/usr/share/pyshared/gaphas/geometry.py is in python-gaphas 0.7.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 | """
Geometry functions.
Rectangle is a utility class for working with rectangles (unions and
intersections).
A point is represented as a tuple `(x, y)`.
"""
__version__ = "$Revision$"
# $HeadURL$
from math import sqrt
class Rectangle(object):
"""
Python Rectangle implementation. Rectangles can be added (union),
substituted (intersection) and points and rectangles can be tested to
be in the rectangle.
>>> r1= Rectangle(1,1,5,5)
>>> r2 = Rectangle(3,3,6,7)
Test if two rectangles intersect:
>>> if r1 - r2: 'yes'
'yes'
>>> r1, r2 = Rectangle(1,2,3,4), Rectangle(1,2,3,4)
>>> r1 == r2
True
>>> r = Rectangle(-5, 3, 10, 8)
>>> r.width = 2
>>> r
Rectangle(-5, 3, 2, 8)
>>> r = Rectangle(-5, 3, 10, 8)
>>> r.height = 2
>>> r
Rectangle(-5, 3, 10, 2)
"""
def __init__(self, x=0, y=0, width=None, height=None, x1=0, y1=0):
if width is None:
self.x = min(x, x1)
self.width = abs(x1 - x)
else:
self.x = x
self.width = width
if height is None:
self.y = min(y, y1)
self.height = abs(y1 - y)
else:
self.y = y
self.height = height
def _set_x1(self, x1):
"""
"""
width = x1 - self.x
if width < 0: width = 0
self.width = width
x1 = property(lambda s: s.x + s.width, _set_x1)
def _set_y1(self, y1):
"""
"""
height = y1 - self.y
if height < 0: height = 0
self.height = height
y1 = property(lambda s: s.y + s.height, _set_y1)
def expand(self, delta):
"""
>>> r = Rectangle(-5, 3, 10, 8)
>>> r.expand(5)
>>> r
Rectangle(-10, -2, 20, 18)
"""
self.x -= delta
self.y -= delta
self.width += delta * 2
self.height += delta * 2
def __repr__(self):
"""
>>> Rectangle(5,7,20,25)
Rectangle(5, 7, 20, 25)
"""
if self:
return '%s(%g, %g, %g, %g)' % (self.__class__.__name__, self.x, self.y, self.width, self.height)
return '%s()' % self.__class__.__name__
def __iter__(self):
"""
>>> tuple(Rectangle(1,2,3,4))
(1, 2, 3, 4)
"""
return iter((self.x, self.y, self.width, self.height))
def __getitem__(self, index):
"""
>>> Rectangle(1,2,3,4)[1]
2
"""
return (self.x, self.y, self.width, self.height)[index]
def __nonzero__(self):
"""
>>> r=Rectangle(1,2,3,4)
>>> if r: 'yes'
'yes'
>>> r = Rectangle(1,1,0,0)
>>> if r: 'no'
"""
return self.width > 0 and self.height > 0
def __eq__(self, other):
return (type(self) is type(other)) \
and self.x == other.x \
and self.y == other.y \
and self.width == other.width \
and self.height == self.height
def __add__(self, obj):
"""
Create a new Rectangle is the union of the current rectangle
with another Rectangle, tuple `(x,y)` or tuple `(x, y, width, height)`.
>>> r=Rectangle(5, 7, 20, 25)
>>> r + (0, 0)
Traceback (most recent call last):
...
TypeError: Can only add Rectangle or tuple (x, y, width, height), not (0, 0).
>>> r + (20, 30, 40, 50)
Rectangle(5, 7, 55, 73)
"""
return Rectangle(self.x, self.y, self.width, self.height).__iadd__(obj)
def __iadd__(self, obj):
"""
>>> r = Rectangle()
>>> r += Rectangle(5, 7, 20, 25)
>>> r += (0, 0, 30, 10)
>>> r
Rectangle(0, 0, 30, 32)
>>> r += 'aap'
Traceback (most recent call last):
...
TypeError: Can only add Rectangle or tuple (x, y, width, height), not 'aap'.
"""
try:
x, y, width, height = obj
except ValueError:
raise TypeError, "Can only add Rectangle or tuple (x, y, width, height), not %s." % repr(obj)
x1, y1 = x + width, y + height
if self:
ox1, oy1 = self.x + self.width, self.y + self.height
self.x = min(self.x, x)
self.y = min(self.y, y)
self.x1 = max(ox1, x1)
self.y1 = max(oy1, y1)
else:
self.x, self.y, self.width, self.height = x, y, width, height
return self
def __sub__(self, obj):
"""
Create a new Rectangle is the union of the current rectangle
with another Rectangle or tuple (x, y, width, height).
>>> r = Rectangle(5, 7, 20, 25)
>>> r - (20, 30, 40, 50)
Rectangle(20, 30, 5, 2)
>>> r - (30, 40, 40, 50)
Rectangle()
"""
return Rectangle(self.x, self.y, self.width, self.height).__isub__(obj)
def __isub__(self, obj):
"""
>>> r = Rectangle()
>>> r -= Rectangle(5, 7, 20, 25)
>>> r -= (0, 0, 30, 10)
>>> r
Rectangle(5, 7, 20, 3)
>>> r -= 'aap'
Traceback (most recent call last):
...
TypeError: Can only substract Rectangle or tuple (x, y, width, height), not 'aap'.
"""
try:
x, y, width, height = obj
except ValueError:
raise TypeError, "Can only substract Rectangle or tuple (x, y, width, height), not %s." % repr(obj)
x1, y1 = x + width, y + height
if self:
ox1, oy1 = self.x + self.width, self.y + self.height
self.x = max(self.x, x)
self.y = max(self.y, y)
self.x1 = min(ox1, x1)
self.y1 = min(oy1, y1)
else:
self.x, self.y, self.width, self.height = x, y, width, height
return self
def __contains__(self, obj):
"""
Check if a point `(x, y)` in inside rectangle `(x, y, width, height)`
or if a rectangle instance is inside with the rectangle.
>>> r=Rectangle(10, 5, 12, 12)
>>> (0, 0) in r
False
>>> (10, 6) in r
True
>>> (12, 12) in r
True
>>> (100, 4) in r
False
>>> (11, 6, 5, 5) in r
True
>>> (11, 6, 15, 15) in r
False
>>> Rectangle(11, 6, 5, 5) in r
True
>>> Rectangle(11, 6, 15, 15) in r
False
>>> 'aap' in r
Traceback (most recent call last):
...
TypeError: Should compare to Rectangle, tuple (x, y, width, height) or point (x, y), not 'aap'.
"""
try:
x, y, width, height = obj
x1, y1 = x + width, y + width
except ValueError:
# point
try:
x, y = obj
x1, y1 = obj
except ValueError:
raise TypeError, "Should compare to Rectangle, tuple (x, y, width, height) or point (x, y), not %s." % repr(obj)
return x >= self.x and x1 <= self.x1 and \
y >= self.y and y1 <= self.y1
def distance_point_point(point1, point2=(0., 0.)):
"""
Return the distance from point ``point1`` to ``point2``.
>>> '%.3f' % distance_point_point((0,0), (1,1))
'1.414'
"""
dx = point1[0] - point2[0]
dy = point1[1] - point2[1]
return sqrt(dx*dx + dy*dy)
def distance_point_point_fast(point1, point2):
"""
Return the distance from point ``point1`` to ``point2``. This version is
faster than ``distance_point_point()``, but less precise.
>>> distance_point_point_fast((0,0), (1,1))
2
"""
dx = point1[0] - point2[0]
dy = point1[1] - point2[1]
return abs(dx) + abs(dy)
def distance_rectangle_point(rect, point):
"""
Return the distance (fast) from a rectangle ``(x, y, width, height)`` to a
``point``.
>>> distance_rectangle_point(Rectangle(0, 0, 10, 10), (11, -1))
2
>>> distance_rectangle_point((0, 0, 10, 10), (11, -1))
2
>>> distance_rectangle_point((0, 0, 10, 10), (-1, 11))
2
"""
dx = dy = 0
px, py = point
rx, ry, rw, rh = tuple(rect)
if px < rx:
dx = rx - px
elif px > rx + rw:
dx = px - (rx + rw)
if py < ry:
dy = ry - py
elif py > ry + rh:
dy = py - (ry + rh)
return abs(dx) + abs(dy)
def point_on_rectangle(rect, point, border=False):
"""
Return the point on which ``point`` can be projecten on the rectangle.
``border = True`` will make sure the point is bound to the border of
the reactangle. Otherwise, if the point is in the rectangle, it's okay.
>>> point_on_rectangle(Rectangle(0, 0, 10, 10), (11, -1))
(10, 0)
>>> point_on_rectangle((0, 0, 10, 10), (5, 12))
(5, 10)
>>> point_on_rectangle(Rectangle(0, 0, 10, 10), (12, 5))
(10, 5)
>>> point_on_rectangle(Rectangle(1, 1, 10, 10), (3, 4))
(3, 4)
>>> point_on_rectangle(Rectangle(1, 1, 10, 10), (0, 3))
(1, 3)
>>> point_on_rectangle(Rectangle(1, 1, 10, 10), (4, 3))
(4, 3)
>>> point_on_rectangle(Rectangle(1, 1, 10, 10), (4, 9), border=True)
(4, 11)
>>> point_on_rectangle((1, 1, 10, 10), (4, 6), border=True)
(1, 6)
>>> point_on_rectangle(Rectangle(1, 1, 10, 10), (5, 3), border=True)
(5, 1)
>>> point_on_rectangle(Rectangle(1, 1, 10, 10), (8, 4), border=True)
(11, 4)
>>> point_on_rectangle((1, 1, 10, 100), (5, 8), border=True)
(1, 8)
>>> point_on_rectangle((1, 1, 10, 100), (5, 98), border=True)
(5, 101)
"""
px, py = point
rx, ry, rw, rh = tuple(rect)
x_inside = y_inside = False
if px < rx:
px = rx
elif px > rx + rw:
px = rx + rw
elif border:
x_inside = True
if py < ry:
py = ry
elif py > ry + rh:
py = ry + rh
elif border:
y_inside = True
if x_inside and y_inside:
# Find point on side closest to the point
if min(abs(rx - px), abs(rx + rw - px)) > \
min(abs(ry - py), abs(ry + rh - py)):
if py < ry + rh / 2.:
py = ry
else:
py = ry + rh
else:
if px < rx + rw / 2.:
px = rx
else:
px = rx + rw
return px, py
def distance_line_point(line_start, line_end, point):
"""
Calculate the distance of a ``point`` from a line. The line is marked
by begin and end point ``line_start`` and ``line_end``.
A tuple is returned containing the distance and point on the line.
>>> distance_line_point((0., 0.), (2., 4.), point=(3., 4.))
(1.0, (2.0, 4.0))
>>> distance_line_point((0., 0.), (2., 4.), point=(-1., 0.))
(1.0, (0.0, 0.0))
>>> distance_line_point((0., 0.), (2., 4.), point=(1., 2.))
(0.0, (1.0, 2.0))
>>> d, p = distance_line_point((0., 0.), (2., 4.), point=(2., 2.))
>>> '%.3f' % d
'0.894'
>>> '(%.3f, %.3f)' % p
'(1.200, 2.400)'
"""
# The original end point:
true_line_end = line_end
# "Move" the line, so it "starts" on (0, 0)
line_end = line_end[0] - line_start[0], line_end[1] - line_start[1]
point = point[0] - line_start[0], point[1] - line_start[1]
line_len_sqr = line_end[0] * line_end[0] + line_end[1] * line_end[1]
# Both points are very near each other.
if line_len_sqr < 0.0001:
return distance_point_point(point), line_start
projlen = (line_end[0] * point[0] + line_end[1] * point[1]) / line_len_sqr
if projlen < 0.0:
# Closest point is the start of the line.
return distance_point_point(point), line_start
elif projlen > 1.0:
# Point has a projection after the line_end.
return distance_point_point(point, line_end), true_line_end
else:
# Projection is on the line. multiply the line_end with the projlen
# factor to obtain the point on the line.
proj = line_end[0] * projlen, line_end[1] * projlen
return distance_point_point((proj[0] - point[0], proj[1] - point[1])),\
(line_start[0] + proj[0], line_start[1] + proj[1])
def intersect_line_line(line1_start, line1_end, line2_start, line2_end):
"""
Find the point where the lines (segments) defined by
``(line1_start, line1_end)`` and ``(line2_start, line2_end)`` intersect.
If no intersecion occurs, ``None`` is returned.
>>> intersect_line_line((3, 0), (8, 10), (0, 0), (10, 10))
(6, 6)
>>> intersect_line_line((0, 0), (10, 10), (3, 0), (8, 10))
(6, 6)
>>> intersect_line_line((0, 0), (10, 10), (8, 10), (3, 0))
(6, 6)
>>> intersect_line_line((8, 10), (3, 0), (0, 0), (10, 10))
(6, 6)
>>> intersect_line_line((0, 0), (0, 10), (3, 0), (8, 10))
>>> intersect_line_line((0, 0), (0, 10), (3, 0), (3, 10))
Ticket #168:
>>> intersect_line_line((478.0, 117.0), (478.0, 166.0), (527.5, 141.5), (336.5, 139.5))
(478.5, 141.48167539267016)
>>> intersect_line_line((527.5, 141.5), (336.5, 139.5), (478.0, 117.0), (478.0, 166.0))
(478.5, 141.48167539267016)
This is a Python translation of the ``lines_intersect`` routine written
by Mukesh Prasad.
"""
#
# This function computes whether two line segments,
# respectively joining the input points (x1,y1) -- (x2,y2)
# and the input points (x3,y3) -- (x4,y4) intersect.
# If the lines intersect, the output variables x, y are
# set to coordinates of the point of intersection.
#
# All values are in integers. The returned value is rounded
# to the nearest integer point.
#
# If non-integral grid points are relevant, the function
# can easily be transformed by substituting floating point
# calculations instead of integer calculations.
#
# Entry
# x1, y1, x2, y2 Coordinates of endpoints of one segment.
# x3, y3, x4, y4 Coordinates of endpoints of other segment.
#
# Exit
# x, y Coordinates of intersection point.
#
# The value returned by the function is one of:
#
# DONT_INTERSECT 0
# DO_INTERSECT 1
# COLLINEAR 2
#
# Error condititions:
#
# Depending upon the possible ranges, and particularly on 16-bit
# computers, care should be taken to protect from overflow.
#
# In the following code, 'long' values have been used for this
# purpose, instead of 'int'.
#
x1, y1 = line1_start
x2, y2 = line1_end
x3, y3 = line2_start
x4, y4 = line2_end
#long a1, a2, b1, b2, c1, c2; /* Coefficients of line eqns. */
#long r1, r2, r3, r4; /* 'Sign' values */
#long denom, offset, num; /* Intermediate values */
# Compute a1, b1, c1, where line joining points 1 and 2
# is "a1 x + b1 y + c1 = 0".
a1 = y2 - y1
b1 = x1 - x2
c1 = x2 * y1 - x1 * y2
# Compute r3 and r4.
r3 = a1 * x3 + b1 * y3 + c1
r4 = a1 * x4 + b1 * y4 + c1
# Check signs of r3 and r4. If both point 3 and point 4 lie on
# same side of line 1, the line segments do not intersect.
if r3 and r4 and (r3 * r4) >= 0:
return None # ( DONT_INTERSECT )
# Compute a2, b2, c2
a2 = y4 - y3
b2 = x3 - x4
c2 = x4 * y3 - x3 * y4
# Compute r1 and r2
r1 = a2 * x1 + b2 * y1 + c2
r2 = a2 * x2 + b2 * y2 + c2
# Check signs of r1 and r2. If both point 1 and point 2 lie
# on same side of second line segment, the line segments do
# not intersect.
if r1 and r2 and (r1 * r2) >= 0: #SAME_SIGNS( r1, r2 ))
return None # ( DONT_INTERSECT )
# Line segments intersect: compute intersection point.
denom = a1 * b2 - a2 * b1
if not denom:
return None # ( COLLINEAR )
offset = abs(denom) / 2
# The denom/2 is to get rounding instead of truncating. It
# is added or subtracted to the numerator, depending upon the
# sign of the numerator.
num = b1 * c2 - b2 * c1
x = ( (num < 0) and (num - offset) or (num + offset) ) / denom
num = a2 * c1 - a1 * c2
y = ( (num < 0) and (num - offset) or (num + offset) ) / denom
return x, y
def rectangle_contains(inner, outer):
"""
Returns True if ``inner`` rect is contained in ``outer`` rect.
"""
ix, iy, iw, ih = inner
ox, oy, ow, oh = outer
return ox <= ix and oy <= iy and ox + ow >= ix + iw and oy + oh >= iy + ih
def rectangle_intersects(recta, rectb):
"""
Return True if ``recta`` and ``rectb`` intersect.
>>> rectangle_intersects((5,5,20, 20), (10, 10, 1, 1))
True
>>> rectangle_intersects((40, 30, 10, 1), (1, 1, 1, 1))
False
"""
ax, ay, aw, ah = recta
bx, by, bw, bh = rectb
return ax <= bx + bw and ax + aw >= bx and ay <= by + bh and ay + ah >= by
def rectangle_clip(recta, rectb):
"""
Return the clipped rectangle of ``recta`` and ``rectb``. If they do not
intersect, ``None`` is returned.
>>> rectangle_clip((0, 0, 20, 20), (10, 10, 20, 20))
(10, 10, 10, 10)
"""
ax, ay, aw, ah = recta
bx, by, bw, bh = rectb
x = max(ax, bx)
y = max(ay, by)
w = min(ax +aw, bx + bw) - x
h = min(ay +ah, by + bh) - y
if w < 0 or h < 0:
return None
return (x, y, w, h)
# vim:sw=4:et:ai
|