/usr/share/sumo/tools/assign/elements.py is in sumo-tools 0.15.0~dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 | """
@file elements.py
@author Yun-Pang Wang
@author Daniel Krajzewicz
@author Michael Behrisch
@date 2007-10-25
@version $Id: elements.py 11700 2012-01-10 22:20:15Z behrisch $
This script is to define the classes and functions for
- reading network geometric,
- calculating link characteristics, such as capacity, travel time and link cost function,
- recording vehicular and path information, and
- conducting statistic tests.
SUMO, Simulation of Urban MObility; see http://sumo.sourceforge.net/
Copyright (C) 2008-2012 DLR (http://www.dlr.de/) and contributors
All rights reserved
"""
import sys, math, os
from tables import crCurveTable, laneTypeTable
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import sumolib.net
# This class is used for finding the k shortest paths.
class Predecessor:
def __init__(self, edge, pred, distance):
self.edge = edge
self.pred = pred
self.distance = distance
# This class is used to build the nodes in the investigated network and
# includes the update-function for searching the k shortest paths.
class Vertex(sumolib.net.Node):
"""
This class is to store node attributes and the respective incoming/outgoing links.
"""
def __init__(self, id, coord=None, incLanes=None):
sumolib.net.Node.__init__(self, id, coord, incLanes)
self.preds = []
self.wasUpdated = False
def __repr__(self):
return self._id
def _addNewPredecessor(self, edge, updatePred, newPreds):
for pred in newPreds:
if pred.pred == updatePred:
return
pred = updatePred
while pred.edge != None:
if pred.edge == edge:
return
pred = pred.pred
newPreds.append(Predecessor(edge, updatePred,
updatePred.distance + edge.actualtime))
def update(self, KPaths, edge):
updatePreds = edge._from.preds
if len(self.preds) == KPaths\
and updatePreds[0].distance + edge.actualtime >= self.preds[KPaths-1].distance:
return False
newPreds = []
updateIndex = 0
predIndex = 0
while len(newPreds) < KPaths\
and (updateIndex < len(updatePreds)\
or predIndex < len(self.preds)):
if predIndex == len(self.preds):
self._addNewPredecessor(edge, updatePreds[updateIndex], newPreds)
updateIndex += 1
elif updateIndex == len(updatePreds):
newPreds.append(self.preds[predIndex])
predIndex += 1
elif updatePreds[updateIndex].distance + edge.actualtime < self.preds[predIndex].distance:
self._addNewPredecessor(edge, updatePreds[updateIndex], newPreds)
updateIndex += 1
else:
newPreds.append(self.preds[predIndex])
predIndex += 1
if predIndex == len(newPreds):
return False
self.preds = newPreds
returnVal = not self.wasUpdated
self.wasUpdated = True
return returnVal
# This class is used to store link information and estimate
# as well as flow and capacity for the flow computation and some parameters
# read from the net.
class Edge(sumolib.net.Edge):
"""
This class is to record link attributes
"""
def __init__(self, label, source, target, prio, function, name):
sumolib.net.Edge.__init__(self, label, source, target, prio, function, name)
self.capacity = sys.maxint
# parameter for estimating capacities according to signal timing plans
self.junction = None
self.junctiontype = None
self.rightturn = None
self.straight = None
self.leftturn = None
self.uturn = None
self.leftlink = []
self.straightlink = []
self.rightlink = []
self.conflictlink = {}
# self.againstlinkexist = None
self.flow = 0.0
self.helpflow = 0.0
self.freeflowtime = 0.0
self.queuetime = 0.0
self.estcapacity = 0.0
self.CRcurve = None
self.actualtime = 0.0
self.ratio = 0.0
self.connection = 0
self.edgetype = None
# parameter in the Lohse traffic assignment
self.helpacttime = 0.
# parameter in the Lohse traffic assignment
self.fTT = 0.
# parameter in the Lohse traffic assignment
self.TT = 0.
# parameter in the Lohse traffic assignment
self.delta = 0.
# parameter in the Lohse traffic assignment
self.helpacttimeEx = 0.
# parameter in the matrix estimation
self.detected = False
self.detectorNum = 0.
self.detecteddata = {}
self.detectedlanes = 0.
self.penalty = 0.
self.capLeft = 0.
self.capRight = 0.
self.capThrough = 0.
def addLane(self, lane):
sumolib.net.Edge.addLane(self, lane)
if self._from._id == self._to._id:
self.freeflowtime = 0.0
else:
self.freeflowtime = self._length / self._speed
self.actualtime = self.freeflowtime
self.helpacttime = self.freeflowtime
def __repr__(self):
cap = str(self.capacity)
if self.capacity == sys.maxint or self.connection != 0:
cap = "inf"
return "%s_%s_%s_%s<%s|%s|%s|%s|%s|%s|%s|%s|%s>" % (self._function, self._id, self._from, self._to, self.junctiontype, self._speed,
self.flow, self._length, self._lanes,
self.CRcurve, self.estcapacity, cap, self.ratio)
def getConflictLink(self):
"""
method to get the conflict links for each link, when the respective left-turn behavior exists.
"""
if self._function == 'real' and len(self.leftlink) > 0:
for leftEdge in self.leftlink:
affectedTurning = None
for edge in leftEdge.source.inEdges:
if edge.source == self.target:
affectedTurning = edge
affectedTurning.freeflowtime = 6.
affectedTurning.actualtime = affectedTurning.freeflowtime
affectedTurning.helpacttime = affectedTurning.freeflowtime
for edge in leftEdge.source.inEdges:
for upstreamlink in edge.source.inEdges:
if leftEdge in upstreamlink.rightlink and len(upstreamlink.straightlink) > 0:
if not upstreamlink in self.conflictlink:
self.conflictlink[upstreamlink]= []
self.conflictlink[upstreamlink].append(affectedTurning)
def getFreeFlowTravelTime(self):
return self.freeflowtime
def addDetectedData(self, detecteddataObj):
self.detecteddata[detecteddataObj.label] = detecteddataObj
def getCapacity(self):
"""
method to read the link capacity and the cr-curve type from the table.py
the applied CR-curve database is retrived from VISUM-Validate-network und VISUM-Koeln-network
"""
typeList = laneTypeTable[min(len(self._lanes), 4)]
for laneType in typeList:
if laneType[0] >= self._speed:
break
self.estcapacity = len(self._lanes) * laneType[1]
self.CRcurve = laneType[2]
def getAdjustedCapacity(self, net):
"""
method to adjust the link capacity based on the given signal timing plans
"""
straightGreen = 0.
rightGreen = 0.
leftGreen = 0.
greentime = 0.
straightSymbol = -1
rightSymbol = -1
leftSymbol = -1
cyclelength = 0.
count = 0
if self.junctiontype == 'signalized':
junction = net._junctions[self.junction]
if self.rightturn != None and self.rightturn != 'O' and self.rightturn != 'o':
rightSymbol = int(self.rightturn)
if self.leftturn != None and self.leftturn != 'O' and self.leftturn != 'o':
leftSymbol = int(self.leftturn)
if self.straight != None and self.straight != 'O' and self.straight != 'o':
straightSymbol = int(self.straight)
for phase in junction.phases[:]:
count += 1
cyclelength += phase.duration
if straightSymbol != -1 and phase.green[straightSymbol] == "1":
straightGreen += phase.duration
if rightSymbol != -1 and phase.green[rightSymbol] == "1":
rightGreen += phase.duration
if leftSymbol != -1 and phase.green[leftSymbol] == "1":
leftGreen += phase.duration
if self.straight != None:
self.estcapacity = (straightGreen*(3600./cyclelength))/1.5 * len(self._lanes)
else:
greentime = max(rightGreen, leftGreen)
self.estcapacity = (greentime*(3600./cyclelength))/1.5 * len(self._lanes)
def getActualTravelTime(self, options, lohse):
"""
method to calculate/update link travel time
"""
foutcheck = file('queue_info.txt', 'a')
if self.CRcurve in crCurveTable:
curve = crCurveTable[self.CRcurve]
if self.flow == 0.0 or self.connection > 0:
self.actualtime = self.freeflowtime
elif self.estcapacity != 0. and self.connection == 0:
self.actualtime = self.freeflowtime*(1+(curve[0]*(self.flow/(self.estcapacity*curve[2]))**curve[1]))
if (self.flow > self.estcapacity or self.flow == self.estcapacity) and self.flow > 0. and self.connection == 0:
self.queuetime = self.queuetime + options.lamda*(self.actualtime - self.freeflowtime*(1+curve[0]))
if self.queuetime < 1.:
self.queuetime = 0.
else:
foutcheck.write('edge.label= %s: queuing time= %s.\n' %(self._id, self.queuetime))
foutcheck.write('travel time at capacity: %s; actual travel time: %s.\n' %(self.freeflowtime*(1+curve[0]), self.actualtime))
else:
self.queuetime = 0.
self.actualtime += self.queuetime
if lohse:
self.getLohseParUpdate(options)
else:
self.helpacttime = self.actualtime
self.penalty = 0.
if len(self.conflictlink) > 0:
for edge in self.conflictlink:
conflictEdge = edge
flowCapRatio = conflictEdge.flow / conflictEdge.estcapacity
weightFactor = 1.0
if self.numberlane == 2.:
weightFactor = 0.85
elif self.numberlane == 3.:
weightFactor = 0.75
elif self.numberlane > 3.:
weightFactor = 0.6
if options.dijkstra != 'extend':
for edge in self.conflictlink:
penalty = 0.
if edge.estcapacity > 0. and edge.flow/edge.estcapacity > 0.12:
penalty = weightFactor * (math.exp(self.flow/self.estcapacity) - 1. + math.exp(edge.flow/edge.estcapacity) - 1.)
for affectedTurning in self.conflictlink[edge]:
affectedTurning.actualtime = self.actualtime * penalty
if lohse:
affectedTurning.helpacttime = self.helpacttime * penalty
else:
affectedTurning.helpacttime = affectedTurning.actualtime
else:
for edge in self.conflictlink:
if edge.estcapacity > 0. and edge.flow/edge.estcapacity >= flowCapRatio:
conflictEdge = edge
flowCapRatio = edge.flow/edge.estcapacity
if conflictEdge.estcapacity > 0. and conflictEdge.flow/conflictEdge.estcapacity > 0.12:
self.penalty = weightFactor * (math.exp(self.flow/self.estcapacity) - 1. + math.exp(conflictEdge.flow/conflictEdge.estcapacity) - 1.)
if lohse:
self.penalty *= self.helpacttime
else:
self.penalty *= self.actualtime
foutcheck.close()
def cleanFlow(self):
""" method to reset link flows """
self.flow = 0.
self.helpflow = 0.
def getLohseParUpdate(self, options):
"""
method to update the parameter used in the Lohse-assignment (learning method - Lernverfahren)
"""
if self.helpacttime > 0.:
self.TT = abs(self.actualtime - self.helpacttime) / self.helpacttime
self.fTT = options.v1/(1 + math.exp(options.v2-options.v3*self.TT))
self.delta = options.under + (options.upper - options.under)/((1+self.TT)**self.fTT)
self.helpacttimeEx = self.helpacttime
self.helpacttime = self.helpacttime + self.delta*(self.actualtime - self.helpacttime)
def stopCheck(self, options):
"""
method to check if the convergence reaches in the Lohse-assignment
"""
stop = False
criteria = 0.
criteria = options.cvg1 * self.helpacttimeEx**(options.cvg2/options.cvg3)
if abs(self.actualtime - self.helpacttimeEx) <= criteria:
stop = True
return stop
class Vehicle:
"""
This class is to store vehicle information, such as departure time, route and travel time.
"""
def __init__(self, label):
self.label = label
self.method = None
self.depart = 0.
self.arrival = 0.
self.speed = 0.
self.route = []
self.traveltime = 0.
self.travellength = 0.
self.departdelay = 0.
self.waittime = 0.
self.rank = 0.
def __repr__(self):
return "%s_%s_%s_%s_%s_%s<%s>" % (self.label, self.depart, self.arrival, self.speed, self.traveltime, self.travellength, self.route)
pathNum = 0
class Path:
"""
This class is to store path information which is mainly for the C-logit and the Lohse models.
"""
def __init__(self, source, target, edges):
self.source = source
self.target = target
global pathNum
self.label = "%s" % pathNum
pathNum += 1
self.edges = edges
self.length = 0.0
self.freepathtime = 0.0
self.actpathtime = 0.0
self.pathflow = 0.0
self.helpflow = 0.0
self.choiceprob = 0.0
self.sumOverlap = 0.0
self.utility = 0.0
# parameter used in the Lohse traffic assignment
self.usedcounts = 1
# parameter used in the Lohse traffic assignment
self.pathhelpacttime = 0.
# record if this path is the currrent shortest one.
self.currentshortest = True
def __repr__(self):
return "%s_%s_%s<%s|%s|%s|%s>" % (self.label, self.source, self.target, self.freepathtime, self.pathflow, self.actpathtime, self.edges)
def getPathLength(self):
for edge in self.edges:
self.length += edge._length
def updateSumOverlap(self, newpath, gamma):
overlapLength = 0.
for edge in self.edges:
if edge in newpath.edges:
overlapLength += edge._length
overlapLength = overlapLength/1000.
lengthOne = self.length/1000.
lengthTwo = newpath.length/1000.
self.sumOverlap += math.pow(overlapLength/(math.pow(lengthOne,0.5) * math.pow(lengthTwo,0.5)), gamma)
def getPathTimeUpdate(self):
"""
used to update the path travel time in the c-logit and the Lohse traffic assignments
"""
self.actpathtime = 0.
self.pathhelpacttime = 0.
for edge in self.edges:
self.actpathtime += edge.actualtime
self.pathhelpacttime += edge.helpacttime
self.pathhelpacttime = self.pathhelpacttime/3600.
self.actpathtime = self.actpathtime/3600.
class TLJunction:
def __init__(self):
self.label = None
self.phaseNum = 0
self.phases = []
def __repr__(self):
return "%s_%s<%s>" % (self.label, self.phaseNum, self.phases)
class Signalphase:
def __init__(self, duration, state=None, phase=None, brake=None, yellow=None):
self.label= None
self.state = state
self.duration = duration
self.green = ''
self.brake = ''
self.yellow = ''
if phase and brake and yellow:
self.green = phase[::-1]
self.brake = brake[::-1]
self.yellow = yellow[::-1]
elif self.state:
for elem in self.state:
if elem == 'G':
self.green += '1'
self.brake += '0'
self.yellow += '0'
elif elem == 'y':
self.green += '0'
self.brake += '0'
self.yellow += '1'
elif elem == 'r':
self.green += '0'
self.brake += '1'
self.yellow += '0'
else:
print 'no timing plans exist!'
def __repr__(self):
return "%s_%s<%s|%s|%s>" % (self.label, self.duration, self.green, self.brake, self.yellow)
|