This file is indexed.

/usr/share/pyshared/neo/io/exampleio.py is in python-neo 0.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# encoding: utf-8
"""
Class for "reading" fake data from an imaginary file.

For the user, it generates a :class:`Segment` or a :class:`Block` with a
sinusoidal :class:`AnalogSignal`, a :class:`SpikeTrain` and an
:class:`EventArray`.

For a developer, it is just an example showing guidelines for someone who wants
to develop a new IO module.

Depends on: scipy

Supported: Read

Author: sgarcia

"""
from __future__ import absolute_import

# I need to subclass BaseIO
from .baseio import BaseIO

# to import from core
from ..core import Block, Segment, AnalogSignal, SpikeTrain, EventArray

# some tools to finalize the hierachy
from .tools import create_many_to_one_relationship

# note neo.core needs only numpy and quantities
import numpy as np
import quantities as pq

# but my specific IO can depend on many other packages
from numpy import pi, newaxis
import datetime
try:
    have_scipy = True
    from scipy import stats
    from scipy import randn, rand
    from scipy.signal import resample
except ImportError:
    have_scipy = False

np.random.seed(1234)

# I need to subclass BaseIO
class ExampleIO(BaseIO):
    """
    Class for "reading" fake data from an imaginary file.

    For the user, it generates a :class:`Segment` or a :class:`Block` with a
    sinusoidal :class:`AnalogSignal`, a :class:`SpikeTrain` and an
    :class:`EventArray`.

    For a developer, it is just an example showing guidelines for someone who wants
    to develop a new IO module.
  
    Two rules for developers:
      * Respect the Neo IO API (:ref:`neo_io_API`)
      * Follow :ref:`io_guiline`
    
    Usage:
        >>> from neo import io
        >>> r = io.ExampleIO(filename='itisafake.nof')
        >>> seg = r.read_segment(lazy=False, cascade=True)
        >>> print(seg.analogsignals)  # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
        [<AnalogSignal(array([ 0.19151945,  0.62399373,  0.44149764, ...,  0.96678374,
        ...
        >>> print(seg.spiketrains)    # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
         [<SpikeTrain(array([ -0.83799524,   6.24017951,   7.76366686,   4.45573701,
            12.60644415,  10.68328994,   8.07765735,   4.89967804,
        ...
        >>> print(seg.eventarrays)    # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
        [<EventArray: TriggerB@9.6976 s, TriggerA@10.2612 s, TriggerB@2.2777 s, TriggerA@6.8607 s, ...
        >>> anasig = r.read_analogsignal(lazy=True, cascade=False)
        >>> print(anasig._data_description)
        {'shape': (150000,)}
        >>> anasig = r.read_analogsignal(lazy=False, cascade=False)
        
    """
    
    is_readable = True # This class can only read data
    is_writable = False # write is not supported
    
    # This class is able to directly or indirectly handle the following objects
    # You can notice that this greatly simplifies the full Neo object hierarchy
    supported_objects  = [ Segment , AnalogSignal, SpikeTrain, EventArray ]
    
    # This class can return either a Block or a Segment
    # The first one is the default ( self.read )
    # These lists should go from highest object to lowest object because
    # common_io_test assumes it.
    readable_objects    = [ Segment , AnalogSignal, SpikeTrain ]
    # This class is not able to write objects
    writeable_objects   = [ ]

    has_header         = False
    is_streameable     = False
    
    # This is for GUI stuff : a definition for parameters when reading.
    # This dict should be keyed by object (`Block`). Each entry is a list
    # of tuple. The first entry in each tuple is the parameter name. The
    # second entry is a dict with keys 'value' (for default value),
    # and 'label' (for a descriptive name).
    # Note that if the highest-level object requires parameters,
    # common_io_test will be skipped.
    read_params = {
        Segment : [
            ('segment_duration', 
                {'value' : 15., 'label' : 'Segment size (s.)'}),
            ('num_analogsignal', 
                {'value' : 8, 'label' : 'Number of recording points'}),
            ('num_spiketrain', 
                {'value' : 3, 'label' : 'Num of spiketrains'}),
            ],
        }
    
    # do not supported write so no GUI stuff
    write_params       = None
    
    name               = 'example'
    
    extensions          = [ 'nof' ]
    
    # mode can be 'file' or 'dir' or 'fake' or 'database'
    # the main case is 'file' but some reader are base on a directory or a database
    # this info is for GUI stuff also
    mode = 'fake' 
    

    
    def __init__(self , filename = None) :
        """
        
        
        Arguments:
            filename : the filename
            
        Note:
            - filename is here just for exampe because it will not be take in account
            - if mode=='dir' the argument should be dirname (See TdtIO)

        """
        BaseIO.__init__(self)
        self.filename = filename


    # Segment reading is supported so I define this :
    def read_segment(self, 
                     # the 2 first keyword arguments are imposed by neo.io API
                     lazy = False,
                     cascade = True,                   
                     # all following arguments are decied by this IO and are free
                     segment_duration = 15.,
                     num_analogsignal = 4,
                     num_spiketrain_by_channel = 3,                   
                    ):
        """
        Return a fake Segment.
        
        The self.filename does not matter.
        
        In this IO read by default a Segment.
        
        This is just a example to be adapted to each ClassIO.
        In this case these 3 paramters are  taken in account because this function
        return a generated segment with fake AnalogSignal and fake SpikeTrain.
        
        Parameters:
            segment_duration :is the size in secend of the segment.
            num_analogsignal : number of AnalogSignal in this segment
            num_spiketrain : number of SpikeTrain in this segment
        
        """
        
        sampling_rate = 10000. #Hz
        t_start = -1.
        
        
        #time vector for generated signal
        timevect = np.arange(t_start, t_start+ segment_duration , 1./sampling_rate)
        
        # create an empty segment
        seg = Segment( name = 'it is a seg from exampleio')
        
        if cascade:
            # read nested analosignal
            for i in range(num_analogsignal):
                ana = self.read_analogsignal( lazy = lazy , cascade = cascade ,
                                            channel_index = i ,segment_duration = segment_duration, t_start = t_start)
                seg.analogsignals += [ ana ]
            
            # read nested spiketrain
            for i in range(num_analogsignal):
                for j in range(num_spiketrain_by_channel):
                    sptr = self.read_spiketrain(lazy = lazy , cascade = cascade ,
                                                            segment_duration = segment_duration, t_start = t_start , channel_index = i)
                    seg.spiketrains += [ sptr ]
        
            
            # create an EventArray that mimic triggers.
            # note that ExampleIO  do not allow to acess directly to EventArray
            # for that you need read_segment(cascade = True)
            eva = EventArray()
            if lazy:
                # in lazy case no data are readed
                # eva is empty
                pass
            else:
                # otherwise it really contain data
                n = 1000
                
                # neo.io support quantities my vector use second for unit
                eva.times = timevect[(rand(n)*timevect.size).astype('i')]* pq.s
                # all duration are the same
                eva.durations = np.ones(n)*500*pq.ms
                # label
                l = [ ]
                for i in range(n):
                    if rand()>.6: l.append( 'TriggerA' )
                    else : l.append( 'TriggerB' )
                eva.labels = np.array( l )
                
            seg.eventarrays += [ eva ]
        
        create_many_to_one_relationship(seg)
        return seg
        
    
    def read_analogsignal(self ,
                          # the 2 first key arguments are imposed by neo.io API
                          lazy = False,
                          cascade = True,
                          channel_index = 0,
                          segment_duration = 15.,
                          t_start = -1,
                          ):
        """
        With this IO AnalogSignal can e acces directly with its channel number
        
        """
        sr = 10000.
        sinus_freq = 3. # Hz
        #time vector for generated signal:
        tvect = np.arange(t_start, t_start+ segment_duration , 1./sr)
        
        
        if lazy:
            anasig = AnalogSignal([ ], units = 'V', sampling_rate=sr*pq.Hz, t_start=t_start*pq.s)
            # we add the attribute lazy_shape with the size if loaded
            anasig.lazy_shape = tvect.shape
        else:
            # create analogsignal (sinus of 3 Hz)
            sig = np.sin(2*pi*tvect*sinus_freq + channel_index/5.*2*pi)+rand(tvect.size)
            anasig = AnalogSignal(sig, units= 'V' ,  sampling_rate = sr * pq.Hz , t_start = t_start*pq.s)
        
        # for attributes out of neo you can annotate
        anasig.annotate(channel_index = channel_index)
        anasig.annotate(info = 'it is a sinus of %f Hz' %sinus_freq )
        
        return anasig
        
        
        
        
        
    def read_spiketrain(self ,
                                            # the 2 first key arguments are imposed by neo.io API
                                            lazy = False,
                                            cascade = True,
        
                                                segment_duration = 15.,
                                                t_start = -1,
                                                channel_index = 0,
                                                ):
        """
        With this IO SpikeTrain can e acces directly with its channel number
        """
        # There are 2 possibles behaviour for a SpikeTrain
        # holding many Spike instance or directly holding spike times
        # we choose here the first : 

        num_spike_by_spiketrain = 40
        sr = 10000.
        
        if lazy:
            times = [ ]
        else:
            times = rand(num_spike_by_spiketrain)*segment_duration+t_start
        
        # create a spiketrain
        spiketr = SpikeTrain(times, t_start = t_start*pq.s, t_stop = (t_start+segment_duration)*pq.s ,
                                            units = pq.s, 
                                            name = 'it is a spiketrain from exampleio',
                                            )
        
        if lazy:
            # we add the attribute lazy_shape with the size if loaded
            spiketr.lazy_shape = (num_spike_by_spiketrain,)
        
        # ours spiketrains also hold the waveforms:
        
        # 1 generate a fake spike shape (2d array if trodness >1)
        w1 = -stats.nct.pdf(np.arange(11,60,4), 5,20)[::-1]/3.
        w2 = stats.nct.pdf(np.arange(11,60,2), 5,20)
        w = np.r_[ w1 , w2 ]
        w = -w/max(w)
        
        if not lazy:
            # in the neo API the waveforms attr is 3 D in case tetrode
            # in our case it is mono electrode so dim 1 is size 1
            waveforms  = np.tile( w[newaxis,newaxis,:], ( num_spike_by_spiketrain ,1, 1) )
            waveforms *=  randn(*waveforms.shape)/6+1
            spiketr.waveforms = waveforms
            spiketr.sampling_rate = sr * pq.Hz
            spiketr.left_sweep = 1.5* pq.s
        
        # for attributes out of neo you can annotate
        spiketr.annotate(channel_index = channel_index)
        
        return spiketr