This file is indexed.

/usr/share/radiance/rayinit.cal is in radiance-materials 4R1+20120125-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
{ RCSid $Id: rayinit.cal,v 2.14 2003/03/11 19:29:05 greg Exp $ }
{
	Initialization file for Radiance.

	The following are predefined:

	Dx, Dy, Dz			- ray direction
	Nx, Ny, Nz			- surface normal
	Px, Py, Pz			- intersection point
	T				- distance from start
	Ts				- single ray (shadow) distance
	Rdot				- ray dot product
	S				- world scale
	Tx, Ty, Tz			- world origin
	Ix, Iy, Iz			- world i unit vector
	Jx, Jy, Jz			- world j unit vector
	Kx, Ky, Kz			- world k unit vector
	arg(n)				- real arguments, arg(0) is count

	For mesh objects, the following are available:

	Lu, Lv				- local (u,v) coordinates

	For brdf functions, the following are also available:

 	NxP, NyP, NzP			- perturbed surface normal
 	RdotP				- perturbed ray dot product
 	CrP, CgP, CbP			- perturbed material color

	For prism1 and prism2 types, the following are available:

	DxA, DyA, DzA			- direction to target light source

	Library functions:

	if(a, b, c)			- if a positive, return b, else c

	select(N, a1, a2, ..)		- return aN

	sqrt(x)				- square root function

	sin(x), cos(x), tan(x),
	asin(x), acos(x),
	atan(x), atan2(y,x)		- standard trig functions

	floor(x), ceil(x)		- g.l.b. & l.u.b.

	exp(x), log(x), log10(x)	- exponent and log functions

	erf(z), erfc(z)			- error functions

	rand(x)				- pseudo-random function (0 to 1)

	hermite(p0,p1,r0,r1,t)		- 1-dimensional hermite polynomial

	noise3(x,y,z), noise3x(x,y,z),
	noise3y(x,y,z), noise3z(x,y,z)	- noise function with gradient (-1 to 1)

	fnoise3(x,y,z)			- fractal noise function (-1 to 1)
}

			{ Backward compatibility }
AC = arg(0);
A1 = arg(1); A2 = arg(2); A3 = arg(3); A4 = arg(4); A5 = arg(5);
A6 = arg(6); A7 = arg(7); A8 = arg(8); A9 = arg(9); A10 = arg(10);

noise3a(x,y,z) : noise3x(x,y,z);
noise3b(x,y,z) : noise3y(x,y,z);
noise3c(x,y,z) : noise3z(x,y,z);

			{ Forward compatibility (?) }
D(i) = select(i, Dx, Dy, Dz);
N(i) = select(i, Nx, Ny, Nz);
P(i) = select(i, Px, Py, Pz);
noise3d(i,x,y,z) : select(i, noise3x(x,y,z), noise3y(x,y,z), noise3z(x,y,z));

			{ More robust versions of library functions }
bound(a,x,b) : if(a-x, a, if(x-b, b, x));
Acos(x) : acos(bound(-1,x,1));
Asin(x) : asin(bound(-1,x,1));
Atan2(y,x) : if(x*x+y*y, atan2(y,x), 0);
Exp(x) : if(-x-100, 0, exp(x));
Sqrt(x) : if(x, sqrt(x), 0);

			{ Useful constants }
PI : 3.14159265358979323846;
DEGREE : PI/180;
FTINY : 1e-7;

			{ Useful functions }
and(a,b) : if( a, b, a );
or(a,b) : if( a, a, b );
not(a) : if( a, -1, 1 );
xor(a,b) : if( a, not(b), b );
abs(x) : if( x, x, -x );
sgn(x) : if( x, 1, if(-x, -1, 0) );
sq(x) : x*x;
max(a,b) : if( a-b, a, b );
min(a,b) : if( a-b, b, a );
inside(a,x,b) : and(x-a,b-x);
frac(x) : x - floor(x);
mod(n,d) : n - floor(n/d)*d;
tri(n,d) : abs( d - mod(n-d,2*d) );
linterp(t,p0,p1) : (1-t)*p0 + t*p1;

noop(v) : v;
clip(v) : bound(0,v,1);
noneg(v) : if(v,v,0);
red(r,g,b) : if(r,r,0);
green(r,g,b) : if(g,g,0);
blue(r,g,b) : if(b,b,0);
grey(r,g,b) : noneg(.265074126*r + .670114631*g + .064811243*b);
clip_r(r,g,b) : bound(0,r,1);
clip_g(r,g,b) : bound(0,g,1);
clip_b(r,g,b) : bound(0,b,1);
clipgrey(r,g,b) : min(grey(r,g,b),1);

dot(v1,v2) : v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3);
cross(i,v1,v2) : select(i,	v1(2)*v2(3) - v1(3)*v2(2),
				v1(3)*v2(1) - v1(1)*v2(3),
				v1(1)*v2(2) - v1(2)*v2(1));

fade(near_val,far_val,dist) : far_val +
		if (16-dist, (near_val-far_val)/(1+dist*dist), 0);

bezier(p1, p2, p3, p4, t) : 	p1 * (1+t*(-3+t*(3-t))) +
				p2 * 3*t*(1+t*(-2+t)) +
				p3 * 3*t*t*(1-t) +
				p4 * t*t*t ;

bspline(pp, p0, p1, pn, t) :	pp * (1/6+t*(-.5+t*(.5-1/6*t))) +
				p0 * (2/3+t*t*(-1+.5*t)) +
				p1 * (1/6+t*(.5+t*(.5-.5*t))) +
				pn * (1/6*t*t*t) ;

turbulence(x,y,z,s) : if( s-1.01, 0, abs(noise3(x/s,y/s,z/s)*s) +
						turbulence(x,y,z,2*s) );
turbulencex(x,y,z,s) : if( s-1.01, 0,
			sgn(noise3(x/s,y/s,z/s))*noise3x(x/s,y/s,z/s) +
			turbulencex(x,y,z,2*s) );
turbulencey(x,y,z,s) : if( s-1.01, 0,
			sgn(noise3(x/s,y/s,z/s))*noise3y(x/s,y/s,z/s) +
			turbulencey(x,y,z,2*s) );
turbulencez(x,y,z,s) : if( s-1.01, 0,
			sgn(noise3(x/s,y/s,z/s))*noise3z(x/s,y/s,z/s) +
			turbulencez(x,y,z,2*s) );

			{ Normal distribution from uniform range (0,1) }

un2`P(t) : t - (2.515517+t*(.802853+t*.010328))/
		(1+t*(1.432788+t*(.189269+t*.001308))) ;
un1`P(p) : un2`P(sqrt(-2*log(p))) ;

unif2norm(p) : if( .5-p, -un1`P(p), un1`P(1-p) ) ;

nrand(x) = unif2norm(rand(x));

			{ Local (u,v) coordinates for planar surfaces }
crosslen`P = Nx*Nx + Ny*Ny;
			{ U is distance from projected Z-axis }
U = if( crosslen`P - FTINY,
		(Py*Nx - Px*Ny)/crosslen`P,
		Px);
			{ V is defined so that N = U x V }
V = if( crosslen`P - FTINY,
		Pz - Nz*(Px*Nx + Py*Ny)/crosslen`P,
		Py);