/usr/share/doc/python-pysnmp4-doc/pysnmp-tutorial.html is in python-pysnmp4-doc 4.2.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 | <HTML>
<HEAD>
<TITLE>PySNMP tutorial</TITLE>
</HEAD>
<BODY BGCOLOR="#ffffff" TEXT="#000000"
LINK="#0000bb" VLINK="#551a8b" ALINK="#ff0000">
<FONT SIZE=2 FACE="arial, helvetica">
<TABLE ALIGN="CENTER" WIDTH="60%"><TR><TD><TABLE ALIGN="LEFT"><TR><TD>
<H4>
PySNMP tutorial
</H4>
<I>by <A HREF=mailto:ilya@glas.net>Ilya Etingof</A>, 2007-2012</I>
<P><B>Table of contents</B></P>
<UL>
<LI><A HREF="#NETWORK-MANAGEMENT-BASICS">1. Network management basics</A>
<UL>
<LI><A HREF="#SNMP-MANAGEMENT-ARCHITECTURE">1.1 SNMP management architecture</A>
<LI><A HREF="#HISTORY-OF-SNMP">1.2 The history of SNMP</A>
</UL>
<LI><A HREF="#PYSNMP-PROGRAMMING">2. Programming with PySNMP</A>
<UL>
<LI><A HREF="#ONELINER-APPS">2.1 One-line Applications</A>
<UL>
<LI><A HREF="#SYNCH-ONELINER-APPS">2.1.1 Synchronous Applications</A>
<UL>
<LI><A HREF="#CommandGenerator">2.1.1.1 Command Generator</A>
<LI><A HREF="#NotificationOriginator">2.1.1.2 Notification Originator</A>
</UL>
<LI><A HREF="#ASYNCH-ONELINER-APPS">2.1.2 Asynchronous Applications</A>
<UL>
<LI><A HREF="#AsynCommandGenerator">2.1.2.1 Asynchronous Command Generator</A>
<LI><A HREF="#AsynNotificationOriginator">2.1.2.2 Asynchronous Notification Originator</A>
</UL>
<LI><A HREF="#SECURITY-CONFIGURATION">2.1.3 Security configuration</A>
<UL>
<LI><A HREF="#UsmUserData">2.1.3.1 User-Based Security Model configuration</A>
<LI><A HREF="#CommunityData">2.1.3.2 Community-Based Security Model configuration</A>
</UL>
<LI><A HREF="#TRANSPORT-CONFIGURATION">2.1.4 Transport configuration</A>
<UL>
<LI><A HREF="#UdpTransportTarget">2.1.4.1 UDP Transport Target</A>
</UL>
</UL>
<LI><A HREF="#MANAGED-OBJECT-NAME-VALUE">2.2 Managed Objects names and values</A>
<LI><A HREF="#MIB-SERVICES">2.3 MIB services</A>
<UL>
<LI><A HREF="#DATA-MODEL-MANAGED-OBJECTS">2.3.1 Data model for Managed Objects</A>
<LI><A HREF="#MIB-BUILDER">2.3.2 MIB builder</A>
<LI><A HREF="#MIB-VIEW-CONTROLLER">2.3.3 MIB view controller</A>
<LI><A HREF="#IMPLEMENTING-MANAGED-OBJECTS-INSTANCES">2.3.4 Implementing Managed Objects Instances</A>
<UL>
<LI><A HREF="#ASSOCIATED-VALUE-GATEWAYING">2.3.4.1 Associated value gatewaying</A>
<LI><A HREF="#TAPPING-ON-MANAGEMENT-INSTRUM">2.3.4.2 Tapping on Management Instrumentation API</A>
</UL>
</UL>
</UL>
<LI><A HREF="#APPENDIXIES">Appendixies</A>
<UL>
<LI><A HREF="#ASN1">ASN.1 standard</A>
</UL>
</UL>
</UL>
</UL>
<P>
<A NAME="NETWORK-MANAGEMENT-BASICS"></A>
<H4>
1. Network management basics
</H4>
<P>
As networks become more complex, in terms of device population,
topology and distances, it has been getting more and more important
for network administrators to have some easy and convenient way for
controlling all pieces of the whole network.
</P>
<P>
Basic features of a network management system include device information
retrieval and device remote control. Former often takes shape of gathering
device operation statistics, while latter can be seen in device remote
configuration facilities.
</P>
<P>
For any information to be exchanged between entities, some agreement on
information format and transmission procedure needs to be settled beforehand.
This is what is conventionally called a <STRONG>Protocol</STRONG>.
</P>
<P>
Large networks nowdays, may host thousands of different devices.
To benefit network manager's interoperability and simplicity, any
device on the network should carry out most common and important management
operations in a well known, unified way. Therefore, an important feature
of a network management system would be a <STRONG>Convention on
management information naming and presentation</STRONG>.
</P>
<P>
Sometimes, management operations should be performed on large number of
managed devices. For a network manager to complete such a management round
in a reasonably short period of time, an important feature of a network
management software would be <STRONG>Performance</STRONG>.
<P>
Some of network devices may run on severely limited resources what invokes
another property of a proper network management facility:
<STRONG>Low resource consumption</STRONG>.
</P>
<P>
In practice, the latter requirement translates into low CPU cycles and
memory footprint for management software aboard device being managed.
</P>
<P>
As networking becomes a more crucial part of our daily lives, security
issues have become more apparent. As a side note, even Internet
technologies, having military roots, did not pay much attention to security
initially. So, the last key feature of network management appears to be
<STRONG>Security</STRONG>.
</P>
<P>
Data passed back and forth through the course of management operations should
be at least authentic and sometimes hidden from possible observers.
</P>
<P>
All these problems were approached many times through about three decades
of networking history. Some solutions collapsed over time for one reason or
another, while others, such as Simple Network Management Protocol (SNMP),
evolve into an industry standard.
</P>
<A NAME="SNMP-MANAGEMENT-ARCHITECTURE"></A>
<H4>
1.1 SNMP management architecture
</H4>
<P>
The SNMP management model includes three distinct entities -- Agent, Manager
and Proxy talking to each other over network.
</P>
<P>
Agent entity is basically a software running somewhere in a networked device
and having the following distinguishing properties:
</P>
<UL>
<LI>SNMP protocol support
<LI>Access to managed device's internals
</UL>
<P>
The latter feature is a source of management information for Agent, as well
as a target for remote control operations.
</P>
<P>
Modern SNMP standards suggest splitting Agent functionality on two parts.
Such Agents may run SNMP for local processes called <STRONG>Subagents</STRONG>, which
interface with managed devices internals. Communication between <STRONG>Master
Agent</STRONG> and its Subagents is performed using a simplified version
of original SNMP protocol, known as <STRONG>AgentX</STRONG>, which is
designed to run only within a single host.
</P>
<P>
Manager entity is usually an application used by humans (or daemons) for
performing various network management tasks, such as device statistics
retrieval or remote control.
</P>
<P>
Sometimes, Agents and Managers may run peer-to-peer within a single entity
that is called Proxy. Proxies can often be seen in application-level
firewalling or may serve as SNMP protocol translators between otherwise
SNMP version-incompatible Managers and Agents.
</P>
<P>
For Manager to request Agent for an operation on a particular part of
managed device, some convention on device's components naming is needed.
Once some components are identified, Manager and Agent would have to agree
upon possible components' states and their semantics.
</P>
<A NAME="MANAGED-OBJECTS"></A>
<P>
SNMP approach to both problems is to represent each component of a device
as a named object, similar to named variables seen in programming
languages, and state of a component maps to a value associated with this
imaginary variable. These are called Managed Objects in SNMP.
</P>
<A NAME="CONCEPTUAL-TABLES"></A>
<P>
For representing a group of similar components of a device, such as network
interfaces, Managed Objects can be organized into a so-called
<STRONG>conceptual table</STRONG>.
</STRONG>
<P>
Manager talks to Agent by sending it messages of several types. Message
type implies certain action to be taken. For example, <STRONG>GET</STRONG>
message instructs Agent to report back values of Managed Objects whose names
are indicated in message.
</P>
<P>
There's also a way for Agent to notify Manager of an event occurred to Agent.
This is done through so-called <STRONG>Trap</STRONG> messages. Trap message also
carries Managed Objects and possibly Values, but besides that it has an
ID of event in form of integer number or a Managed Object.
</P>
<P>
For naming Managed Objects, SNMP uses the concept of
<A HREF="#OID">Object Identifier</A>. As an example of Managed Object,
<i>.iso.org.dod.internet.mgmt.mib-2.system.sysName.0</i> represents
human-readable name of a device where Agent is running.
</P>
<P>
Managed Objects values are always instances of
<A HREF="#ASN1">ASN.1</A> types (such as Integer) or SNMP-specific subtypes
(such as IpAddress). As in programming languages, type has an effect of
restricting possible set of states Managed Object may ever enter.
</P>
<P>
Whenever SNMP entities talk to each other, they refer to Managed Objects whose
semantics (and value type) must be known in advance by both parties. SNMP Agent
may be seen as a primary source of information on Managed Objects, as they are
implemented by Agent. In this model, Manager should have a map of Managed
Objects contained within each Agent to talk to.
</P>
<A NAME="MIB"></A>
<A NAME="SMI"></A>
<P>
SNMP standard introduces a set of ASN.1 language constructs (such as ASN.1
subtypes and MACROs) which is called <STRONG>Structure of Management Information</STRONG>
(<STRONG>SMI</STRONG>). Collections of related Managed Objects described in terms of
SMI comprise <STRONG>Management Information Base</STRONG> (<STRONG>MIB</STRONG>) modules.
</P>
<P>
Commonly used Managed Objects form core MIBs that become part of SNMP standard.
The rest of MIBs are normally created by vendors who build SNMP Agents into
their products.
</P>
<P>
More often then not, Manager implementations could parse MIB files and
use Managed Objects information for names resolution, value type determination,
pretty printing and so on. This feature is known as <STRONG>MIB parser</STRONG> support.
<A NAME="HISTORY-OF-SNMP"></A>
<H4>
1.2 The history of SNMP
</H4>
<P>
First SNMP version dates back to 1988 when a set of IETF RFC's
were first published (
<A HREF="http://www.ietf.org/rfc/rfc1065.txt">RFC1065</A>,
<A HREF="http://www.ietf.org/rfc/rfc1066.txt">RFC1066</A>,
<A HREF="http://www.ietf.org/rfc/rfc1067.txt">RFC1067</A>
). These documents describe protocol operations
(in terms of message syntax and semantics), SMI and a few core MIBs.
The first version appears to be lightweight and easy to implement.
Although, its poor security became notorious over years (Security? Not My
Problem!), because cleartext password used for authentication (AKA
<STRONG>Community String</STRONG>) is extremely easy to eavesdrop and replay,
even after almost 20 years, slightly refined standard
(
<A HREF="http://www.ietf.org/rfc/rfc1155.txt">RFC1155</A>,
<A HREF="http://www.ietf.org/rfc/rfc1157.txt">RFC1157</A>,
<A HREF="http://www.ietf.org/rfc/rfc1212.txt">RFC1212</A>
) still seems to be the most frequent encounter in modern SNMP devices.
</P>
<P>
In effort to fix security issues of SNMPv1 and to make protocol faster for
operations on large number of Managed Objects, SNMP Working Group at IETF
came up with SNMPv2. This new protocol offers bulk transfers of Managed
Objects information (by means of new, GETBULK message payload), improved
security and re-worked SMI. But its new party-based security system turned
out to be too complicated. In the end, security part of SNMPv2 has been dropped
in favor of community-based authentication system used in SNMPv1. The result
of this compromise is known as SNMPv2c (where "c" stands for community) and
is still widely supported without being a standard (
<A HREF="http://www.ietf.org/rfc/rfc1902.txt">RFC1902</A>,
<A HREF="http://www.ietf.org/rfc/rfc1903.txt">RFC1903</A>,
<A HREF="http://www.ietf.org/rfc/rfc1904.txt">RFC1904</A>,
<A HREF="http://www.ietf.org/rfc/rfc1905.txt">RFC1905</A>,
<A HREF="http://www.ietf.org/rfc/rfc1906.txt">RFC1906</A>,
<A HREF="http://www.ietf.org/rfc/rfc1907.txt">RFC1907</A>,
<A HREF="http://www.ietf.org/rfc/rfc1908.txt">RFC1908</A>
).
</P>
<P>
The other compromise targeted at offering greater security than SNMPv1,
without falling into complexities of SNMPv2, has been attempted by
replacing SNMPv2 party-based security system with newly developed
user-based security model. This variant of protocol is known as SNMPv2u.
Although neither widely implemented nor standardized, <STRONG>User Based Security
Model</STRONG> (<STRONG>USM</STRONG>) of SNMPv2u got eventually adopted
as one of possibly many SNMPv3 security models.
</P>
<P>
As of this writing, SNMPv3 is current standard for SNMP. Although it's based
heavily on previous SNMP specifications, SNMPv3 offers many innovations but
also brings significant complexity. Additions to version 3 are mostly about
protocol operations. SMI part of standard is inherited intact from SNMPv2.
</P>
<P>
SNMPv3 system is designed as a framework that consists of a core, known
as <STRONG>Message and PDU Dispatcher</STRONG>, and several abstract
subsystems: <STRONG>Message Processing Subsystem</STRONG>
(<STRONG>MP</STRONG>), responsible for SNMP message handling,
<STRONG>Transport Dispatcher</STRONG>, used for carrying over messages,
and <STRONG>Security Subsystem</STRONG>, which deals with message
authentication and encryption issues. The framework defines
subsystems interfaces to let feature-specific modules to be plugged into
SNMPv3 core thus forming particular feature-set of SNMP system. Typical use
of this modularity feature could be seen in multiprotocol systems -- legacy
SNMP protocols are implemented as version-specific MP and security modules.
Native SNMPv3 functionality relies upon v3 message processing and User-Based
Security modules.
</P>
<P>
Besides highly detailed SNMP system specification, SNMPv3 standard also
defines a typical set of SNMP applications and their behavior. These
applications are Manager, Agent and Proxy (
<A HREF="http://www.ietf.org/rfc/rfc3411.txt">RFC3411</A>,
<A HREF="http://www.ietf.org/rfc/rfc3412.txt">RFC3412</A>,
<A HREF="http://www.ietf.org/rfc/rfc3413.txt">RFC3413</A>,
<A HREF="http://www.ietf.org/rfc/rfc3414.txt">RFC3414</A>,
<A HREF="http://www.ietf.org/rfc/rfc3415.txt">RFC3415</A>,
<A HREF="http://www.ietf.org/rfc/rfc3416.txt">RFC3416</A>,
<A HREF="http://www.ietf.org/rfc/rfc3417.txt">RFC3417</A>,
<A HREF="http://www.ietf.org/rfc/rfc3418.txt">RFC3418</A>
).
</P>
<A NAME="PYSNMP-PROGRAMMING"></A>
<H4>
2. Programming with PySNMP
</H4>
<P>
PySNMP stands for a pure-Python SNMP implementation. This software deals with
the darkest corners of SNMP specifications all in Python programming language.
</P>
<P>
This paper is dedicated to PySNMP revisions from 4.1.x and up. Previous
PySNMP versions do not follow the architecture and interfaces described
in this tutorial.
</P>
<P>
From Programmer's point of view, the layout of PySNMP software reflects SNMP
protocol evolution. It has been written from ground up, from trivial SNMPv1 up
to fully featured SNMPv3. Therefore, several levels of API to SNMP
functionality are available:
<UL>
<LI>
<P>
The most ancient and low-level is SNMPv1/v2c protocol scope. Here
programmer is supposed to build/parse SNMP messages and their
payload -- <STRONG>Protocol Data Unit</STRONG> (<STRONG>PDU</STRONG>), handle protocol-level
errors, transport issues and so on.
</P>
<P>
Although considered rather complex to deal with, this API probably gives best
performance, memory footprint and flexibility, unless MIB access and/or
SNMPv3 support is needed.
</P>
</LI>
<LI>
<P>
Parts of SNMPv3 standard is expressed in terms of some abstract API to
SNMP engine and its components. PySNMP implementation adopts this abstract API
to a great extent, so it's available at Programmer's disposal. As a side
effect, SNMP RFCs could be referenced for API semantics when programming
PySNMP at this level.
</P>
<P>
This API is much more higher-level than previous; here Programmer would
have to manage two major issues: setting up <STRONG>Local Configuration Datastore</STRONG>
(<STRONG>LCD</STRONG>) of SNMP engine and build/parse PDUs. PySNMP system is
shipped multi-lingual, thus at this level all SNMPv1, SNMPv2c and SNMPv3
features are available.
</P>
</LI>
<LI>
<P>
At last, the highest-level API to SNMP functionality is available through the
use of standard SNMPv3 applications. These applications cover the most
frequent needs. That's why this API is expected to be the first to
start with.
</P>
<P>
The Applications API further simplifies Programmer's job by hiding
LCD management issues (contrary to SNMPv3 engine level). This API could be
exploited in a one-liner fashion, for quick and simple prototyping.
</P>
</LI>
</UL>
<P>
The following figure draws major components of PySNMP system along with
standard Applications.
</P>
<P ALIGN=CENTER>
<IMG SRC="pysnmp-arch.gif" USEMAP="#pysnmp-arch" ALT="PySNMP architecture"
BORDER=0>
<MAP ID="pysnmp-arch" NAME="pysnmp-arch">
<!--
<AREA SHAPE ="rect" COORDS ="445,114,602,146" HREF="#HIGH-LEVEL-PDU-API"
ALT="PDU Management" />
<AREA SHAPE ="rect" COORDS ="479,171,564,206" HREF="#PDU-API"
ALT="SNMP PDU" />
<AREA SHAPE ="rect" COORDS ="428,58,617,216" HREF="#APPS-API"
ALT="Applications" />
<AREA SHAPE ="rect" COORDS ="208,124,333,184" HREF="#LCD-API"
ALT="LCD" />
-->
<AREA SHAPE ="rect" COORDS ="196,16,629,225" HREF="#ONELINER-APPS"
ALT="One-line Applications" />
<!--
<AREA SHAPE ="rect" COORDS ="18,405,145,464" HREF="#TSP-API"
ALT="Transport Dispatcher" />
<AREA SHAPE ="rect" COORDS ="240,279,554,342" HREF="#SNMP-ENGINE-API"
ALT="SNMP Engine" />
-->
</MAP>
</P>
<P>
These standard SNMP applications, such as GET/SET command generators and
responders or TRAP notificators and receivers, translate into a set of
classes designed by the Visitor pattern. Application classes
implement concrete SNMP operations in terms of specific PDU handling,
while SNMP Engine class acts as a Visitor. A single SNMP Engine can serve
many Applications of different types at the same time.
</P>
<P>
One of the design choices of SNMPv3 standard is to use a set of dedicated
Managed Objects for SNMP engine internal purposes. One reason for that
design involves making SNMP engine remotely configurable via SNMP.
These internally used Managed Objects are collectively called Local
Configuration Datastore (LCD). In PySNMP, all SNMP engine configuration
and statistics is kept in LCD. LCD Configurator is a wrapper aimed at
simplifying LCD operations. Technically, LCD Configurator is a set of
functions whose names clearly reflect their semantics.
</P>
<P>
SNMP Engine, on the above figure, is a Composite class holding references
to all components of SNMP system. Typical user application has a single
instance of SNMP Engine class possibly shared by many SNMP Applications
of all kinds.
</P>
<P>
Transport subsystem is used for sending SNMP messages to and accepting them
from network. The I/O subsystem consists of an abstract Dispatcher and one
or more abstract Transport classes. Concrete Dispatcher implementation
is I/O method-specific, consider BSD sockets for example. Concrete Transport
classes are transport domain-specific. SNMP frequently uses UDP Transport
but others are also possible. Dispatcher/Transport classes are designed after
the Visitor pattern -- Transport instances are Dispatcher visitors. Transport
Dispatcher interfaces are mostly used by Message And PDU Dispatcher. However,
when using the SNMPv1/v2c-native API (the lowest-level one), these interfaces
would be invoked directly.
</P>
<P>
The rest of components are not normally accessed directly. They're mentioned
here for clarification purposes.
</P>
<P>
Message And PDU Dispatcher is a heart of SNMP system. Its main responsibilities
include dispatching PDUs from SNMP Applications through various subsystems
all the way down to Transport Dispatcher, and passing SNMP messages coming
from network up to SNMP Applications. It maintains logical connection with
Management Instrumentation Controller which carries out operations on Managed
Objects, here for the purpose of LCD access.
</P>
<P>
Message Processing Modules handle message-level protocol operations for present
and possibly future versions of SNMP protocol. Most importantly, these include
message parsing/building and possibly invoking security services whenever
required. All MP Modules share standard API used by Message And PDU Dispatcher.
</P>
<P>
Message Security Modules perform message authentication and/or encryption.
As of this writing, User-Based (for v3) and Community (for v1/2c) modules
are implemented in PySNMP. All Security Modules share standard API used by
Message Processing subsystem.
</P>
<P>
Access Control subsystem uses LCD information to authorize remote access to
Managed Objects. This is used when serving Agent Applications or Trap
receiver in Manager Applications.
</P>
<A NAME="ONELINER-APPS"></A>
<H4>
2.1 One-line Applications
</H4>
<P>
As of this writing, one-line Applications currently cover Manager-side
operations. Agent and Proxy roles could be implemented on top of
native Applications API.
</P>
<P>
There're two kinds of APIs to one-line Applications: synchronous and
asynchronous. Both are implemented within the
<STRONG>pysnmp.entity.rfc3413.oneliner.cmdgen</STRONG> module.
</P>
<A NAME="SYNCH-ONELINER-APPS"></A>
<H4>
2.1.1 Synchronous One-line Applications
</H4>
<P>
This is the simplest and the most high-level API to standard SNMP
Applications. It's advised to employ for singular and blocking
operations as well as for rapid prototyping.
</P>
<P>
All Command Generator Applications are implemented within a single class:
</P>
<A NAME="CommandGenerator"></A>
<DL>
<DT>class <STRONG>CommandGenerator</STRONG>([<STRONG>snmpEngine</STRONG>])</DT>
<DD>
<P>
Create a SNMP Command Generator object.
</P>
</DD>
</DL>
<P>
Methods of the <STRONG>CommandGenerator</STRONG> class instances implement
specific request types.
</P>
<A NAME="CommandGenerator.getCmd"></A>
<DL>
<DT><STRONG>getCmd</STRONG>(
<STRONG>authData</STRONG>,
<STRONG>transportTarget</STRONG>,
<STRONG>*varNames</STRONG>
)</DT>
<DD>
<P>
Perform SNMP GET request and return a response or error indication.
</P>
<P>
The <STRONG>authData</STRONG> is a
SNMP <A HREF="#UsmUserData">Security Parameters object</A>,
<STRONG>transportTarget</STRONG> is a SNMP
<A HREF="#UdpTransportTarget">Transport Configuration object</A>
and <STRONG>*varNames</STRONG> is a sequence of
<A HREF="#MANAGED-OBJECT-NAME-VALUE">Managed Objects names</A>.
</P>
<P>
The <STRONG>getCmd</STRONG> method returns a tuple of
<STRONG>errorIndication</STRONG>,
<STRONG>errorStatus</STRONG>,
<STRONG>errorIndex</STRONG>,
<STRONG>varBinds</STRONG>.
</P>
<P>
Non-empty <STRONG>errorIndication</STRONG> string indicates SNMP engine-level
error.
</P>
<P>
The pair of <STRONG>errorStatus</STRONG> and <STRONG>errorIndex</STRONG>
variables determines SNMP PDU-level error. These are instances of pyasn1
<A HREF="http://pyasn1.sourceforge.net/#1.1.3">Integer class</A>.
If <STRONG>errorStatus</STRONG> evaluates to true, this indicates SNMP PDU
error caused by Managed Object at position <STRONG>errorIndex</STRONG>-1
in <STRONG>varBinds</STRONG>.
Doing <STRONG>errorStatus.prettyPrint</STRONG>() would return an
explanatory text error message.
</P>
<P>
The <STRONG>varBinds</STRONG> is a tuple of <A HREF="#MANAGED-OBJECT-NAME-VALUE">Managed Objects</A>. Those found in response are bound by position to
Managed Object names passed in request.
</P>
</DD>
</DL>
<P>
The following code performs SNMP GET operation over SNMPv1:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
>>> from pysnmp.entity.rfc3413.oneliner import cmdgen
>>> errorIndication, errorStatus, errorIndex, varBinds = cmdgen.CommandGenerator().getCmd(
... cmdgen.CommunityData('my-agent', 'public', 0),
... cmdgen.UdpTransportTarget(('localhost', 161)),
... '1.3.6.1.2.1.1.1.0',
... '1.3.6.1.2.1.1.2.0'
... )
>>> print(errorIndication)
None
>>> print(errorStatus)
0
>>> print(varBinds)
[(ObjectName(1.3.6.1.2.1.1.1.0), OctetString('Linux saturn 2.6.37.6-smp
#2 SMP Sat Apr 9 23:39:07 CDT 2011 i686')),
(ObjectName(1.3.6.1.2.1.1.2.0), ObjectIdentifier(1.3.6.1.4.1.8072.3.2.10))]
</PRE>
</TD></TR></TABLE>
<A NAME="CommandGenerator.setCmd"></A>
<DL>
<DT><STRONG>setCmd</STRONG>(
<STRONG>authData</STRONG>,
<STRONG>transportTarget</STRONG>,
<STRONG>*varBinds</STRONG>
)</DT>
<DD>
<P>
Perform SNMP SET request and return a response or error indication.
</P>
<P>
The <STRONG>authData</STRONG> and <STRONG>transportTarget</STRONG> parameters
have he same semantics as in <A HREF="#CommandGenerator.getCmd">getCmd</A>
method.
</P>
<P>
The <STRONG>*varBinds</STRONG> input parameter is a sequence of
Managed Objects to be applied at Agent. The syntax of
<STRONG>*varBinds</STRONG> is the same as in
<A HREF="#CommandGenerator.getCmd">getCmd</A> method.
</P>
<P>
The <STRONG>setCmd</STRONG> method returns a tuple of
<STRONG>errorIndication</STRONG>,
<STRONG>errorStatus</STRONG>,
<STRONG>errorIndex</STRONG>,
<STRONG>varBinds</STRONG>.
</P>
<P>
The <STRONG>errorIndication</STRONG>, <STRONG>errorStatus</STRONG> and
<STRONG>errorIndex</STRONG> parameters have the same meaning as in
<A HREF="#CommandGenerator.getCmd">getCmd</A> method.
</P>
</DD>
</DL>
<P>
The following code performs SNMP SET operation over SNMPv2c:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
>>> from pysnmp.entity.rfc3413.oneliner import cmdgen
>>> from pysnmp.proto import rfc1902
>>> errorIndication, errorStatus, errorIndex, varBinds = cmdgen.CommandGenerator().setCmd(
... cmdgen.CommunityData('my-agent', 'public', 1),
... cmdgen.UdpTransportTarget(('localhost', 161)),
... ((1,3,6,1,2,1,1,1,0), rfc1902.OctetString('my system description'))
... )
>>> print(errorIndication)
None
>>> print(errorStatus)
17
>>> print(errorStatus.prettyPrint())
notWritable(17)
</PRE>
</TD></TR></TABLE>
<A NAME="CommandGenerator.nextCmd"></A>
<DL>
<DT><STRONG>nextCmd</STRONG>(
<STRONG>authData</STRONG>,
<STRONG>transportTarget</STRONG>,
<STRONG>*varNames</STRONG>
)</DT>
<DD>
<P>
Perform SNMP GETNEXT request and return a response or error indication.
The GETNEXT request type implies referring to Managed Objects whose Object
Names are next to those used in request.
</P>
<P>
Input parameters to the <STRONG>nextCmd</STRONG> method are the same as to
<A HREF="#CommandGenerator.getCmd">getCmd</A>.
</P>
<P>
The <STRONG>nextCmd</STRONG> method returns a tuple of
<STRONG>errorIndication</STRONG>,
<STRONG>errorStatus</STRONG>,
<STRONG>errorIndex</STRONG>,
<STRONG>varBindTable</STRONG>.
</P>
<P>
The <STRONG>errorIndication</STRONG>, <STRONG>errorStatus</STRONG> and
<STRONG>errorIndex</STRONG> parameters have the same meaning as in
<A HREF="#CommandGenerator.getCmd">getCmd</A> method.
</P>
<P>
The <STRONG>varBindTable</STRONG> parameter is a tuple of
<STRONG>varBinds</STRONG>. Each <STRONG>varBind</STRONG> of
<STRONG>varBinds</STRONG> in <STRONG>varBindTable</STRONG> represent a
set of Managed Objects whose Object Names reside inside
<A HREF="#OID">OID</A> sub-tree of Managed Object name passed in request.
In other words, with this oneliner API, an invocation of
<STRONG>nextCmd</STRONG> method for a single Managed Object might return
a sequence of Managed Objects so that Object Name passed in request would
be a prefix for Object Names returned in response (as a side note, the same
method in Applications API would return <STRONG>varBinds</STRONG> as held
in a single response, and regardless of the prefix property).
</P>
<P>
It's also possible to modify the above behaviour so that the
<STRONG>varBindTable</STRONG> returned would contain *all*
Managed Objects from those passed in request up till the end of
the list of available Managed Objects at the Agent. This option
is enabled by setting the <STRONG>lexicographicMode</STRONG>
attribute of the <STRONG>CommandGenerator</STRONG> class instance
to True.
</P>
<P>
Properties of the <STRONG>varBinds</STRONG> parameter is the same as in
<A HREF="#CommandGenerator.getCmd">getCmd</A> method.
</P>
</DD>
</DL>
<P>
The following code performs SNMP GETNEXT operation against a MIB subtree
over SNMPv3:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
>>> from pysnmp.entity.rfc3413.oneliner import cmdgen
>>> errorIndication, errorStatus, errorIndex, varBindTable = cmdgen.CommandGenerator().nextCmd(
... cmdgen.UsmUserData('my-user', 'my-authkey', 'my-privkey'),
... cmdgen.UdpTransportTarget(('localhost', 161)),
... (1,3,6,1,2,1,1)
... )
>>> print(errorIndication)
None
>>> print(errorStatus)
0
>>> for varBindTableRow in varBindTable:
... print(varBindTableRow)
...
[(ObjectName('1.3.6.1.2.1.1.1.0'), OctetString("'Linux saturn 2.6.21
#2 Mon Mar 19 17:07:18 MSD 2006 i686'"))]
[(ObjectName('1.3.6.1.2.1.1.2.0'), ObjectIdentifier('1.3.6.1.4.1.8072.3.2.10'))]
[ skipped ]
[(ObjectName('1.3.6.1.2.1.1.9.1.4.9'), TimeTicks('17'))]
>>>
</PRE>
</TD></TR></TABLE>
<A NAME="CommandGenerator.bulkCmd"></A>
<DL>
<DT><STRONG>bulkCmd</STRONG>(
<STRONG>authData</STRONG>,
<STRONG>transportTarget</STRONG>,
<STRONG>nonRepeaters</STRONG>,
<STRONG>maxRepetitions</STRONG>,
<STRONG>*varNames</STRONG>
)</DT>
<DD>
<P>
Perform SNMP GETBULK request and return a response or error indication.
The GETBULK request type has the same semantics as GETNEXT one except that
the latter queries a bulk of Managed Objects at once.
</P>
<P>
The <STRONG>authData</STRONG>, <STRONG>transportTarget</STRONG>,
<STRONG>*varNames</STRONG> input parameters to the <STRONG>bulkCmd</STRONG>
method are the same as to <STRONG>nextCmd</STRONG>.
</P>
<P>
The <STRONG>nonRepeaters</STRONG> parameter indicates how many of
<STRONG>*varNames</STRONG> passed in request should be queried for a single
instance with in a request.
</P>
<P>
The <STRONG>maxRepetitions</STRONG> parameter indicates for how many instances
of Managed Objects in the rest of <STRONG>*varNames</STRONG>, besides first
<STRONG>nonRepeaters</STRONG> ones, should be queried with single request.
</P>
<P>
The <STRONG>bulkCmd</STRONG> method returns a tuple of
<STRONG>errorIndication</STRONG>,
<STRONG>errorStatus</STRONG>,
<STRONG>errorIndex</STRONG>,
<STRONG>varBindTable</STRONG>.
</P>
<P>
The <STRONG>errorIndication</STRONG>, <STRONG>errorStatus</STRONG>,
<STRONG>errorIndex</STRONG> and <STRONG>varBindTable</STRONG> parameters have
the same meaning as in <A HREF="#CommandGenerator.getCmd">getCmd</A> method.
</P>
</DD>
</DL>
<P>
The following code performs SNMP GETBULK operation against a MIB subtree
over SNMPv3:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
>>> from pysnmp.entity.rfc3413.oneliner import cmdgen
>>> errorIndication, errorStatus, errorIndex, varBindTable = cmdgen.CommandGenerator().bulkCmd(
... cmdgen.UsmUserData('my-user', 'my-authkey', 'my-privkey'),
... cmdgen.UdpTransportTarget(('localhost', 161)),
... 0, 25, # nonRepeaters, maxRepetitions
... (1,3,6,1,2,1,1)
... )
>>> print(errorIndication)
None
>>> print(errorStatus)
0
>>> for varBindTableRow in varBindTable:
... print(varBindTableRow)
...
[(ObjectName('1.3.6.1.2.1.1.1.0'), OctetString("'Linux saturn 2.6.21
#2 Mon Mar 19 17:07:18 MSD 2006 i686'"))]
[(ObjectName('1.3.6.1.2.1.1.2.0'), ObjectIdentifier('1.3.6.1.4.1.8072.3.2.10'))]
[ skipped ]
[(ObjectName('1.3.6.1.2.1.1.9.1.4.9'), TimeTicks('17'))]
>>>
</PRE>
</TD></TR></TABLE>
<P>
Notification Originator Applications are implemented within a single class:
</P>
<A NAME="NotificationOriginator"></A>
<DL>
<DT>class <STRONG>NotificationOriginator</STRONG>([<STRONG>snmpContext</STRONG>])</DT>
<DD>
<P>
Create a SNMP Notification Originator object.
</P>
</DD>
</DL>
<P>
The following method of <STRONG>NotificationOriginator</STRONG> class instance
implements specific notifications types.
</P>
<A NAME="NotificationOriginator.sendNotification"></A>
<DL>
<DT><STRONG>sendNotification</STRONG>(
<STRONG>authData</STRONG>,
<STRONG>transportTarget</STRONG>,
<STRONG>notifyType</STRONG>,
<STRONG>notificationType</STRONG>,
<STRONG>*varBinds</STRONG>
)</DT>
<DD>
<P>
Send either unconfirmed (TRAP) or confirmed (INFORM) SNMP notification
and possibly return an error indication.
</P>
<P>
The <STRONG>authData</STRONG> and <STRONG>transportTarget</STRONG> parameters
have the same semantics as in <A HREF="#CommandGenerator.getCmd">getCmd</A>
method.
</P>
<P>
The <STRONG>notifyType</STRONG> parameter determines the type of notification
to be generated. Supported values include <STRONG>"trap"</STRONG> for
unconfirmed notification or <STRONG>"inform"</STRONG> for a confirmed one.
</P>
<P>
Be advised, that when using confirmed notification, Notification Receiver
must know ContextEngineID of Notification Originator to be able to
process and acknowledge confirmed notification.
</P>
<P>
The <STRONG>notificationType</STRONG> parameter indicates the kind of
event to notify Manager about in form of SMI NOTIFICATION-TYPE object
name. For instance, (('SNMPv2-MIB', 'coldStart'),) or (1,3,6,1,6,3,1,1,5,1)
is a value of coldStart notification type as defined in SNMPv2-MIB module.
</P>
<P>
The <STRONG>*varBinds</STRONG> input parameter is a tuple of Managed
Objects to be passed over to Manager along with Notification. The syntax
of <STRONG>*varBinds</STRONG> is the same as in
<A HREF="#CommandGenerator.getCmd">getCmd</A>
</P>
<P>
The <STRONG>sendNotification</STRONG> method returns an
<STRONG>errorIndication</STRONG> parameter which has the same meaning as
in <A HREF="#CommandGenerator.getCmd">getCmd</A> method.
</P>
</DD>
</DL>
<P>
The following code sends SNMP TRAP over SNMPv3:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
>>> from pysnmp.entity.rfc3413.oneliner import cmdgen, ntforg
>>> from pysnmp.proto.api import v2c
>>> errorIndication = ntforg.NotificationOriginator().sendNotification(
... cmdgen.UsmUserData('my-user', 'my-authkey', 'my-privkey'),
... cmdgen.UdpTransportTarget(('localhost', 162)),
... 'trap',
... (('SNMPv2-MIB', 'coldStart'),),
... ((1,3,6,1,2,1,1,3,0), v2c.TimeTicks(44100))
)
>>> print(errorIndication)
None
>>> print(errorStatus)
0
</PRE>
</TD></TR></TABLE>
<A NAME="ASYNCH-ONELINER-APPS"></A>
<H4>
2.1.2 Asynchronous One-line Applications
</H4>
<P>
Asynchronous API to one-line Applications is actually a foundation for
<A HREF="#SYNCH-ONELINER-APPS">Synchronous</A> version, so they're very similar.
This Asynchronous API is useful for purposes such as running multiple,
possibly different, SNMP Applications at the same time or handling other
activities inside user's program while SNMP Application is waiting for
input/output.
</P>
<P>
All Command Generator Applications are implemented within a single class:
</P>
<A NAME="AsynCommandGenerator"></A>
<DL>
<DT>class <STRONG>AsynCommandGenerator</STRONG>([<STRONG>snmpEngine</STRONG>])</DT>
<DD>
<P>
Create an asynchronous SNMP Command Generator object.
</P>
</DD>
</DL>
<P>
Methods of the <STRONG>AsynCommandGenerator</STRONG> class instances implement
specific request types. These methods are similar to those described in the
<A HREF="#CommandGenerator">CommandGenerator</A> class section except that
asynchronous interface uses a callback function for delivering responses.
</P>
<A NAME="AsynCommandGenerator.asyncGetCmd"></A>
<DL>
<DT><STRONG>asyncGetCmd</STRONG>(
<STRONG>authData</STRONG>,
<STRONG>transportTarget</STRONG>,
<STRONG>varNames</STRONG>,
(<STRONG>cbFun</STRONG>, <STRONG>cbCtx</STRONG>)
)</DT>
<DD>
<P>
Prepare SNMP GET request to be dispatched. Return the
<STRONG>sendRequestHandle</STRONG> value.
</P>
<P>
The <STRONG>cbFun</STRONG> parameter is a reference to a callable object
(such as Python function) that takes the following parameters:
</P>
<DL>
<DT><STRONG>cbFun</STRONG>(
<STRONG>sendRequestHandle</STRONG>,
<STRONG>errorIndication</STRONG>,
<STRONG>errorStatus</STRONG>,
<STRONG>errorIndex</STRONG>,
<STRONG>varBinds</STRONG>,
<STRONG>cbCtx</STRONG>
)</DT>
<DD>
<P>
Where <STRONG>sendRequestHandle</STRONG> is an integer value used for matching
response to request. Its counterpart is returned on request submission by
the <STRONG>asyncGetCmd</STRONG> method.
</P>
<P>
The <STRONG>cbCtx</STRONG> parameter is a reference to the
<STRONG>cbCtx</STRONG> object being passed to <STRONG>asyncGetCmd</STRONG>
method. Its purpose is to carry opaque application's state from request
through response methods.
</P>
<P>
The <STRONG>errorIndication</STRONG>, <STRONG>errorStatus</STRONG>,
<STRONG>errorIndex</STRONG> and <STRONG>varBinds</STRONG> parameters
have the same meaning as in <A HREF="#CommandGenerator.getCmd">getCmd</A>
method.
</P>
<P>
If <STRONG>cbFun</STRONG> has no more requests pending and want to complete,
it must return a true value. Otherwise, it returns false.
</P>
</DD>
</DL>
<P>
The <STRONG>authData</STRONG>, <STRONG>transportTarget</STRONG> and
<STRONG>varNames</STRONG> parameters have the same meaning as in
<A HREF="#CommandGenerator.getCmd">getCmd</A>
method.
</P>
<P>
The <STRONG>asyncGetCmd</STRONG> method returns unique
<STRONG>sendRequestHandle</STRONG> integer value used for
matching subsequent response to this request.
</P>
</DD>
</DL>
<A NAME="AsynCommandGenerator.asyncSetCmd"></A>
<DL>
<DT><STRONG>asyncSetCmd</STRONG>(
<STRONG>authData</STRONG>,
<STRONG>transportTarget</STRONG>,
<STRONG>varBinds</STRONG>,
(<STRONG>cbFun</STRONG>, <STRONG>cbCtx</STRONG>)
)</DT>
<DD>
<P>
Prepare SNMP SET request to be dispatched. Return the
<STRONG>sendRequestHandle</STRONG> value.
</P>
<P>
The <STRONG>authData</STRONG> and <STRONG>transportTarget</STRONG>
parameters have the same meaning as in
<A HREF="#CommandGenerator.getCmd">CommandGenerator.getCmd</A> method.
</P>
<P>
The <STRONG>cbFun</STRONG> and <STRONG>cbCtx</STRONG> parameters
have the same meaning as in <A HREF="#AsynCommandGenerator.asyncGetCmd">
AsynCommandGenerator.asyncGetCmd</A> method.
</P>
<P>
The <STRONG>varBinds</STRONG> parameter has the same meaning as in
<A HREF="#CommandGenerator.setCmd">CommandGenerator.setCmd</A> method
except that here it is passed in as a tuple.
</P>
</DD>
</DL>
<A NAME="AsynCommandGenerator.asyncNextCmd"></A>
<DL>
<DT><STRONG>asyncNextCmd</STRONG>(
<STRONG>authData</STRONG>,
<STRONG>transportTarget</STRONG>,
<STRONG>varNames</STRONG>,
(<STRONG>cbFun</STRONG>, <STRONG>cbCtx</STRONG>)
)</DT>
<DD>
<P>
Prepare SNMP GETNEXT request to be dispatched. Return the
<STRONG>sendRequestHandle</STRONG> value.
</P>
<P>
The <STRONG>authData</STRONG> and <STRONG>transportTarget</STRONG>
parameters have the same meaning as in
<A HREF="#CommandGenerator.nextCmd">CommandGenerator.nextCmd</A> method.
</P>
<P>
The <STRONG>cbFun</STRONG> and <STRONG>cbCtx</STRONG> parameters
have the same meaning as in <A HREF="#AsynCommandGenerator.asyncGetCmd">
AsynCommandGenerator.asyncGetCmd</A> method.
</P>
<P>
The <STRONG>varNames</STRONG> parameter has the same meaning as in
<A HREF="#CommandGenerator.nextCmd">CommandGenerator.nextCmd</A> method
except that here it is passed in as a tuple.
</P>
</DD>
</DL>
<A NAME="AsynCommandGenerator.asyncBulkCmd"></A>
<DL>
<DT><STRONG>asyncBulkCmd</STRONG>(
<STRONG>authData</STRONG>,
<STRONG>transportTarget</STRONG>,
<STRONG>nonRepeaters</STRONG>,
<STRONG>maxRepetitions</STRONG>,
<STRONG>varNames</STRONG>,
(<STRONG>cbFun</STRONG>, <STRONG>cbCtx</STRONG>)
)</DT>
<DD>
<P>
Prepare SNMP GETBULK request to be dispatched. Return the
<STRONG>sendRequestHandle</STRONG> value.
</P>
<P>
The <STRONG>authData</STRONG>, <STRONG>transportTarget</STRONG>,
<STRONG>nonRepeaters</STRONG> and <STRONG>maxRepetitions</STRONG>
parameters have the same meaning as in
<A HREF="#CommandGenerator.nextCmd">CommandGenerator.nextCmd</A> method.
</P>
<P>
The <STRONG>cbFun</STRONG> and <STRONG>cbCtx</STRONG> parameters
have the same meaning as in <A HREF="#AsynCommandGenerator.asyncGetCmd">
AsynCommandGenerator.asyncGetCmd</A> method.
</P>
<P>
The <STRONG>varNames</STRONG> parameter has the same meaning as in
<A HREF="#CommandGenerator.bulkCmd">CommandGenerator.bulkCmd</A> method
except that here it is passed in as a tuple.
</P>
</DD>
</DL>
<P>
After one or more requests have been submitted by calling one or more
of the methods above, Transport Dispatcher must be invoked to get SNMP
engine running. This is done by calling:
</P>
<DL>
<DT><STRONG>
asynCommandGenerator.snmpEngine.transportDispatcher.runDispatcher
</STRONG>
()</DT>
<DD>
<P>
Where <STRONG>asynCommandGenerator</STRONG> is
<STRONG>AsynCommandGenerator</STRONG> class instance.
</P>
</DD>
</DL>
<P>
The <STRONG>runDispatcher</STRONG>() method terminates when no pending requests
left for running Applications.
</P>
<P>
The following code performs SNMP GET operation asynchronously through
SNMPv3:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
>>> from pysnmp.entity.rfc3413.oneliner import cmdgen
>>>
>>> def cbFun(sendRequestHandle, errorIndication, errorStatus, errorIndex, varBinds, cbCtx):
... print('sendRequestHandle = %d' % sendRequestHandle)
... print('errorIndication = %s' % errorIndication)
... print('errorStatus = %s' % errorStatus)
... print('varBinds = %s' % (varBinds,))
... print('cbCtx = %s' % cbCtx)
...
>>> asynCommandGenerator = cmdgen.AsynCommandGenerator()
>>> # This is a non-blocking call
>>> sendRequestHandle = asynCommandGenerator.asyncGetCmd(
... cmdgen.UsmUserData('my-user', 'my-authkey', 'my-privkey'),
... cmdgen.UdpTransportTarget(('localhost', 161)),
... ((1,3,6,1,2,1,1,1,0),),
... (cbFun, None))
>>> print(sendRequestHandle)
1
>>> asynCommandGenerator.snmpEngine.transportDispatcher.runDispatcher()
sendRequestHandle = 1
errorIndication = None
errorStatus = 0
varBinds = [(ObjectName('1.3.6.1.2.1.1.1.0'), OctetString("'Linux saturn
2.6.21 #2 Mon Mar 19 17:07:18 MSD 2006 i686'"))]
cbCtx = None
>>>
</PRE>
</TD></TR></TABLE>
<P>
The <STRONG>AsynNotificationOriginator</STRONG> class implements specific
notification types.
</P>
<A NAME="AsynNotificationOriginator"></A>
<DL>
<DT>class <STRONG>AsynNotificationOriginator</STRONG>([<STRONG>snmpContext</STRONG>])</DT>
<DD>
<P>
Create an asynchronous SNMP Notification Originator object.
</P>
</DD>
</DL>
<P>
The only method of <STRONG>AsynNotificationOriginator</STRONG> class is
similar to that described in the <A HREF="#NotificationOriginator">
NotificationOriginator</A> class section except that asynchronous interface
uses a callback function for delivery confirmation when confirmed notification
are used.
</P>
<A NAME="AsynNotificationOriginator.asyncSendNotification"></A>
<DL>
<DT><STRONG>asyncSendNotification</STRONG>(
<STRONG>authData</STRONG>,
<STRONG>transportTarget</STRONG>,
<STRONG>notifyType</STRONG>,
<STRONG>notificationType</STRONG>,
<STRONG>varBinds</STRONG>,
(<STRONG>cbFun</STRONG>, <STRONG>cbCtx</STRONG>)
)</DT>
<DD>
<P>
Prepare SNMP TRAP or INFORM notification to be dispatched. Return the
<STRONG>sendRequestHandle</STRONG> value.
</P>
<P>
The <STRONG>cbFun</STRONG> parameter is a reference to a callable object
(such as Python function) that takes the following parameters:
</P>
<DL>
<DT><STRONG>cbFun</STRONG>(
<STRONG>sendRequestHandle</STRONG>,
<STRONG>errorIndication</STRONG>,
<STRONG>cbCtx</STRONG>
)</DT>
<DD>
<P>
Where the <STRONG>sendRequestHandle</STRONG>, <STRONG>errorIndication</STRONG>
and <STRONG>cbCtx</STRONG> parameters have the same meaning as in
callback function in
<A HREF="#AsynCommandGenerator.asyncGetCmd">AsynCommandGenerator.asynGetCmd</A> method.
</P>
</DD>
</DL>
<P>
The <STRONG>cbCtx</STRONG> parameter has the same meaning as in
<A HREF="#AsynCommandGenerator.asyncGetCmd">AsynCommandGenerator.asyncGetCmd</A> method.
</P>
<P>
The <STRONG>notifyType</STRONG>, <STRONG>notificationType</STRONG> and
<STRONG>varBinds</STRONG> parameters have the same meaning as in
<A HREF="#NotificationOriginator.sendNotification">
NotificationOriginator.sendNotification</A> method
except that here it is passed in as a tuple.
</P>
<P>
The <STRONG>asyncSendNotification</STRONG> method returns unique
<STRONG>sendRequestHandle</STRONG> integer value used for
matching subsequent delivery confirmation response to arbitrary notification.
</P>
</DD>
</DL>
<P>
After one or more notifications have been submitted by calling the
<STRONG>sendNotification</STRONG> method, Transport Dispatcher must be
invoked to get SNMP engine running. This is done by calling:
</P>
<DL>
<DT><STRONG>
asynNotificationOriginator.snmpEngine.transportDispatcher.runDispatcher
</STRONG>
()</DT>
<DD>
<P>
Where <STRONG>asynNotificationOriginator</STRONG> is
<STRONG>AsynNotificationOriginator</STRONG> class instance.
</P>
</DD>
</DL>
<P>
The <STRONG>runDispatcher</STRONG>() method terminates when no unconfirmed
notifications left for running Applications.
</P>
<P>
The following code sends SNMP INFORM notification asynchronously through
SNMPv3:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
>>> from pysnmp.entity.rfc3413.oneliner import cmdgen, ntforg
>>> from pysnmp.proto.api import v2c
>>>
>>> def cbFun(sendRequestHandle, errorIndication, cbCtx):
... print('sendRequestHandle = %d' % sendRequestHandle)
... print('errorIndication = %s' % errorIndication)
... print('cbCtx = %s' % (cbCtx,))
...
>>> asynNotificationOriginator = ntforg.AsynNotificationOriginator()
>>> # This is a non-blocking call
>>> sendRequestHandle = asynNotificationOriginator.asyncSendNotification(
... cmdgen.UsmUserData('my-user', 'my-authkey', 'my-privkey'),
... cmdgen.UdpTransportTarget(('localhost', 162)),
... 'inform',
... ('SNMPv2-MIB', 'coldStart'),
... ((1,3,6,1,2,1,1,1,0), v2c.TimeTicks(44100)),
... (cbFun, None))
>>> print(sendRequestHandle)
1
>>> asynNotificationOriginator.snmpEngine.transportDispatcher.runDispatcher()
sendRequestHandle = 1
errorIndication = None
cbCtx = None
>>>
</PRE>
</TD></TR></TABLE>
<A NAME="SECURITY-CONFIGURATION"></A>
<H4>
2.1.3 Security configuration
</H4>
<P>
Calls to one-line Applications API require Security Parameters and
Transport configuration objects as input parameters. These classes
serve as convenience shortcuts to SNMP engine configuration facilities
and for keeping persistent authentication/transport configuration
between SNMP engine calls.
</P>
<P>
Security Parameters object is Security Model specific.
<STRONG>UsmUserData</STRONG> class serves SNMPv3 User-Based Security
Model configuration, while <STRONG>CommunityData</STRONG> class
is used for Community-Based Security Model of SNMPv1/SNMPv2c.
</P>
<A NAME="UsmUserData"></A>
<DL>
<DT>class <STRONG>UsmUserData</STRONG>(
<STRONG>securityName</STRONG>,
<STRONG>authKey=''</STRONG>,
<STRONG>privKey=''</STRONG>,
<STRONG>authProtocol=usmNoAuthProtocol</STRONG>,
<STRONG>privProtocol=usmNoPrivProtocol</STRONG>
)</DT>
<DD>
<P>
Create an object holding User-Based Security Model specific configuration
parameters.
</P>
<P>
Mandatory <STRONG>securityName</STRONG> parameter is SNMPv3 USM username
passed in as a string.
</P>
<P>
Optional <STRONG>authKey</STRONG> parameter is a secret key (string typed)
used within USM for SNMP PDU authorization. Setting it to a non-empty
value implies MD5-based PDU authentication to take effect. Default hashing
method may be changed by means of further <STRONG>authProtocol</STRONG>
parameter.
</P>
<P>
Optional <STRONG>privKey</STRONG> parameter is a secret key (string typed)
used within USM for SNMP PDU encryption. Setting it to a non-empty
value implies MD5-based PDU authentication and DES-based encryption to
take effect. Default hashing and/or encryption methods may be changed by
means of further <STRONG>authProtocol</STRONG> and/or
<STRONG>privProtocol</STRONG> parameters.
</P>
<P>
Optional <STRONG>authProtocol</STRONG> parameter may be used to specify
non-default hash function algorithm. Possible values include:
</P>
<UL>
<LI><STRONG>usmHMACMD5AuthProtocol</STRONG> -- MD5-based authentication protocol
<LI><STRONG>usmHMACSHAAuthProtocol</STRONG> -- SHA-based authentication protocol
<LI><STRONG>usmNoAuthProtocol</STRONG> -- no authentication to use
</UL>
<P>
Optional <STRONG>privProtocol</STRONG> parameter may be used to specify
non-default ciphering algorithm. Possible values include:
</P>
<P>
<UL>
<LI><STRONG>usmDESPrivProtocol</STRONG> -- DES-based encryption protocol
<LI><STRONG>usmAesCfb128Protocol</STRONG> -- AES128-based encryption protocol (<A HREF="http://www.ietf.org/rfc/rfc3826.txt">RFC3826</A>)
<LI><STRONG>usm3DESEDEPrivProtocol</STRONG> -- triple DES-based encryption protocol (<A HREF="http://www.snmp.com/protocol/eso.shtml">Extended Security Options</A>)
<LI><STRONG>usmAesCfb192Protocol</STRONG> -- AES192-based encryption protocol (<A HREF="http://www.snmp.com/protocol/eso.shtml">Extended Security Options</A>)
<LI><STRONG>usmAesCfb256Protocol</STRONG> -- AES256-based encryption protocol (<A HREF="http://www.snmp.com/protocol/eso.shtml">Extended Security Options</A>)
<LI><STRONG>usmNoPrivProtocol</STRONG> -- no encryption to use
</UL>
<P>
All these symbols are defined in
<STRONG>pysnmp.entity.rfc3413.oneliner.cmdgen</STRONG> module.
</P>
</DD>
</DL>
<A NAME="CommunityData"></A>
<DL>
<DT>class <STRONG>CommunityData</STRONG>(
<STRONG>securityName</STRONG>,
<STRONG>communityName</STRONG>,
<STRONG>mpModel=1</STRONG>
)</DT>
<DD>
<P>
Create an object holding Community-Based Security Model specific configuration
parameters.
</P>
<P>
Mandatory <STRONG>securityName</STRONG> parameter is Community-Based Security
Model username passed in as a string. For most purposes this can be an
arbitrary string.
</P>
<P>
Mandatory <STRONG>communityName</STRONG> parameter is SNMPv1/SNMPv2c Community name
passed as a string.
</P>
<P>
Optional <STRONG>mpModel</STRONG> parameter indicates whether SNMPv2c
(mpModel=1, default) or SNMPv1 (mpModel=0) protocol should be used.
</P>
</DD>
</DL>
<A NAME="TRANSPORT-CONFIGURATION"></A>
<H4>
2.1.4 Transport configuration
</H4>
<P>
Transport configuration object is Transport domain specific.
<STRONG>UdpTransportTarget</STRONG> class represents an Agent
accessible through UDP domain transport.
</P>
<A NAME="UdpTransportTarget"></A>
<DL>
<DT>class <STRONG>UdpTransportTarget</STRONG>(
<STRONG>transportAddr</STRONG>,
<STRONG>timeout=1</STRONG>,
<STRONG>retries=5</STRONG>
)</DT>
<DD>
<P>
Create an object representing a single Agent accessible through UDP socket.
</P>
<P>
Mandatory <STRONG>transportAddr</STRONG> parameter indicates destination
Agent address in form of tuple of <STRONG>FQDN</STRONG>, <STRONG>port</STRONG>
where <STRONG>FQDN</STRONG> is a string and <STRONG>port</STRONG> is an
integer.
</P>
<P>
Optional <STRONG>timeout</STRONG> and <STRONG>retries</STRONG> parameters
may be used to modify default response timeout (1 second) and number
of succesive request retries (5 times).
</P>
</DD>
</DL>
<A NAME="MANAGED-OBJECT-NAME-VALUE"></A>
<H4>
2.2 Managed Objects names and values
</H4>
<A NAME="OIDVAL-IMPL">
<P>
At the protocol level, each <A HREF="#MANAGED-OBJECTS">Managed Object</A>
instance is represented by a pair of Name and Value collectively called
a <STRONG>Variable-Binding</STRONG>.
</P>
<P>
In PySNMP programming context, at the high-level API, each Managed Object is
represented by a tuple of two class instances -- one represents Managed
Object Instance Name, and another -- its value.
</P>
<A NAME="OID-IMPL">
<P>
Managed Object Name is an instance of <STRONG>ObjectName</STRONG> class,
which is derived from PyASN1
<A HREF="http://pyasn1.sourceforge.net/#1.1.8">ObjectIdentifier</A>.
In most cases, PySNMP APIs will automatically create an instance of
ObjectIdentifier class from its initialization value. Therefore it's
allowed to use a plain tuple of integers as a Managed Object Name.
</P>
<A NAME="VAL-IMPL">
<P>
Managed Object Instance Value is an instance of some
<A HREF="http://pyasn1.sf.net">PyASN1</A> class or its
SNMP-specific derivative. The latter case reflects SNMP-specific
<A HREF="#ASN1">ASN.1</A> sub-type. The list of Managed Object
Instance Value classes follow.
</P>
<A NAME="INTEGER-IMPL"></A>
<DL>
<DT>class <STRONG>Integer</STRONG>(
<STRONG>value</STRONG>
)</DT>
<DD>
<P>
Create a SMIv2 <STRONG>Integer</STRONG> object. The <STRONG>value</STRONG>
parameter should be an integer value. Instances of this class mimic basic
properties of a Python integer. SMIv2 Integer class is derived from
PyASN1 <A HREF="http://pyasn1.sourceforge.net/#1.1.3">Integer</A>.
</P>
</DD>
</DL>
<A NAME="INTEGER32-IMPL"></A>
<DL>
<DT>class <STRONG>Integer32</STRONG>(
<STRONG>value</STRONG>
)</DT>
<DD>
<P>
Create a SMIv2 <STRONG>Integer32</STRONG> object. This object is similar to
<A HREF="#INTEGER-IMPL">Integer</A> class instance.
</P>
</DD>
</DL>
<A NAME="OBJECTIDENTIFIER-IMPL"></A>
<DL>
<DT>class <STRONG>OctetIdentifier</STRONG>(
<STRONG>value</STRONG>
)</DT>
<DD>
<P>
Create a SMIv2 <STRONG>OctetIdentifier</STRONG> object.
The <STRONG>value</STRONG>
parameter could be a tuple of integer sub-IDs or a human-friendly
string form like ".1.3.6.1.3.1". SMIv2 OctetString class is derived from
PyASN1 <A HREF="http://pyasn1.sourceforge.net/#1.1.8">OctetIdentifier</A>.
</P>
</DD>
</DL>
<A NAME="OCTETSTRING-IMPL"></A>
<DL>
<DT>class <STRONG>OctetString</STRONG>(
<STRONG>value</STRONG>
)</DT>
<DD>
<P>
Create a SMIv2 <STRONG>OctetString</STRONG> object. The <STRONG>value</STRONG>
parameter should be a string value. Instances of this class mimic basic
properties of a Python string. SMIv2 OctetString class is derived from
PyASN1 <A HREF="http://pyasn1.sourceforge.net/#1.1.7">OctetString</A>.
</P>
</DD>
</DL>
<A NAME="IPADDRESS-IMPL"></A>
<DL>
<DT>class <STRONG>IpAddress</STRONG>(
<STRONG>value</STRONG>
)</DT>
<DD>
<P>
Create a SMIv2 <STRONG>IpAddress</STRONG> object. The <STRONG>value</STRONG>
parameter should be an IP address expressed in quad-dotted notation (e.g.
"127.0.0.1"). SMIv2 IpAddress class is derived from
PyASN1 <A HREF="http://pyasn1.sourceforge.net/#1.1.7">OctetString</A>.
</P>
</DD>
</DL>
<A NAME="COUNTER32-IMPL"></A>
<DL>
<DT>class <STRONG>Counter32</STRONG>(
<STRONG>value</STRONG>
)</DT>
<DD>
<P>
Create a SMIv2 <STRONG>Counter32</STRONG> object. Besides different value
constraints, this object is similar to <A HREF="#INTEGER-IMPL">Integer</A>
class instance.
</P>
</DD>
</DL>
<A NAME="GAUGE32-IMPL"></A>
<DL>
<DT>class <STRONG>Gauge32</STRONG>(
<STRONG>value</STRONG>
)</DT>
<DD>
<P>
Create a SMIv2 <STRONG>Gauge32</STRONG> object. Besides different value
constraints, this object is similar to <A HREF="#INTEGER-IMPL">Integer</A>
class instance.
</P>
</DD>
</DL>
<A NAME="UNSIGNED32-IMPL"></A>
<DL>
<DT>class <STRONG>Unsigned32</STRONG>(
<STRONG>value</STRONG>
)</DT>
<DD>
<P>
Create a SMIv2 <STRONG>Unsigned32</STRONG> object. Besides different value
constraints, this object is similar to <A HREF="#INTEGER-IMPL">Integer</A>
class instance.
</P>
</DD>
</DL>
<A NAME="TIMETICKS-IMPL"></A>
<DL>
<DT>class <STRONG>TimeTicks</STRONG>(
<STRONG>value</STRONG>
)</DT>
<DD>
<P>
Create a SMIv2 <STRONG>TimeTicks</STRONG> object. Besides different value
constraints, this object is similar to <A HREF="#INTEGER-IMPL">Integer</A>
class instance.
</P>
</DD>
</DL>
<A NAME="OPAQUE-IMPL"></A>
<DL>
<DT>class <STRONG>Opaque</STRONG>(
<STRONG>value</STRONG>
)</DT>
<DD>
<P>
Create a SMIv2 <STRONG>Opaque</STRONG> object. This object is similar to
<A HREF="#OCTETSTRING-IMPL">OctetString</A> class instance.
</P>
</DD>
</DL>
<A NAME="COUNTER64-IMPL"></A>
<DL>
<DT>class <STRONG>Counter64</STRONG>(
<STRONG>value</STRONG>
)</DT>
<DD>
<P>
Create a SMIv2 <STRONG>Counter64</STRONG> object. Besides different value
constraints, this object is similar to <A HREF="#INTEGER-IMPL">Integer</A>
class instance.
</P>
</DD>
</DL>
<A NAME="BITS-IMPL"></A>
<DL>
<DT>class <STRONG>Bits</STRONG>(
<STRONG>value</STRONG>
)</DT>
<DD>
<P>
Create a SMIv2 <STRONG>Bits</STRONG> object. The <STRONG>value</STRONG>
parameter should be sequence of names of bits raised to one. Unmentioned
bits default to zero. The Bits class is derived from
PyASN1 <A HREF="http://pyasn1.sourceforge.net/#1.1.7">OctetString</A>.
</P>
</DD>
</DL>
<P>
It's PySNMP design decision to always use <A HREF="#SMI">SMIv2</A>
definitions for Managed Objects at the high-level API regardless of SNMP
protocol version being used. For instance, an SNMPv3 Manager will always report
SMIv2 types even when talking to SNMPv1 Agent (which is SMIv1-compliant).
</P>
<P>
For more information on SNMP Managed Value objects properties,
refer to their base classes in <A HREF="http://pyasn1.sf.net">PyASN1</A>
documentation.
</P>
<A NAME="MIB-SERVICES"></A>
<H4>
2.3 MIB services
</H4>
<P>
PySNMP supports both Manager and Agent-side operations on
<A HREF="#MANAGED-OBJECTS">Managed Objects</A>,
including MIB lookup and custom Managed Objects implementation.
</P>
<P>
Managed Objects, <A HREF="#DATA-MODEL-MANAGED-OBJECTS">implemented in
Python code</A>, is the basis for PySNMP MIB services. Managed Objects
are collected into a pool and then managed by a
<A HREF="#MIB-BUILDER">MIB builder</A>. Both Manager and Agent
applications deal with their Managed Objects through role-specific
<A HREF="#MibViewController">MIB view</A> and
<A HREF="#MibInstrumentationController">MIB instrumentation</A>. The same
set of Managed Objects could serve both Manager and Agent purposes within
a single SNMP entity.
</P>
<A NAME="DATA-MODEL-MANAGED-OBJECTS"></A>
<H4>
2.3.1 Data model for Managed Objects
</H4>
<P>
In PySNMP, <A HREF="#MANAGED-OBJECTS">Managed Objects</A> take shape of
Python class instances that implement various
<A HREF="#SMI">SMIv2</A> items. Collections of Managed Objects, or
<A HREF="#MIB">MIB</A>s, translate, in a one-to-one fashion, into Python
modules.
</P>
<P>
Automated conversion of MIB text files into Python modules can be done
through the use of smidump tool of
<A HREF="http://www.ibr.cs.tu-bs.de/projects/libsmi/">libsmi</A> package
and "<STRONG>build-pysnmp-mib</STRONG>" script shipped with PySNMP.
</P>
<P>
The <STRONG>pysnmp.smi.mibs.SNMPv2-SMI</STRONG> module
implements the following classes:
</P>
<A NAME="MibScalar"></A>
<DL>
<DT>class <STRONG>MibScalar</STRONG>(
<STRONG>name</STRONG>,
<STRONG>syntax</STRONG>
)</DT>
<DD>
<P>
Create a definition of scalar Managed Object with name
<STRONG>name</STRONG> and associated value of type
<STRONG>syntax</STRONG>.
</P>
<A NAME="MANAGED-OBJECT-NAME"></A>
<P>
The <STRONG>name</STRONG> parameter represents an
<A HREF="#OID">Object Identifier</A> which can be expressed as
either a tuple of integers or tuple-like
<A HREF="#OID-IMPL">Object Identifier</A> class instance.
</P>
<P>
The <STRONG>syntax</STRONG> parameter represents Managed Object's
<A HREF="#MANAGED-OBJECT-SYNTAX">value type</A>.
</P>
</DD>
</DL>
<P>
The <STRONG>MibScalar</STRONG> class implements the following methods:
</P>
<A NAME="MibScalar.getName"></A>
<A NAME="MibScalar.getSyntax"></A>
<A NAME="MibScalar.getMaxAccess"></A>
<A NAME="MibScalar.getUnits"></A>
<A NAME="MibScalar.getStatus"></A>
<A NAME="MibScalar.getDescription"></A>
<DL>
<DT><STRONG>getName</STRONG>()</DT>
<DT><STRONG>getSyntax</STRONG>()</DT>
<DT><STRONG>getMaxAccess</STRONG>()</DT>
<DT><STRONG>getUnits</STRONG>()</DT>
<DT><STRONG>getStatus</STRONG>()</DT>
<DT><STRONG>getDescription</STRONG>()</DT>
<DD>
<P>
Each of these methods return certain property of Managed Object.
</P>
</DD>
</DL>
<A NAME="MibScalarInstance"></A>
<DL>
<DT>class <STRONG>MibScalarInstance</STRONG>(
<STRONG>name</STRONG>, <STRONG>syntax</STRONG>
)</DT>
<DD>
<P>
Create an instance of scalar Managed Object or
<A HREF="#CONCEPTUAL-TABLES">Conceptual Table</A> element
with name <STRONG>name</STRONG> and associated value
<STRONG>syntax</STRONG>.
</P>
<P>
The <STRONG>name</STRONG> of Managed Object instance is a concatination
of <STRONG>name</STRONG> of Managed Object definition and some
instance identifier. For scalar types, instance identifier is a single
zero (0,). For <A HREF="#CONCEPTUAL-TABLES">Conceptual Table</A> elements
instance identifier is a concatination of table indices.
</P>
<P>
The <STRONG>name</STRONG> and <STRONG>syntax</STRONG> parameters
have the same meaning as in <A HREF="#MibScalar">MibScalar</A> class.
</P>
</DD>
</DL>
<A NAME="MibTableColumn"></A>
<DL>
<DT>class <STRONG>MibTableColumn</STRONG>(
<STRONG>name</STRONG>, <STRONG>syntax</STRONG>
)</DT>
<DD>
<P>
Create a definition of
<A HREF="#CONCEPTUAL-TABLES">Conceptual Table</A> Column with
name <STRONG>name</STRONG> and associated value of type
<STRONG>syntax</STRONG>.
</P>
<P>
The <STRONG>name</STRONG> parameter has the same meaning as in
<A HREF="#MibScalar">MibScalar</A> class.
</P>
<P>
The <STRONG>syntax</STRONG> parameter represents
<A HREF="#MANAGED-OBJECT-SYNTAX">type</A> of the value associated with
columnar Managed Object.
</P>
</DD>
</DL>
<P>
The <STRONG>MibTableColumn</STRONG> class implements the following
methods:
</P>
<A NAME="MibTableColumn.setProtoInstance"></A>
<DL>
<DT><STRONG>setProtoInstance</STRONG>(
<STRONG>instanceClass</STRONG>
)</DT>
<DD>
<P>
Configure <STRONG>MibTableColumn</STRONG> object to instantiate
<STRONG>instanceClass</STRONG> when creating Columnar Objects.
By default, <A HREF="#MibScalarInstance">MibScalarInstance</A>
is instantiated.
</P>
</DD>
</DL>
<A NAME="MibTableRow"></A>
<DL>
<DT>class <STRONG>MibTableRow</STRONG>(
<STRONG>name</STRONG>
)</DT>
<DD>
<P>
Create a definition of
<A HREF="#CONCEPTUAL-TABLES">Conceptual Table</A> Row with
name <STRONG>name</STRONG>.
</P>
<P>
The <STRONG>name</STRONG> parameter has the same meaning as in
<A HREF="#MibScalar">MibScalar</A> class.
</P>
</DD>
</DL>
<P>
The <STRONG>MibTableRow</STRONG> class implements the following methods:
</P>
<A NAME="MibTableRow.getInstIdFromIndices"></A>
<DL>
<DT><STRONG>getInstIdFromIndices</STRONG>(
<STRONG>*indices</STRONG>
)</DT>
<DD>
<P>
Compute and return <A HREF="#CONCEPTUAL-TABLES">Conceptual Table</A> Column
instance identifier from <STRONG>*indices</STRONG> using MIB Table
Index definition.
</P>
<P>
Types of <STRONG>*indices</STRONG> must coerce into Table Index syntax.
</P>
</DD>
</DL>
<A NAME="MibTableRow.getIndicesFromInstId"></A>
<DL>
<DT><STRONG>getIndicesFromInstId</STRONG>(
<STRONG>instanceId</STRONG>
)</DT>
<DD>
<P>
Compute and return a tuple of <A HREF="#CONCEPTUAL-TABLES">Conceptual Table</A>
Index values from Column instance identifier <STRONG>instanceId</STRONG>
using MIB Table Index definition.
</P>
<P>
The number of types of returned index values depend on MIB Table definition.
</P>
</DD>
</DL>
<A NAME="MibTable"></A>
<DL>
<DT>class <STRONG>MibTable</STRONG>(
<STRONG>name</STRONG>
)</DT>
<DD>
<P>
Create a definition of
<A HREF="#CONCEPTUAL-TABLES">Conceptual Table</A> with name
<STRONG>name</STRONG>.
</P>
<P>
The <STRONG>name</STRONG> parameter has the same meaning as in
<A HREF="#MibScalar">MibScalar</A> class.
</P>
</DD>
</DL>
<P>
The following examples explain how MIB text could be expressed in terms of
PySNMP SMI data model. First example is on a scalar:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
myManagedObject = MibScalar((1, 3, 6, 1, 4, 1, 20408, 2, 1),
OctetString()).setMaxAccess("readonly")
</PRE>
</TD></TR></TABLE>
<P>
Managed Object Instance can be put into a stand-alone PySNMP SMI module or
be implemented inside Agent application. Managed Object Instance will be
associated with its parent Managed Object, by the
<A HREF="#MIB-BUILDER">MIB building part of PySNMP</A>,
on the basis of their names relation.
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
myManagedObjectInstance = MibScalarInstance(myManagedObject.getName() + (0,),
myManagedObject.getSyntax().clone('my string'))
</PRE>
</TD></TR></TABLE>
<P>
Let's consider SNMP Conceptual Table created in an "MY-MIB.py" file:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
myTable = MibTable((1, 3, 6, 1, 4, 1, 20408, 2, 1))
myTableEntry = MibTableRow(myTable.getName() + (1,)).setIndexNames((0, "MY-MIB", "myTableIndex"))
myTableIndex = MibTableColumn(myTableEntry.getName() + (1,), Integer())
myTableValue = MibTableColumn(myTableEntry.getName() + (2,), OctetString())
</PRE>
</TD></TR></TABLE>
<P>
Populate Managed Objects table with Managed Objects Instance in the first
column.
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
myTableValueInstance = MibScalarInstance(myTableValue.getName() + (1,),
myTableValue.getSyntax().clone('my value'))
</PRE>
</TD></TR></TABLE>
<P>
For more real-life cases, refer to modules in <B>pysnmp.smi.mibs</B>
sub-package.
</P>
<A NAME="MIB-BUILDER"></A>
<H4>
2.3.2 MIB builder
</H4>
<P>
The pythonized MIB modules are then managed by the
<STRONG>MibBuilder</STRONG> class from <STRONG>pysnmp.smi.builder</STRONG>
module.
</P>
<A NAME="MibBuilder"></A>
<DL>
<DT>class <STRONG>MibBuilder</STRONG>()</DT>
<DD>
<P>
Create MIB modules loader/evaluator/indexer.
</P>
</DD>
</DL>
<A NAME="MibBuilder.loadModules"></A>
<DL>
<DT><STRONG>loadModules</STRONG>(
<STRONG>*modNames</STRONG>
)</DT>
<DD>
<P>
Locate in search path and evaluate each of <STRONG>*modNames</STRONG>
through Python <STRONG>execfile</STRONG>() passing a reference to
<STRONG>MibBuilder</STRONG> class instance to module's global scope.
Evaluating modules might register their objects at
<STRONG>MibBuilder</STRONG> through
<A HREF="#MibBuilder.exportSymbols">exportSymbols</A>() call.
</P>
<P>
MIB builder would then create an in-memory index of registered MIB
objects by MIB names.
</P>
<P>
Search path is managed by the <STRONG>getMibPath()</STRONG> and
<STRONG>setMibPath()</STRONG> methods.
</P>
<P>
The <STRONG>loadModules</STRONG> method may be further invoked recursively
on dependent MIB modules import.
</P>
</DD>
</DL>
<A NAME="MibBuilder.unloadModules"></A>
<DL>
<DT><STRONG>unloadModules</STRONG>(
<STRONG>*modNames</STRONG>
)</DT>
<DD>
<P>
Drop all references to Python objects previously created through
calling <STRONG>loadModules</STRONG>() method against [here optional]
<STRONG>*modNames</STRONG>. This method would invoke
<A HREF="#MibBuilder.unexportSymbols">unexportSymbols</A>()
against MIB symbols previously registered under each of
<STRONG>*modNames</STRONG>.
</P>
<P>
Missing <STRONG>*modNames</STRONG> implies all currently loaded modules.
</P>
</DD>
</DL>
<A NAME="MibBuilder.importSymbols"></A>
<DL>
<DT><STRONG>importSymbols</STRONG>(
<STRONG>modName</STRONG>,
<STRONG>*symNames</STRONG>
)</DT>
<DD>
<P>
Return a tuple of <STRONG>Managed Objects</STRONG> looked up by
their MIB names <STRONG>*symNames</STRONG>.
<STRONG>Managed Objects</STRONG> returned in tuple are
position-bound to <STRONG>*symNames</STRONG> parameters.
</P>
<P>
If MIB module <STRONG>modName</STRONG> is not yet loaded, the
<A HREF="#MibBuilder.importSymbols">importSymbols</A>() method
would be invoked implicitly.
</P>
</DD>
</DL>
<A NAME="MibBuilder.exportSymbols"></A>
<DL>
<DT><STRONG>exportSymbols</STRONG>(
<STRONG>modName</STRONG>,
<STRONG>*anonymousSyms</STRONG>,
<STRONG>**namedSyms</STRONG>
)</DT>
<DD>
<P>
Register Managed Objects <STRONG>*anonymousSyms</STRONG> and/or
<STRONG>**namedSyms</STRONG> at <STRONG>MibBuilder</STRONG> within
MIB module <STRONG>modName</STRONG> scope.
</P>
<P>
Managed Objects defined in MIB are always named. These are exported using
<STRONG>**namedSyms</STRONG> parameter(s). Managed Objects Instances
don't have to have MIB names, unless Application wants to access
Managed Objects Instances by MIB name, so these may be exported through
<STRONG>*anonymousSyms</STRONG>.
</P>
</DD>
</DL>
<A NAME="MibBuilder.unexportSymbols"></A>
<DL>
<DT><STRONG>unexportSymbols</STRONG>(
<STRONG>modName</STRONG>,
<STRONG>*symNames</STRONG>
)</DT>
<DD>
<P>
Drop all references to Python objects previously registered
under <STRONG>*symNames</STRONG> within <STRONG>modName</STRONG>
through <A HREF="#MibBuilder.exportSymbols">exportSymbols</A>() call.
</P>
<P>
Missing <STRONG>*symNames</STRONG> implies all symbols currently
registered within <STRONG>modName</STRONG> module.
</P>
</DD>
</DL>
<P>
In the following example MIB builder will be created, MIB modules
loaded up and Managed Object definition looked up by symbolic name:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
>>> from pysnmp.smi import builder
>>>
>>> # create MIB builder
... mibBuilder = builder.MibBuilder().loadModules('SNMPv2-MIB', 'IF-MIB')
>>>
>>> # get Managed Object definition by symbol name
... mibNode, = mibBuilder.importSymbols('SNMPv2-MIB', 'sysDescr')
>>> print(mibNode.getName())
(1, 3, 6, 1, 2, 1, 1, 1)
>>> print(repr(mibNode.getSyntax()))
DisplayString('')
>>>
</PRE>
</TD></TR></TABLE>
</P>
<A NAME="MIB-VIEW-CONTROLLER"></A>
<H4>
2.3.3 MIB view controller
</H4>
<P>
The following facilities are intended for Manager-side access to MIB
definitions. The <STRONG>pysnmp.smi.view</STRONG> module contains the
following items:
</P>
<A NAME="MibViewController"></A>
<DL>
<DT>class <STRONG>MibViewController</STRONG>(<STRONG>mibBuilder</STRONG>)</DT>
<DD>
<P>
The <STRONG>MibViewController</STRONG> class instance tackles
<A HREF="#DATA-MODEL-MANAGED-OBJECTS">Managed Objects</A>,
constructed by <A HREF="#MibBuilder">MibBuilder</A>, for their properties
and provide efficient/ordered access to Managed Objects properties.
Most important of these are OID names and labels.
</P>
<P>
The <STRONG>mibBuilder</STRONG> argument is an instance of
<A HREF="#MibBuilder">MibBuilder</A> class.
</P>
</DD>
</DL>
<P>
The <STRONG>MibViewController</STRONG> class implements the following
methods:
</P>
<A NAME="MibViewController.getNodeName"></A>
<DL>
<DT><STRONG>getNodeName</STRONG>(<STRONG>name</STRONG>)</DT>
<A NAME="MIB-VIEW-MANAGED-OBJECT-NAME"></A>
<DD>
<P>
The <STRONG>name</STRONG> parameter is
<A HREF="#MANAGED-OBJECTS">Managed Object</A> name.
It can be either a tuple representing sub-<A HREF="#OID">OID</A>s
or <A HREF="#OID-IMPL">Object Identifier</A> class instance. Sub-OIDs
can be a mix of integers and string labels. For example, the following
are valid values of <STRONG>name</STRONG>:
</P>
<UL>
<LI>
(1, 3, 6, 1)
<LI>
('iso', 'org', 'dod', 'internet')
<LI>
('iso', 2, 'dod', 1)
<LI>
pysnmp.proto.rfc1902.ObjectIdentifier("1.3.6.1")
</UL>
</P>
<P>
The <STRONG>getNodeName</STRONG> method returns a tuple of
(<STRONG>oid</STRONG>, <STRONG>label</STRONG>, <STRONG>suffix</STRONG>)
where:
<UL>
<LI>The <STRONG>oid</STRONG> and <STRONG>label</STRONG> are tuples of sub-OIDs
of best (longest) matched Managed Object in integer and label forms
respectively.
<LI>The <STRONG>suffix</STRONG> parameter is the unmatched, trailing part of
original <STRONG>name</STRONG> parameter.
<P>
If a Managed Object is looked up with <STRONG>getNodeName</STRONG> method
and an exact match occured, <STRONG>suffix</STRONG> would be an empty tuple.
</P>
<P>
If <STRONG>suffix</STRONG> is not empty, it indicates either an index part of
<A HREF="#CONCEPTUAL-TABLES">Conceptual Table</A> instance name
(which can be further parsed into index values by
<A HREF="#MibTableRow.getInstIdFromIndices">MibTableRow class methods</A>) or
a partial Managed Object name match.
</P>
<P>In order to distinguish MIB Table element match from a failure, see if
closest matched Managed Object <STRONG>oid</STRONG> (MIB symbol
<STRONG>label</STRONG>[-1]) is an instance of
<A HREF="#MibTableColumn">MibTableColumn</A> class.
</P>
<P>
If even partial match fails, the <STRONG>SmiError</STRONG> exception is
raised.
</P>
</UL>
</P>
</UL>
</P>
</DD>
</DL>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
>>> from pysnmp.smi import builder, view
>>>
>>> mibBuilder = builder.MibBuilder().loadModules('SNMPv2-MIB')
>>> mibViewController = view.MibViewController(mibBuilder)
>>>
>>> oid, label, suffix = mibViewController.getNodeName((1,3,6,1,2,'mib-2',1,'sysDescr'))
>>> print(oid)
(1, 3, 6, 1, 2, 1, 1, 1)
>>> print(label)
('iso', 'org', 'dod', 'internet', 'mgmt', 'mib-2', 'system', 'sysDescr')
>>> print(suffix)
()
</PRE>
</TD></TR></TABLE>
</P>
<A NAME="MibViewController.getNextNodeName"></A>
<DL>
<DT><STRONG>getNextNodeName</STRONG>(
<STRONG>name</STRONG>, <STRONG>modName</STRONG>=''
)</DT>
<DD>
<P>
The <STRONG>getNextNodeName</STRONG> method works the same as
<A HREF="#MibViewController.getNodeName">getNodeName</A> but it deals
with Managed Object whose name appears to be next to the <STRONG>name</STRONG>
given on input.
</P>
<P>
The <STRONG>modName</STRONG> parameter is MIB module name as seen by
<A HREF="#MibBuilder">MibBuilder</A>. Use this parameter to restrict
by-<STRONG>name</STRONG> to particular MIB module's
scope.
</P>
</DD>
</DL>
<A NAME="MibViewController.getFirstNodeName"></A>
<DL>
<DT><STRONG>getFirstNodeName</STRONG>(<STRONG>modName</STRONG>='')</DT>
<DD>
<P>
The <STRONG>getFirstNodeName</STRONG> method works the same as
<A HREF="#MibViewController.getNodeName">getNodeName</A> but it returns
Managed Object whose name appears to be the first among others within
MIB module <STRONG>modName</STRONG>.
</P>
<P>
If no <STRONG>modName</STRONG> is given, the whole OID namespace is assumed.
</P>
</DD>
</DL>
<A NAME="MibViewController.getNodeLocation"></A>
<DL>
<DT><STRONG>getNodeLocation</STRONG>(<STRONG>name</STRONG>)</DT>
<DD>
<P>
The <STRONG>getNodeLocation</STRONG> method returns MIB location of
Managed Object by OID <STRONG>name</STRONG> as a tuple of
(<STRONG>modName</STRONG>, <STRONG>mibName</STRONG>, <STRONG>suffix</STRONG>).
</P>
<P>
<P>
The <STRONG>modName</STRONG> and <STRONG>mibName</STRONG> parameters are
as used in <A HREF="#MibBuilder">MibBuilder</A> interface. The
<STRONG>suffix</STRONG> parameter is as described in
<A HREF="MIB-VIEW-MANAGED-OBJECT-NAME">getNodeName</A>() method.
</P>
</DD>
</DL>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
>>> from pysnmp.smi import builder, view
>>>
>>> mibBuilder = builder.MibBuilder().loadModules('SNMPv2-MIB')
>>> mibViewController = view.MibViewController(mibBuilder)
>>>
>>> modName, symName, suffix = mibViewController.getNodeLocation((1,3,6,1,2,1,1,1,123))
>>> print(modName)
SNMPv2-MIB
>>> print(symName)
sysDescr
>>> print(suffix)
(123,)
</PRE>
</TD></TR></TABLE>
</P>
<A NAME="IMPLEMENTING-MANAGED-OBJECTS-INSTANCES"></A>
<H4>
2.3.4 Implementing Managed Objects Instances
</H4>
<P>
The following chapter explains SNMP Agent-controlled Managed Object
Instances to real-life objects mapping.
</P>
<P>
SNMP defines four types of operations on Managed Objects Instances.
For scalars, these are:
<UL>
<LI>Get Managed Object Instance value (though SNMP GET request)
<LI>Modify Managed Object Instance value (though SNMP SET request)
</UL>
</P>
<P>
Conceptual Tables additionaly support:
</P>
<P>
<UL>
<LI>Table row creation (through SNMP SET against a special-purpose
<B>RowStatus</B> column instance)
<LI>Table row removal (similary, through SNMP SET against <B>RowStatus</B>
column instance)
</UL>
</P>
<P>
PySNMP Managed Objects Instances are implemented by the
<A HREF="#MibScalarInstance">MibScalarInstance</A> objects
while a value associated with Managed Object Instance is
represented by its <B>syntax</B> initialization parameter.
</P>
<P>
There are two distinct approaches to Managed Objects Instances
implementation in PySNMP. The first one is simpler to use
but it only works for relatively static Managed Objects. The other
is universal but it is more complex to deal with.
</P>
<A NAME="ASSOCIATED-VALUE-GATEWAYING"></A>
<H4>
2.3.4.1 Associated value gatewaying
</H4>
<P>
This method only works for scalars and static tables (meaning no row
creation and deletion is performed through SNMP). Also, it is not
safe with this method to modify dependent values though a single
request as failed modification won't roll back others in the bulk.
</P>
<P>
Whenever SNMP Agent receives read or modification request against arbitrary
Managed Object Instance, it ends up <B>clone</B>()'ing <B>syntax</B>
parameter of <A HREF="#MibScalarInstance">MibScalarInstance</A> object.
Read queries (e.g. GET/GETNEXT/GETBULK) trigger <B>clone</B> method
invocation without passing it new value, while new value will be
fed to the <B>clone</B> method on modification request.
</P>
<P>
This value-based gatewaying method works by listening on the <B>clone</B>()
method of <B>MibScalarInstance</B> associated value thus fetching current
or applying new state of some outer system represented by arbitrary Managed
Object Instance.
</P>
<P>
Consider SMI-to-filesystem gateway for example, where a Managed Object
Instance would represent particular file contents. File contents would
be solely dependent on SNMP updates.
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
class MyFile(OctetString):
def clone(self, value=None):
if value is not None:
# SNMP SET
open('/tmp/myfile', 'w').write(value)
# SNMP S/GET*
return OctetString.clone(self, open('/tmp/myfile', 'r').read())
mibBuilder.exportSymbols(
'MYFILE-MIB', MibScalarInstance((1, 3, 6, 1, 4, 1, 20408, 1), MyFile())
)
</PRE>
</TD></TR></TABLE>
</P>
<P>
A variation of this through-value SMI gatewaying method would be for a
third-party system to keep Managed Object Instance value synchronized
with system's current state. Take file size monitor for instance -- the
following code would be run periodically to measure most recent file size
and re-build its SMI projection:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
myManagedObjectInstance = MibScalarInstance(
(1, 3, 6, 1, 4, 1, 20408, 1), Integer(os.stat('/var/adm/messages')[6])
)
mibBuilder.exportSymbols(
'FILESIZE-MIB', myManagedObjectInstance=myManagedObjectInstance
)
</PRE>
</TD></TR></TABLE>
<A NAME="TAPPING-ON-MANAGEMENT-INSTRUM"></A>
<H4>
2.3.4.2 Tapping on Management Instrumentation API
</H4>
<P>
This is a generic SMI Managed Objects Instances to real-life objects
mapping method. It works for scalars and tables of any origin, though,
programming with it involves customization of PySNMP SMI base classes
what adds up to usage complexity.
</P>
<P>
A single SNMP request may invoke an operation on multiple Managed
Objects Instances. In SNMP design, it must either succeed on all
Managed Objects Instances or be rolled back and reported as a
failure otherwise.
</P>
<A NAME="MANAGEMENT-INSTRUMENTATION-API"></A>
<P>
SNMP engine talks to its Managed Objects through a protocol which is
comprised from a collection of API methods (further refered to as
<B>Management Instrumentation API</B>), implemented by
<A HREF="#DATA-MODEL-MANAGED-OBJECTS">Managed Objects classes</A>
and a definite sequence of their invocation. Default handlers implemented
in Managed Objects classes read/modify/create the <STRONG>syntax</STRONG>
parameter, passed on instantiation, to
<A HREF="#MibScalarInstance">MibScalarInstance</A> objects for scalars
and <A HREF="#MibTableColumn">MibTableColumn</A> for tables. The essence
of this Management Instrumentation Tapping technique is to listen on
Management Instrumentation API methods for gaining control over particular
Managed Object at request processing points.
</P>
<P>
Formal parameters of Management Instrumentation API methods don't make
much sense to custom implementation, so they are partially documented here and,
in most cases, should be blindly <B>passed down</B> as-is to the overloaded
method to not to interfere with behind-the-scene SMI workings.
</P>
<P>
Value read methods implemented by
<A HREF="#DATA-MODEL-MANAGED-OBJECTS">Managed Objects</A> and
invoked by SNMP engine in response to SNMP GET/GETNEXT/GETBULK requests
are:
</P>
<P>
<A NAME="readTest"></A>
<DL>
<DT><STRONG>readTest</STRONG>(
*<STRONG>args</STRONG>
)</DT>
<DD>
<P>
The <STRONG>readTest</STRONG> method is invoked by SNMP engine prior to
performing actual Managed Object Instance value read to give
implementation a chance to ensure that subsequent value read is likely
to succeed.
</P>
</DD>
</DL>
</P>
<P>
<A NAME="readGet"></A>
<DL>
<DT><STRONG>readGet</STRONG>(
*<STRONG>args</STRONG>
)</DT>
<DD>
<P>
The <STRONG>readGet</STRONG> method is invoked by SNMP engine to fetch
Managed Object Instance's value. This method must return a tuple
of (<STRONG>name</STRONG>, <STRONG>value</STRONG>) which is
returned by overloaded method invocation. Custom implementation
may replace the <STRONG>value</STRONG> part by its own version taken
from third-party sources.
</P>
</DD>
</DL>
</P>
<P>
<A NAME="readTestNext"></A>
<DL>
<DT><STRONG>readTestNext</STRONG>(
*<STRONG>args</STRONG>
)</DT>
<DD>
<P>
The <STRONG>readTestNext</STRONG> method is invoked by SNMP engine prior
to performing actual Managed Object Instance value read to give
implementation a chance to ensure that subsequent value read is likely
to succeed.
</P>
</DD>
</DL>
</P>
<P>
<A NAME="readGetNext"></A>
<DL>
<DT><STRONG>readGetNext</STRONG>(
*<STRONG>args</STRONG>
)</DT>
<DD>
<P>
The <STRONG>readGetNext</STRONG> method is invoked by SNMP engine
to fetch Managed Object Instance's value. This method must return a tuple
of (<STRONG>name</STRONG>, <STRONG>value</STRONG>) which is returned by
overloaded method invocation. Custom implementation may replace the
<STRONG>value</STRONG> part by its own version taken from third-party
sources.
</P>
</DD>
</DL>
</P>
<P>
The following is a re-implementation of file size monitor:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
class FileWatcherInstance(MibScalarInstance):
def readTest(self, name, val, idx, (acFun, acCtx)):
MibScalarInstance.readTest(self, name, val, idx, (acFun, acCtx))
try:
os.stat('/var/adm/messages')
except StandardError, why:
raise ResourceUnavailableError(idx=idx, name=name)
def readGet(self, name, val, idx, (acFun, acCtx)):
name, val = MibScalarInstance.readGet(self, name, val, idx, (acFun, acCtx))
try:
return name, val.clone(os.stat('/var/adm/messages')[6])
except StandardError, why:
raise ResourceUnavailableError(idx=idx, name=name)
mibBuilder.exportSymbols(
'FILESIZE-MIB', FileWatcherInstance((1,3,6,1,4,1,20408,1), Integer())
)
</PRE>
</TD></TR></TABLE>
<P>
Value modification methods implemented by
<A HREF="#DATA-MODEL-MANAGED-OBJECTS">Managed Objects</A> and
invoked by SNMP engine in response to SNMP SET request:
</P>
<P>
<A NAME="writeTest"></A>
<DL>
<DT><STRONG>writeTest</STRONG>(
<STRONG>name</STRONG>,
<STRONG>value</STRONG>,
*<STRONG>args</STRONG>
)</DT>
<DD>
<P>
The <STRONG>writeTest</STRONG> method is invoked by SNMP engine prior to
performing actual Managed Object Instance value modification to give
implementation a chance to ensure that subsequent value modification
is likely to succeed.
</P>
<P>
Upon successful completion, this method brings Managed Object Instance into
a state of pending modification which ends through either calling
<A HREF="#writeCleanup">writeCleanup</A>() on success or
<A HREF="#writeUndo">writeUndo</A>() on failure.
</DD>
</DL>
</P>
<P>
<A NAME="writeCommit"></A>
<DL>
<DT><STRONG>writeCommit</STRONG>(
*<STRONG>args</STRONG>
)</DT>
<DD>
<P>
The <STRONG>writeCommit</STRONG> method is invoked by SNMP engine by way of
request processing in attempt to apply pending <STRONG>value</STRONG>,
previously passed to Managed Object Instance through
<A HREF="#writeTest">writeTest</A> method. Custom implementation may
attempt to apply pending <STRONG>value</STRONG> to a third-party system.
</P>
</DD>
</DL>
</P>
<P>
<A NAME="writeCleanup"></A>
<DL>
<DT><STRONG>writeCleanup</STRONG>(
*<STRONG>args</STRONG>
)</DT>
<DD>
<P>
The <STRONG>writeCleanup</STRONG> method is invoked by SNMP engine by way of
request processing to bring Managed Object Instance out of
pending value modification state. Custom implementation may attempt to
bring a third-party system out of value modification state.
</P>
</DD>
</DL>
</P>
<P>
<A NAME="writeUndo"></A>
<DL>
<DT><STRONG>writeUndo</STRONG>(
*<STRONG>args</STRONG>
)</DT>
<DD>
<P>
The <STRONG>writeUndo</STRONG> method is invoked by SNMP engine by way of
request processing to drop the <STRONG>value</STRONG> applied
to Managed Object Instance by the previously called
<A HREF="#writeCommit">writeCommit</A>() method and re-assign previous value.
This method also brings Managed Object Instance out of pending value
modification state. Custom implementation may attempt to bring a
third-party system out of value modification state.
</P>
</DD>
</DL>
</P>
<P>
The following is a re-implementation of SMI-to-filesystem binding for
file modification:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
class MyFileInstance(MibScalarInstance):
def writeTest(self, name, val, idx, (acFun, acCtx)):
MibScalarInstance.writeTest(self, name, val, idx, (acFun, acCtx))
try:
open('/tmp/myfile.new', 'w').write(val)
except StandardError, why:
raise ResourceUnavailableError(idx=idx, name=name)
def writeCommit(self, name, val, idx, (acFun, acCtx)):
MibScalarInstance.writeCommit(self, name, val, idx, (acFun, acCtx))
try:
os.rename('/tmp/myfile', '/tmp/myfile.old')
os.rename('/tmp/myfile.new', /tmp/myfile')
except StandardError, why:
raise ResourceUnavailableError(idx=idx, name=name)
def writeCleanup(self, name, val, idx, (acFun, acCtx)):
MibScalarInstance.writeCleanup(self, name, val, idx, (acFun, acCtx))
try:
os.unlink('/tmp/myfile.old')
except StandardError, why:
raise ResourceUnavailableError(idx=idx, name=name)
def writeUndo(self, name, val, idx, (acFun, acCtx)):
MibScalarInstance.writeUndo(self, name, val, idx, (acFun, acCtx))
try:
os.rename('/tmp/myfile.old', '/tmp/myfile')
except StandardError, why:
raise ResourceUnavailableError(idx=idx, name=name)
mibBuilder.exportSymbols(
'MYFILE-MIB', MyFileInstance((1,3,6,1,4,1,20408,1), OctetString())
)
</PRE>
</TD></TR></TABLE>
<P>
Table row creation methods implemented by
<A HREF="#DATA-MODEL-MANAGED-OBJECTS">Managed Objects</A> and
invoked by SNMP engine in response to SNMP SET request against
a non-existent or <B>SNMPv2-TC::RowStatus</B> type Table Column
Instance (table cell) object:
</P>
<P>
<A NAME="createTest"></A>
<DL>
<DT><STRONG>createTest</STRONG>(
<STRONG>name</STRONG>,
<STRONG>value</STRONG>,
*<STRONG>args</STRONG>
)</DT>
<DD>
<P>
The <STRONG>createTest</STRONG> method is invoked by SNMP engine as a
first step of Columnar Instance (e.g. Managed Object Instance) creation
to make sure the column instance could be created and optionally supplied
value is good. Custom implementation may attempt to create a new object
at a third-party system.
</P>
<P>
The <STRONG>name</STRONG> and <STRONG>value</STRONG> parameters hold
OID/value pair as arrived in request.
</P>
<P>
Upon successful completion, this method brings Managed Object Instance into
a state of pending creation which ends through either calling
<A HREF="#createCleanup">createCleanup</A>() on success or
<A HREF="#createUndo">createUndo</A>() on failure.
</P>
</DD>
</DL>
</P>
<P>
<A NAME="createCommit"></A>
<DL>
<DT><STRONG>createCommit</STRONG>(
*<STRONG>args</STRONG>
)</DT>
<DD>
<P>
The <STRONG>createCommit</STRONG> method is invoked by SNMP engine by way
of Columnar Object creation to indicate that newly created Columnar Object
has been brough on-line and in attempt to apply [optional] pending
<STRONG>value</STRONG>, as passed through
<A HREF="#createTest">createTest</A>() method. Custom implementation may
bring previously created object on-line at a third-party system.
</P>
</DD>
</DL>
</P>
<P>
<A NAME="createCleanup"></A>
<DL>
<DT><STRONG>createCleanup</STRONG>(
*<STRONG>args</STRONG>
)</DT>
<DD>
<P>
The <STRONG>createCleanup</STRONG> method is invoked by SNMP engine by way
of Columnar Instance creation to indicate a success. Custom implementation
may pass this information to a third-party system.
</P>
</DD>
</DL>
</P>
<P>
<A NAME="createUndo"></A>
<DL>
<DT><STRONG>createUndo</STRONG>(
*<STRONG>args</STRONG>
)</DT>
<DD>
<P>
The <STRONG>createUndo</STRONG> method is invoked by SNMP engine by way
of Columnar Instance creation to indicate a failure. Custom implementation
may destroy previously created object at a third-party system.
</P>
</DD>
</DL>
</P>
<P>
The following is a SMI-to-filesystem binding for file creation:
</P>
<TABLE BGCOLOR="lightgray" BORDER=0 WIDTH=100%><TR><TD>
<PRE>
class MyFileInstance(MibScalarInstance):
def createTest(self, name, val, idx, (acFun, acCtx)):
MibScalarInstance.createTest(self, name, val, idx, (acFun, acCtx))
# Build path to file to create from column index
myFileEntry, = mibBuilder.importSymbols('MYFILE-MIB', 'myFileEntry')
indices = myFileEntry.getIndicesFromInstId(name[myFileEntry.getName()+1:])
self.__myFile = apply(os.path.join, indices)
try:
open('%s.new' % self.__myFile, 'w')
except StandardError, why:
raise ResourceUnavailableError(idx=idx, name=name)
def createCommit(self, name, val, idx, (acFun, acCtx)):
MibScalarInstance.createCommit(self, name, val, idx, (acFun, acCtx))
try:
os.rename(self.__myFile, '%s.old' % self.__myFile)
os.rename('%s.new' % self.__myFile, self.__myFile)
except StandardError, why:
raise ResourceUnavailableError(idx=idx, name=name)
def createCleanup(self, name, val, idx, (acFun, acCtx)):
MibScalarInstance.createCleanup(self, name, val, idx, (acFun, acCtx))
try:
os.unlink('%s.old' % self.__myFile)
except StandardError, why:
raise ResourceUnavailableError(idx=idx, name=name)
def createUndo(self, name, val, idx, (acFun, acCtx)):
MibScalarInstance.createUndo(self, name, val, idx, (acFun, acCtx))
try:
os.rename('%s.old' % self.__myFile, self.__myFile)
except StandardError, why:
raise ResourceUnavailableError(idx=idx, name=name)
# Register custom Managed Object Instance at Column
myFileColumn, = mibBuilder.importSymbols('MYFILE-MIB', 'myFileColumn')
myFileColumn.setProtoInstance(MyFileInstance)
</PRE>
</TD></TR></TABLE>
<P>
In the above example, it is assumed that there is a MIB module named
<STRONG>MYFILE-MIB</STRONG> where
<A HREF="#MibTableColumn">a MIB table column</A> named
<STRONG>myFileColumn</STRONG> is defined.
</P>
<HR>
<A NAME="APPENDIXIES"></A>
<H4>
Appendixies
</H4>
<A NAME="ASN1">
<H4>
ASN.1 standard
</H4>
<P>
SNMP relies on Abstract Syntax Notation One (ASN.1)
<A HREF="http://www.itu.int/ITU-T/studygroups/com17/languages/index.html">
ITU-T standard
</A>. It is actually a family of standards targeting network systems
interoperability and protocols development automation.
</P>
<P>
In theory, ASN.1 technology provides a complete solution for protocol
development: new protocol could be expressed in terms of
data structures described in a specialized formal language.
</P>
<P>
The ASN.1 notation is designed purely for data description. All data
structures there are based on a small set of elementary data types,
such as INTEGER or SEQUENCE OF some other types.
</P>
<P>
Whenever protocol designer wants to define a more precise, narrow set of
valid values for a field, a <STRONG>subtype</STRONG> can be created from a base ASN.1
type or another subtype by tearing up a <STRONG>constraint</STRONG> on various data
properties to parent ASN.1 type. For example, a subtype of in INTEGER may
allow only arbitrary values of an integer.
</P>
<P>
Another way to create a <STRONG>subtype</STRONG> from existing type is to add
or replace ASN.1 <STRONG>tag</STRONG>, which serves like an ID for a type. In this
new type has all the same properties of its parent type but is now known
under a different name.
</P>
<P>
Once something gets expressed in ASN.1 notation, it could then be
automatically translated into a variety of platform-specific implementations.
They are often take shape of a program written in some common programming
language like C or Python.
</P>
<P>
This is where the major feature of ASN.1 emerges. ASN.1 text could be
automatically compiled into a high-quality code, that handles all the
nightmares of platform-specifics, virtually for free. This code would
handle byte-ordering and value ranges, data structures validations and
consistency issues.
</P>
<P>
But the most useful feature is its ability to represent data in a way
suitable for transmission over a communication medium. This is called
<A HREF="#ASN1-ENCODING">encoding</A> in ASN.1, and also known as
<STRONG>concrete or transfer syntax</STRONG> in computer science.
</P>
<P>
SNMP uses these features of ASN.1 for handling Managed Objects and guiding
protocol operations.
</P>
<A NAME="OID">
<H4>
Object Identifier
</H4>
<P>
This technique is a simple, unambiguous, decentralized and extensible
method of naming anything. It was developed within ASN.1 standard as
one of its build-in data types.
</P>
<P>
An Object Identifier consists of a sequence of integers. Each integer in
this sequence maps to a node in a tree, so iterating an OID traverses this
tree from root to leaf, forming a branch. Nodes in OID tree hold a group of
conceptually related objects. Nodes become more specific from root to
leaves. Sub-trees, or parts of OID space, often become a courtesy of various
organizations and individuals.
</P>
<P>
OIDs are conventionally written as a dot-separated sequence of integers, from
left to right as from root to leaves. For example, .1.3.6.1 is an arbitrary
OID.
</P>
<P>
For the purpose of making OIDs human-readable, integers in OIDs
(AKA sub-OIDs) can be replaced with a textual labels. Consider
.org.iso.dod.internet as a labeled version of the previous example.
The numeric and labeled OID representations are invariant and may mix
within a single OID.
</P>
<A NAME="ASN1-ENCODING">
<H4>
ASN.1 data encoding
</H4>
<P>
For several entities to exchange ASN.1 data items some common transmission
protocol is needed. This protocol would have to be able to represent
ASN.1 values in a platform-native way. This might require handling hardware
and/or software specific issues such as varying integer sizes, byte ordering,
character encoding and so
on.
</P>
<P>
Besides data representation issues, this communication protocol would
have to break up data being transmitted into small chunks. The reason
is that most data transmission technologies handle only a few bits in
a channel at any moment of time. After buffering and packing up few bits
into larger chunks, most link-level protocols still handle information
in small grains. Typical measurement is eight bit or octet.
</P>
<P>
For all the reasons mentioned above, ASN.1 family of standards
suggests several methods of two-way ASN.1 data conversion protocols.
They are sometimes referred to as data <STRONG>encoding</STRONG> or
<STRONG>serialization</STRONG>.
</P>
<P>
SNMP uses somewhat restricted flavor of <STRONG>Basic Encoding Rules</STRONG>
(BER) for its ASN.1 data serialization purposes. The SNMP-specific
restrictions make BER encoding deterministic -- with these restrictions
applied, there is a one-to-one mapping between ASN.1 value and octet-stream
produced by BER encoder. Determinism in encoding makes it possible for
trivial SNMP entities to reduce their SNMP engine implementation to opaque
octet-streams manipulations.
</P>
<HR>
<I>
<P>
Disclaimer: this document is a work-in-progress.
It is neither complete nor accurate.
Take it with a grain of salt!
</P>
</I>
</TR></TD></TABLE>
</TR></TD></TABLE>
</BODY>
</HTML>
|