This file is indexed.

/usr/share/pyshared/allmydata/provisioning.py is in tahoe-lafs 1.9.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
from nevow import inevow, rend, tags as T
import math
from allmydata.util import mathutil
from allmydata.web.common import getxmlfile

# factorial and binomial copied from
# http://mail.python.org/pipermail/python-list/2007-April/435718.html

def factorial(n):
    """factorial(n): return the factorial of the integer n.
    factorial(0) = 1
    factorial(n) with n<0 is -factorial(abs(n))
    """
    result = 1
    for i in xrange(1, abs(n)+1):
        result *= i
    assert n >= 0
    return result

def binomial(n, k):
    assert 0 <= k <= n
    if k == 0 or k == n:
        return 1
    # calculate n!/k! as one product, avoiding factors that
    # just get canceled
    P = k+1
    for i in xrange(k+2, n+1):
        P *= i
    # if you are paranoid:
    # C, rem = divmod(P, factorial(n-k))
    # assert rem == 0
    # return C
    return P//factorial(n-k)

class ProvisioningTool(rend.Page):
    addSlash = True
    docFactory = getxmlfile("provisioning.xhtml")

    def render_forms(self, ctx, data):
        req = inevow.IRequest(ctx)

        def getarg(name, astype=int):
            if req.method != "POST":
                return None
            if name in req.fields:
                return astype(req.fields[name].value)
            return None
        return self.do_forms(getarg)


    def do_forms(self, getarg):
        filled = getarg("filled", bool)

        def get_and_set(name, options, default=None, astype=int):
            current_value = getarg(name, astype)
            i_select = T.select(name=name)
            for (count, description) in options:
                count = astype(count)
                if ((current_value is not None and count == current_value) or
                    (current_value is None and count == default)):
                    o = T.option(value=str(count), selected="true")[description]
                else:
                    o = T.option(value=str(count))[description]
                i_select = i_select[o]
            if current_value is None:
                current_value = default
            return current_value, i_select

        sections = {}
        def add_input(section, text, entry):
            if section not in sections:
                sections[section] = []
            sections[section].extend([T.div[text, ": ", entry], "\n"])

        def add_output(section, entry):
            if section not in sections:
                sections[section] = []
            sections[section].extend([entry, "\n"])

        def build_section(section):
            return T.fieldset[T.legend[section], sections[section]]

        def number(value, suffix=""):
            scaling = 1
            if value < 1:
                fmt = "%1.2g%s"
            elif value < 100:
                fmt = "%.1f%s"
            elif value < 1000:
                fmt = "%d%s"
            elif value < 1e6:
                fmt = "%.2fk%s"; scaling = 1e3
            elif value < 1e9:
                fmt = "%.2fM%s"; scaling = 1e6
            elif value < 1e12:
                fmt = "%.2fG%s"; scaling = 1e9
            elif value < 1e15:
                fmt = "%.2fT%s"; scaling = 1e12
            elif value < 1e18:
                fmt = "%.2fP%s"; scaling = 1e15
            else:
                fmt = "huge! %g%s"
            return fmt % (value / scaling, suffix)

        user_counts = [(5, "5 users"),
                       (50, "50 users"),
                       (200, "200 users"),
                       (1000, "1k users"),
                       (10000, "10k users"),
                       (50000, "50k users"),
                       (100000, "100k users"),
                       (500000, "500k users"),
                       (1000000, "1M users"),
                       ]
        num_users, i_num_users = get_and_set("num_users", user_counts, 50000)
        add_input("Users",
                  "How many users are on this network?", i_num_users)

        files_per_user_counts = [(100, "100 files"),
                                 (1000, "1k files"),
                                 (10000, "10k files"),
                                 (100000, "100k files"),
                                 (1e6, "1M files"),
                                 ]
        files_per_user, i_files_per_user = get_and_set("files_per_user",
                                                       files_per_user_counts,
                                                       1000)
        add_input("Users",
                  "How many files for each user? (avg)",
                  i_files_per_user)

        space_per_user_sizes = [(1e6, "1MB"),
                                (10e6, "10MB"),
                                (100e6, "100MB"),
                                (200e6, "200MB"),
                                (1e9, "1GB"),
                                (2e9, "2GB"),
                                (5e9, "5GB"),
                                (10e9, "10GB"),
                                (100e9, "100GB"),
                                (1e12, "1TB"),
                                (2e12, "2TB"),
                                (5e12, "5TB"),
                                ]
        # Estimate ~5gb per user as a more realistic case
        space_per_user, i_space_per_user = get_and_set("space_per_user",
                                                       space_per_user_sizes,
                                                       5e9)
        add_input("Users",
                  "How much data for each user? (avg)",
                  i_space_per_user)

        sharing_ratios = [(1.0, "1.0x"),
                          (1.1, "1.1x"),
                          (2.0, "2.0x"),
                          ]
        sharing_ratio, i_sharing_ratio = get_and_set("sharing_ratio",
                                                     sharing_ratios, 1.0,
                                                     float)
        add_input("Users",
                  "What is the sharing ratio? (1.0x is no-sharing and"
                  " no convergence)", i_sharing_ratio)

        # Encoding parameters
        encoding_choices = [("3-of-10-5", "3.3x (3-of-10, repair below 5)"),
                            ("3-of-10-8", "3.3x (3-of-10, repair below 8)"),
                            ("5-of-10-7", "2x (5-of-10, repair below 7)"),
                            ("8-of-10-9", "1.25x (8-of-10, repair below 9)"),
                            ("27-of-30-28", "1.1x (27-of-30, repair below 28"),
                            ("25-of-100-50", "4x (25-of-100, repair below 50)"),
                            ]
        encoding_parameters, i_encoding_parameters = \
                             get_and_set("encoding_parameters",
                                         encoding_choices, "3-of-10-5", str)
        encoding_pieces = encoding_parameters.split("-")
        k = int(encoding_pieces[0])
        assert encoding_pieces[1] == "of"
        n = int(encoding_pieces[2])
        # we repair the file when the number of available shares drops below
        # this value
        repair_threshold = int(encoding_pieces[3])

        add_input("Servers",
                  "What are the default encoding parameters?",
                  i_encoding_parameters)

        # Server info
        num_server_choices = [ (5, "5 servers"),
                               (10, "10 servers"),
                               (15, "15 servers"),
                               (30, "30 servers"),
                               (50, "50 servers"),
                               (100, "100 servers"),
                               (200, "200 servers"),
                               (300, "300 servers"),
                               (500, "500 servers"),
                               (1000, "1k servers"),
                               (2000, "2k servers"),
                               (5000, "5k servers"),
                               (10e3, "10k servers"),
                               (100e3, "100k servers"),
                               (1e6, "1M servers"),
                               ]
        num_servers, i_num_servers = \
                     get_and_set("num_servers", num_server_choices, 30, int)
        add_input("Servers",
                  "How many servers are there?", i_num_servers)

        # availability is measured in dBA = -dBF, where 0dBF is 100% failure,
        # 10dBF is 10% failure, 20dBF is 1% failure, etc
        server_dBA_choices = [ (10, "90% [10dBA] (2.4hr/day)"),
                               (13, "95% [13dBA] (1.2hr/day)"),
                               (20, "99% [20dBA] (14min/day or 3.5days/year)"),
                               (23, "99.5% [23dBA] (7min/day or 1.75days/year)"),
                               (30, "99.9% [30dBA] (87sec/day or 9hours/year)"),
                               (40, "99.99% [40dBA] (60sec/week or 53min/year)"),
                               (50, "99.999% [50dBA] (5min per year)"),
                               ]
        server_dBA, i_server_availability = \
                    get_and_set("server_availability",
                                server_dBA_choices,
                                20, int)
        add_input("Servers",
                  "What is the server availability?", i_server_availability)

        drive_MTBF_choices = [ (40, "40,000 Hours"),
                               ]
        drive_MTBF, i_drive_MTBF = \
                    get_and_set("drive_MTBF", drive_MTBF_choices, 40, int)
        add_input("Drives",
                  "What is the hard drive MTBF?", i_drive_MTBF)
        # http://www.tgdaily.com/content/view/30990/113/
        # http://labs.google.com/papers/disk_failures.pdf
        # google sees:
        #  1.7% of the drives they replaced were 0-1 years old
        #  8% of the drives they repalced were 1-2 years old
        #  8.6% were 2-3 years old
        #  6% were 3-4 years old, about 8% were 4-5 years old

        drive_size_choices = [ (100, "100 GB"),
                               (250, "250 GB"),
                               (500, "500 GB"),
                               (750, "750 GB"),
                               (1000, "1000 GB"),
                               (2000, "2000 GB"),
                               (3000, "3000 GB"),
                               ]
        drive_size, i_drive_size = \
                    get_and_set("drive_size", drive_size_choices, 3000, int)
        drive_size = drive_size * 1e9
        add_input("Drives",
                  "What is the capacity of each hard drive?", i_drive_size)
        drive_failure_model_choices = [ ("E", "Exponential"),
                                        ("U", "Uniform"),
                                        ]
        drive_failure_model, i_drive_failure_model = \
                             get_and_set("drive_failure_model",
                                         drive_failure_model_choices,
                                         "E", str)
        add_input("Drives",
                  "How should we model drive failures?", i_drive_failure_model)

        # drive_failure_rate is in failures per second
        if drive_failure_model == "E":
            drive_failure_rate = 1.0 / (drive_MTBF * 1000 * 3600)
        else:
            drive_failure_rate = 0.5 / (drive_MTBF * 1000 * 3600)

        # deletion/gc/ownership mode
        ownership_choices = [ ("A", "no deletion, no gc, no owners"),
                              ("B", "deletion, no gc, no owners"),
                              ("C", "deletion, share timers, no owners"),
                              ("D", "deletion, no gc, yes owners"),
                              ("E", "deletion, owner timers"),
                              ]
        ownership_mode, i_ownership_mode = \
                        get_and_set("ownership_mode", ownership_choices,
                                    "A", str)
        add_input("Servers",
                  "What is the ownership mode?", i_ownership_mode)

        # client access behavior
        access_rates = [ (1, "one file per day"),
                         (10, "10 files per day"),
                         (100, "100 files per day"),
                         (1000, "1k files per day"),
                         (10e3, "10k files per day"),
                         (100e3, "100k files per day"),
                         ]
        download_files_per_day, i_download_rate = \
                                get_and_set("download_rate", access_rates,
                                            100, int)
        add_input("Users",
                  "How many files are downloaded per day?", i_download_rate)
        download_rate = 1.0 * download_files_per_day / (24*60*60)

        upload_files_per_day, i_upload_rate = \
                              get_and_set("upload_rate", access_rates,
                                          10, int)
        add_input("Users",
                  "How many files are uploaded per day?", i_upload_rate)
        upload_rate = 1.0 * upload_files_per_day / (24*60*60)

        delete_files_per_day, i_delete_rate = \
                              get_and_set("delete_rate", access_rates,
                                          10, int)
        add_input("Users",
                  "How many files are deleted per day?", i_delete_rate)
        delete_rate = 1.0 * delete_files_per_day / (24*60*60)


        # the value is in days
        lease_timers = [ (1, "one refresh per day"),
                         (7, "one refresh per week"),
                         ]
        lease_timer, i_lease = \
                     get_and_set("lease_timer", lease_timers,
                                 7, int)
        add_input("Users",
                  "How frequently do clients refresh files or accounts? "
                  "(if necessary)",
                  i_lease)
        seconds_per_lease = 24*60*60*lease_timer

        check_timer_choices = [ (1, "every week"),
                                (4, "every month"),
                                (8, "every two months"),
                                (16, "every four months"),
                                ]
        check_timer, i_check_timer = \
                     get_and_set("check_timer", check_timer_choices, 4, int)
        add_input("Users",
                  "How frequently should we check on each file?",
                  i_check_timer)
        file_check_interval = check_timer * 7 * 24 * 3600


        if filled:
            add_output("Users", T.div["Total users: %s" % number(num_users)])
            add_output("Users",
                       T.div["Files per user: %s" % number(files_per_user)])
            file_size = 1.0 * space_per_user / files_per_user
            add_output("Users",
                       T.div["Average file size: ", number(file_size)])
            total_files = num_users * files_per_user / sharing_ratio

            add_output("Grid",
                       T.div["Total number of files in grid: ",
                             number(total_files)])
            total_space = num_users * space_per_user / sharing_ratio
            add_output("Grid",
                       T.div["Total volume of plaintext in grid: ",
                             number(total_space, "B")])

            total_shares = n * total_files
            add_output("Grid",
                       T.div["Total shares in grid: ", number(total_shares)])
            expansion = float(n) / float(k)

            total_usage = expansion * total_space
            add_output("Grid",
                       T.div["Share data in grid: ", number(total_usage, "B")])

            if n > num_servers:
                # silly configuration, causes Tahoe2 to wrap and put multiple
                # shares on some servers.
                add_output("Servers",
                           T.div["non-ideal: more shares than servers"
                                 " (n=%d, servers=%d)" % (n, num_servers)])
                # every file has at least one share on every server
                buckets_per_server = total_files
                shares_per_server = total_files * ((1.0 * n) / num_servers)
            else:
                # if nobody is full, then no lease requests will be turned
                # down for lack of space, and no two shares for the same file
                # will share a server. Therefore the chance that any given
                # file has a share on any given server is n/num_servers.
                buckets_per_server = total_files * ((1.0 * n) / num_servers)
                # since each such represented file only puts one share on a
                # server, the total number of shares per server is the same.
                shares_per_server = buckets_per_server
            add_output("Servers",
                       T.div["Buckets per server: ",
                             number(buckets_per_server)])
            add_output("Servers",
                       T.div["Shares per server: ",
                             number(shares_per_server)])

            # how much space is used on the storage servers for the shares?
            #  the share data itself
            share_data_per_server = total_usage / num_servers
            add_output("Servers",
                       T.div["Share data per server: ",
                             number(share_data_per_server, "B")])
            # this is determined empirically. H=hashsize=32, for a one-segment
            # file and 3-of-10 encoding
            share_validation_per_server = 266 * shares_per_server
            # this could be 423*buckets_per_server, if we moved the URI
            # extension into a separate file, but that would actually consume
            # *more* space (minimum filesize is 4KiB), unless we moved all
            # shares for a given bucket into a single file.
            share_uri_extension_per_server = 423 * shares_per_server

            # ownership mode adds per-bucket data
            H = 32 # depends upon the desired security of delete/refresh caps
            # bucket_lease_size is the amount of data needed to keep track of
            # the delete/refresh caps for each bucket.
            bucket_lease_size = 0
            client_bucket_refresh_rate = 0
            owner_table_size = 0
            if ownership_mode in ("B", "C", "D", "E"):
                bucket_lease_size = sharing_ratio * 1.0 * H
            if ownership_mode in ("B", "C"):
                # refreshes per second per client
                client_bucket_refresh_rate = (1.0 * n * files_per_user /
                                              seconds_per_lease)
                add_output("Users",
                           T.div["Client share refresh rate (outbound): ",
                                 number(client_bucket_refresh_rate, "Hz")])
                server_bucket_refresh_rate = (client_bucket_refresh_rate *
                                              num_users / num_servers)
                add_output("Servers",
                           T.div["Server share refresh rate (inbound): ",
                                 number(server_bucket_refresh_rate, "Hz")])
            if ownership_mode in ("D", "E"):
                # each server must maintain a bidirectional mapping from
                # buckets to owners. One way to implement this would be to
                # put a list of four-byte owner numbers into each bucket, and
                # a list of four-byte share numbers into each owner (although
                # of course we'd really just throw it into a database and let
                # the experts take care of the details).
                owner_table_size = 2*(buckets_per_server * sharing_ratio * 4)

            if ownership_mode in ("E",):
                # in this mode, clients must refresh one timer per server
                client_account_refresh_rate = (1.0 * num_servers /
                                               seconds_per_lease)
                add_output("Users",
                           T.div["Client account refresh rate (outbound): ",
                                 number(client_account_refresh_rate, "Hz")])
                server_account_refresh_rate = (client_account_refresh_rate *
                                              num_users / num_servers)
                add_output("Servers",
                           T.div["Server account refresh rate (inbound): ",
                                 number(server_account_refresh_rate, "Hz")])

            # TODO: buckets vs shares here is a bit wonky, but in
            # non-wrapping grids it shouldn't matter
            share_lease_per_server = bucket_lease_size * buckets_per_server
            share_ownertable_per_server = owner_table_size

            share_space_per_server = (share_data_per_server +
                                      share_validation_per_server +
                                      share_uri_extension_per_server +
                                      share_lease_per_server +
                                      share_ownertable_per_server)
            add_output("Servers",
                       T.div["Share space per server: ",
                             number(share_space_per_server, "B"),
                             " (data ",
                             number(share_data_per_server, "B"),
                             ", validation ",
                             number(share_validation_per_server, "B"),
                             ", UEB ",
                             number(share_uri_extension_per_server, "B"),
                             ", lease ",
                             number(share_lease_per_server, "B"),
                             ", ownertable ",
                             number(share_ownertable_per_server, "B"),
                             ")",
                             ])


            # rates
            client_download_share_rate = download_rate * k
            client_download_byte_rate = download_rate * file_size
            add_output("Users",
                       T.div["download rate: shares = ",
                             number(client_download_share_rate, "Hz"),
                             " , bytes = ",
                             number(client_download_byte_rate, "Bps"),
                             ])
            total_file_check_rate = 1.0 * total_files / file_check_interval
            client_check_share_rate = total_file_check_rate / num_users
            add_output("Users",
                       T.div["file check rate: shares = ",
                             number(client_check_share_rate, "Hz"),
                             " (interval = %s)" %
                             number(1 / client_check_share_rate, "s"),
                             ])

            client_upload_share_rate = upload_rate * n
            # TODO: doesn't include overhead
            client_upload_byte_rate = upload_rate * file_size * expansion
            add_output("Users",
                       T.div["upload rate: shares = ",
                             number(client_upload_share_rate, "Hz"),
                             " , bytes = ",
                             number(client_upload_byte_rate, "Bps"),
                             ])
            client_delete_share_rate = delete_rate * n

            server_inbound_share_rate = (client_upload_share_rate *
                                         num_users / num_servers)
            server_inbound_byte_rate = (client_upload_byte_rate *
                                        num_users / num_servers)
            add_output("Servers",
                       T.div["upload rate (inbound): shares = ",
                             number(server_inbound_share_rate, "Hz"),
                             " , bytes = ",
                              number(server_inbound_byte_rate, "Bps"),
                             ])
            add_output("Servers",
                       T.div["share check rate (inbound): ",
                             number(total_file_check_rate * n / num_servers,
                                    "Hz"),
                             ])

            server_share_modify_rate = ((client_upload_share_rate +
                                         client_delete_share_rate) *
                                         num_users / num_servers)
            add_output("Servers",
                       T.div["share modify rate: shares = ",
                             number(server_share_modify_rate, "Hz"),
                             ])

            server_outbound_share_rate = (client_download_share_rate *
                                          num_users / num_servers)
            server_outbound_byte_rate = (client_download_byte_rate *
                                         num_users / num_servers)
            add_output("Servers",
                       T.div["download rate (outbound): shares = ",
                             number(server_outbound_share_rate, "Hz"),
                             " , bytes = ",
                              number(server_outbound_byte_rate, "Bps"),
                             ])


            total_share_space = num_servers * share_space_per_server
            add_output("Grid",
                       T.div["Share space consumed: ",
                             number(total_share_space, "B")])
            add_output("Grid",
                       T.div[" %% validation: %.2f%%" %
                             (100.0 * share_validation_per_server /
                              share_space_per_server)])
            add_output("Grid",
                       T.div[" %% uri-extension: %.2f%%" %
                             (100.0 * share_uri_extension_per_server /
                              share_space_per_server)])
            add_output("Grid",
                       T.div[" %% lease data: %.2f%%" %
                             (100.0 * share_lease_per_server /
                              share_space_per_server)])
            add_output("Grid",
                       T.div[" %% owner data: %.2f%%" %
                             (100.0 * share_ownertable_per_server /
                              share_space_per_server)])
            add_output("Grid",
                       T.div[" %% share data: %.2f%%" %
                             (100.0 * share_data_per_server /
                              share_space_per_server)])
            add_output("Grid",
                       T.div["file check rate: ",
                             number(total_file_check_rate,
                                    "Hz")])

            total_drives = max(mathutil.div_ceil(int(total_share_space),
                                                 int(drive_size)),
                               num_servers)
            add_output("Drives",
                       T.div["Total drives: ", number(total_drives), " drives"])
            drives_per_server = mathutil.div_ceil(total_drives, num_servers)
            add_output("Servers",
                       T.div["Drives per server: ", drives_per_server])

            # costs
            if drive_size == 3000 * 1e9:
                add_output("Servers", T.div["3000GB drive: $250 each"])
                drive_cost = 250
            else:
                add_output("Servers",
                           T.div[T.b["unknown cost per drive, assuming $100"]])
                drive_cost = 100

            if drives_per_server <= 4:
                add_output("Servers", T.div["1U box with <= 4 drives: $1500"])
                server_cost = 1500 # typical 1U box
            elif drives_per_server <= 12:
                add_output("Servers", T.div["2U box with <= 12 drives: $2500"])
                server_cost = 2500 # 2U box
            else:
                add_output("Servers",
                           T.div[T.b["Note: too many drives per server, "
                                     "assuming $3000"]])
                server_cost = 3000

            server_capital_cost = (server_cost + drives_per_server * drive_cost)
            total_server_cost = float(num_servers * server_capital_cost)
            add_output("Servers", T.div["Capital cost per server: $",
                                        server_capital_cost])
            add_output("Grid", T.div["Capital cost for all servers: $",
                                     number(total_server_cost)])
            # $70/Mbps/mo
            # $44/server/mo power+space
            server_bandwidth = max(server_inbound_byte_rate,
                                   server_outbound_byte_rate)
            server_bandwidth_mbps = mathutil.div_ceil(int(server_bandwidth*8),
                                                      int(1e6))
            server_monthly_cost = 70*server_bandwidth_mbps + 44
            add_output("Servers", T.div["Monthly cost per server: $",
                                        server_monthly_cost])
            add_output("Users", T.div["Capital cost per user: $",
                                      number(total_server_cost / num_users)])

            # reliability
            any_drive_failure_rate = total_drives * drive_failure_rate
            any_drive_MTBF = 1 // any_drive_failure_rate  # in seconds
            any_drive_MTBF_days = any_drive_MTBF / 86400
            add_output("Drives",
                       T.div["MTBF (any drive): ",
                             number(any_drive_MTBF_days), " days"])
            drive_replacement_monthly_cost = (float(drive_cost)
                                              * any_drive_failure_rate
                                              *30*86400)
            add_output("Grid",
                       T.div["Monthly cost of replacing drives: $",
                             number(drive_replacement_monthly_cost)])

            total_server_monthly_cost = float(num_servers * server_monthly_cost
                                              + drive_replacement_monthly_cost)

            add_output("Grid", T.div["Monthly cost for all servers: $",
                                     number(total_server_monthly_cost)])
            add_output("Users",
                       T.div["Monthly cost per user: $",
                             number(total_server_monthly_cost / num_users)])

            # availability
            file_dBA = self.file_availability(k, n, server_dBA)
            user_files_dBA = self.many_files_availability(file_dBA,
                                                          files_per_user)
            all_files_dBA = self.many_files_availability(file_dBA, total_files)
            add_output("Users",
                       T.div["availability of: ",
                             "arbitrary file = %d dBA, " % file_dBA,
                             "all files of user1 = %d dBA, " % user_files_dBA,
                             "all files in grid = %d dBA" % all_files_dBA,
                             ],
                       )

            time_until_files_lost = (n-k+1) / any_drive_failure_rate
            add_output("Grid",
                       T.div["avg time until files are lost: ",
                             number(time_until_files_lost, "s"), ", ",
                             number(time_until_files_lost/86400, " days"),
                             ])

            share_data_loss_rate = any_drive_failure_rate * drive_size
            add_output("Grid",
                       T.div["share data loss rate: ",
                             number(share_data_loss_rate,"Bps")])

            # the worst-case survival numbers occur when we do a file check
            # and the file is just above the threshold for repair (so we
            # decide to not repair it). The question is then: what is the
            # chance that the file will decay so badly before the next check
            # that we can't recover it? The resulting probability is per
            # check interval.
            # Note that the chances of us getting into this situation are low.
            P_disk_failure_during_interval = (drive_failure_rate *
                                              file_check_interval)
            disk_failure_dBF = 10*math.log10(P_disk_failure_during_interval)
            disk_failure_dBA = -disk_failure_dBF
            file_survives_dBA = self.file_availability(k, repair_threshold,
                                                       disk_failure_dBA)
            user_files_survives_dBA = self.many_files_availability( \
                file_survives_dBA, files_per_user)
            all_files_survives_dBA = self.many_files_availability( \
                file_survives_dBA, total_files)
            add_output("Users",
                       T.div["survival of: ",
                             "arbitrary file = %d dBA, " % file_survives_dBA,
                             "all files of user1 = %d dBA, " %
                             user_files_survives_dBA,
                             "all files in grid = %d dBA" %
                             all_files_survives_dBA,
                             " (per worst-case check interval)",
                             ])



        all_sections = []
        all_sections.append(build_section("Users"))
        all_sections.append(build_section("Servers"))
        all_sections.append(build_section("Drives"))
        if "Grid" in sections:
            all_sections.append(build_section("Grid"))

        f = T.form(action=".", method="post", enctype="multipart/form-data")

        if filled:
            action = "Recompute"
        else:
            action = "Compute"

        f = f[T.input(type="hidden", name="filled", value="true"),
              T.input(type="submit", value=action),
              all_sections,
              ]

        try:
            from allmydata import reliability
            # we import this just to test to see if the page is available
            _hush_pyflakes = reliability
            del _hush_pyflakes
            f = [T.div[T.a(href="../reliability")["Reliability Math"]], f]
        except ImportError:
            pass

        return f

    def file_availability(self, k, n, server_dBA):
        """
        The full formula for the availability of a specific file is::

         1 - sum([choose(N,i) * p**i * (1-p)**(N-i)] for i in range(k)])

        Where choose(N,i) = N! / ( i! * (N-i)! ) . Note that each term of
        this summation is the probability that there are exactly 'i' servers
        available, and what we're doing is adding up the cases where i is too
        low.

        This is a nuisance to calculate at all accurately, especially once N
        gets large, and when p is close to unity. So we make an engineering
        approximation: if (1-p) is very small, then each [i] term is much
        larger than the [i-1] term, and the sum is dominated by the i=k-1
        term. This only works for (1-p) < 10%, and when the choose() function
        doesn't rise fast enough to compensate. For high-expansion encodings
        (3-of-10, 25-of-100), the choose() function is rising at the same
        time as the (1-p)**(N-i) term, so that's not an issue. For
        low-expansion encodings (7-of-10, 75-of-100) the two values are
        moving in opposite directions, so more care must be taken.

        Note that the p**i term has only a minor effect as long as (1-p)*N is
        small, and even then the effect is attenuated by the 1-p term.
        """

        assert server_dBA > 9  # >=90% availability to use the approximation
        factor = binomial(n, k-1)
        factor_dBA = 10 * math.log10(factor)
        exponent = n - k + 1
        file_dBA = server_dBA * exponent - factor_dBA
        return file_dBA

    def many_files_availability(self, file_dBA, num_files):
        """The probability that 'num_files' independent bernoulli trials will
        succeed (i.e. we can recover all files in the grid at any given
        moment) is p**num_files . Since p is close to unity, we express in p
        in dBA instead, so we can get useful precision on q (=1-p), and then
        the formula becomes::

         P_some_files_unavailable = 1 - (1 - q)**num_files

        That (1-q)**n expands with the usual binomial sequence, 1 - nq +
        Xq**2 ... + Xq**n . We use the same approximation as before, since we
        know q is close to zero, and we get to ignore all the terms past -nq.
        """

        many_files_dBA = file_dBA - 10 * math.log10(num_files)
        return many_files_dBA