This file is indexed.

/usr/share/pyshared/mlpy/_irelief.py is in python-mlpy 2.2.0~dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
## This file is part of mlpy.
## Iterative RELIEF for Feature Weighting.

## This is an implementation of Iterative RELIEF algorithm described in:
## Yijun Sun. 'Iterative RELIEF for Feature Weightinig: Algorithms,
## Theories and Application'. In IEEE Transactions on Pattern Analysis
## and Machine Intelligence, 2006.
    
## This code is written by Davide Albanese, <albanese@fbk.eu>.
## (C) 2007 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

__all__ = ['SigmaError', 'Irelief']

from numpy import *


class SigmaError(Exception):
    """Sigma Error

    Sigma parameter is too small.
    """
    pass


def norm_w(x, w):
    """
    Compute sum_i( w[i] * |x[i]| ).

    See p. 7.
    """
    return (w * abs(x)).sum()


def norm(x, n):
    """
    Compute n-norm.
    """
    return (sum(abs(x)**n))**(1.0/n)


def kernel(d, sigma):
    """
    Kernel.

    See p. 7.
    """
    return exp(-d/sigma)  


def compute_M_H(y):
    """
    Compute sets M[n] = {i:1<=i<=N, y[i]!=y[n]}.
    Compute sets H[n] = {i:1<=i<=N, y[i]==y[n], i!=n}.

    See p. 6.
    """
    M, H = [], []
    for n in range(y.shape[0]):
        Mn = where(y != y[n])[0].tolist()
        M.append(Mn)
        Hn = where(y == y[n])[0]
        Hn = Hn[Hn != n].tolist()
        H.append(Hn)
    return (M, H)
    

def compute_distance_kernel(x, w, sigma):
    """
    Compute matrix dk[i][j] = f(||x[i] - x[j]||_w).

    See p. 7.
    """
    d = zeros((x.shape[0], x.shape[0]), dtype = float)
    for i in range(x.shape[0]):
        for j in range(i + 1, x.shape[0]):
            d[i][j] = norm_w(x[i]-x[j], w)
            d[j][i] = d[i][j]
    dk = kernel(d, sigma)
   
    return dk


def compute_prob(x, dist_k, i, n, indices):
    """
    See Eqs. (8), (9)
    """

    den = dist_k[n][indices].sum()    
    if den == 0.0:
        raise SigmaError("sigma (kernel parameter) too small")
    
    return dist_k[n][i] / den 


def compute_gn(x, dist_k, n, Mn):
    """
    See p. 7 and Eq. (10).
    """

    num = dist_k[n][Mn].sum()
    R = range(x.shape[0])
    R.remove(n)
    den = dist_k[n][R].sum()
    if den == 0.0:
        raise SigmaError("sigma (kernel parameter) too small")

    return 1.0 - (num / den)
       

def compute_w(x, y, w, M, H, sigma):
    """
    See Eq. (12).
    """

    N = x.shape[0]
    I = x.shape[1]

    # Compute ni
    ni = zeros(I, dtype = float)
    dist_k = compute_distance_kernel(x, w, sigma)
    for n in range(N):        
        m_n = zeros(I, dtype = float)
        h_n = zeros(I, dtype = float)
        for i in M[n]:
            a_in = compute_prob(x, dist_k, i, n, M[n])
            m_in = abs(x[n] - x[i])
            m_n += a_in * m_in
        for i in H[n]:
            b_in = compute_prob(x, dist_k, i, n, H[n])
            h_in = abs(x[n] - x[i])
            h_n += b_in * h_in        
        g_n = compute_gn(x, dist_k, n, M[n])
        ni += g_n * (m_n - h_n)            

    ni = ni / N
        
    # Compute (ni)+ / ||(ni)+||_2
    ni_p = maximum(ni, 0.0)
    ni_p_norm2 = norm(ni_p, 2)
   
    return ni_p / ni_p_norm2


def compute_irelief(x, y, T, sigma, theta):
    """
    See I-RELIEF Algorithm at p. 8.
    """

    w_old = ones(x.shape[1]) / float(x.shape[1])
    M, H = compute_M_H(y)
    
    for t in range(T):
        w = compute_w(x, y, w_old, M, H, sigma) 
        stp = norm(w - w_old, 2)
        if stp < theta:
            break
        w_old = w
    return (w, t + 1)


class Irelief:
    """Iterative RELIEF for Feature Weighting.

    Example:
    
    >>> from numpy import *
    >>> from mlpy import *
    >>> x = array([[1.1, 2.1, 3.1, -1.0],  # first sample
    ...            [1.2, 2.2, 3.2, 1.0],   # second sample
    ...            [1.3, 2.3, 3.3, -1.0]]) # third sample
    >>> y = array([1, 2, 1])               # classes
    >>> myir = Irelief()                   # initialize irelief class
    >>> myir.weights(x, y)                 # compute feature weights
    array([ 0.,  0.,  0.,  1.])
    """
   
    def __init__(self, T = 1000, sigma = 1.0, theta = 0.001):
        """Initialize the Irelief class.

        Input
        
          * *T*     - [integer] (>0) max loops
          * *sigma* - [float] (>0.0) kernel width
          * *theta*  - [float] (>0.0) convergence parameter
        """

        if T <= 0:
            raise ValueError("T (max loops) must be > 0")
        if sigma <= 0.0:
            raise ValueError("sigma (kernel parameter) must be > 0.0")
        if theta <= 0.0:
            raise ValueError("theta (convergence parameter) must be > 0.0")
         
        self.__T = T
        self.__sigma = sigma
        self.__theta = theta

        self.loops = None

    def weights(self, x, y):
        """Return feature weights.

        Input
        
          * *x* - [2D numpy array float] (sample x feature) training data
          * *y* - [1D numpy array integer] (two classes) classes

        Output
        
          * *fw* - [1D numpy array float] feature weights
        """
        
        if unique(y).shape[0] != 2:
            raise ValueError("Irelief algorithm works only for two-classes problems")

        w, self.loops = compute_irelief(x, y, self.__T, self.__sigma, self.__theta)
        return w