code when the step finish, it can
be done by defining a finalize code in define_steps:
my $steps = define_steps
cb_ref => \$finished_cb,
finalize => sub { .. };
=head2 JOINING ASYNCHRONOUS "THREADS"
With slow operations, it is often useful to perform multiple operations
simultaneously. As an example, the following code might run two system
commands simultaneously and capture their output:
sub run_two_commands {
my ($finished_cb) = @_;
my $running_commands = 0;
my ($result1, $result2);
my $steps = define_steps
cb_ref => \$finished_cb;
step start => sub {
$running_commands++;
run_command($command1,
run_cb => $steps->{'command1_done'});
$running_commands++;
run_command($command2,
run_cb => $steps->{'command2_done'});
};
step command1_done => sub {
$result1 = $_[0];
$steps->{'maybe_done'}->();
};
step command2_done => sub {
$result2 = $_[0];
$steps->{'maybe_done'}->();
};
step maybe_done => sub {
return if --$running_commands; # not done yet
$finished_cb->($result1, $result2);
};
}
It is tempting to optimize out the C<$running_commands> with something like:
step maybe_done { ## BAD!
return unless defined $result1 and defined $result2;
$finished_cb->($result1, $result2);
}
However this can lead to trouble. Remember that define_steps automatically
applies C<make_cb> to each step, so a C<maybe_done> is not invoked immediately
by C<command1_done> and C<command2_done> - instead, C<maybe_done> is scheduled
for invocation in the next loop of the mainloop (via C<call_later>). If both
commands finish before C<maybe_done> is invoked, C<call_later> will be called
I<twice>, with both C<$result1> and C<$result2> defined both times. The result
is that C<$finished_cb> is called twice, and mayhem ensues.
This is a complex case, but worth understanding if you want to be able to debug
difficult MainLoop bugs.
=head2 WRITING ASYNCHRONOUS INTERFACES
When designing a library or interface that will accept and invoke
callbacks, follow these guidelines so that users of the interface will
not need to remember special rules.
Each callback signature within a package should always have the same
name, ending with C<_cb>. For example, a hypothetical
C<Amanda::Estimate> module might provide its estimates through a
callback with four parameters. This callback should be referred to as
C<estimate_cb> throughout the package, and its parameters should be
clearly defined in the package's documentation. It should take
positional parameters only. If error conditions must also be
communicated via the callback, then the first parameter should be an
C<$error> parameter, which is undefined when no error has occurred.
The Changer API's C<res_cb> is typical of such a callback signature.
A caller can only know that an operation is complete by the invocation
of the callback, so it is important that a callback be invoked
I<exactly once> in all circumstances. Even in an error condition, the
caller needs to know that the operation has failed. Also beware of
bugs that might cause a callback to be invoked twice.
Functions or methods taking callbacks as arguments should either take
only a callback (like C<call_later>), or take hash-key parameters,
where the callback's key is the signature name. For example, the
C<Amanda::Estimate> package might define a function like
C<perform_estimate>, invoked something like this:
my $estimate_cb = make_cb(estimate_cb => sub {
my ($err, $size, $level) = @_;
die $err if $err;
# ...
});
Amanda::Estimate::perform_estimate(
host => $host,
disk => $disk,
estimate_cb => $estimate_cb,
);
When invoking a user-supplied callback within the library, there is no
need to wrap it in a C<call_later> invocation, as the user already
supplied that wrapper via C<make_cb>, or is not interested in using
such a wrapper.
Callbacks are a form of continuation
(L<http://en.wikipedia.org/wiki/Continuations>), and as such should
only be called at the I<end> of a function. Do not do anything after
invoking a callback, as you cannot know what processing has gone on in
the callback.
sub estimate_done {
# ...
$self->{'estimate_cb'}->(undef, $size, $level);
$self->{'estimate_in_progress'} = 0; # BUG!!
}
In this case, the C<estimate_cb> invocation may have called
C<perform_estimate> again, setting C<estimate_in_progress> back to 1.
A technique to avoid this pitfall is to always C<return> a callback's
result, even though that result is not important. This makes the bug
much more apparent:
sub estimate_done {
# ...
return $self->{'estimate_cb'}->(undef, $size, $level);
$self->{'estimate_in_progress'} = 0; # BUG (this just looks silly)
}
=head1 LOW-LEVEL INTERFACE
MainLoop events are generated by event sources. A source may produce
multiple events over its lifetime. The higher-level methods in the
previous section provide a more Perlish abstraction of event sources,
but for efficiency it is sometimes necessary to use event sources
directly.
The method C<< $src->set_callback(\&cb) >> sets the function that will
be called for a given source, and "attaches" the source to the main
loop so that it will begin generating events. The arguments to the
callback depend on the event source, but the first argument is always
the source itself. Unless specified, no other arguments are provided.
Event sources persist until they are removed with
C<< $src->remove() >>, even if the source itself is no longer accessible from Perl.
Although Glib supports it, there is no provision for "automatically"
removing an event source. Also, calling C<< $src->remove() >> more than
once is a potentially-fatal error. As an example:
sub start_timer {
my ($loops) = @_;
Amanda::MainLoop::timeout_source(200)->set_callback(sub {
my ($src) = @_;
print "timer\n";
if (--$loops <= 0) {
$src->remove();
Amanda::MainLoop::quit();
}
});
}
start_timer(10);
Amanda::MainLoop::run();
There is no means in place to specify extra arguments to be provided
to a source callback when it is set. If the callback needs access to
other data, it should use a Perl closure in the form of lexically
scoped variables and an anonymous sub. In fact, this is exactly what
the higher-level functions (described above) do.
=head2 Timeout
my $src = Amanda::MainLoop::timeout_source(10000);
A timeout source will create events at the specified interval,
specified in milliseconds (thousandths of a second). The events will
continue until the source is destroyed.
=head2 Idle
my $src = Amanda::MainLoop::idle_source(2);
An idle source will create events continuously except when a
higher-priority source is emitting events. Priorities are generally
small positive integers, with larger integers denoting lower
priorities. The events will continue until the source is destroyed.
=head2 Child Watch
my $src = Amanda::MainLoop::child_watch_source($pid);
A child watch source will issue an event when the process with the
given PID dies. To avoid race conditions, it will issue an event even
if the process dies before the source is created. The callback is
called with three arguments: the event source, the PID, and the
child's exit status.
Note that this source is totally incompatible with any thing that
would cause perl to change the SIGCHLD handler. If SIGCHLD is
changed, under some circumstances the module will recognize this
circumstance, add a warning to the debug log, and continue operating.
However, it is impossible to catch all possible situations.
=head2 File Descriptor
my $src = Amanda::MainLoop::fd_source($fd, $G_IO_IN);
This source will issue an event whenever one of the given conditions
is true for the given file (a file handle or integer file descriptor).
The conditions are from Glib's GIOCondition, and are C<$G_IO_IN>,
C<G_IO_OUT>, C<$G_IO_PRI>, C<$G_IO_ERR>, C<$G_IO_HUP>, and
C<$G_IO_NVAL>. These constants are available with the import tag
C<:GIOCondition>.
Generally, when reading from a file descriptor, use
C<$G_IO_IN|$G_IO_HUP|$G_IO_ERR> to ensure that an EOF triggers an
event as well. Writing to a file descriptor can simply use
C<$G_IO_OUT|$G_IO_ERR>.
The callback attached to an FdSource should read from or write to the
underlying file descriptor before returning, or it will be called
again in the next iteration of the main loop, which can lead to
unexpected results. Do I<not> use C<make_cb> here!
=head2 Combining Event Sources
Event sources are often set up in groups, e.g., a long-term operation
and a timeout. When this is the case, be careful that all sources are
removed when the operation is complete. The easiest way to accomplish
this is to include all sources in a lexical scope and remove them at
the appropriate times:
{
my $op_src = long_operation_src();
my $timeout_src = Amanda::MainLoop::timeout_source($timeout);
sub finish {
$op_src->remove();
$timeout_src->remove();
}
$op_src->set_callback(sub {
print "Operation complete\n";
finish();
});
$timeout_src->set_callback(sub {
print "Operation timed out\n";
finish();
});
}
=head2 Relationship to Glib
Glib's main event loop is described in the Glib manual:
L<http://library.gnome.org/devel/glib/stable/glib-The-Main-Event-Loop.html>.
Note that Amanda depends only on the functionality available in
Glib-2.2.0, so many functions described in that document are not
available in Amanda. This module provides a much-simplified interface
to the glib library, and is not intended as a generic wrapper for it:
Amanda's perl-accessible main loop only runs a single C<GMainContext>,
and always runs in the main thread; and (aside from idle sources),
event priorities are not accessible from Perl.
=cut
use POSIX;
use Carp;
## basic functions
BEGIN {
my $have_sub_name = eval "use Sub::Name; 1";
if (!$have_sub_name) {
eval <<'EOF'
sub subname {
my ($name, $sub) = @_;
$sub;
}
EOF
}
}
# glib's g_is_main_loop_running() seems inaccurate, so we just
# track that information locally..
my $mainloop_running = 0;
sub run {
$mainloop_running = 1;
run_c();
$mainloop_running = 0;
}
push @EXPORT_OK, "run";
sub is_running {
return $mainloop_running;
}
push @EXPORT_OK, "is_running";
# quit is a direct call to C
push @EXPORT_OK, "quit";
## utility functions
my @waiting_to_call_later;
sub call_later {
my ($sub, @args) = @_;
confess "undefined sub" unless ($sub);
# add the callback if nothing is waiting right now
if (!@waiting_to_call_later) {
timeout_source(0)->set_callback(sub {
my ($src) = @_;
$src->remove();
while (@waiting_to_call_later) {
my ($sub, @args) = @{shift @waiting_to_call_later};
$sub->(@args) if $sub;
}
});
}
push @waiting_to_call_later, [ $sub, @args ];
}
push @EXPORT_OK, "call_later";
sub make_cb {
my ($name, $sub) = @_;
if ($sub) {
my ($pkg, $filename, $line) = caller;
my $newname = sprintf('$%s::%s@l%s', $pkg, $name, $line);
$sub = subname($newname => $sub);
} else {
$sub = $name; # no name => sub is actually in first parameter
}
sub {
Amanda::MainLoop::call_later($sub, @_);
};
}
push @EXPORT, 'make_cb';
sub call_after {
my ($delay_ms, $sub, @args) = @_;
confess "undefined sub" unless ($sub);
my $src = timeout_source($delay_ms);
$src->set_callback(sub {
$src->remove();
$sub->(@args);
});
return $src;
}
push @EXPORT_OK, "call_after";
sub call_on_child_termination {
my ($pid, $cb, @args) = @_;
confess "undefined sub" unless ($cb);
my $src = child_watch_source($pid);
$src->set_callback(sub {
my ($src, $pid, $exitstatus) = @_;
$src->remove();
return $cb->($exitstatus);
});
}
push @EXPORT_OK, "call_on_child_termination";
sub async_read {
my %params = @_;
my $fd = $params{'fd'};
my $size = $params{'size'} || 0;
my $cb = $params{'async_read_cb'};
my @args;
@args = @{$params{'args'}} if exists $params{'args'};
my $fd_cb = sub {
my ($src) = @_;
$src->remove();
my $buf;
my $res = POSIX::read($fd, $buf, $size || 32768);
if (!defined $res) {
return $cb->($!, undef, @args);
} else {
return $cb->(undef, $buf, @args);
}
};
my $src = fd_source($fd, $G_IO_IN|$G_IO_HUP|$G_IO_ERR);
$src->set_callback($fd_cb);
return $src;
}
push @EXPORT_OK, "async_read";
my %outstanding_writes;
sub async_write {
my %params = @_;
my $fd = $params{'fd'};
my $data = $params{'data'};
my $cb = $params{'async_write_cb'};
my @args;
@args = @{$params{'args'}} if exists $params{'args'};
# more often than not, writes will not block, so just try it.
if (!exists $outstanding_writes{$fd}) {
my $res = POSIX::write($fd, $data, length($data));
if (!defined $res) {
if ($! != POSIX::EAGAIN) {
return $cb->($!, 0, @args);
}
} elsif ($res eq length($data)) {
return $cb->(undef, $res, @args);
} else {
# chop off whatever data was written
$data = substr($data, $res);
}
}
if (!exists $outstanding_writes{$fd}) {
my $fd_writes = $outstanding_writes{$fd} = [];
my $src = fd_source($fd, $G_IO_OUT|$G_IO_HUP|$G_IO_ERR);
# (note that this does not coalesce consecutive outstanding writes
# into a single POSIX::write call)
my $fd_cb = sub {
my $ow = $fd_writes->[0];
my ($buf, $nwritten, $len, $cb, $args) = @$ow;
my $res = POSIX::write($fd, $buf, $len-$nwritten);
if (!defined $res) {
shift @$fd_writes;
$cb->($!, $nwritten, @$args);
} else {
$ow->[1] = $nwritten = $nwritten + $res;
if ($nwritten == $len) {
shift @$fd_writes;
$cb->(undef, $nwritten, @$args);
} else {
$ow->[0] = substr($buf, $res);
}
}
# (the following is *intentionally* done after calling $cb, allowing
# $cb to add a new message to $fd_writes if desired, and thus avoid
# removing and re-adding the source)
if (@$fd_writes == 0) {
$src->remove();
delete $outstanding_writes{$fd};
}
};
$src->set_callback($fd_cb);
}
push @{$outstanding_writes{$fd}}, [ $data, 0, length($data), $cb, \@args ];
}
push @EXPORT_OK, "async_write";
sub synchronized {
my ($lock, $orig_cb, $sub) = @_;
my $continuation_cb;
$continuation_cb = sub {
my @args = @_;
# shift this invocation off the queue
my ($last_sub, $last_orig_cb) = @{ shift @$lock };
# start the next invocation, if the queue isn't empty
if (@$lock) {
Amanda::MainLoop::call_later($lock->[0][0], $continuation_cb);
}
# call through to the original callback for the last invocation
return $last_orig_cb->(@args);
};
# push this sub onto the lock queue
if ((push @$lock, [ $sub, $orig_cb ]) == 1) {
# if this is the first addition to the queue, start it
$sub->($continuation_cb);
}
}
push @EXPORT_OK, "synchronized";
{ # privat variables to track the "current" step definition
my $current_steps;
my $immediate;
my $first_step;
sub define_steps (@) {
my (%params) = @_;
my $cb_ref = $params{'cb_ref'};
my $finalize = $params{'finalize'};
my %steps;
croak "cb_ref is undefined" unless defined $cb_ref;
croak "cb_ref is not a reference" unless ref($cb_ref) eq 'REF';
croak "cb_ref is not a code double-reference" unless ref($$cb_ref) eq 'CODE';
# arrange to clear out $steps when $exit_cb is called; this eliminates
# reference loops (values in %steps are closures which point to %steps).
# This also clears $current_steps, which is likely holding a reference to
# the steps hash.
my $orig_cb = $$cb_ref;
$$cb_ref = sub {
%steps = ();
$current_steps = undef;
$finalize->() if defined($finalize);
goto $orig_cb;
};
# set up state
$current_steps = \%steps;
$immediate = $params{'immediate'};
$first_step = 1;
return $current_steps;
}
push @EXPORT, "define_steps";
sub step (@) {
my (%params) = @_;
my $step_immediate = $immediate || $params{'immediate'};
delete $params{'immediate'} if $step_immediate;
my ($name) = keys %params;
my $cb = $params{$name};
croak "expected a sub at key $name" unless ref($cb) eq 'CODE';
# make the sub delayed
unless ($step_immediate) {
my $orig_cb = $cb;
$cb = sub { Amanda::MainLoop::call_later($orig_cb, @_); }
}
# patch up the callback
my ($pkg, $filename, $line) = caller;
my $newname = sprintf('$%s::%s@l%s', $pkg, $name, $line);
$cb = subname($newname => $cb);
# store the step for later
$current_steps->{$name} = $cb;
# and invoke it, if it's the first step given
if ($first_step) {
if ($step_immediate) {
call_later($cb);
} else {
$cb->();
}
}
$first_step = 0;
}
push @EXPORT, "step";
}
push @EXPORT_OK, qw(GIOCondition_to_strings);
push @{$EXPORT_TAGS{"GIOCondition"}}, qw(GIOCondition_to_strings);
my %_GIOCondition_VALUES;
#Convert a flag value to a list of names for flags that are set.
sub GIOCondition_to_strings {
my ($flags) = @_;
my @result = ();
for my $k (keys %_GIOCondition_VALUES) {
my $v = $_GIOCondition_VALUES{$k};
#is this a matching flag?
if (($v == 0 && $flags == 0) || ($v != 0 && ($flags & $v) == $v)) {
push @result, $k;
}
}
#by default, just return the number as a 1-element list
if (!@result) {
return ($flags);
}
return @result;
}
push @EXPORT_OK, qw($G_IO_IN);
push @{$EXPORT_TAGS{"GIOCondition"}}, qw($G_IO_IN);
$_GIOCondition_VALUES{"G_IO_IN"} = $G_IO_IN;
push @EXPORT_OK, qw($G_IO_OUT);
push @{$EXPORT_TAGS{"GIOCondition"}}, qw($G_IO_OUT);
$_GIOCondition_VALUES{"G_IO_OUT"} = $G_IO_OUT;
push @EXPORT_OK, qw($G_IO_PRI);
push @{$EXPORT_TAGS{"GIOCondition"}}, qw($G_IO_PRI);
$_GIOCondition_VALUES{"G_IO_PRI"} = $G_IO_PRI;
push @EXPORT_OK, qw($G_IO_ERR);
push @{$EXPORT_TAGS{"GIOCondition"}}, qw($G_IO_ERR);
$_GIOCondition_VALUES{"G_IO_ERR"} = $G_IO_ERR;
push @EXPORT_OK, qw($G_IO_HUP);
push @{$EXPORT_TAGS{"GIOCondition"}}, qw($G_IO_HUP);
$_GIOCondition_VALUES{"G_IO_HUP"} = $G_IO_HUP;
push @EXPORT_OK, qw($G_IO_NVAL);
push @{$EXPORT_TAGS{"GIOCondition"}}, qw($G_IO_NVAL);
$_GIOCondition_VALUES{"G_IO_NVAL"} = $G_IO_NVAL;
#copy symbols in GIOCondition to constants
push @{$EXPORT_TAGS{"constants"}}, @{$EXPORT_TAGS{"GIOCondition"}};
1;
|