This file is indexed.

/usr/share/sumo/tools/assign/assign.py is in sumo-tools 0.15.0~dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
"""
@file    assign.py
@author  Yun-Pang Wang
@author  Daniel Krajzewicz
@author  Michael Behrisch
@date    2007-11-25
@version $Id: assign.py 11700 2012-01-10 22:20:15Z behrisch $

This script is for executing traffic assignment according to the required assignment model.
The incremental assignment model, the C-Logit assignment model and the Lohse assignment model are included in this script. 

SUMO, Simulation of Urban MObility; see http://sumo.sourceforge.net/
Copyright (C) 2008-2012 DLR (http://www.dlr.de/) and contributors
All rights reserved
"""

import math, operator
import elements
from elements import Vertex, Edge, Path, Vehicle
from network import Net

def doIncAssign(net, vehicles, verbose, iteration, odestimation, endVertices, start, startVertex, matrixPshort, smallDemand, D, P, AssignedVeh, AssignedTrip, vehID, assignSmallDemand, linkChoiceMap, odPairsMap):

    for end, endVertex in enumerate(endVertices):
        getlinkChoices = False
        if (odestimation and matrixPshort[start][end] > 0.) or (matrixPshort[start][end] > 1. or (assignSmallDemand and smallDemand[start][end] > 0.)):
            getlinkChoices = True

        if startVertex._id != endVertex._id and getlinkChoices:
        # if matrixPling and the matrixTruck exist, matrixPlong[start][end] > 0.0 or matrixTruck[start][end] > 0.0): should be added.
            helpPath = []
            vertex = endVertex
            demand = 0.
            if matrixPshort[start][end] > 1. or odestimation:
                demand = matrixPshort[start][end]/float(iteration)
            if assignSmallDemand and not odestimation:
                demand += smallDemand[start][end]

            while vertex != startVertex:
                if P[vertex].kind == "real":
                    helpPath.append(P[vertex])
                    P[vertex].flow += demand
                    if getlinkChoices and P[vertex] in net._detectedEdges:
                        odIndex = odPairsMap[startVertex._id][endVertex._id]
                        linkChoiceMap[P[vertex].detected][odIndex] += demand

                vertex = P[vertex].source
            helpPath.reverse()

            # the amount of the pathflow, which will be released at this iteration
            if assignSmallDemand:
                smallDemand[start][end] = 0.

            if not odestimation:
                AssignedTrip[startVertex][endVertex] += demand
                vehID = assignVeh(verbose, vehicles, startVertex, endVertex, helpPath, AssignedVeh, AssignedTrip, vehID)
    return vehID, smallDemand, linkChoiceMap

# execute the SUE model with the given path set
def doSUEAssign(net, options, startVertices, endVertices, matrixPshort, iter, lohse, first): 
    if lohse:
        if options.verbose:
            foutassign = file('lohse_pathSet.txt', 'a')
            foutassign.write('\niter:%s\n' %iter)

    # matrixPlong and matrixTruck should be added if available.
    if options.verbose:
        print 'pathNum in doSUEAssign:', elements.pathNum
    # calculate the overlapping factors between any two paths of a given OD pair
    for start, startVertex in enumerate(startVertices): 
        for end, endVertex in enumerate(endVertices):
            cumulatedflow = 0.
            pathcount = 0          
            if matrixPshort[start][end] > 0. and startVertex._id != endVertex._id:
                ODPaths = net._paths[startVertex][endVertex]
                
                for path in ODPaths:
                    path.getPathTimeUpdate()
                calCommonalityAndChoiceProb(ODPaths, options.alpha, lohse)
                
                # calculate the path choice probabilities and the path flows for the given OD Pair
                for path in ODPaths:
                    pathcount += 1
                    if pathcount < len(ODPaths):
                        path.helpflow = matrixPshort[start][end] * path.choiceprob
                        cumulatedflow += path.helpflow
                        if lohse and options.verbose:
                            foutassign.write('    path:%s\n' % path.label)
                            foutassign.write('    path.choiceprob:%s\n' % path.choiceprob)
                            foutassign.write('    path.helpflow:%s\n' % path.helpflow)
                            foutassign.write('    cumulatedflow:%s\n' % cumulatedflow)
                    else:
                        path.helpflow = matrixPshort[start][end] - cumulatedflow 
                        if lohse and options.verbose:
                            foutassign.write('    last_path.helpflow:%s\n' % path.helpflow)
                    if first and iter == 1:
                        for edge in path.edges:
                            edge.flow += path.helpflow
                    else:
                        for edge in path.edges:
                            edge.helpflow += path.helpflow
    
    # Reset the convergence index for the C-Logit model
    notstable = 0
    stable = False
    # link travel times and link flows will be updated according to the latest traffic assingment
    for edge in net._edges:
        if (first and iter > 1) or (not first):
            exflow = edge.flow
            edge.flow = edge.flow + (1./iter)*(edge.helpflow - edge.flow)
            
            if not lohse:
                if edge.flow > 0.:
                    if abs(edge.flow-exflow)/edge.flow > options.sueTolerance:
                        notstable += 1
                elif edge.flow == 0.:
                    if exflow != 0. and (abs(edge.flow-exflow)/exflow > options.sueTolerance):
                        notstable += 1
                elif edge.flow < 0.:
                    notstable += 1
                    edge.flow = 0.
            else:
                if edge.flow < 0.:
                    edge.flow = 0.
        # reset the edge.helpflow for the next iteration
        edge.helpflow = 0.0
        edge.getActualTravelTime(options, lohse)
        if options.dijkstra == 'boost':
            edge.boost.weight = edge.helpacttime
        if edge.queuetime > 1.:
            notstable += 1
    if lohse and options.verbose:
        foutassign.close()
                                                               
    if not lohse and iter > 5:
        if notstable == 0:
            stable = True        
        elif notstable < math.ceil(net.geteffEdgeCounts()*0.005) or notstable < 3:
            stable = True
            
        if iter > options.maxiteration:
            stable = True
            print 'Number of max. iterations is reached!'
            print 'stable:', stable
         
    return stable

# calculate the commonality factors in the C-Logit model
def calCommonalityAndChoiceProb(ODPaths, alpha, lohse):
    if len(ODPaths) > 1:
        for path in ODPaths:
            if not lohse:
                path.utility = path.actpathtime + alpha * math.log(path.sumOverlap)
            else:
                path.utility = path.pathhelpacttime + alpha * math.log(path.sumOverlap)
        
        if lohse:
            minpath = min(ODPaths, key=operator.attrgetter('pathhelpacttime'))
            beta = 12./(1.+ math.exp(0.7 - 0.015 * minpath.pathhelpacttime))
        else:
            theta = getThetaForCLogit(ODPaths)

        for pathone in ODPaths:
            sum_exputility = 0.
            for pathtwo in ODPaths:
                if pathone != pathtwo:
                    if not lohse:
                        sum_exputility += math.exp(theta*(pathone.utility - pathtwo.utility))
                    else:
                        pathtwoPart = beta*(pathtwo.utility/minpath.utility -1.)
                        pathonePart = beta*(pathone.utility/minpath.utility -1.)
                        sum_exputility += math.exp(-(pathtwoPart*pathtwoPart)+ pathonePart*pathonePart)
            pathone.choiceprob = 1./(1. + sum_exputility)
    else:
        for path in ODPaths:
            path.choiceprob = 1.
            
# calculate the path choice probabilities and the path flows and generate the vehicular data for each OD Pair    
def doSUEVehAssign(net, vehicles, options, counter, matrixPshort, startVertices, endVertices, AssignedVeh, AssignedTrip, vehID, lohse):
    if options.verbose:
        if counter == 0:
            foutpath = file('paths.txt', 'w')
            fouterror = file('errors.txt', 'w')
        else:
            foutpath = file('paths.txt', 'a')
            fouterror = file('errors.txt', 'a')
        if lohse:
            foutpath.write('begin the doSUEVehAssign based on the lohse assignment model!')
        else:
            foutpath.write('begin the doSUEVehAssign based on the c-logit model!')
        foutpath.write('the analyzed matrix=%s' %counter)
        
    TotalPath = 0

    for start, startVertex in enumerate(startVertices):
        if options.verbose:
            foutpath.write('\norigin=%s, ' %startVertex)
        for end, endVertex in enumerate(endVertices):
            pathcount = 0
            cumulatedflow = 0.
            if matrixPshort[start][end] > 0. and startVertex._id != endVertex._id:
                if options.verbose:
                    foutpath.write('destination=%s' %endVertex)
                ODPaths = net._paths[startVertex][endVertex]
                
                for path in ODPaths:
                    TotalPath += 1
                    path.getPathTimeUpdate()
                    if lohse:                      
                        path.pathhelpacttime = path.actpathtime
      
                calCommonalityAndChoiceProb(ODPaths, options.alpha, lohse)
        
                for path in ODPaths:
                    pathcount += 1
                    if pathcount < len(ODPaths):
                        path.pathflow = matrixPshort[start][end] * path.choiceprob
                        cumulatedflow += path.pathflow
                    else:
                        path.pathflow = matrixPshort[start][end] - cumulatedflow
                        if options.verbose and path.pathflow < 0.:
                            fouterror.write('*********************** the path flow on the path:%s < 0.!!' %path.label)
                    if options.verbose:
                        foutpath.write('\npathID= %s, path flow=%4.4f, actpathtime=%4.4f, choiceprob=%4.4f, edges=' 
                                        %(path.label, path.pathflow, path.actpathtime, path.choiceprob))
                        for item in path.edges:
                            foutpath.write('%s, ' %(item._id))
                        
                    AssignedTrip[startVertex][endVertex] += path.pathflow
                    edges = []
                    for link in path.edges:
                        edges.append(link)
                    vehID = assignVeh(options.verbose, vehicles, startVertex, endVertex, edges, AssignedVeh, AssignedTrip, vehID)
                if options.verbose:
                    foutpath.write('\n')
    if options.verbose:
        print 'total Number of the used paths for the current matrix:', TotalPath 
        foutpath.write('\ntotal Number of the used paths for the current matrix:%s' %TotalPath)
        foutpath.close()
        fouterror.close()
    return vehID

           
def assignVeh(verbose, vehicles, startVertex, endVertex, edges, AssignedVeh, AssignedTrip, vehID):
    while AssignedVeh[startVertex][endVertex] < int(round(AssignedTrip[startVertex][endVertex])):
        vehID += 1
        newVehicle = Vehicle(str(vehID))
        newVehicle.route = edges
        vehicles.append(newVehicle)
        
        AssignedVeh[startVertex][endVertex] += 1
    if verbose:
        print 'vehID:', vehID
        print 'AssignedTrip[start][end]', AssignedTrip[startVertex][endVertex]
        print 'AssignedVeh[start][end]', AssignedVeh[startVertex][endVertex]
    
    return vehID

def getThetaForCLogit(ODPaths):
    sum = 0.
    diff = 0.
    minpath = min(ODPaths, key=operator.attrgetter('actpathtime'))
    
    for path in ODPaths:
        sum += path.actpathtime
    
    meanpathtime = sum / float(len(ODPaths))
    
    for path in ODPaths:
        diff += (path.actpathtime - meanpathtime)**2.

    sdpathtime = (diff/float(len(ODPaths)))**0.5

    if sdpathtime > 0.04:
        theta = math.pi / (pow(6.,0.5) * sdpathtime * minpath.actpathtime)
    else:
        theta = 1.

    return theta
    
def doLohseStopCheck(net, options, stable, iter, maxIter, foutlog):
    stable = False
    if iter > 1 :                                        # Check if the convergence reaches.
        counts = 0    
        for edge in net._edges.itervalues():
            stop = edge.stopCheck(options)
            if stop: 
                counts += 1
        if counts == net.geteffEdgeCounts():
            stable = True
            foutlog.write('The defined convergence is reached. The number of the required iterations:%s\n' %iter)
        elif counts < int(net.geteffEdgeCounts()*0.05) and float(iter) >  options.maxiteration*0.85:
            stable = True
            foutlog.write('The number of the links with convergence is 95% of the total links. The number of executed iterations:%s\n' %iter)

    if iter >= maxIter:
        print 'The max. number of iterations is reached!'
        foutlog.write('The max. number(%s) of iterations is reached!\n' %iter)
        foutlog.write('The number of new routes will be set to 0, since the max. number of iterations is reached.')
        stable = True
        print 'stop?:', stable
        print 'iter_inside:', iter
    return stable