This file is indexed.

/usr/share/pyshared/ase/io/xsf.py is in python-ase 3.6.0.2515-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np

from ase.atoms import Atoms
from ase.units import Hartree
from ase.parallel import paropen
from ase.calculators.singlepoint import SinglePointCalculator


def write_xsf(fileobj, images, data=None):
    if isinstance(fileobj, str):
        fileobj = paropen(fileobj, 'w')
        
    if not isinstance(images, (list, tuple)):
        images = [images]

    fileobj.write('ANIMSTEPS %d\n' % len(images))

    numbers = images[0].get_atomic_numbers()
    
    pbc = images[0].get_pbc()
    if pbc[2]:
        fileobj.write('CRYSTAL\n')
    elif pbc[1]:
        fileobj.write('SLAB\n')
    elif pbc[0]:
        fileobj.write('POLYMER\n')
    else:
        fileobj.write('MOLECULE\n')

    for n, atoms in enumerate(images):
        if pbc.any():
            fileobj.write('PRIMVEC %d\n' % (n + 1))
            cell = atoms.get_cell()
            for i in range(3):
                fileobj.write(' %.14f %.14f %.14f\n' % tuple(cell[i]))

        fileobj.write('PRIMCOORD %d\n' % (n + 1))

        # Get the forces if it's not too expensive:
        calc = atoms.get_calculator()
        if (calc is not None and
            (hasattr(calc, 'calculation_required') and
             not calc.calculation_required(atoms,
                                           ['energy', 'forces', 'stress']))):
            forces = atoms.get_forces()
        else:
            forces = None

        pos = atoms.get_positions()

        fileobj.write(' %d 1\n' % len(pos))
        for a in range(len(pos)):
            fileobj.write(' %2d' % numbers[a])
            fileobj.write(' %20.14f %20.14f %20.14f' % tuple(pos[a]))
            if forces is None:
                fileobj.write('\n')
            else:
                fileobj.write(' %20.14f %20.14f %20.14f\n' % tuple(forces[a]))
            
    if data is None:
        return

    fileobj.write('BEGIN_BLOCK_DATAGRID_3D\n')
    fileobj.write(' data\n')
    fileobj.write(' BEGIN_DATAGRID_3Dgrid#1\n')

    data = np.asarray(data)
    if data.dtype == complex:
        data = np.abs(data)

    shape = data.shape
    fileobj.write('  %d %d %d\n' % shape)

    cell = atoms.get_cell()
    origin = np.zeros(3)
    for i in range(3):
        if not pbc[i]:
            origin += cell[i] / shape[i]
    fileobj.write('  %f %f %f\n' % tuple(origin))

    for i in range(3):
        fileobj.write('  %f %f %f\n' %
                      tuple(cell[i] * (shape[i] + 1) / shape[i]))

    for x in range(shape[2]):
        for y in range(shape[1]):
            fileobj.write('   ')
            fileobj.write(' '.join(['%f' % d for d in data[x, y]]))
            fileobj.write('\n')
        fileobj.write('\n')

    fileobj.write(' END_DATAGRID_3D\n')
    fileobj.write('END_BLOCK_DATAGRID_3D\n')


def read_xsf(fileobj, index=-1, read_data=True):
    if isinstance(fileobj, str):
        fileobj = open(fileobj)

    readline = fileobj.readline
    while True:
        line = readline()
        if line[0] != '#':
            line = line.strip()
            break

    if 'ANIMSTEPS' in line:
        nimages = int(line.split()[1])
        line = readline().strip()
    else:
        nimages = 1

    if 'CRYSTAL' in line:
        pbc = True
    elif 'SLAB' in line:
        pbc = (True, True, False)
    elif 'POLYMER' in line:
        pbc = (True, False, False)
    else:
        pbc = False

    images = []
    for n in range(nimages):
        cell = None
        if pbc:
            line = readline().strip()
            assert 'PRIMVEC' in line
            cell = []
            for i in range(3):
                cell.append([float(x) for x in readline().split()])

        line = readline().strip()
        assert 'PRIMCOORD' in line

        natoms = int(readline().split()[0])
        numbers = []
        positions = []
        for a in range(natoms):
            line = readline().split()
            numbers.append(int(line[0]))
            positions.append([float(x) for x in line[1:]])

        positions = np.array(positions)
        if len(positions[0]) == 3:
            forces = None
        else:
            positions = positions[:, :3]
            forces = positions[:, 3:] * Hartree

        image = Atoms(numbers, positions, cell=cell, pbc=pbc)

        if forces is not None:
            image.set_calculator(SinglePointCalculator(None, forces, None,
                                                       None, image))
        images.append(image)

    if read_data:
        line = readline()
        assert 'BEGIN_BLOCK_DATAGRID_3D' in line
        line = readline()
        assert 'BEGIN_DATAGRID_3D' in line

        shape = [int(x) for x in readline().split()]
        start = [float(x) for x in readline().split()]

        for i in range(3):
            readline()
            
        n_data = shape[0]*shape[1]*shape[2]
        data = np.array([float(readline())
                         for s in range(n_data)]).reshape(shape[::-1])
        data = np.swapaxes(data, 0, 2)
        
        return data, images[index]

    return images[index]