This file is indexed.

/usr/share/pyshared/allmydata/util/spans.py is in tahoe-lafs 1.9.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
class Spans:
    """I represent a compressed list of booleans, one per index (an integer).
    Typically, each index represents an offset into a large string, pointing
    to a specific byte of a share. In this context, True means that byte has
    been received, or has been requested.

    Another way to look at this is maintaining a set of integers, optimized
    for operations on spans like 'add range to set' and 'is range in set?'.

    This is a python equivalent of perl's Set::IntSpan module, frequently
    used to represent .newsrc contents.

    Rather than storing an actual (large) list or dictionary, I represent my
    internal state as a sorted list of spans, each with a start and a length.
    My API is presented in terms of start+length pairs. I provide set
    arithmetic operators, to efficiently answer questions like 'I want bytes
    XYZ, I already requested bytes ABC, and I've already received bytes DEF:
    what bytes should I request now?'.

    The new downloader will use it to keep track of which bytes we've requested
    or received already.
    """

    def __init__(self, _span_or_start=None, length=None):
        self._spans = list()
        if length is not None:
            self._spans.append( (_span_or_start, length) )
        elif _span_or_start:
            for (start,length) in _span_or_start:
                self.add(start, length)
        self._check()

    def _check(self):
        assert sorted(self._spans) == self._spans
        prev_end = None
        try:
            for (start,length) in self._spans:
                if prev_end is not None:
                    assert start > prev_end
                prev_end = start+length
        except AssertionError:
            print "BAD:", self.dump()
            raise

    def add(self, start, length):
        assert start >= 0
        assert length > 0
        #print " ADD [%d+%d -%d) to %s" % (start, length, start+length, self.dump())
        first_overlap = last_overlap = None
        for i,(s_start,s_length) in enumerate(self._spans):
            #print "  (%d+%d)-> overlap=%s adjacent=%s" % (s_start,s_length, overlap(s_start, s_length, start, length), adjacent(s_start, s_length, start, length))
            if (overlap(s_start, s_length, start, length)
                or adjacent(s_start, s_length, start, length)):
                last_overlap = i
                if first_overlap is None:
                    first_overlap = i
                continue
            # no overlap
            if first_overlap is not None:
                break
        #print "  first_overlap", first_overlap, last_overlap
        if first_overlap is None:
            # no overlap, so just insert the span and sort by starting
            # position.
            self._spans.insert(0, (start,length))
            self._spans.sort()
        else:
            # everything from [first_overlap] to [last_overlap] overlapped
            first_start,first_length = self._spans[first_overlap]
            last_start,last_length = self._spans[last_overlap]
            newspan_start = min(start, first_start)
            newspan_end = max(start+length, last_start+last_length)
            newspan_length = newspan_end - newspan_start
            newspan = (newspan_start, newspan_length)
            self._spans[first_overlap:last_overlap+1] = [newspan]
        #print "  ADD done: %s" % self.dump()
        self._check()

        return self

    def remove(self, start, length):
        assert start >= 0
        assert length > 0
        #print " REMOVE [%d+%d -%d) from %s" % (start, length, start+length, self.dump())
        first_complete_overlap = last_complete_overlap = None
        for i,(s_start,s_length) in enumerate(self._spans):
            s_end = s_start + s_length
            o = overlap(s_start, s_length, start, length)
            if o:
                o_start, o_length = o
                o_end = o_start+o_length
                if o_start == s_start and o_end == s_end:
                    # delete this span altogether
                    if first_complete_overlap is None:
                        first_complete_overlap = i
                    last_complete_overlap = i
                elif o_start == s_start:
                    # we only overlap the left side, so trim the start
                    #    1111
                    #  rrrr
                    #    oo
                    # ->   11
                    new_start = o_end
                    new_end = s_end
                    assert new_start > s_start
                    new_length = new_end - new_start
                    self._spans[i] = (new_start, new_length)
                elif o_end == s_end:
                    # we only overlap the right side
                    #    1111
                    #      rrrr
                    #      oo
                    # -> 11
                    new_start = s_start
                    new_end = o_start
                    assert new_end < s_end
                    new_length = new_end - new_start
                    self._spans[i] = (new_start, new_length)
                else:
                    # we overlap the middle, so create a new span. No need to
                    # examine any other spans.
                    #    111111
                    #      rr
                    #    LL  RR
                    left_start = s_start
                    left_end = o_start
                    left_length = left_end - left_start
                    right_start = o_end
                    right_end = s_end
                    right_length = right_end - right_start
                    self._spans[i] = (left_start, left_length)
                    self._spans.append( (right_start, right_length) )
                    self._spans.sort()
                    break
        if first_complete_overlap is not None:
            del self._spans[first_complete_overlap:last_complete_overlap+1]
        #print "  REMOVE done: %s" % self.dump()
        self._check()
        return self

    def dump(self):
        return "len=%d: %s" % (self.len(),
                               ",".join(["[%d-%d]" % (start,start+l-1)
                                         for (start,l) in self._spans]) )

    def each(self):
        for start, length in self._spans:
            for i in range(start, start+length):
                yield i

    def __iter__(self):
        for s in self._spans:
            yield s

    def __nonzero__(self): # this gets us bool()
        return bool(self.len())

    def len(self):
        # guess what! python doesn't allow __len__ to return a long, only an
        # int. So we stop using len(spans), use spans.len() instead.
        return sum([length for start,length in self._spans])

    def __add__(self, other):
        s = self.__class__(self)
        for (start, length) in other:
            s.add(start, length)
        return s

    def __sub__(self, other):
        s = self.__class__(self)
        for (start, length) in other:
            s.remove(start, length)
        return s

    def __iadd__(self, other):
        for (start, length) in other:
            self.add(start, length)
        return self

    def __isub__(self, other):
        for (start, length) in other:
            self.remove(start, length)
        return self

    def __and__(self, other):
        if not self._spans:
            return self.__class__()
        bounds = self.__class__(self._spans[0][0],
                                self._spans[-1][0]+self._spans[-1][1])
        not_other = bounds - other
        return self - not_other

    def __contains__(self, (start,length)):
        for span_start,span_length in self._spans:
            o = overlap(start, length, span_start, span_length)
            if o:
                o_start,o_length = o
                if o_start == start and o_length == length:
                    return True
        return False

def overlap(start0, length0, start1, length1):
    # return start2,length2 of the overlapping region, or None
    #  00      00   000   0000  00  00 000  00   00  00      00
    #     11    11   11    11   111 11 11  1111 111 11    11
    left = max(start0, start1)
    right = min(start0+length0, start1+length1)
    # if there is overlap, 'left' will be its start, and right-1 will
    # be the end'
    if left < right:
        return (left, right-left)
    return None

def adjacent(start0, length0, start1, length1):
    if (start0 < start1) and start0+length0 == start1:
        return True
    elif (start1 < start0) and start1+length1 == start0:
        return True
    return False

class DataSpans:
    """I represent portions of a large string. Equivalently, I can be said to
    maintain a large array of characters (with gaps of empty elements). I can
    be used to manage access to a remote share, where some pieces have been
    retrieved, some have been requested, and others have not been read.
    """

    def __init__(self, other=None):
        self.spans = [] # (start, data) tuples, non-overlapping, merged
        if other:
            for (start, data) in other.get_chunks():
                self.add(start, data)

    def __nonzero__(self): # this gets us bool()
        return bool(self.len())

    def len(self):
        # return number of bytes we're holding
        return sum([len(data) for (start,data) in self.spans])

    def _dump(self):
        # return iterator of sorted list of offsets, one per byte
        for (start,data) in self.spans:
            for i in range(start, start+len(data)):
                yield i

    def dump(self):
        return "len=%d: %s" % (self.len(),
                               ",".join(["[%d-%d]" % (start,start+len(data)-1)
                                         for (start,data) in self.spans]) )

    def get_chunks(self):
        return list(self.spans)

    def get_spans(self):
        """Return a Spans object with a bit set for each byte I hold"""
        return Spans([(start, len(data)) for (start,data) in self.spans])

    def assert_invariants(self):
        if not self.spans:
            return
        prev_start = self.spans[0][0]
        prev_end = prev_start + len(self.spans[0][1])
        for start, data in self.spans[1:]:
            if not start > prev_end:
                # adjacent or overlapping: bad
                print "ASSERTION FAILED", self.spans
                raise AssertionError

    def get(self, start, length):
        # returns a string of LENGTH, or None
        #print "get", start, length, self.spans
        end = start+length
        for (s_start,s_data) in self.spans:
            s_end = s_start+len(s_data)
            #print " ",s_start,s_end
            if s_start <= start < s_end:
                # we want some data from this span. Because we maintain
                # strictly merged and non-overlapping spans, everything we
                # want must be in this span.
                offset = start - s_start
                if offset + length > len(s_data):
                    #print " None, span falls short"
                    return None # span falls short
                #print " some", s_data[offset:offset+length]
                return s_data[offset:offset+length]
            if s_start >= end:
                # we've gone too far: no further spans will overlap
                #print " None, gone too far"
                return None
        #print " None, ran out of spans"
        return None

    def add(self, start, data):
        # first: walk through existing spans, find overlap, modify-in-place
        #  create list of new spans
        #  add new spans
        #  sort
        #  merge adjacent spans
        #print "add", start, data, self.spans
        end = start + len(data)
        i = 0
        while len(data):
            #print " loop", start, data, i, len(self.spans), self.spans
            if i >= len(self.spans):
                #print " append and done"
                # append a last span
                self.spans.append( (start, data) )
                break
            (s_start,s_data) = self.spans[i]
            # five basic cases:
            #  a: OLD  b:OLDD  c1:OLD  c2:OLD   d1:OLDD  d2:OLD  e: OLLDD
            #    NEW     NEW      NEW     NEWW      NEW      NEW     NEW
            #
            # we handle A by inserting a new segment (with "N") and looping,
            # turning it into B or C. We handle B by replacing a prefix and
            # terminating. We handle C (both c1 and c2) by replacing the
            # segment (and, for c2, looping, turning it into A). We handle D
            # by replacing a suffix (and, for d2, looping, turning it into
            # A). We handle E by replacing the middle and terminating.
            if start < s_start:
                # case A: insert a new span, then loop with the remainder
                #print " insert new span"
                s_len = s_start-start
                self.spans.insert(i, (start, data[:s_len]))
                i += 1
                start = s_start
                data = data[s_len:]
                continue
            s_len = len(s_data)
            s_end = s_start+s_len
            if s_start <= start < s_end:
                #print " modify this span", s_start, start, s_end
                # we want to modify some data in this span: a prefix, a
                # suffix, or the whole thing
                if s_start == start:
                    if s_end <= end:
                        #print " replace whole segment"
                        # case C: replace this segment
                        self.spans[i] = (s_start, data[:s_len])
                        i += 1
                        start += s_len
                        data = data[s_len:]
                        # C2 is where len(data)>0
                        continue
                    # case B: modify the prefix, retain the suffix
                    #print " modify prefix"
                    self.spans[i] = (s_start, data + s_data[len(data):])
                    break
                if start > s_start and end < s_end:
                    # case E: modify the middle
                    #print " modify middle"
                    prefix_len = start - s_start # we retain this much
                    suffix_len = s_end - end # and retain this much
                    newdata = s_data[:prefix_len] + data + s_data[-suffix_len:]
                    self.spans[i] = (s_start, newdata)
                    break
                # case D: retain the prefix, modify the suffix
                #print " modify suffix"
                prefix_len = start - s_start # we retain this much
                suffix_len = s_len - prefix_len # we replace this much
                #print "  ", s_data, prefix_len, suffix_len, s_len, data
                self.spans[i] = (s_start,
                                 s_data[:prefix_len] + data[:suffix_len])
                i += 1
                start += suffix_len
                data = data[suffix_len:]
                #print "  now", start, data
                # D2 is where len(data)>0
                continue
            # else we're not there yet
            #print " still looking"
            i += 1
            continue
        # now merge adjacent spans
        #print " merging", self.spans
        newspans = []
        for (s_start,s_data) in self.spans:
            if newspans and adjacent(newspans[-1][0], len(newspans[-1][1]),
                                     s_start, len(s_data)):
                newspans[-1] = (newspans[-1][0], newspans[-1][1] + s_data)
            else:
                newspans.append( (s_start, s_data) )
        self.spans = newspans
        self.assert_invariants()
        #print " done", self.spans

    def remove(self, start, length):
        i = 0
        end = start + length
        #print "remove", start, length, self.spans
        while i < len(self.spans):
            (s_start,s_data) = self.spans[i]
            if s_start >= end:
                # this segment is entirely right of the removed region, and
                # all further segments are even further right. We're done.
                break
            s_len = len(s_data)
            s_end = s_start + s_len
            o = overlap(start, length, s_start, s_len)
            if not o:
                i += 1
                continue
            o_start, o_len = o
            o_end = o_start + o_len
            if o_len == s_len:
                # remove the whole segment
                del self.spans[i]
                continue
            if o_start == s_start:
                # remove a prefix, leaving the suffix from o_end to s_end
                prefix_len = o_end - o_start
                self.spans[i] = (o_end, s_data[prefix_len:])
                i += 1
                continue
            elif o_end == s_end:
                # remove a suffix, leaving the prefix from s_start to o_start
                prefix_len = o_start - s_start
                self.spans[i] = (s_start, s_data[:prefix_len])
                i += 1
                continue
            # remove the middle, creating a new segment
            # left is s_start:o_start, right is o_end:s_end
            left_len = o_start - s_start
            left = s_data[:left_len]
            right_len = s_end - o_end
            right = s_data[-right_len:]
            self.spans[i] = (s_start, left)
            self.spans.insert(i+1, (o_end, right))
            break
        #print " done", self.spans

    def pop(self, start, length):
        data = self.get(start, length)
        if data:
            self.remove(start, length)
        return data