This file is indexed.

/usr/share/pyshared/pyNN/neuron/cells.py is in python-pynn 0.7.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# encoding: utf-8
"""
Standard cells for the neuron module.

:copyright: Copyright 2006-2011 by the PyNN team, see AUTHORS.
:license: CeCILL, see LICENSE for details.

$Id: cells.py 957 2011-05-03 13:44:15Z apdavison $
"""

from pyNN.standardmodels import cells, build_translations
from pyNN.models import BaseCellType
from pyNN import errors
from neuron import h, nrn, hclass
from simulator import state
from math import pi
import logging

logger = logging.getLogger("PyNN")

def _new_property(obj_hierarchy, attr_name):
    """
    Returns a new property, mapping attr_name to obj_hierarchy.attr_name.
    
    For example, suppose that an object of class A has an attribute b which
    itself has an attribute c which itself has an attribute d. Then placing
      e = _new_property('b.c', 'd')
    in the class definition of A makes A.e an alias for A.b.c.d
    """
    def set(self, value):
        obj = reduce(getattr, [self] + obj_hierarchy.split('.'))
        setattr(obj, attr_name, value)
    def get(self):
        obj = reduce(getattr, [self] + obj_hierarchy.split('.'))
        return getattr(obj, attr_name)
    return property(fset=set, fget=get)


class NativeCellType(BaseCellType):
    pass


class SingleCompartmentNeuron(nrn.Section):
    """docstring"""
    
    synapse_models = {
        'current':      { 'exp': h.ExpISyn, 'alpha': h.AlphaISyn },
        'conductance' : { 'exp': h.ExpSyn,  'alpha': h.AlphaSyn },
    }

    def __init__(self, syn_type, syn_shape, c_m, i_offset,
                 tau_e, tau_i, e_e, e_i):
        
        # initialise Section object with 'pas' mechanism
        nrn.Section.__init__(self)
        self.seg = self(0.5)
        self.L = 100
        self.seg.diam = 1000/pi # gives area = 1e-3 cm2
        
        self.source_section = self
        self.syn_type = syn_type
        self.syn_shape = syn_shape
        
        # insert synapses
        assert syn_type in ('current', 'conductance'), "syn_type must be either 'current' or 'conductance'. Actual value is %s" % syn_type
        assert syn_shape in ('alpha', 'exp'), "syn_type must be either 'alpha' or 'exp'"
        synapse_model = StandardIF.synapse_models[syn_type][syn_shape]
        self.esyn = synapse_model(0.5, sec=self)
        self.isyn = synapse_model(0.5, sec=self)
        if self.syn_shape == 'exp':
            if self.syn_type == 'conductance':
                self.esyn_TM = h.tmgsyn(0.5, sec=self)
                self.isyn_TM = h.tmgsyn(0.5, sec=self)
            else:
                self.esyn_TM = h.tmisyn(0.5, sec=self)
                self.isyn_TM = h.tmisyn(0.5, sec=self)
        
        # insert current source
        self.stim = h.IClamp(0.5, sec=self)
        self.stim.delay = 0
        self.stim.dur = 1e12
        self.stim.amp = i_offset

        # for recording
        self.spike_times = h.Vector(0)
        self.traces = {}
        self.gsyn_trace = {}
        self.recording_time = 0
        
        self.v_init = None

    @property
    def excitatory(self):
        return self.esyn

    @property
    def inhibitory(self):
        return self.isyn
    
    @property
    def excitatory_TM(self):
        if hasattr(self, 'esyn_TM'):
            return self.esyn_TM
        else:
            return None

    @property
    def inhibitory_TM(self):
        if hasattr(self, 'isyn_TM'):
            return self.isyn_TM
        else:
            return None

    def area(self):
        """Membrane area in µm²"""
        return pi*self.L*self.seg.diam

    c_m      = _new_property('seg', 'cm')
    i_offset = _new_property('stim', 'amp')
    
    def _get_tau_e(self):
        return self.esyn.tau
    def _set_tau_e(self, value):
        self.esyn.tau = value
        if hasattr(self, 'esyn_TM'):
            self.esyn_TM.tau = value
    tau_e = property(fget=_get_tau_e, fset=_set_tau_e)
    
    def _get_tau_i(self):
        return self.isyn.tau
    def _set_tau_i(self, value):
        self.isyn.tau = value
        if hasattr(self, 'isyn_TM'):
            self.isyn_TM.tau = value
    tau_i = property(fget=_get_tau_i, fset=_set_tau_i)
    
    def _get_e_e(self):
        return self.esyn.e
    def _set_e_e(self, value):
        self.esyn.e = value
        if hasattr(self, 'esyn_TM'):
            self.esyn_TM.e = value
    e_e = property(fget=_get_e_e, fset=_set_e_e)
    
    def _get_e_i(self):
        return self.isyn.e
    def _set_e_i(self, value):
        self.isyn.e = value
        if hasattr(self, 'isyn_TM'):
            self.isyn_TM.e = value
    e_i = property(fget=_get_e_i, fset=_set_e_i)
    
    def record(self, active):
        if active:
            rec = h.NetCon(self.source, None)
            rec.record(self.spike_times)
        else:
            self.spike_times = h.Vector(0)
    
    def record_v(self, active):
        if active:
            self.vtrace = h.Vector()
            self.vtrace.record(self(0.5)._ref_v)
            if not self.recording_time:
                self.record_times = h.Vector()
                self.record_times.record(h._ref_t)
                self.recording_time += 1
        else:
            self.vtrace = None
            self.recording_time -= 1
            if self.recording_time == 0:
                self.record_times = None
    
    def record_gsyn(self, syn_name, active):
        # how to deal with static and T-M synapses?
        # record both and sum?
        if active:
            self.gsyn_trace[syn_name] = h.Vector()
            self.gsyn_trace[syn_name].record(getattr(self, syn_name)._ref_g)
            if not self.recording_time:
                self.record_times = h.Vector()
                self.record_times.record(h._ref_t)
                self.recording_time += 1
        else:
            self.gsyn_trace[syn_name] = None
            self.recording_time -= 1
            if self.recording_time == 0:
                self.record_times = None
    
    def memb_init(self):
        assert self.v_init is not None, "cell is a %s" % self.__class__.__name__
        for seg in self:
            seg.v = self.v_init
        #self.seg.v = self.v_init

    def set_Tsodyks_Markram_synapses(self, ei, U, tau_rec, tau_facil, u0):
        if self.syn_shape == 'alpha':
            raise Exception("Tsodyks-Markram mechanism not available for alpha-function-shaped synapses.")
        elif ei == 'excitatory':
            syn = self.esyn_TM
        elif ei == 'inhibitory':
            syn = self.isyn_TM
        else:
            raise Exception("Tsodyks-Markram mechanism not yet implemented for user-defined synapse types. ei = %s" % ei)
        syn.U = U
        syn.tau_rec = tau_rec
        syn.tau_facil = tau_facil
        syn.u0 = u0

    def set_parameters(self, param_dict):
        for name in self.parameter_names:
            setattr(self, name, param_dict[name])


class LeakySingleCompartmentNeuron(SingleCompartmentNeuron):
    
    def __init__(self, syn_type, syn_shape, tau_m, c_m, v_rest, i_offset,
                 tau_e, tau_i, e_e, e_i):
        SingleCompartmentNeuron.__init__(self, syn_type, syn_shape, c_m, i_offset,
                                         tau_e, tau_i, e_e, e_i)
        self.insert('pas')
        self.v_init = v_rest # default value
        
    def __set_tau_m(self, value):
        #print "setting tau_m to", value, "cm =", self.seg.cm
        self.seg.pas.g = 1e-3*self.seg.cm/value # cm(nF)/tau_m(ms) = G(uS) = 1e-6G(S). Divide by area (1e-3) to get factor of 1e-3
    def __get_tau_m(self):
        #print "tau_m = ", 1e-3*self.seg.cm/self.seg.pas.g, "cm = ", self.seg.cm
        return 1e-3*self.seg.cm/self.seg.pas.g

    def __get_cm(self):
        #print "cm = ", self.seg.cm
        return self.seg.cm
    def __set_cm(self, value): # when we set cm, need to change g to maintain the same value of tau_m
        #print "setting cm to", value
        tau_m = self.tau_m
        self.seg.cm = value
        self.tau_m = tau_m

    v_rest = _new_property('seg.pas', 'e')
    tau_m  = property(fget=__get_tau_m, fset=__set_tau_m)
    c_m    = property(fget=__get_cm, fset=__set_cm) # if the property were called 'cm'
                                                    # it would never get accessed as the
                                                    # built-in Section.cm would always
                                                    # be used first


class StandardIF(LeakySingleCompartmentNeuron):
    """docstring"""
    
    def __init__(self, syn_type, syn_shape, tau_m=20, c_m=1.0, v_rest=-65,
                 v_thresh=-55, t_refrac=2, i_offset=0, v_reset=None,
                 tau_e=5, tau_i=5, e_e=0, e_i=-70):
        if v_reset is None:
            v_reset = v_rest
        LeakySingleCompartmentNeuron.__init__(self, syn_type, syn_shape, tau_m, c_m, v_rest,
                                              i_offset, tau_e, tau_i, e_e, e_i)       
        # insert spike reset mechanism
        self.spike_reset = h.ResetRefrac(0.5, sec=self)
        self.spike_reset.vspike = 40 # (mV) spike height
        self.source = self.spike_reset
        
        # process arguments
        self.parameter_names = ['c_m', 'tau_m', 'v_rest', 'v_thresh', 't_refrac',   # 'c_m' must come before 'tau_m'
                                'i_offset', 'v_reset', 'tau_e', 'tau_i']
        if syn_type == 'conductance':
            self.parameter_names.extend(['e_e', 'e_i'])
        self.set_parameters(locals())
        

    v_thresh = _new_property('spike_reset', 'vthresh')
    v_reset  = _new_property('spike_reset', 'vreset')
    t_refrac = _new_property('spike_reset', 'trefrac')


class BretteGerstnerIF(LeakySingleCompartmentNeuron):
    """docstring"""
    
    def __init__(self, syn_type, syn_shape, tau_m=20, c_m=1.0, v_rest=-65,
                 v_thresh=-55, t_refrac=2, i_offset=0,
                 tau_e=5, tau_i=5, e_e=0, e_i=-70,
                 v_spike=0.0, v_reset=-70.6, A=4.0, B=0.0805, tau_w=144.0,
                 delta=2.0):
        LeakySingleCompartmentNeuron.__init__(self, syn_type, syn_shape, tau_m,
                                              c_m, v_rest, i_offset,
                                              tau_e, tau_i, e_e, e_i)
    
        # insert Brette-Gerstner spike mechanism
        self.adexp = h.AdExpIF(0.5, sec=self)
        self.source = self.seg._ref_v
        
        self.parameter_names = ['c_m', 'tau_m', 'v_rest', 'v_thresh', 't_refrac',
                                'i_offset', 'v_reset', 'tau_e', 'tau_i',
                                'A', 'B', 'tau_w', 'delta', 'v_spike']
        if syn_type == 'conductance':
            self.parameter_names.extend(['e_e', 'e_i'])
        self.set_parameters(locals())
        self.w_init = None
    
    v_thresh = _new_property('adexp', 'vthresh')
    v_reset  = _new_property('adexp', 'vreset')
    t_refrac = _new_property('adexp', 'trefrac')
    B        = _new_property('adexp',  'b')
    A        = _new_property('adexp',  'a')
    ## using 'A' because for some reason, cell.a gives the error "NameError: a, the mechanism does not exist at PySec_170bb70(0.5)"   
    tau_w    = _new_property('adexp',  'tauw')
    delta    = _new_property('adexp',  'delta')
    
    def __set_v_spike(self, value):
        self.adexp.vspike = value
        self.adexp.vpeak = value + 10.0
    def __get_v_spike(self):
        return self.adexp.vspike
    v_spike = property(fget=__get_v_spike, fset=__set_v_spike)
    
    def __set_tau_m(self, value):
        self.seg.pas.g = 1e-3*self.seg.cm/value # cm(nF)/tau_m(ms) = G(uS) = 1e-6G(S). Divide by area (1e-3) to get factor of 1e-3
        self.adexp.GL = self.seg.pas.g * self.area() * 1e-2 # S/cm2 to uS
    def __get_tau_m(self):
        return 1e-3*self.seg.cm/self.seg.pas.g
    
    def __set_v_rest(self, value):
        self.seg.pas.e = value
        self.adexp.EL = value
    def __get_v_rest(self):
        return self.seg.pas.e
    tau_m  = property(fget=__get_tau_m, fset=__set_tau_m)   
    v_rest = property(fget=__get_v_rest, fset=__set_v_rest)
    
    def record(self, active):
        if active:
            self.rec = h.NetCon(self.source, None,
                                self.get_threshold(), 0.0, 0.0,
                                sec=self)
            self.rec.record(self.spike_times)

    def get_threshold(self):
        return self.adexp.vspike

    def memb_init(self):
        assert self.v_init is not None, "cell is a %s" % self.__class__.__name__
        assert self.w_init is not None
        for seg in self:
            seg.v = self.v_init
            seg.w = self.w_init


class GsfaGrrIF(StandardIF):
    """docstring"""
    
    def __init__(self, syn_type, syn_shape, tau_m=10.0, c_m=1.0, v_rest=-70.0,
                 v_thresh=-57.0, t_refrac=0.1, i_offset=0.0,
                 tau_e=1.5, tau_i=10.0, e_e=0.0, e_i=-75.0,
                 v_spike=0.0, v_reset=-70.0, q_rr=3214.0, q_sfa=14.48,
                 e_rr=-70.0, e_sfa=-70.0,
                 tau_rr=1.97, tau_sfa=110.0):

        StandardIF.__init__(self, syn_type, syn_shape, tau_m, c_m, v_rest,
                            v_thresh, t_refrac, i_offset, v_reset,
                            tau_e, tau_i, e_e, e_i)
    
        # insert GsfaGrr mechanism
        self.gsfa_grr = h.GsfaGrr(0.5, sec=self)
        self.v_thresh = v_thresh
        
        self.parameter_names = ['c_m', 'tau_m', 'v_rest', 'v_thresh', 'v_reset',
                                't_refrac', 'tau_e', 'tau_i', 'i_offset',
                                'e_rr', 'e_sfa', 'q_rr', 'q_sfa', 'tau_rr', 'tau_sfa']
        if syn_type == 'conductance':
            self.parameter_names.extend(['e_e', 'e_i'])
        self.set_parameters(locals())

    q_sfa        = _new_property('gsfa_grr',  'q_s')
    q_rr        = _new_property('gsfa_grr',  'q_r')
    tau_sfa        = _new_property('gsfa_grr',  'tau_s')
    tau_rr        = _new_property('gsfa_grr',  'tau_r')
    e_sfa = _new_property('gsfa_grr',  'E_s')
    e_rr = _new_property('gsfa_grr',  'E_r')
    
    def __set_v_thresh(self, value):
        self.spike_reset.vthresh = value
        # this can fail on constructor
        try:
            self.gsfa_grr.vthresh = value
        except AttributeError:
            pass
        
    def __get_v_thresh(self):
        return self.spike_reset.vthresh
    v_thresh = property(fget=__get_v_thresh, fset=__set_v_thresh)


class SingleCompartmentTraub(SingleCompartmentNeuron):
    
    def __init__(self, syn_type, syn_shape, c_m=1.0, e_leak=-65,
                 i_offset=0, tau_e=5, tau_i=5, e_e=0, e_i=-70,
                 gbar_Na=20e-3, gbar_K=6e-3, g_leak=0.01e-3, ena=50,
                 ek=-90, v_offset=-63):
        """
        Conductances are in millisiemens (S/cm2, since A = 1e-3)
        """
        SingleCompartmentNeuron.__init__(self, syn_type, syn_shape, c_m, i_offset,
                                         tau_e, tau_i, e_e, e_i)
        self.source = self.seg._ref_v
        self.insert('k_ion')
        self.insert('na_ion')
        self.insert('hh_traub')
        self.parameter_names = ['c_m', 'e_leak', 'i_offset', 'tau_e',
                                'tau_i', 'gbar_Na', 'gbar_K', 'g_leak', 'ena',
                                'ek', 'v_offset']
        if syn_type == 'conductance':
            self.parameter_names.extend(['e_e', 'e_i'])
        self.set_parameters(locals())
        self.v_init = e_leak # default value

    # not sure ena and ek are handled correctly
    
    e_leak   = _new_property('seg.hh_traub', 'el')
    v_offset = _new_property('seg.hh_traub', 'vT')
    gbar_Na  = _new_property('seg.hh_traub', 'gnabar')
    gbar_K   = _new_property('seg.hh_traub', 'gkbar')
    g_leak   = _new_property('seg.hh_traub', 'gl')
    
    def get_threshold(self):
        return 10.0
    
    def record(self, active):
        if active:
            rec = h.NetCon(self.source, None, sec=self)
            rec.record(self.spike_times)
            

    
class RandomSpikeSource(hclass(h.NetStimFD)):
    
    parameter_names = ('start', '_interval', 'duration')
    
    def __init__(self, start=0, _interval=1e12, duration=0):
        self.start = start
        self.interval = _interval
        self.duration = duration
        self.noise = 1
        self.spike_times = h.Vector(0)
        self.source = self
        self.switch = h.NetCon(None, self)
        self.source_section = None
        self.seed(state.mpi_rank) # should allow user to set specific seeds somewhere, e.g. in setup()

    def _set_interval(self, value):
        self.switch.weight[0] = -1
        self.switch.event(h.t+1e-12, 0)
        self.interval = value
        self.switch.weight[0] = 1
        self.switch.event(h.t+2e-12, 1)
    def _get_interval(self):
        return self.interval
    _interval = property(fget=_get_interval, fset=_set_interval)

    def record(self, active):
        if active:
            self.rec = h.NetCon(self, None)
            self.rec.record(self.spike_times)


class VectorSpikeSource(hclass(h.VecStim)):

    parameter_names = ('spike_times',)

    def __init__(self, spike_times=[]):
        self.spike_times = spike_times
        self.source = self
        self.source_section = None
            
    def _set_spike_times(self, spike_times):
        try:
            self._spike_times = h.Vector(spike_times)
        except RuntimeError:
            raise errors.InvalidParameterValueError("spike_times must be an array of floats")
        self.play(self._spike_times)
            
    def _get_spike_times(self):
        return self._spike_times
            
    spike_times = property(fget=_get_spike_times,
                           fset=_set_spike_times)
            
    def record(self, active):
        """
        Since spike_times are specified by user, recording is meaningless, but
        we need to provide a stub for consistency with other models.
        """
        pass