/usr/share/pyshared/pyNN/space.py is in python-pynn 0.7.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | # encoding: utf-8
"""
Tools for performing spatial/topographical calculations.
Classes:
Space - representation of a Cartesian space for use in calculating
distances
Line - represents a structure with neurons distributed evenly on a
straight line.
Grid2D - represents a structure with neurons distributed on a 2D grid.
Grid3D - represents a structure with neurons distributed on a 3D grid.
RandomStructure - represents a structure with neurons distributed randomly
within a given volume.
Cuboid - representation of a cuboidal volume, for use with RandomStructure.
Sphere - representation of a spherical volume, for use with RandomStructure.
:copyright: Copyright 2006-2011 by the PyNN team, see AUTHORS.
:license: CeCILL, see LICENSE for details.
"""
# There must be some Python package out there that provides most of this stuff.
import numpy
import math
from operator import and_
from pyNN.random import NumpyRNG
from pyNN import descriptions
import logging
logger = logging.getLogger("PyNN")
def distance(src, tgt, mask=None, scale_factor=1.0, offset=0.0,
periodic_boundaries=None): # may need to add an offset parameter
"""
Return the Euclidian distance between two cells.
`mask` allows only certain dimensions to be considered, e.g.::
* to ignore the z-dimension, use `mask=array([0,1])`
* to ignore y, `mask=array([0,2])`
* to just consider z-distance, `mask=array([2])`
`scale_factor` allows for different units in the pre- and post- position
(the post-synaptic position is multipied by this quantity).
"""
d = src.position - scale_factor*(tgt.position + offset)
if not periodic_boundaries == None:
d = numpy.minimum(abs(d), periodic_boundaries-abs(d))
if mask is not None:
d = d[mask]
return numpy.sqrt(numpy.dot(d, d))
class Space(object):
"""
Class representing a space within distances can be calculated. The space
is Cartesian, may be 1-, 2- or 3-dimensional, and may have periodic
boundaries in any of the dimensions.
"""
AXES = {'x' : [0], 'y': [1], 'z': [2],
'xy': [0,1], 'yz': [1,2], 'xz': [0,2], 'xyz': range(3), None: range(3)}
def __init__(self, axes=None, scale_factor=1.0, offset=0.0,
periodic_boundaries=None):
"""
axes -- if not supplied, then the 3D distance is calculated. If supplied,
axes should be a string containing the axes to be used, e.g. 'x', or
'yz'. axes='xyz' is the same as axes=None.
scale_factor -- it may be that the pre and post populations use
different units for position, e.g. degrees and µm. In this case,
`scale_factor` can be specified, which is applied to the positions
in the post-synaptic population.
offset -- if the origins of the coordinate systems of the pre- and post-
synaptic populations are different, `offset` can be used to adjust
for this difference. The offset is applied before any scaling.
periodic_boundaries -- either `None`, or a tuple giving the boundaries
for each dimension, e.g. `((x_min, x_max), None, (z_min, z_max))`.
"""
self.periodic_boundaries = periodic_boundaries
self.axes = numpy.array(Space.AXES[axes])
self.scale_factor = scale_factor
self.offset = offset
def distances(self, A, B, expand=False):
"""
Calculate the distance matrix between two sets of coordinates, given
the topology of the current space.
From http://projects.scipy.org/pipermail/numpy-discussion/2007-April/027203.html
"""
if len(A.shape) == 1:
A = A.reshape(3, 1)
if len(B.shape) == 1:
B = B.reshape(3, 1)
B = self.scale_factor*(B + self.offset)
d = numpy.zeros((len(self.axes), A.shape[1], B.shape[1]), dtype=A.dtype)
for i,axis in enumerate(self.axes):
diff2 = A[axis,:,None] - B[axis, :]
if self.periodic_boundaries is not None:
boundaries = self.periodic_boundaries[axis]
if boundaries is not None:
range = boundaries[1]-boundaries[0]
ad2 = abs(diff2)
diff2 = numpy.minimum(ad2, range-ad2)
diff2 **= 2
d[i] = diff2
if not expand:
d = numpy.sum(d, 0)
numpy.sqrt(d, d)
return d
def distance_generator(self, f, g):
"""
Return a function that calculates the distance matrix as a function of
indices i,j, given two functions f(i) and g(j) that return coordinates.
"""
def distance_map(i, j):
d = self.distances(f(i), g(j))
if d.shape[0] == 1:
d = d[0,:] # arguably this transformation should go in distances()
elif d.shape[1] == 1:
d = d[:,0]
return d
return distance_map
class BaseStructure(object):
def __eq__(self, other):
return reduce(and_, (getattr(self, attr) == getattr(other, attr)
for attr in self.parameter_names))
def get_parameters(self):
P = {}
for name in self.parameter_names:
P[name] = getattr(self, name)
return P
def describe(self, template='structure_default.txt', engine='default'):
"""
Returns a human-readable description of the network structure.
The output may be customized by specifying a different template
togther with an associated template engine (see ``pyNN.descriptions``).
If template is None, then a dictionary containing the template context
will be returned.
"""
context = {'name': self.__class__.__name__,
'parameters': self.get_parameters()}
return descriptions.render(engine, template, context)
class Line(BaseStructure):
"""
Represents a structure with neurons distributed evenly on a straight line.
"""
parameter_names = ("dx", "x0", "y", "z")
def __init__(self, dx=1.0, x0=0.0, y=0.0, z=0.0):
self.dx = dx
self.x0 = x0
self.y = y
self.z = z
def generate_positions(self, n):
x = self.dx*numpy.arange(n, dtype=float) + self.x0
y = numpy.zeros(n) + self.y
z = numpy.zeros(n) + self.z
return numpy.array((x,y,z))
class Grid2D(BaseStructure):
"""
Represents a structure with neurons distributed on a 2D grid.
"""
parameter_names = ("aspect_ratio", "dx", "dy", "x0", "y0", "fill_order")
def __init__(self, aspect_ratio=1.0, dx=1.0, dy=1.0, x0=0.0, y0=0.0, z=0, fill_order="sequential"):
"""
aspect_ratio - ratio of the number of grid points per side (not the ratio
of the side lengths, unless dx == dy)
"""
self.aspect_ratio = aspect_ratio
assert fill_order in ('sequential', 'random')
self.fill_order = fill_order
self.dx = dx; self.dy = dy; self.x0 = x0; self.y0 = y0; self.z = z
def calculate_size(self, n):
nx = math.sqrt(n*self.aspect_ratio)
if n%nx != 0:
raise Exception("Invalid size")
ny = n/nx
return nx, ny
def generate_positions(self, n):
nx, ny = self.calculate_size(n)
x,y,z = numpy.indices((nx,ny,1), dtype=float)
x = self.x0 + self.dx*x.flatten()
y = self.y0 + self.dy*y.flatten()
z = self.z + z.flatten()
positions = numpy.array((x,y,z)) # use column_stack, if we decide to switch from (3,n) to (n,3)
if self.fill_order == 'sequential':
return positions
else: # random
return numpy.random.permutation(positions.T).T
class Grid3D(BaseStructure):
"""
Represents a structure with neurons distributed on a 3D grid.
"""
parameter_names = ("aspect_ratios", "dx", "dy", "dz", "x0", "y0", "z0", "fill_order")
def __init__(self, aspect_ratioXY=1.0, aspect_ratioXZ=1.0, dx=1.0, dy=1.0, dz=1.0, x0=0.0, y0=0.0, z0=0,
fill_order="sequential"):
"""
If fill_order is 'sequential', the z-index will be filled first, then y then x, i.e.
the first cell will be at (0,0,0) (given default values for the other arguments),
the second at (0,0,1), etc.
"""
self.aspect_ratios = (aspect_ratioXY, aspect_ratioXZ)
assert fill_order in ('sequential', 'random')
self.fill_order = fill_order
self.dx = dx; self.dy = dy; self.dz = dz
self.x0 = x0; self.y0 = y0; self.z0 = z0
def calculate_size(self, n):
a,b = self.aspect_ratios
nx = int(round(math.pow(n*a*b, 1/3.0)))
ny = int(round(nx/a))
nz = int(round(nx/b))
assert nx*ny*nz == n, str((nx, ny, nz, nx*ny*nz, n, a, b))
return nx, ny, nz
def generate_positions(self, n):
nx, ny, nz = self.calculate_size(n)
x,y,z = numpy.indices((nx,ny,nz), dtype=float)
x = self.x0 + self.dx*x.flatten()
y = self.y0 + self.dy*y.flatten()
z = self.z0 + self.dz*z.flatten()
if self.fill_order == 'sequential':
return numpy.array((x,y,z))
else:
raise NotImplementedError
class Shape(object):
pass
class Cuboid(Shape):
"""
Represents a cuboidal volume within which neurons may be distributed.
"""
def __init__(self, width, height, depth):
"""
height: extent in y direction
width: extent in x direction
depth: extent in z direction
"""
self.height = height
self.width = width
self.depth = depth
def sample(self, n, rng):
return 0.5*rng.uniform(-1, 1, size=(n,3)) * (self.width, self.height, self.depth)
class Sphere(Shape):
"""
Represents a spherical volume within which neurons may be distributed.
"""
def __init__(self, radius):
Shape.__init__(self)
self.radius = radius
def sample(self, n, rng):
# this implementation is wasteful, as it throws away a lot of numbers,
# but simple. More efficient implementations welcome.
positions = numpy.empty((n,3))
i = 0
while i < n:
candidate = rng.uniform(-1, 1, size=(1,3))
if (candidate**2).sum() < 1:
positions[i] = candidate
i += 1
return self.radius*positions
class RandomStructure(BaseStructure):
"""
Represents a structure with neurons distributed randomly within a given
volume.
"""
parameter_names = ('boundary', 'origin', 'rng')
def __init__(self, boundary, origin=(0.0,0.0,0.0), rng=None):
"""
`boundary` - a subclass of Shape
`origin` - the coordinates (x,y,z) of the centre of the volume.
"""
assert isinstance(boundary, Shape)
assert len(origin) == 3
self.boundary = boundary
self.origin = origin
self.rng = rng or NumpyRNG()
def generate_positions(self, n):
return (numpy.array(self.origin) + self.boundary.sample(n, self.rng)).T
# what about rotations?
|