/usr/share/radiance/spharm.cal is in radiance-materials 4R1+20120125-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | { RCSid $Id: spharm.cal,v 1.5 2005/02/10 17:07:45 greg Exp $ }
{
The first few Spherical Harmonics
Feb 2005 G. Ward
}
{ Factorial (n!) }
fact(n) : if(n-1.5, n*fact(n-1), 1);
{ Associated Legendre Polynomials 0-8 }
LegendreP2(n,m,x,s) : select(n+1,
select(m+1, 1),
select(m+1, x, s),
select(m+1, .5*(3*x*x - 1), 3*x*s, 3*(1-x*x)),
select(m+1, .5*x*(5*x*x-3), 1.5*(5*x*x-1)*s, 15*x*(1-x*x), 15*s*s*s),
select(m+1,
.125*(3 + x*x*(-30 + x*x*35)),
2.5*x*(-3 + x*x*7)*s,
7.5*(7*x*x-1)*(1-x*x),
105*x*s*s*s,
105*s*s*s*s),
select(m+1,
.125*x*(15 + x*x*(-70 + x*x*63)),
1.875*s*(1 + x*x*(-14 + x*x*21)),
52.5*x*(1-x*x)*(3*x*x-1),
52.5*s*s*s*(9*x*x-1),
945*x*s*s*s*s,
945*s*s*s*s*s),
select(m+1,
.0625*(-5 + x*x*(105 + x*x*(-315 + x*x*231))),
2.625*(5 + x*x*(-30 + x*x*33))*s,
13.125*s*s*(1 + x*x*(-18 + x*x*33)),
157.5*(11*x*x-3)*x*s*s*s,
472.5*s*s*s*s*(11*x*x-1),
10395*x*s*s*s*s*s,
10395*s*s*s*s*s*s),
select(m+1,
.0625*x*(-35 + x*x*(315 + x*x*(-693 + x*x*429))),
.4375*s*(-5 + x*x*(135 + x*x*(-495 + x*x*429))),
7.875*x*s*s*(15 + x*x*(-110 + x*x*143)),
39.375*s*s*(1 + x*x*(-18 + x*x*33)),
157.5*(11*x*x-3)*x*s*s*s,
472.5*s*s*s*s*(11*x*x-1),
10395*x*s*s*s*s*s,
10395*s*s*s*s*s*s),
select(m+1,
.0078125*(35 + x*x*(-1260 + x*x*(6930 + x*x*(-12012 + x*x*6435)))),
.5625*x*s*(-35 + x*x*(385 + x*x*(-1001 + x*x*715))),
19.6875*s*s*(-1 + x*x*(33 + x*x*(-143 + x*x*143))),
433.125*x*s*s*s*(3 + x*x*(-26 + x*x*39)),
1299.375*s*s*s*s*(1 + x*x*(-26 + x*x*65)),
67567.5*x*s*s*s*s*s*(5*x*x-1),
67567.5*s*s*s*s*s*s*(15*x*x-1),
2027025*x*s*s*s*s*s*s*s,
2027025*s*s*s*s*s*s*s*s)
);
{ Relation for Legendre with -M }
odd(n) : .5*n - floor(.5*n) - .25;
LegendreP(n,m,x) : if(m+.5,
LegendreP2(n,m,x,sqrt(1-x*x)),
fact(n+m)/fact(n-m) * LegendreP2(n,-m,x,sqrt(1-x*x))
);
{ SH normalization factor }
SHnormF(l,m) : sqrt(0.25/PI*(2*l+1)*fact(l-m)/fact(l+m));
{ Spherical Harmonics theta function }
SHthetaF(l,m,theta) : SHnormF(l,m)*LegendreP(l,m,cos(theta));
{ Spherical Harmonic real portion }
SphericalHarmonicYr(l,m,theta,phi) : SHthetaF(l,m,theta)*cos(m*phi);
{ Spherical Harmonic imag. portion }
SphericalHarmonicYi(l,m,theta,phi) : SHthetaF(l,m,theta)*sin(m*phi);
{ Ordered, real SH basis functions }
{ Coeff. order based on Basri & Jacobs paper, "Lambertian Reflectance and
Linear Subspaces," IEEE Trans. on Pattern Analysis & Machine Intel.,
vol. 25, no. 2, Feb. 2003, pp. 218-33, Eq. (7):
i n m even/odd
= = = ========
1 0 0 x
2 1 0 x
3 1 1 e
4 1 1 o
5 2 0 x
6 2 1 e
7 2 1 o
8 2 2 e
9 2 2 o
10 3 0 x
11 3 1 e
...
}
SH_B4(l,m,o,theta,phi) : if(m-.5, sqrt(2) *
if(o, SphericalHarmonicYi(l,m,theta,phi),
SphericalHarmonicYr(l,m,theta,phi)),
SHthetaF(l,0,theta) );
SH_B3(l,r,theta,phi) : SH_B4(l,floor((r+1.00001)/2),odd(r+1),theta,phi);
SH_B2(l,i,theta,phi) : SH_B3(l,i-l*l-1,theta,phi);
SphericalHarmonicB(i,theta,phi) : SH_B2(ceil(sqrt(i)-1.00001),i,theta,phi);
{ Application of SH coeff. f(i) }
SH_F2(n,f,theta,phi) : if(n-.5, f(n)*SphericalHarmonicB(n,theta,phi) +
SH_F2(n-1,f,theta,phi), 0);
SphericalHarmonicF(f,theta,phi) : SH_F2(f(0),f,theta,phi);
|