/usr/src/virtualbox-guest-4.1.42/r0drv/memobj-r0drv.c is in virtualbox-guest-dkms 4.1.42-dfsg-1+deb7u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 | /* $Revision: 83283 $ */
/** @file
* IPRT - Ring-0 Memory Objects, Common Code.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP RTLOGGROUP_DEFAULT ///@todo RTLOGGROUP_MEM
#include <iprt/memobj.h>
#include "internal/iprt.h"
#include <iprt/alloc.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/err.h>
#include <iprt/log.h>
#include <iprt/mp.h>
#include <iprt/param.h>
#include <iprt/process.h>
#include <iprt/thread.h>
#include "internal/memobj.h"
/**
* Internal function for allocating a new memory object.
*
* @returns The allocated and initialized handle.
* @param cbSelf The size of the memory object handle. 0 mean default size.
* @param enmType The memory object type.
* @param pv The memory object mapping.
* @param cb The size of the memory object.
*/
DECLHIDDEN(PRTR0MEMOBJINTERNAL) rtR0MemObjNew(size_t cbSelf, RTR0MEMOBJTYPE enmType, void *pv, size_t cb)
{
PRTR0MEMOBJINTERNAL pNew;
/* validate the size */
if (!cbSelf)
cbSelf = sizeof(*pNew);
Assert(cbSelf >= sizeof(*pNew));
Assert(cbSelf == (uint32_t)cbSelf);
AssertMsg(RT_ALIGN_Z(cb, PAGE_SIZE) == cb, ("%#zx\n", cb));
/*
* Allocate and initialize the object.
*/
pNew = (PRTR0MEMOBJINTERNAL)RTMemAllocZ(cbSelf);
if (pNew)
{
pNew->u32Magic = RTR0MEMOBJ_MAGIC;
pNew->cbSelf = (uint32_t)cbSelf;
pNew->enmType = enmType;
pNew->fFlags = 0;
pNew->cb = cb;
pNew->pv = pv;
}
return pNew;
}
/**
* Deletes an incomplete memory object.
*
* This is for cleaning up after failures during object creation.
*
* @param pMem The incomplete memory object to delete.
*/
DECLHIDDEN(void) rtR0MemObjDelete(PRTR0MEMOBJINTERNAL pMem)
{
if (pMem)
{
ASMAtomicUoWriteU32(&pMem->u32Magic, ~RTR0MEMOBJ_MAGIC);
pMem->enmType = RTR0MEMOBJTYPE_END;
RTMemFree(pMem);
}
}
/**
* Links a mapping object to a primary object.
*
* @returns IPRT status code.
* @retval VINF_SUCCESS on success.
* @retval VINF_NO_MEMORY if we couldn't expand the mapping array of the parent.
* @param pParent The parent (primary) memory object.
* @param pChild The child (mapping) memory object.
*/
static int rtR0MemObjLink(PRTR0MEMOBJINTERNAL pParent, PRTR0MEMOBJINTERNAL pChild)
{
uint32_t i;
/* sanity */
Assert(rtR0MemObjIsMapping(pChild));
Assert(!rtR0MemObjIsMapping(pParent));
/* expand the array? */
i = pParent->uRel.Parent.cMappings;
if (i >= pParent->uRel.Parent.cMappingsAllocated)
{
void *pv = RTMemRealloc(pParent->uRel.Parent.papMappings,
(i + 32) * sizeof(pParent->uRel.Parent.papMappings[0]));
if (!pv)
return VERR_NO_MEMORY;
pParent->uRel.Parent.papMappings = (PPRTR0MEMOBJINTERNAL)pv;
pParent->uRel.Parent.cMappingsAllocated = i + 32;
Assert(i == pParent->uRel.Parent.cMappings);
}
/* do the linking. */
pParent->uRel.Parent.papMappings[i] = pChild;
pParent->uRel.Parent.cMappings++;
pChild->uRel.Child.pParent = pParent;
return VINF_SUCCESS;
}
/**
* Checks if this is mapping or not.
*
* @returns true if it's a mapping, otherwise false.
* @param MemObj The ring-0 memory object handle.
*/
RTR0DECL(bool) RTR0MemObjIsMapping(RTR0MEMOBJ MemObj)
{
/* Validate the object handle. */
PRTR0MEMOBJINTERNAL pMem;
AssertPtrReturn(MemObj, false);
pMem = (PRTR0MEMOBJINTERNAL)MemObj;
AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), false);
AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), false);
/* hand it on to the inlined worker. */
return rtR0MemObjIsMapping(pMem);
}
RT_EXPORT_SYMBOL(RTR0MemObjIsMapping);
/**
* Gets the address of a ring-0 memory object.
*
* @returns The address of the memory object.
* @returns NULL if the handle is invalid (asserts in strict builds) or if there isn't any mapping.
* @param MemObj The ring-0 memory object handle.
*/
RTR0DECL(void *) RTR0MemObjAddress(RTR0MEMOBJ MemObj)
{
/* Validate the object handle. */
PRTR0MEMOBJINTERNAL pMem;
if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
return NULL;
AssertPtrReturn(MemObj, NULL);
pMem = (PRTR0MEMOBJINTERNAL)MemObj;
AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NULL);
AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NULL);
/* return the mapping address. */
return pMem->pv;
}
RT_EXPORT_SYMBOL(RTR0MemObjAddress);
/**
* Gets the ring-3 address of a ring-0 memory object.
*
* This only applies to ring-0 memory object with ring-3 mappings of some kind, i.e.
* locked user memory, reserved user address space and user mappings. This API should
* not be used on any other objects.
*
* @returns The address of the memory object.
* @returns NIL_RTR3PTR if the handle is invalid or if it's not an object with a ring-3 mapping.
* Strict builds will assert in both cases.
* @param MemObj The ring-0 memory object handle.
*/
RTR0DECL(RTR3PTR) RTR0MemObjAddressR3(RTR0MEMOBJ MemObj)
{
PRTR0MEMOBJINTERNAL pMem;
/* Validate the object handle. */
if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
return NIL_RTR3PTR;
AssertPtrReturn(MemObj, NIL_RTR3PTR);
pMem = (PRTR0MEMOBJINTERNAL)MemObj;
AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NIL_RTR3PTR);
AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NIL_RTR3PTR);
if (RT_UNLIKELY( ( pMem->enmType != RTR0MEMOBJTYPE_MAPPING
|| pMem->u.Mapping.R0Process == NIL_RTR0PROCESS)
&& ( pMem->enmType != RTR0MEMOBJTYPE_LOCK
|| pMem->u.Lock.R0Process == NIL_RTR0PROCESS)
&& ( pMem->enmType != RTR0MEMOBJTYPE_PHYS_NC
|| pMem->u.Lock.R0Process == NIL_RTR0PROCESS)
&& ( pMem->enmType != RTR0MEMOBJTYPE_RES_VIRT
|| pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS)))
return NIL_RTR3PTR;
/* return the mapping address. */
return (RTR3PTR)pMem->pv;
}
RT_EXPORT_SYMBOL(RTR0MemObjAddressR3);
/**
* Gets the size of a ring-0 memory object.
*
* The returned value may differ from the one specified to the API creating the
* object because of alignment adjustments. The minimal alignment currently
* employed by any API is PAGE_SIZE, so the result can safely be shifted by
* PAGE_SHIFT to calculate a page count.
*
* @returns The object size.
* @returns 0 if the handle is invalid (asserts in strict builds) or if there isn't any mapping.
* @param MemObj The ring-0 memory object handle.
*/
RTR0DECL(size_t) RTR0MemObjSize(RTR0MEMOBJ MemObj)
{
PRTR0MEMOBJINTERNAL pMem;
/* Validate the object handle. */
if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
return 0;
AssertPtrReturn(MemObj, 0);
pMem = (PRTR0MEMOBJINTERNAL)MemObj;
AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), 0);
AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), 0);
AssertMsg(RT_ALIGN_Z(pMem->cb, PAGE_SIZE) == pMem->cb, ("%#zx\n", pMem->cb));
/* return the size. */
return pMem->cb;
}
RT_EXPORT_SYMBOL(RTR0MemObjSize);
/**
* Get the physical address of an page in the memory object.
*
* @returns The physical address.
* @returns NIL_RTHCPHYS if the object doesn't contain fixed physical pages.
* @returns NIL_RTHCPHYS if the iPage is out of range.
* @returns NIL_RTHCPHYS if the object handle isn't valid.
* @param MemObj The ring-0 memory object handle.
* @param iPage The page number within the object.
*/
/* Work around gcc bug 55940 */
#if defined(__GNUC__) && defined(RT_ARCH_X86)
# if (__GNUC__ * 100 + __GNUC_MINOR__) == 407
__attribute__((__optimize__ ("no-shrink-wrap")))
# endif
#endif
RTR0DECL(RTHCPHYS) RTR0MemObjGetPagePhysAddr(RTR0MEMOBJ MemObj, size_t iPage)
{
/* Validate the object handle. */
PRTR0MEMOBJINTERNAL pMem;
size_t cPages;
AssertPtrReturn(MemObj, NIL_RTHCPHYS);
pMem = (PRTR0MEMOBJINTERNAL)MemObj;
AssertReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, NIL_RTHCPHYS);
AssertReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, NIL_RTHCPHYS);
AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NIL_RTHCPHYS);
AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NIL_RTHCPHYS);
cPages = (pMem->cb >> PAGE_SHIFT);
if (iPage >= cPages)
{
/* permit: while (RTR0MemObjGetPagePhysAddr(pMem, iPage++) != NIL_RTHCPHYS) {} */
if (iPage == cPages)
return NIL_RTHCPHYS;
AssertReturn(iPage < (pMem->cb >> PAGE_SHIFT), NIL_RTHCPHYS);
}
/*
* We know the address of physically contiguous allocations and mappings.
*/
if (pMem->enmType == RTR0MEMOBJTYPE_CONT)
return pMem->u.Cont.Phys + iPage * PAGE_SIZE;
if (pMem->enmType == RTR0MEMOBJTYPE_PHYS)
return pMem->u.Phys.PhysBase + iPage * PAGE_SIZE;
/*
* Do the job.
*/
return rtR0MemObjNativeGetPagePhysAddr(pMem, iPage);
}
RT_EXPORT_SYMBOL(RTR0MemObjGetPagePhysAddr);
/**
* Frees a ring-0 memory object.
*
* @returns IPRT status code.
* @retval VERR_INVALID_HANDLE if
* @param MemObj The ring-0 memory object to be freed. NULL is accepted.
* @param fFreeMappings Whether or not to free mappings of the object.
*/
RTR0DECL(int) RTR0MemObjFree(RTR0MEMOBJ MemObj, bool fFreeMappings)
{
/*
* Validate the object handle.
*/
PRTR0MEMOBJINTERNAL pMem;
int rc;
if (MemObj == NIL_RTR0MEMOBJ)
return VINF_SUCCESS;
AssertPtrReturn(MemObj, VERR_INVALID_HANDLE);
pMem = (PRTR0MEMOBJINTERNAL)MemObj;
AssertReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
RT_ASSERT_PREEMPTIBLE();
/*
* Deal with mappings according to fFreeMappings.
*/
if ( !rtR0MemObjIsMapping(pMem)
&& pMem->uRel.Parent.cMappings > 0)
{
/* fail if not requested to free mappings. */
if (!fFreeMappings)
return VERR_MEMORY_BUSY;
while (pMem->uRel.Parent.cMappings > 0)
{
PRTR0MEMOBJINTERNAL pChild = pMem->uRel.Parent.papMappings[--pMem->uRel.Parent.cMappings];
pMem->uRel.Parent.papMappings[pMem->uRel.Parent.cMappings] = NULL;
/* sanity checks. */
AssertPtr(pChild);
AssertFatal(pChild->u32Magic == RTR0MEMOBJ_MAGIC);
AssertFatal(pChild->enmType > RTR0MEMOBJTYPE_INVALID && pChild->enmType < RTR0MEMOBJTYPE_END);
AssertFatal(rtR0MemObjIsMapping(pChild));
/* free the mapping. */
rc = rtR0MemObjNativeFree(pChild);
if (RT_FAILURE(rc))
{
Log(("RTR0MemObjFree: failed to free mapping %p: %p %#zx; rc=%Rrc\n", pChild, pChild->pv, pChild->cb, rc));
pMem->uRel.Parent.papMappings[pMem->uRel.Parent.cMappings++] = pChild;
return rc;
}
}
}
/*
* Free this object.
*/
rc = rtR0MemObjNativeFree(pMem);
if (RT_SUCCESS(rc))
{
/*
* Ok, it was freed just fine. Now, if it's a mapping we'll have to remove it from the parent.
*/
if (rtR0MemObjIsMapping(pMem))
{
PRTR0MEMOBJINTERNAL pParent = pMem->uRel.Child.pParent;
uint32_t i;
/* sanity checks */
AssertPtr(pParent);
AssertFatal(pParent->u32Magic == RTR0MEMOBJ_MAGIC);
AssertFatal(pParent->enmType > RTR0MEMOBJTYPE_INVALID && pParent->enmType < RTR0MEMOBJTYPE_END);
AssertFatal(!rtR0MemObjIsMapping(pParent));
AssertFatal(pParent->uRel.Parent.cMappings > 0);
AssertPtr(pParent->uRel.Parent.papMappings);
/* locate and remove from the array of mappings. */
i = pParent->uRel.Parent.cMappings;
while (i-- > 0)
{
if (pParent->uRel.Parent.papMappings[i] == pMem)
{
pParent->uRel.Parent.papMappings[i] = pParent->uRel.Parent.papMappings[--pParent->uRel.Parent.cMappings];
break;
}
}
Assert(i != UINT32_MAX);
}
else
Assert(pMem->uRel.Parent.cMappings == 0);
/*
* Finally, destroy the handle.
*/
pMem->u32Magic++;
pMem->enmType = RTR0MEMOBJTYPE_END;
if (!rtR0MemObjIsMapping(pMem))
RTMemFree(pMem->uRel.Parent.papMappings);
RTMemFree(pMem);
}
else
Log(("RTR0MemObjFree: failed to free %p: %d %p %#zx; rc=%Rrc\n",
pMem, pMem->enmType, pMem->pv, pMem->cb, rc));
return rc;
}
RT_EXPORT_SYMBOL(RTR0MemObjFree);
RTR0DECL(int) RTR0MemObjAllocPageTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
{
/* sanity checks. */
const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
*pMemObj = NIL_RTR0MEMOBJ;
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
RT_ASSERT_PREEMPTIBLE();
/* do the allocation. */
return rtR0MemObjNativeAllocPage(pMemObj, cbAligned, fExecutable);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocPageTag);
RTR0DECL(int) RTR0MemObjAllocLowTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
{
/* sanity checks. */
const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
*pMemObj = NIL_RTR0MEMOBJ;
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
RT_ASSERT_PREEMPTIBLE();
/* do the allocation. */
return rtR0MemObjNativeAllocLow(pMemObj, cbAligned, fExecutable);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocLowTag);
RTR0DECL(int) RTR0MemObjAllocContTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
{
/* sanity checks. */
const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
*pMemObj = NIL_RTR0MEMOBJ;
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
RT_ASSERT_PREEMPTIBLE();
/* do the allocation. */
return rtR0MemObjNativeAllocCont(pMemObj, cbAligned, fExecutable);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocContTag);
RTR0DECL(int) RTR0MemObjLockUserTag(PRTR0MEMOBJ pMemObj, RTR3PTR R3Ptr, size_t cb,
uint32_t fAccess, RTR0PROCESS R0Process, const char *pszTag)
{
/* sanity checks. */
const size_t cbAligned = RT_ALIGN_Z(cb + (R3Ptr & PAGE_OFFSET_MASK), PAGE_SIZE);
RTR3PTR const R3PtrAligned = (R3Ptr & ~(RTR3PTR)PAGE_OFFSET_MASK);
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
*pMemObj = NIL_RTR0MEMOBJ;
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
if (R0Process == NIL_RTR0PROCESS)
R0Process = RTR0ProcHandleSelf();
AssertReturn(!(fAccess & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE)), VERR_INVALID_PARAMETER);
AssertReturn(fAccess, VERR_INVALID_PARAMETER);
RT_ASSERT_PREEMPTIBLE();
/* do the locking. */
return rtR0MemObjNativeLockUser(pMemObj, R3PtrAligned, cbAligned, fAccess, R0Process);
}
RT_EXPORT_SYMBOL(RTR0MemObjLockUserTag);
RTR0DECL(int) RTR0MemObjLockKernelTag(PRTR0MEMOBJ pMemObj, void *pv, size_t cb, uint32_t fAccess, const char *pszTag)
{
/* sanity checks. */
const size_t cbAligned = RT_ALIGN_Z(cb + ((uintptr_t)pv & PAGE_OFFSET_MASK), PAGE_SIZE);
void * const pvAligned = (void *)((uintptr_t)pv & ~(uintptr_t)PAGE_OFFSET_MASK);
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
*pMemObj = NIL_RTR0MEMOBJ;
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
AssertPtrReturn(pvAligned, VERR_INVALID_POINTER);
AssertReturn(!(fAccess & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE)), VERR_INVALID_PARAMETER);
AssertReturn(fAccess, VERR_INVALID_PARAMETER);
RT_ASSERT_PREEMPTIBLE();
/* do the allocation. */
return rtR0MemObjNativeLockKernel(pMemObj, pvAligned, cbAligned, fAccess);
}
RT_EXPORT_SYMBOL(RTR0MemObjLockKernelTag);
RTR0DECL(int) RTR0MemObjAllocPhysTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, const char *pszTag)
{
/* sanity checks. */
const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
*pMemObj = NIL_RTR0MEMOBJ;
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
RT_ASSERT_PREEMPTIBLE();
/* do the allocation. */
return rtR0MemObjNativeAllocPhys(pMemObj, cbAligned, PhysHighest, PAGE_SIZE /* page aligned */);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysTag);
RTR0DECL(int) RTR0MemObjAllocPhysExTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment, const char *pszTag)
{
/* sanity checks. */
const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
*pMemObj = NIL_RTR0MEMOBJ;
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
if (uAlignment == 0)
uAlignment = PAGE_SIZE;
AssertReturn( uAlignment == PAGE_SIZE
|| uAlignment == _2M
|| uAlignment == _4M
|| uAlignment == _1G,
VERR_INVALID_PARAMETER);
#if HC_ARCH_BITS == 32
/* Memory allocated in this way is typically mapped into kernel space as well; simply
don't allow this on 32 bits hosts as the kernel space is too crowded already. */
if (uAlignment != PAGE_SIZE)
return VERR_NOT_SUPPORTED;
#endif
RT_ASSERT_PREEMPTIBLE();
/* do the allocation. */
return rtR0MemObjNativeAllocPhys(pMemObj, cbAligned, PhysHighest, uAlignment);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysExTag);
RTR0DECL(int) RTR0MemObjAllocPhysNCTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, const char *pszTag)
{
/* sanity checks. */
const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
*pMemObj = NIL_RTR0MEMOBJ;
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
RT_ASSERT_PREEMPTIBLE();
/* do the allocation. */
return rtR0MemObjNativeAllocPhysNC(pMemObj, cbAligned, PhysHighest);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysNCTag);
RTR0DECL(int) RTR0MemObjEnterPhysTag(PRTR0MEMOBJ pMemObj, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy, const char *pszTag)
{
/* sanity checks. */
const size_t cbAligned = RT_ALIGN_Z(cb + (Phys & PAGE_OFFSET_MASK), PAGE_SIZE);
const RTHCPHYS PhysAligned = Phys & ~(RTHCPHYS)PAGE_OFFSET_MASK;
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
*pMemObj = NIL_RTR0MEMOBJ;
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
AssertReturn(Phys != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
AssertReturn( uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE
|| uCachePolicy == RTMEM_CACHE_POLICY_MMIO,
VERR_INVALID_PARAMETER);
RT_ASSERT_PREEMPTIBLE();
/* do the allocation. */
return rtR0MemObjNativeEnterPhys(pMemObj, PhysAligned, cbAligned, uCachePolicy);
}
RT_EXPORT_SYMBOL(RTR0MemObjEnterPhysTag);
RTR0DECL(int) RTR0MemObjReserveKernelTag(PRTR0MEMOBJ pMemObj, void *pvFixed, size_t cb, size_t uAlignment, const char *pszTag)
{
/* sanity checks. */
const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
*pMemObj = NIL_RTR0MEMOBJ;
if (uAlignment == 0)
uAlignment = PAGE_SIZE;
AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
if (pvFixed != (void *)-1)
AssertReturn(!((uintptr_t)pvFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
RT_ASSERT_PREEMPTIBLE();
/* do the reservation. */
return rtR0MemObjNativeReserveKernel(pMemObj, pvFixed, cbAligned, uAlignment);
}
RT_EXPORT_SYMBOL(RTR0MemObjReserveKernelTag);
RTR0DECL(int) RTR0MemObjReserveUserTag(PRTR0MEMOBJ pMemObj, RTR3PTR R3PtrFixed, size_t cb,
size_t uAlignment, RTR0PROCESS R0Process, const char *pszTag)
{
/* sanity checks. */
const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
*pMemObj = NIL_RTR0MEMOBJ;
if (uAlignment == 0)
uAlignment = PAGE_SIZE;
AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
if (R3PtrFixed != (RTR3PTR)-1)
AssertReturn(!(R3PtrFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
if (R0Process == NIL_RTR0PROCESS)
R0Process = RTR0ProcHandleSelf();
RT_ASSERT_PREEMPTIBLE();
/* do the reservation. */
return rtR0MemObjNativeReserveUser(pMemObj, R3PtrFixed, cbAligned, uAlignment, R0Process);
}
RT_EXPORT_SYMBOL(RTR0MemObjReserveUserTag);
RTR0DECL(int) RTR0MemObjMapKernelTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed,
size_t uAlignment, unsigned fProt, const char *pszTag)
{
return RTR0MemObjMapKernelExTag(pMemObj, MemObjToMap, pvFixed, uAlignment, fProt, 0, 0, pszTag);
}
RT_EXPORT_SYMBOL(RTR0MemObjMapKernelTag);
RTR0DECL(int) RTR0MemObjMapKernelExTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed, size_t uAlignment,
unsigned fProt, size_t offSub, size_t cbSub, const char *pszTag)
{
PRTR0MEMOBJINTERNAL pMemToMap;
PRTR0MEMOBJINTERNAL pNew;
int rc;
/* sanity checks. */
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
*pMemObj = NIL_RTR0MEMOBJ;
AssertPtrReturn(MemObjToMap, VERR_INVALID_HANDLE);
pMemToMap = (PRTR0MEMOBJINTERNAL)MemObjToMap;
AssertReturn(pMemToMap->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(pMemToMap->enmType > RTR0MEMOBJTYPE_INVALID && pMemToMap->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
AssertReturn(!rtR0MemObjIsMapping(pMemToMap), VERR_INVALID_PARAMETER);
AssertReturn(pMemToMap->enmType != RTR0MEMOBJTYPE_RES_VIRT, VERR_INVALID_PARAMETER);
if (uAlignment == 0)
uAlignment = PAGE_SIZE;
AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
if (pvFixed != (void *)-1)
AssertReturn(!((uintptr_t)pvFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
AssertReturn(fProt != RTMEM_PROT_NONE, VERR_INVALID_PARAMETER);
AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(offSub < pMemToMap->cb, VERR_INVALID_PARAMETER);
AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(cbSub <= pMemToMap->cb, VERR_INVALID_PARAMETER);
AssertReturn((!offSub && !cbSub) || (offSub + cbSub) <= pMemToMap->cb, VERR_INVALID_PARAMETER);
RT_ASSERT_PREEMPTIBLE();
/* adjust the request to simplify the native code. */
if (offSub == 0 && cbSub == pMemToMap->cb)
cbSub = 0;
/* do the mapping. */
rc = rtR0MemObjNativeMapKernel(&pNew, pMemToMap, pvFixed, uAlignment, fProt, offSub, cbSub);
if (RT_SUCCESS(rc))
{
/* link it. */
rc = rtR0MemObjLink(pMemToMap, pNew);
if (RT_SUCCESS(rc))
*pMemObj = pNew;
else
{
/* damn, out of memory. bail out. */
int rc2 = rtR0MemObjNativeFree(pNew);
AssertRC(rc2);
pNew->u32Magic++;
pNew->enmType = RTR0MEMOBJTYPE_END;
RTMemFree(pNew);
}
}
return rc;
}
RT_EXPORT_SYMBOL(RTR0MemObjMapKernelExTag);
RTR0DECL(int) RTR0MemObjMapUserTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, RTR3PTR R3PtrFixed,
size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process, const char *pszTag)
{
/* sanity checks. */
PRTR0MEMOBJINTERNAL pMemToMap;
PRTR0MEMOBJINTERNAL pNew;
int rc;
AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
pMemToMap = (PRTR0MEMOBJINTERNAL)MemObjToMap;
*pMemObj = NIL_RTR0MEMOBJ;
AssertPtrReturn(MemObjToMap, VERR_INVALID_HANDLE);
AssertReturn(pMemToMap->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(pMemToMap->enmType > RTR0MEMOBJTYPE_INVALID && pMemToMap->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
AssertReturn(!rtR0MemObjIsMapping(pMemToMap), VERR_INVALID_PARAMETER);
AssertReturn(pMemToMap->enmType != RTR0MEMOBJTYPE_RES_VIRT, VERR_INVALID_PARAMETER);
if (uAlignment == 0)
uAlignment = PAGE_SIZE;
AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
if (R3PtrFixed != (RTR3PTR)-1)
AssertReturn(!(R3PtrFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
AssertReturn(fProt != RTMEM_PROT_NONE, VERR_INVALID_PARAMETER);
AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
if (R0Process == NIL_RTR0PROCESS)
R0Process = RTR0ProcHandleSelf();
RT_ASSERT_PREEMPTIBLE();
/* do the mapping. */
rc = rtR0MemObjNativeMapUser(&pNew, pMemToMap, R3PtrFixed, uAlignment, fProt, R0Process);
if (RT_SUCCESS(rc))
{
/* link it. */
rc = rtR0MemObjLink(pMemToMap, pNew);
if (RT_SUCCESS(rc))
*pMemObj = pNew;
else
{
/* damn, out of memory. bail out. */
int rc2 = rtR0MemObjNativeFree(pNew);
AssertRC(rc2);
pNew->u32Magic++;
pNew->enmType = RTR0MEMOBJTYPE_END;
RTMemFree(pNew);
}
}
return rc;
}
RT_EXPORT_SYMBOL(RTR0MemObjMapUserTag);
RTR0DECL(int) RTR0MemObjProtect(RTR0MEMOBJ hMemObj, size_t offSub, size_t cbSub, uint32_t fProt)
{
PRTR0MEMOBJINTERNAL pMemObj;
int rc;
/* sanity checks. */
pMemObj = (PRTR0MEMOBJINTERNAL)hMemObj;
AssertPtrReturn(pMemObj, VERR_INVALID_HANDLE);
AssertReturn(pMemObj->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(pMemObj->enmType > RTR0MEMOBJTYPE_INVALID && pMemObj->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
AssertReturn(rtR0MemObjIsProtectable(pMemObj), VERR_INVALID_PARAMETER);
AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(offSub < pMemObj->cb, VERR_INVALID_PARAMETER);
AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
AssertReturn(cbSub <= pMemObj->cb, VERR_INVALID_PARAMETER);
AssertReturn(offSub + cbSub <= pMemObj->cb, VERR_INVALID_PARAMETER);
AssertReturn(!(fProt & ~(RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
RT_ASSERT_PREEMPTIBLE();
/* do the job */
rc = rtR0MemObjNativeProtect(pMemObj, offSub, cbSub, fProt);
if (RT_SUCCESS(rc))
pMemObj->fFlags |= RTR0MEMOBJ_FLAGS_PROT_CHANGED; /* record it */
return rc;
}
RT_EXPORT_SYMBOL(RTR0MemObjProtect);
|