This file is indexed.

/usr/share/pyshared/pyNN/standardmodels/cells.py is in python-pynn 0.7.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""
Definition of default parameters (and hence, standard parameter names) for
standard cell models.

Plain integrate-and-fire models:
    IF_curr_exp
    IF_curr_alpha
    IF_cond_exp
    IF_cond_alpha
    
Integrate-and-fire with adaptation:
    IF_cond_exp_gsfa_grr
    EIF_cond_alpha_isfa_ista
    EIF_cond_exp_isfa_ista    
    
Integrate-and-fire model for use with the FACETS hardware
    IF_facets_hardware1
    
Hodgkin-Huxley model
    HH_cond_exp

Spike sources (input neurons) 
    SpikeSourcePoisson
    SpikeSourceArray
    SpikeSourceInhGamma

:copyright: Copyright 2006-2011 by the PyNN team, see AUTHORS.
:license: CeCILL, see LICENSE for details.
"""

import numpy
from pyNN.standardmodels import StandardCellType

class IF_curr_alpha(StandardCellType):
    """
    Leaky integrate and fire model with fixed threshold and alpha-function-
    shaped post-synaptic current.
    """
    
    default_parameters = {
        'v_rest'     : -65.0,   # Resting membrane potential in mV. 
        'cm'         :   1.0,   # Capacity of the membrane in nF
        'tau_m'      :  20.0,   # Membrane time constant in ms.
        'tau_refrac' :   0.1,   # Duration of refractory period in ms. 
        'tau_syn_E'  :   0.5,   # Rise time of the excitatory synaptic alpha function in ms.
        'tau_syn_I'  :   0.5,   # Rise time of the inhibitory synaptic alpha function in ms.
        'i_offset'   :   0.0,   # Offset current in nA
        'v_reset'    : -65.0,   # Reset potential after a spike in mV.
        'v_thresh'   : -50.0,   # Spike threshold in mV.
    }
    recordable = ['spikes', 'v']
    conductance_based = False
    default_initial_values = {
        'v': -65.0, #'v_rest',
    }

class IF_curr_exp(StandardCellType):
    """
    Leaky integrate and fire model with fixed threshold and
    decaying-exponential post-synaptic current. (Separate synaptic currents for
    excitatory and inhibitory synapses.
    """
    
    default_parameters = {
        'v_rest'     : -65.0,   # Resting membrane potential in mV. 
        'cm'         : 1.0,     # Capacity of the membrane in nF
        'tau_m'      : 20.0,    # Membrane time constant in ms.
        'tau_refrac' : 0.1,     # Duration of refractory period in ms. 
        'tau_syn_E'  : 5.0,     # Decay time of excitatory synaptic current in ms.
        'tau_syn_I'  : 5.0,     # Decay time of inhibitory synaptic current in ms.
        'i_offset'   : 0.0,     # Offset current in nA
        'v_reset'    : -65.0,   # Reset potential after a spike in mV.
        'v_thresh'   : -50.0,   # Spike threshold in mV.
    }
    recordable = ['spikes', 'v']
    conductance_based = False
    default_initial_values = {
        'v': -65.0, #'v_rest',
    }

class IF_cond_alpha(StandardCellType):
    """
    Leaky integrate and fire model with fixed threshold and alpha-function-
    shaped post-synaptic conductance.
    """
    
    default_parameters = {
        'v_rest'     : -65.0,   # Resting membrane potential in mV. 
        'cm'         : 1.0,     # Capacity of the membrane in nF
        'tau_m'      : 20.0,    # Membrane time constant in ms.
        'tau_refrac' : 0.1,     # Duration of refractory period in ms.
        'tau_syn_E'  : 0.3,     # Rise time of the excitatory synaptic alpha function in ms.
        'tau_syn_I'  : 0.5,     # Rise time of the inhibitory synaptic alpha function in ms.
        'e_rev_E'    : 0.0,     # Reversal potential for excitatory input in mV
        'e_rev_I'    : -70.0,   # Reversal potential for inhibitory input in mV
        'v_thresh'   : -50.0,   # Spike threshold in mV.
        'v_reset'    : -65.0,   # Reset potential after a spike in mV.
        'i_offset'   : 0.0,     # Offset current in nA
    }
    recordable = ['spikes', 'v', 'gsyn']
    default_initial_values = {
        'v': -65.0, #'v_rest',
    }
    
class IF_cond_exp(StandardCellType):
    """
    Leaky integrate and fire model with fixed threshold and 
    exponentially-decaying post-synaptic conductance.
    """
    
    default_parameters = {
        'v_rest'     : -65.0,   # Resting membrane potential in mV. 
        'cm'         : 1.0,     # Capacity of the membrane in nF
        'tau_m'      : 20.0,    # Membrane time constant in ms.
        'tau_refrac' : 0.1,     # Duration of refractory period in ms.
        'tau_syn_E'  : 5.0,     # Decay time of the excitatory synaptic conductance in ms.
        'tau_syn_I'  : 5.0,     # Decay time of the inhibitory synaptic conductance in ms.
        'e_rev_E'    : 0.0,     # Reversal potential for excitatory input in mV
        'e_rev_I'    : -70.0,   # Reversal potential for inhibitory input in mV
        'v_thresh'   : -50.0,   # Spike threshold in mV.
        'v_reset'    : -65.0,   # Reset potential after a spike in mV.
        'i_offset'   : 0.0,     # Offset current in nA
    }
    recordable = ['spikes', 'v', 'gsyn']
    default_initial_values = {
        'v': -65.0, #'v_rest',
    }

class IF_cond_exp_gsfa_grr(StandardCellType):
    """
    Linear leaky integrate and fire model with fixed threshold,
    decaying-exponential post-synaptic conductance, conductance based
    spike-frequency adaptation, and a conductance-based relative refractory
    mechanism.

    See: Muller et al (2007) Spike-frequency adapting neural ensembles: Beyond
    mean-adaptation and renewal theories. Neural Computation 19: 2958-3010.

    See also: EIF_cond_alpha_isfa_ista
    """
    
    default_parameters = {
        'v_rest'     : -65.0,   # Resting membrane potential in mV. 
        'cm'         : 1.0,     # Capacity of the membrane in nF
        'tau_m'      : 20.0,    # Membrane time constant in ms.
        'tau_refrac' : 0.1,     # Duration of refractory period in ms.
        'tau_syn_E'  : 5.0,     # Decay time of the excitatory synaptic conductance in ms.
        'tau_syn_I'  : 5.0,     # Decay time of the inhibitory synaptic conductance in ms.
        'e_rev_E'    : 0.0,     # Reversal potential for excitatory input in mV
        'e_rev_I'    : -70.0,   # Reversal potential for inhibitory input in mV
        'v_thresh'   : -50.0,   # Spike threshold in mV.
        'v_reset'    : -65.0,   # Reset potential after a spike in mV.
        'i_offset'   : 0.0,     # Offset current in nA
        'tau_sfa'    : 100.0,   # Time constant of spike-frequency adaptation in ms
        'e_rev_sfa'  : -75.0,   # spike-frequency adaptation conductance reversal potential in mV
        'q_sfa'      : 15.0,    # Quantal spike-frequency adaptation conductance increase in nS
        'tau_rr'     : 2.0,     # Time constant of the relative refractory mechanism in ms
        'e_rev_rr'   : -75.0,   # relative refractory mechanism conductance reversal potential in mV
        'q_rr'       : 3000.0   # Quantal relative refractory conductance increase in nS   
    }
    recordable = ['spikes', 'v', 'gsyn']
    default_initial_values = {
        'v': -65.0, #'v_rest',
    }
    
class IF_facets_hardware1(StandardCellType):
    """
    Leaky integrate and fire model with conductance-based synapses and fixed 
    threshold as it is resembled by the FACETS Hardware Stage 1. 
    
    The following parameters can be assumed for a corresponding software
    simulation: cm = 0.2 nF, tau_refrac = 1.0 ms, e_rev_E = 0.0 mV.  
    For further details regarding the hardware model see the FACETS-internal Wiki:
    https://facets.kip.uni-heidelberg.de/private/wiki/index.php/WP7_NNM
    """
    
    default_parameters = {
        'g_leak'    :   40.0,     # nS
        'tau_syn_E' :   30.0,     # ms
        'tau_syn_I' :   30.0,     # ms
        'v_reset'   :  -80.0,     # mV
        'e_rev_I'   :  -80.0,     # mV,
        'v_rest'    :  -65.0,     # mV
        'v_thresh'  :  -55.0      # mV
    }
    recordable = ['spikes', 'v', 'gsyn']
    default_initial_values = {
        'v': -65.0, #'v_rest',
    }

class HH_cond_exp(StandardCellType):
    """Single-compartment Hodgkin-Huxley model.
    Reference: 
    Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991.
    """
    
    default_parameters = {
        'gbar_Na'   : 20.0, # uS
        'gbar_K'    : 6.0,  # uS
        'g_leak'    : 0.01, # uS
        'cm'        : 0.2,  # nF
        'v_offset'  : -63.0, # mV
        'e_rev_Na'  : 50.0,
        'e_rev_K'   : -90.0,
        'e_rev_leak': -65.0,
        'e_rev_E'   : 0.0,
        'e_rev_I'   : -80.0,
        'tau_syn_E' : 0.2, # ms
        'tau_syn_I' : 2.0,
        'i_offset'  : 0.0, # nA
    }
    recordable = ['spikes', 'v', 'gsyn']
    default_initial_values = {
        'v': -65.0, #'v_rest',
    }

class EIF_cond_alpha_isfa_ista(StandardCellType):
    """
    Exponential integrate and fire neuron with spike triggered and
    sub-threshold adaptation currents (isfa, ista reps.) according to:
    
    Brette R and Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model
    as an Effective Description of Neuronal Activity. J Neurophysiol 94:3637-3642

    See also: IF_cond_exp_gsfa_grr, EIF_cond_exp_isfa_ista
    """
    
    default_parameters = {
        'cm'        : 0.281,  # Capacitance of the membrane in nF
        'tau_refrac': 0.1,    # Duration of refractory period in ms.
        'v_spike'   : -40.0,    # Spike detection threshold in mV.
        'v_reset'   : -70.6,  # Reset value for V_m after a spike. In mV.
        'v_rest'    : -70.6,  # Resting membrane potential (Leak reversal potential) in mV.
        'tau_m'     : 9.3667, # Membrane time constant in ms
        'i_offset'  : 0.0,    # Offset current in nA
        'a'         : 4.0,    # Subthreshold adaptation conductance in nS.
        'b'         : 0.0805, # Spike-triggered adaptation in nA
        'delta_T'   : 2.0,    # Slope factor in mV
        'tau_w'     : 144.0,  # Adaptation time constant in ms
        'v_thresh'  : -50.4,  # Spike initiation threshold in mV
        'e_rev_E'   : 0.0,    # Excitatory reversal potential in mV.
        'tau_syn_E' : 5.0,    # Rise time of excitatory synaptic conductance in ms (alpha function).
        'e_rev_I'   : -80.0,  # Inhibitory reversal potential in mV.
        'tau_syn_I' : 5.0,    # Rise time of the inhibitory synaptic conductance in ms (alpha function).
    }
    recordable = ['spikes', 'v', 'w', 'gsyn']
    default_initial_values = {
        'v': -65.0, #'v_rest',
        'w': 0.0,
    }

class EIF_cond_exp_isfa_ista(StandardCellType):
    """
    Exponential integrate and fire neuron with spike triggered and
    sub-threshold adaptation currents (isfa, ista reps.) according to:
    
    Brette R and Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model
    as an Effective Description of Neuronal Activity. J Neurophysiol 94:3637-3642

    See also: IF_cond_exp_gsfa_grr, EIF_cond_alpha_isfa_ista
    """
    
    default_parameters = {
        'cm'        : 0.281,  # Capacitance of the membrane in nF
        'tau_refrac': 0.1,    # Duration of refractory period in ms.
        'v_spike'   : -40.0,    # Spike detection threshold in mV.
        'v_reset'   : -70.6,  # Reset value for V_m after a spike. In mV.
        'v_rest'    : -70.6,  # Resting membrane potential (Leak reversal potential) in mV.
        'tau_m'     : 9.3667, # Membrane time constant in ms
        'i_offset'  : 0.0,    # Offset current in nA
        'a'         : 4.0,    # Subthreshold adaptation conductance in nS.
        'b'         : 0.0805, # Spike-triggered adaptation in nA
        'delta_T'   : 2.0,    # Slope factor in mV
        'tau_w'     : 144.0,  # Adaptation time constant in ms
        'v_thresh'  : -50.4,  # Spike initiation threshold in mV
        'e_rev_E'   : 0.0,    # Excitatory reversal potential in mV.
        'tau_syn_E' : 5.0,    # Decay time constant of excitatory synaptic conductance in ms.
        'e_rev_I'   : -80.0,  # Inhibitory reversal potential in mV.
        'tau_syn_I' : 5.0,    # Decay time constant of the inhibitory synaptic conductance in ms.
    }
    recordable = ['spikes', 'v', 'w', 'gsyn']
    default_initial_values = {
        'v': -65.0, #'v_rest',
        'w': 0.0,
    }


class SpikeSourcePoisson(StandardCellType):
    """Spike source, generating spikes according to a Poisson process."""

    default_parameters = {
        'rate'     : 1.0,     # Mean spike frequency (Hz)
        'start'    : 0.0,     # Start time (ms)
        'duration' : 1e10      # Duration of spike sequence (ms)
    }
    recordable = ['spikes']
    injectable = False
    synapse_types = ()


class SpikeSourceInhGamma(StandardCellType):
    """
    Spike source, generating realizations of an inhomogeneous gamma process,
    employing the thinning method.

    See: Muller et al (2007) Spike-frequency adapting neural ensembles: Beyond
    mean-adaptation and renewal theories. Neural Computation 19: 2958-3010.
    """

    default_parameters = {
        'a'        : numpy.array([1.0]), # time histogram of parameter a of a gamma distribution (dimensionless)
        'b'        : numpy.array([1.0]), # time histogram of parameter b of a gamma distribution (seconds)
        'tbins'    : numpy.array([0.0]),   # time bins of the time histogram of a,b in units of ms
        'start'    : 0.0,                # Start time (ms)
        'duration' : 1e10                 # Duration of spike sequence (ms)
    }
    recordable = ['spikes']
    injectable = False
    synapse_types = ()


class SpikeSourceArray(StandardCellType):
    """Spike source generating spikes at the times given in the spike_times array."""
    
    default_parameters = { 'spike_times' : [] } # list or numpy array containing spike times in milliseconds.
    recordable = ['spikes']
    injectable = False
    synapse_types = ()    
           
    def __init__(self, parameters):
        if parameters and 'spike_times' in parameters:
            parameters['spike_times'] = numpy.array(parameters['spike_times'], 'float')
        StandardCellType.__init__(self, parameters)