/usr/share/pyshared/pyNN/connectors2.py is in python-pynn 0.7.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 | import numpy, logging, sys
from pyNN import errors, common, core, random, utility
from pyNN.space import Space
from pyNN.random import RandomDistribution
from numpy import arccos, arcsin, arctan, arctan2, ceil, cos, cosh, e, exp, \
fabs, floor, fmod, hypot, ldexp, log, log10, modf, pi, power, \
sin, sinh, sqrt, tan, tanh, maximum, minimum
logger = logging.getLogger("PyNN")
class ConnectionAttributeGenerator(object):
def __init__(self, source, local_mask, safe=True):
self.source = source
self.local_mask = local_mask
self.local_size = local_mask.sum()
self.safe = safe
if self.safe:
self.get = self.get_safe
if isinstance(self.source, numpy.ndarray):
self.source_iterator = iter(self.source)
def check(self, data):
return data
def extract(self, N, distance_matrix=None, sub_mask=None):
#local_mask is supposed to be a mask of booleans, while
#sub_mask is a list of cells ids.
if isinstance(self.source, basestring):
assert distance_matrix is not None
d = distance_matrix.as_array(sub_mask)
values = eval(self.source)
return values
elif hasattr(self.source, 'func_name'):
assert distance_matrix is not None
d = distance_matrix.as_array(sub_mask)
values = self.source(d)
return values
elif numpy.isscalar(self.source):
if sub_mask is None:
values = numpy.ones((self.local_size,))*self.source
else:
values = numpy.ones((len(sub_mask),))*self.source
return values
elif isinstance(self.source, RandomDistribution):
if sub_mask is None:
values = self.source.next(N, mask_local=self.local_mask)
else:
values = self.source.next(len(sub_mask), mask_local=self.local_mask)
return values
elif isinstance(self.source, numpy.ndarray):
source_row = self.source_iterator.next()
values = source_row[self.local_mask]
if sub_mask is not None:
values = values[sub_mask]
return values
def get_safe(self, N, distance_matrix=None, sub_mask=None):
return self.check(self.extract(N, distance_matrix, sub_mask))
def get(self, N, distance_matrix=None, sub_mask=None):
return self.extract(N, distance_matrix, sub_mask)
class WeightGenerator(ConnectionAttributeGenerator):
def __init__(self, source, local_mask, projection, safe=True):
ConnectionAttributeGenerator.__init__(self, source, local_mask, safe)
self.projection = projection
self.is_conductance = common.is_conductance(projection.post.all_cells[0])
def check(self, weight):
if weight is None:
weight = DEFAULT_WEIGHT
if core.is_listlike(weight):
weight = numpy.array(weight)
nan_filter = (1-numpy.isnan(weight)).astype(bool) # weight arrays may contain NaN, which should be ignored
filtered_weight = weight[nan_filter]
all_negative = (filtered_weight<=0).all()
all_positive = (filtered_weight>=0).all()
if not (all_negative or all_positive):
raise errors.InvalidWeightError("Weights must be either all positive or all negative")
elif numpy.isscalar(weight):
all_positive = weight >= 0
all_negative = weight < 0
else:
raise Exception("Weight must be a number or a list/array of numbers.")
if self.is_conductance or self.projection.synapse_type == 'excitatory':
if not all_positive:
raise errors.InvalidWeightError("Weights must be positive for conductance-based and/or excitatory synapses")
elif self.is_conductance==False and self.projection.synapse_type == 'inhibitory':
if not all_negative:
raise errors.InvalidWeightError("Weights must be negative for current-based, inhibitory synapses")
else: # is_conductance is None. This happens if the cell does not exist on the current node.
logger.debug("Can't check weight, conductance status unknown.")
return weight
class DelayGenerator(ConnectionAttributeGenerator):
def __init__(self, source, local_mask, safe=True):
ConnectionAttributeGenerator.__init__(self, source, local_mask, safe)
self.min_delay = common.get_min_delay()
self.max_delay = common.get_max_delay()
def check(self, delay):
all_negative = (delay<=self.max_delay).all()
all_positive = (delay>=self.min_delay).all()# If the delay is too small , we have to throw an error
if not (all_negative and all_positive):
raise errors.ConnectionError("delay (%s) is out of range [%s,%s]" % (delay, common.get_min_delay(), common.get_max_delay()))
return delay
class ProbaGenerator(ConnectionAttributeGenerator):
pass
class DistanceMatrix(object):
def __init__(self, B, space, mask=None):
assert B.shape[0] == 3
self.space = space
if mask is not None:
self.B = B[:,mask]
else:
self.B = B
def as_array(self, sub_mask=None):
if self._distance_matrix is None and self.A is not None:
if sub_mask is None:
self._distance_matrix = self.space.distances(self.A, self.B)[0]
else:
self._distance_matrix = self.space.distances(self.A, self.B[:,sub_mask])[0]
return self._distance_matrix
def set_source(self, A):
assert A.shape == (3,)
self.A = A
self._distance_matrix = None
class Connector(object):
def __init__(self, weights=0.0, delays=None, space=Space(), safe=True, verbose=False):
self.weights = weights
self.space = space
self.safe = safe
self.verbose = verbose
min_delay = common.get_min_delay()
if delays is None:
self.delays = min_delay
else:
if core.is_listlike(delays):
assert min(delays) >= min_delay
elif not (isinstance(delays, basestring) or isinstance(delays, RandomDistribution)):
assert delays >= min_delay
self.delays = delays
def connect(self, projection):
pass
def progressbar(self, N):
self.prog = utility.ProgressBar(0, N, 20, mode='fixed')
def progression(self, count):
self.prog.update_amount(count)
if self.verbose and common.rank() == 0:
print self.prog, "\r",
sys.stdout.flush()
class ProbabilisticConnector(Connector):
def __init__(self, projection, weights=0.0, delays=None, allow_self_connections=True, space=Space(), safe=True):
Connector.__init__(self, weights, delays, space, safe)
if isinstance(projection.rng, random.NativeRNG):
raise Exception("Use of NativeRNG not implemented.")
else:
self.rng = projection.rng
self.local = numpy.ones(len(projection.pre), bool)
self.N = projection.pre.size
self.weights_generator = WeightGenerator(weights, self.local, projection, safe)
self.delays_generator = DelayGenerator(delays, self.local, safe)
self.probas_generator = ProbaGenerator(RandomDistribution('uniform',(0,1), rng=self.rng), self.local)
self.distance_matrix = DistanceMatrix(projection.pre.positions, self.space, self.local)
self.projection = projection
self.allow_self_connections = allow_self_connections
def _probabilistic_connect(self, tgt, p):
"""
Connect-up a Projection with connection probability p, where p may be either
a float 0<=p<=1, or a dict containing a float array for each pre-synaptic
cell, the array containing the connection probabilities for all the local
targets of that pre-synaptic cell.
"""
if numpy.isscalar(p) and p == 1:
create = numpy.arange(self.local.sum())
else:
rarr = self.probas_generator.get(self.N)
if not core.is_listlike(rarr) and numpy.isscalar(rarr): # if N=1, rarr will be a single number
rarr = numpy.array([rarr])
create = numpy.where(rarr < p)[0]
self.distance_matrix.set_source(tgt.position)
#create = self.projection.pre.id_to_index(create).astype(int)
sources = self.projection.pre.all_cells.flatten()[create]
if not self.allow_self_connections and self.projection.pre == self.projection.post and tgt in sources:
i = numpy.where(sources == tgt)[0]
sources = numpy.delete(sources, i)
create = numpy.delete(create, i)
weights = self.weights_generator.get(self.N, self.distance_matrix, create)
delays = self.delays_generator.get(self.N, self.distance_matrix, create)
if len(sources) > 0:
self.projection.connection_manager.convergent_connect(sources.tolist(), tgt, weights, delays)
class AllToAllConnector(Connector):
"""
Connects all cells in the presynaptic population to all cells in the
postsynaptic population.
"""
def __init__(self, allow_self_connections=True, weights=0.0, delays=None, space=Space(), safe=True, verbose=False):
"""
Create a new connector.
`allow_self_connections` -- if the connector is used to connect a
Population to itself, this flag determines whether a neuron is
allowed to connect to itself, or only to other neurons in the
Population.
`weights` -- may either be a float, a RandomDistribution object, a list/
1D array with at least as many items as connections to be
created. Units nA.
`delays` -- as `weights`. If `None`, all synaptic delays will be set
to the global minimum delay.
`space` -- a `Space` object, needed if you wish to specify distance-
dependent weights or delays
"""
Connector.__init__(self, weights, delays, space, safe, verbose)
assert isinstance(allow_self_connections, bool)
self.allow_self_connections = allow_self_connections
def connect(self, projection):
connector = ProbabilisticConnector(projection, self.weights, self.delays, self.allow_self_connections, self.space, safe=self.safe)
self.progressbar(len(projection.post.local_cells))
for count, tgt in enumerate(projection.post.local_cells.flat):
connector._probabilistic_connect(tgt, 1)
self.progression(count)
class FixedProbabilityConnector(Connector):
"""
For each pair of pre-post cells, the connection probability is constant.
"""
def __init__(self, p_connect, allow_self_connections=True, weights=0.0, delays=None, space=Space(),
safe=True, verbose=False):
"""
Create a new connector.
`p_connect` -- a float between zero and one. Each potential connection
is created with this probability.
`allow_self_connections` -- if the connector is used to connect a
Population to itself, this flag determines whether a neuron is
allowed to connect to itself, or only to other neurons in the
Population.
`weights` -- may either be a float, a RandomDistribution object, a list/
1D array with at least as many items as connections to be
created. Units nA.
`delays` -- as `weights`. If `None`, all synaptic delays will be set
to the global minimum delay.
`space` -- a `Space` object, needed if you wish to specify distance-
dependent weights or delays
"""
Connector.__init__(self, weights, delays, space, safe, verbose)
assert isinstance(allow_self_connections, bool)
self.allow_self_connections = allow_self_connections
self.p_connect = float(p_connect)
assert 0 <= self.p_connect
def connect(self, projection):
connector = ProbabilisticConnector(projection, self.weights, self.delays, self.allow_self_connections, self.space, safe=self.safe)
self.progressbar(len(projection.post.local_cells))
for count, tgt in enumerate(projection.post.local_cells.flat):
connector._probabilistic_connect(tgt, self.p_connect)
self.progression(count)
class DistanceDependentProbabilityConnector(ProbabilisticConnector):
"""
For each pair of pre-post cells, the connection probability depends on distance.
"""
def __init__(self, d_expression, allow_self_connections=True,
weights=0.0, delays=None, space=Space(), safe=True, verbose=False):
"""
Create a new connector.
`d_expression` -- the right-hand side of a valid python expression for
probability, involving 'd', e.g. "exp(-abs(d))", or "d<3"
`space` -- a Space object.
`weights` -- may either be a float, a RandomDistribution object, a list/
1D array with at least as many items as connections to be
created, or a DistanceDependence object. Units nA.
`delays` -- as `weights`. If `None`, all synaptic delays will be set
to the global minimum delay.
"""
Connector.__init__(self, weights, delays, space, safe, verbose)
assert isinstance(d_expression, str)
try:
d = 0; assert 0 <= eval(d_expression), eval(d_expression)
d = 1e12; assert 0 <= eval(d_expression), eval(d_expression)
except ZeroDivisionError, err:
raise ZeroDivisionError("Error in the distance expression %s. %s" % (d_expression, err))
self.d_expression = d_expression
assert isinstance(allow_self_connections, bool)
self.allow_self_connections = allow_self_connections
def connect(self, projection):
"""Connect-up a Projection."""
connector = ProbabilisticConnector(projection, self.weights, self.delays, self.allow_self_connections, self.space, safe=self.safe)
proba_generator = ProbaGenerator(self.d_expression, connector.local)
self.progressbar(len(projection.post.local_cells))
for count, tgt in enumerate(projection.post.local_cells.flat):
connector.distance_matrix.set_source(tgt.position)
proba = proba_generator.get(connector.N, connector.distance_matrix)
if proba.dtype == 'bool':
proba = proba.astype(float)
connector._probabilistic_connect(tgt, proba)
self.progression(count)
class FromListConnector(Connector):
"""
Make connections according to a list.
"""
def __init__(self, conn_list, safe=True, verbose=False):
"""
Create a new connector.
`conn_list` -- a list of tuples, one tuple for each connection. Each
tuple should contain:
(pre_addr, post_addr, weight, delay)
where pre_addr is the address (a tuple) of the presynaptic
neuron, and post_addr is the address of the postsynaptic
neuron.
"""
# needs extending for dynamic synapses.
Connector.__init__(self, 0., common.get_min_delay(), safe=safe, verbose=verbose)
self.conn_list = conn_list
def connect(self, projection):
"""Connect-up a Projection."""
# slow: should maybe sort by pre
self.progressbar(len(self.conn_list))
for count, i in enumerate(xrange(len(self.conn_list))):
src, tgt, weight, delay = self.conn_list[i][:]
src = projection.pre[tuple(src)]
tgt = projection.post[tuple(tgt)]
projection.connection_manager.connect(src, [tgt], weight, delay)
self.progression(count)
class FromFileConnector(FromListConnector):
"""
Make connections according to a list read from a file.
"""
def __init__(self, filename, distributed=False, safe=True, verbose=False):
"""
Create a new connector.
`filename` -- name of a text file containing a list of connections, in
the format required by `FromListConnector`.
`distributed` -- if this is True, then each node will read connections
from a file called `filename.x`, where `x` is the MPI
rank. This speeds up loading connections for
distributed simulations.
"""
Connector.__init__(self, 0., common.get_min_delay(), safe=safe, verbose=verbose)
self.filename = filename
self.distributed = distributed
def connect(self, projection):
"""Connect-up a Projection."""
if self.distributed:
self.filename += ".%d" % common.rank()
# open the file...
f = open(self.filename, 'r', 10000)
lines = f.readlines()
f.close()
# gather all the data in a list of tuples (one per line)
input_tuples = []
for line in lines:
single_line = line.rstrip()
src, tgt, w, d = single_line.split("\t", 4)
src = "[%s" % src.split("[",1)[1]
tgt = "[%s" % tgt.split("[",1)[1]
input_tuples.append((eval(src), eval(tgt), float(w), float(d)))
self.conn_list = input_tuples
FromListConnector.connect(self, projection)
class FixedNumberPostConnector(Connector):
"""
Each pre-synaptic neuron is connected to exactly n post-synaptic neurons
chosen at random.
If n is less than the size of the post-synaptic population, there are no
multiple connections, i.e., no instances of the same pair of neurons being
multiply connected. If n is greater than the size of the post-synaptic
population, all possible single connections are made before starting to add
duplicate connections.
"""
def __init__(self, n, allow_self_connections=True, weights=0.0, delays=None, space=Space(), safe=True, verbose=False):
"""
Create a new connector.
`n` -- either a positive integer, or a `RandomDistribution` that produces
positive integers. If `n` is a `RandomDistribution`, then the
number of post-synaptic neurons is drawn from this distribution
for each pre-synaptic neuron.
`allow_self_connections` -- if the connector is used to connect a
Population to itself, this flag determines whether a neuron is
allowed to connect to itself, or only to other neurons in the
Population.
`weights` -- may either be a float, a RandomDistribution object, a list/
1D array with at least as many items as connections to be
created. Units nA.
`delays` -- as `weights`. If `None`, all synaptic delays will be set
to the global minimum delay.
"""
Connector.__init__(self, weights, delays, space, safe, verbose)
assert isinstance(allow_self_connections, bool)
self.allow_self_connections = allow_self_connections
if isinstance(n, int):
self.n = n
assert n >= 0
elif isinstance(n, random.RandomDistribution):
self.rand_distr = n
# weak check that the random distribution is ok
assert numpy.all(numpy.array(n.next(100)) >= 0), "the random distribution produces negative numbers"
else:
raise Exception("n must be an integer or a RandomDistribution object")
def connect(self, projection):
"""Connect-up a Projection."""
local = numpy.ones(len(projection.post), bool)
weights_generator = WeightGenerator(self.weights, local, projection, self.safe)
delays_generator = DelayGenerator(self.delays, local, self.safe)
distance_matrix = DistanceMatrix(projection.post.positions, self.space)
self.progressbar(len(projection.pre))
if isinstance(projection.rng, random.NativeRNG):
raise Exception("Use of NativeRNG not implemented.")
for count, src in enumerate(projection.pre.all()):
# pick n neurons at random
if hasattr(self, 'rand_distr'):
n = self.rand_distr.next()
else:
n = self.n
candidates = projection.post.all_cells.flatten()
if not self.allow_self_connections and projection.pre == projection.post:
idx = numpy.where(candidates == src)[0]
candidates = numpy.delete(candidates, idx)
targets = numpy.array([])
while len(targets) < n: # if the number of requested cells is larger than the size of the
# postsynaptic population, we allow multiple connections for a given cell
targets = numpy.concatenate((targets, projection.rng.permutation(candidates)[:n]))
distance_matrix.set_source(src.position)
targets = targets[:n]
create = projection.post.id_to_index(targets).astype(int)
weights = weights_generator.get(n, distance_matrix, create)
delays = delays_generator.get(n, distance_matrix, create)
if len(targets) > 0:
projection.connection_manager.connect(src, targets.tolist(), weights, delays)
self.progression(count)
class FixedNumberPreConnector(Connector):
"""
Each post-synaptic neuron is connected to exactly n pre-synaptic neurons
chosen at random.
If n is less than the size of the pre-synaptic population, there are no
multiple connections, i.e., no instances of the same pair of neurons being
multiply connected. If n is greater than the size of the pre-synaptic
population, all possible single connections are made before starting to add
duplicate connections.
"""
def __init__(self, n, allow_self_connections=True, weights=0.0, delays=None, space=Space(), safe=True, verbose=False):
"""
Create a new connector.
`n` -- either a positive integer, or a `RandomDistribution` that produces
positive integers. If `n` is a `RandomDistribution`, then the
number of pre-synaptic neurons is drawn from this distribution
for each post-synaptic neuron.
`allow_self_connections` -- if the connector is used to connect a
Population to itself, this flag determines whether a neuron is
allowed to connect to itself, or only to other neurons in the
Population.
`weights` -- may either be a float, a RandomDistribution object, a list/
1D array with at least as many items as connections to be
created. Units nA.
`delays` -- as `weights`. If `None`, all synaptic delays will be set
to the global minimum delay.
"""
Connector.__init__(self, weights, delays, space, safe, verbose)
assert isinstance(allow_self_connections, bool)
self.allow_self_connections = allow_self_connections
if isinstance(n, int):
self.n = n
assert n >= 0
elif isinstance(n, random.RandomDistribution):
self.rand_distr = n
# weak check that the random distribution is ok
assert numpy.all(numpy.array(n.next(100)) >= 0), "the random distribution produces negative numbers"
else:
raise Exception("n must be an integer or a RandomDistribution object")
def connect(self, projection):
"""Connect-up a Projection."""
local = numpy.ones(len(projection.pre), bool)
weights_generator = WeightGenerator(self.weights, local, projection, self.safe)
delays_generator = DelayGenerator(self.delays, local, self.safe)
distance_matrix = DistanceMatrix(projection.pre.positions, self.space)
self.progressbar(len(projection.post.local_cells))
if isinstance(projection.rng, random.NativeRNG):
raise Exception("Warning: use of NativeRNG not implemented.")
for count, tgt in enumerate(projection.post.local_cells.flat):
# pick n neurons at random
if hasattr(self, 'rand_distr'):
n = self.rand_distr.next()
else:
n = self.n
candidates = projection.pre.all_cells.flatten()
if not self.allow_self_connections and projection.pre == projection.post:
i = numpy.where(candidates == tgt)[0]
candidates = numpy.delete(candidates, i)
sources = numpy.array([])
while len(sources) < n: # if the number of requested cells is larger than the size of the
# presynaptic population, we allow multiple connections for a given cell
sources = numpy.concatenate((sources, projection.rng.permutation(candidates)[:n]))
distance_matrix.set_source(tgt.position)
sources = sources[:n]
create = projection.pre.id_to_index(sources).astype(int)
weights = weights_generator.get(n, distance_matrix, create)
delays = delays_generator.get(n, distance_matrix, create)
if len(sources) > 0:
projection.connection_manager.convergent_connect(sources, tgt, weights, delays)
self.progression(count)
class OneToOneConnector(Connector):
"""
Where the pre- and postsynaptic populations have the same size, connect
cell i in the presynaptic population to cell i in the postsynaptic
population for all i.
"""
#In fact, despite the name, this should probably be generalised to the
#case where the pre and post populations have different dimensions, e.g.,
#cell i in a 1D pre population of size n should connect to all cells
#in row i of a 2D post population of size (n,m).
def __init__(self, weights=0.0, delays=None, space=Space(), safe=True, verbose=False):
"""
Create a new connector.
`weights` -- may either be a float, a RandomDistribution object, a list/
1D array with at least as many items as connections to be
created. Units nA.
`delays` -- as `weights`. If `None`, all synaptic delays will be set
to the global minimum delay.
"""
Connector.__init__(self, weights, delays, space, verbose)
self.space = space
self.safe = safe
def connect(self, projection):
"""Connect-up a Projection."""
if projection.pre.dim == projection.post.dim:
N = projection.post.size
local = projection.post._mask_local.flatten()
if isinstance(self.weights, basestring) or isinstance(self.delays, basestring):
raise Exception('Expression for weights or delays is not supported for OneToOneConnector !')
weights_generator = WeightGenerator(self.weights, local, projection, self.safe)
delays_generator = DelayGenerator(self.delays, local, self.safe)
weights = weights_generator.get(N)
delays = delays_generator.get(N)
self.progressbar(len(projection.post.local_cells))
count = 0
for tgt, w, d in zip(projection.post.local_cells, weights, delays):
src = projection.pre.index(projection.post.id_to_index(tgt))
# the float is in case the values are of type numpy.float64, which NEST chokes on
projection.connection_manager.connect(src, [tgt], float(w), float(d))
self.progression(count)
count += 1
else:
raise errors.InvalidDimensionsError("OneToOneConnector does not support presynaptic and postsynaptic Populations of different sizes.")
class SmallWorldConnector(Connector):
"""
For each pair of pre-post cells, the connection probability depends on distance.
"""
def __init__(self, degree, rewiring, allow_self_connections=True,
weights=0.0, delays=None, space=Space(), safe=True, verbose=False):
"""
Create a new connector.
`degree` -- the region lenght where nodes will be connected locally
`rewiring` -- the probability of rewiring each eadges
`space` -- a Space object.
`allow_self_connections` -- if the connector is used to connect a
Population to itself, this flag determines whether a neuron is
allowed to connect to itself, or only to other neurons in the
Population.
`weights` -- may either be a float, a RandomDistribution object, a list/
1D array with at least as many items as connections to be
created, or a DistanceDependence object. Units nA.
`delays` -- as `weights`. If `None`, all synaptic delays will be set
to the global minimum delay.
"""
Connector.__init__(self, weights, delays, space, safe, verbose)
assert 0 <= rewiring <= 1
assert isinstance(allow_self_connections, bool)
self.rewiring = rewiring
self.d_expression = "d < %g" %degree
self.allow_self_connections = allow_self_connections
def _smallworld_connect(self, src, p):
"""
Connect-up a Projection with connection probability p, where p may be either
a float 0<=p<=1, or a dict containing a float array for each pre-synaptic
cell, the array containing the connection probabilities for all the local
targets of that pre-synaptic cell.
"""
rarr = self.probas_generator.get(self.N)
if not core.is_listlike(rarr) and numpy.isscalar(rarr): # if N=1, rarr will be a single number
rarr = numpy.array([rarr])
create = numpy.where(rarr < p)[0]
self.distance_matrix.set_source(src.position)
targets = self.candidates[create]
candidates = self.projection.post.all_cells.flatten()
if not self.allow_self_connections and projection.pre == projection.post:
i = numpy.where(candidates == src)[0]
candidates = numpy.delete(candidates, i)
rarr = self.probas_generator.get(len(create))
rewired = rarr < self.rewiring
if sum(rewired) > 0:
idx = numpy.random.random_integers(0, len(candidates)-1, sum(rewired))
targets[rewired] = candidates[idx]
create = self.projection.post.id_to_index(targets).astype(int)
weights = self.weights_generator.get(self.N, self.distance_matrix, create)
delays = self.delays_generator.get(self.N, self.distance_matrix, create)
if len(targets) > 0:
self.projection.connection_manager.connect(src, targets.tolist(), weights, delays)
def connect(self, projection):
"""Connect-up a Projection."""
local = numpy.ones(len(projection.post), bool)
self.N = projection.post.size
if isinstance(projection.rng, random.NativeRNG):
raise Exception("Use of NativeRNG not implemented.")
else:
self.rng = projection.rng
self.weights_generator = WeightGenerator(self.weights, local, projection, self.safe)
self.delays_generator = DelayGenerator(self.delays, local, self.safe)
self.probas_generator = ProbaGenerator(RandomDistribution('uniform',(0,1), rng=self.rng), local)
self.distance_matrix = DistanceMatrix(projection.post.positions, self.space, local)
self.projection = projection
self.candidates = self.projection.post.all_cells.flatten()
self.progressbar(len(projection.pre))
proba_generator = ProbaGenerator(self.d_expression, local)
for count, src in enumerate(projection.pre.all()):
self.distance_matrix.set_source(src.position)
proba = proba_generator.get(self.N, self.distance_matrix).astype(float)
self._smallworld_connect(src, proba)
self.progression(count)
|