This file is indexed.

/usr/share/pyshared/aafigure/aafigure.py is in python-aafigure 0.5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
#!/usr/bin/env python

"""\
ASCII art to image converter.

This is the main module that contains the parser.

See svg.py and aa.py for output modules, that can render the parsed structure.

(C) 2006-2009 Chris Liechti <cliechti@gmx.net>

This is open source software under the BSD license. See LICENSE.txt for more
details.
"""
import codecs
from error import UnsupportedFormatError
from shapes import *
from unicodedata import east_asian_width
import sys

NOMINAL_SIZE = 2

CLASS_LINE = 'line'
CLASS_STRING = 'str'
CLASS_RECTANGLE = 'rect'
CLASS_JOIN = 'join'
CLASS_FIXED = 'fixed'

DEFAULT_OPTIONS = dict(
    background   = '#ffffff',
    foreground   = '#000000',
    line_width   = 2.0,
    scale        = 1.0,
    aspect       = 1.0,
    format       = 'svg',
    debug        = False,
    textual      = False,
    proportional = False,
    encoding     = 'utf-8',
    widechars     = 'F,W',
)

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

class AsciiArtImage:
    """This class hold a ASCII art figure and has methods to parse it.
       The resulting list of shapes is also stored here.

       The image is parsed in 2 steps:

       1. horizontal string detection.
       2. generic shape detection.

       Each character that is used in a shape or string is tagged. So that
       further searches don't include it again (e.g. text in a string touching
       a fill), respectively can use it correctly (e.g. join characters when
       two or more lines hit).
    """

    QUOTATION_CHARACTERS = list('"\'`')

    def __init__(self, text, aspect_ratio=1, textual=False, widechars='F,W'):
        """Take a ASCII art figure and store it, prepare for ``recognize``"""
        self.aspect_ratio = float(aspect_ratio)
        self.textual = textual
        # XXX TODO tab expansion
        # detect size of input image, store as list of lines
        self.image = []
        max_x = 0
        y = 0
        # define character widths map
        charwidths = {}
        for key in ['F', 'H', 'W', 'Na', 'A', 'N']:
            if key in widechars.split(','):
                charwidths[key] = 2
            else:
                charwidths[key] = 1
        for line in text.splitlines():
            # extend length by 1 for each wide glyph
            line_len = sum(charwidths[east_asian_width(c)] for c in line)
            max_x = max(max_x, line_len)
            # pad a space for each wide glyph
            padded_line = ''.join(c+' '*(charwidths[east_asian_width(c)]-1) for c in line)
            self.image.append(padded_line)
            y += 1
        self.width = max_x
        self.height = y
        # make sure it's rectangular (extend short lines to max width)
        for y, line in enumerate(self.image):
            if len(line) < max_x:
                self.image[y] = line + ' '*(max_x-len(line))
        # initialize other data structures
        self.classification = [[None]*self.width for y in range(self.height)]
        self.shapes = []
        self.nominal_size = NOMINAL_SIZE

    def __str__(self):
        """Return the original image"""
        return '\n'.join([self.image[y] for y in range(self.height)])

    def get(self, x, y):
        """Get character from image. Gives no error for access out of
           bounds, just returns a space. This simplifies the scanner
           functions.
        """
        if 0 <= x < self.width and 0 <= y < self.height:
            return self.image[y][x]
        else:
            return ' '

    def tag(self, coordinates, classification):
        """Tag coordinates as used, store classification"""
        for x, y in coordinates:
            self.classification[y][x] = classification

    def cls(self, x, y):
        """get tag at coordinate"""
        try:
            return self.classification[y][x]
        except IndexError:
            return 'outside'

    # Coordinate conversion and shifting
    def left(self, x):
        return x*NOMINAL_SIZE*self.aspect_ratio

    def hcenter(self, x):
        return (x + 0.5)*NOMINAL_SIZE*self.aspect_ratio

    def right(self, x):
        return (x + 1)*NOMINAL_SIZE*self.aspect_ratio

    def top(self, y):
        return y*NOMINAL_SIZE

    def vcenter(self, y):
        return (y + 0.5)*NOMINAL_SIZE

    def bottom(self, y):
        return (y + 1)*NOMINAL_SIZE

    def recognize(self):
        """
        Try to convert ASCII art to vector graphics. The result is stored in
        ``self.shapes``.
        """
        # XXX search for symbols
        #~ #search for long strings
        #~ for y in range(self.height):
            #~ for x in range(self.width):
                #~ character = self.image[y][x]
                #~ if self.classification[y][x] is None:
                    #~ if character.isalnum():
                        #~ self.shapes.extend(
                            #~ self._follow_horizontal_string(x, y)
                        #~ )
        # search for quoted texts
        for y in range(self.height):
            for x in range(self.width):
                #if not yet classified, check for a line
                character = self.image[y][x]
                if character in self.QUOTATION_CHARACTERS and self.classification[y][x] is None:
                    self.shapes.extend(
                        self._follow_horizontal_string(x, y, quoted=True))

        # search for standard shapes
        for y in range(self.height):
            for x in range(self.width):
                #if not yet classified, check for a line
                character = self.image[y][x]
                if self.classification[y][x] is None:
                    if character == '-':
                        self.shapes.extend(self._follow_horizontal_line(x, y))
                    elif character == '|':
                        self.shapes.extend(self._follow_vertical_line(x, y))
                    elif character == '_':
                        self.shapes.extend(self._follow_lower_horizontal_line(x, y))
                    elif character == '~':
                        self.shapes.extend(self._follow_upper_horizontal_line(x, y))
                    elif character == '=':
                        self.shapes.extend(self._follow_horizontal_line(x, y, thick=True))
                    elif character in '\\/':
                        self.shapes.extend(self._follow_rounded_edge(x, y))
                    elif character == '+':
                        self.shapes.extend(self._plus_joiner(x, y))
                    elif character in self.FIXED_CHARACTERS:
                        self.shapes.extend(self.get_fixed_character(character)(x, y))
                        self.tag([(x, y)], CLASS_FIXED)
                    elif character in self.FILL_CHARACTERS:
                        if self.textual:
                            if self.get(x, y+1) == character:
                                self.shapes.extend(self._follow_fill(character, x, y))
                        else:
                            if (self.get(x+1, y) == character or self.get(x, y+1) == character):
                                self.shapes.extend(self._follow_fill(character, x, y))

        # search for short strings too
        for y in range(self.height):
            for x in range(self.width):
                character = self.image[y][x]
                if self.classification[y][x] is None:
                    if character != ' ':
                        self.shapes.extend(self._follow_horizontal_string(x, y, accept_anything=True))

    # - - - - - - - - - helper function for some shapes - - - - - - - - -
    # Arrow drawing functions return the (new) starting point of the line and a
    # list of shapes that draw the arrow. The line itself is not included in
    # the list of shapes. The stating point is p1, possibly modified to match
    # the shape of the arrow head.
    #
    # Use complex numbers as 2D vectors as that means easy transformations like
    # scaling, rotation and translation

    # - - - - - - - - - arrows - - - - - - - - -
    def _standard_arrow(self, p1, p2):
        """-->
           return a possibly modified starting point and a list of shapes
        """
        direction_vector = p1 - p2
        direction_vector /= abs(direction_vector)
        return p1, [
            Line(p1, p1-direction_vector*1.5+direction_vector*0.5j),
            Line(p1, p1-direction_vector*1.5+direction_vector*-0.5j)
        ]

    def _reversed_arrow(self, p1, p2):
        """--<"""
        direction_vector = p1 - p2
        direction_vector /= abs(direction_vector)
        return p1-direction_vector*2, [
            Line(p1-direction_vector*2.0, p1+direction_vector*(-0.5+0.5j)),
            Line(p1-direction_vector*2.0, p1+direction_vector*(-0.5-0.5j))
        ]

    def _circle_head(self, p1, p2, radius=0.5):
        """--o"""
        direction_vector = p1 - p2
        direction_vector /= abs(direction_vector)
        return p1-direction_vector, [Circle(p1-direction_vector, radius)]

    def _large_circle_head(self, p1, p2):
        """--O"""
        return self._circle_head(p1, p2, radius=0.9)

    def _rectangular_head(self, p1, p2):
        """--#"""
        direction_vector = p1 - p2
        direction_vector /= abs(direction_vector)
        #~ return p1-direction_vector*1.414, [
            #~ Rectangle(p1-direction_vector-direction_vector*(0.707+0.707j),
                      #~ p1-direction_vector+direction_vector*(0.707+0.707j))
        #~ ]
        return p1-direction_vector*1.707, [
            Line(p1-direction_vector-direction_vector*(0.707+0.707j),
                 p1-direction_vector-direction_vector*(0.707-0.707j)),
            Line(p1-direction_vector+direction_vector*(0.707+0.707j),
                 p1-direction_vector+direction_vector*(0.707-0.707j)),
            Line(p1-direction_vector-direction_vector*(0.707+0.707j),
                 p1-direction_vector+direction_vector*(0.707-0.707j)),
            Line(p1-direction_vector-direction_vector*(0.707-0.707j),
                 p1-direction_vector+direction_vector*(0.707+0.707j)),
        ]

    # the same character can mean a different thing, depending from where the
    # line is coming. this table maps line direction (dx,dy) and the arrow
    # character to a arrow drawing function
    ARROW_TYPES = [
        #chr  dx  dy  arrow type
        ('>',  1,  0, '_standard_arrow'),
        ('<', -1,  0, '_standard_arrow'),
        ('^',  0, -1, '_standard_arrow'),
        ('A',  0, -1, '_standard_arrow'),
        ('V',  0,  1, '_standard_arrow'),
        ('v',  0,  1, '_standard_arrow'),
        ('>', -1,  0, '_reversed_arrow'),
        ('<',  1,  0, '_reversed_arrow'),
        ('^',  0,  1, '_reversed_arrow'),
        ('V',  0, -1, '_reversed_arrow'),
        ('v',  0, -1, '_reversed_arrow'),
        ('o',  1,  0, '_circle_head'),
        ('o', -1,  0, '_circle_head'),
        ('o',  0, -1, '_circle_head'),
        ('o',  0,  1, '_circle_head'),
        ('O',  1,  0, '_large_circle_head'),
        ('O', -1,  0, '_large_circle_head'),
        ('O',  0, -1, '_large_circle_head'),
        ('O',  0,  1, '_large_circle_head'),
        ('#',  1,  0, '_rectangular_head'),
        ('#', -1,  0, '_rectangular_head'),
        ('#',  0, -1, '_rectangular_head'),
        ('#',  0,  1, '_rectangular_head'),
    ]

    ARROW_HEADS = list('<>AVv^oO#')

    def get_arrow(self, character, dx, dy):
        """return arrow drawing function or None"""
        for head, ddx, ddy, function_name in self.ARROW_TYPES:
            if character == head and dx == ddx and dy == ddy:
                return getattr(self, function_name)

    # - - - - - - - - - fills - - - - - - - - -
    # Fill functions return a list of shapes. Each one if covering one cell
    # size.

    def _hatch_left(self, x, y):
        return self._n_hatch_diagonal(x, y, 1, True)

    def _hatch_right(self, x, y):
        return self._n_hatch_diagonal(x, y, 1, False)

    def _cross_hatch(self, x, y):
        return self._n_hatch_diagonal(x, y, 1, True) + \
               self._n_hatch_diagonal(x, y, 1, False)

    def _double_hatch_left(self, x, y):
        return self._n_hatch_diagonal(x, y, 2, True)

    def _double_hatch_right(self, x, y):
        return self._n_hatch_diagonal(x, y, 2, False)

    def _double_cross_hatch(self, x, y):
        return self._n_hatch_diagonal(x, y, 2, True) + \
               self._n_hatch_diagonal(x, y, 2, False)

    def _triple_hatch_left(self, x, y):
        return self._n_hatch_diagonal(x, y, 3, True)

    def _triple_hatch_right(self, x, y):
        return self._n_hatch_diagonal(x, y, 3, False)

    def _triple_cross_hatch(self, x, y):
        return self._n_hatch_diagonal(x, y, 3, True) + \
               self._n_hatch_diagonal(x, y, 3, False)

    def _n_hatch_diagonal(self, x, y, n, left=False):
        """hatch generator function"""
        d = 1/float(n)
        result = []
        if left:
            for i in range(n):
                result.append(Line(
                    Point(self.left(x), self.top(y+d*i)),
                    Point(self.right(x-d*i), self.bottom(y))
                ))
                if n:
                    result.append(Line(
                        Point(self.right(x-d*i), self.top(y)),
                        Point(self.right(x), self.top(y+d*i))
                    ))
        else:
            for i in range(n):
                result.append(Line(Point(self.left(x), self.top(y+d*i)), Point(self.left(x+d*i), self.top(y))))
                if n:
                    result.append(Line(Point(self.left(x+d*i), self.bottom(y)), Point(self.right(x), self.top(y+d*i))))
        return result

    def _hatch_v(self, x, y):
        return self._n_hatch_straight(x, y, 1, True)

    def _hatch_h(self, x, y):
        return self._n_hatch_straight(x, y, 1, False)

    def _hv_hatch(self, x, y):
        return self._n_hatch_straight(x, y, 1, True) + \
               self._n_hatch_straight(x, y, 1, False)

    def _double_hatch_v(self, x, y):
        return self._n_hatch_straight(x, y, 2, True)

    def _double_hatch_h(self, x, y):
        return self._n_hatch_straight(x, y, 2, False)

    def _double_hv_hatch(self, x, y):
        return self._n_hatch_straight(x, y, 2, True) + \
               self._n_hatch_straight(x, y, 2, False)

    def _triple_hatch_v(self, x, y):
        return self._n_hatch_straight(x, y, 3, True)

    def _triple_hatch_h(self, x, y):
        return self._n_hatch_straight(x, y, 3, False)

    def _triple_hv_hatch(self, x, y):
        return self._n_hatch_straight(x, y, 3, True) + \
               self._n_hatch_straight(x, y, 3, False)

    def _n_hatch_straight(self, x, y, n, vertical=False):
        """hatch generator function"""
        d = 1/float(n)
        offset = 1.0/(n+1)
        result = []
        if vertical:
            for i in range(n):
                i = i + offset
                result.append(Line(
                    Point(self.left(x+d*i), self.top(y)),
                    Point(self.left(x+d*i), self.bottom(y))
                ))
                #~ if n:
                    #~ result.append(Line(Point(self.right(x-d*i), self.top(y)), Point(self.right(x), self.top(y+d*i))))
        else:
            for i in range(n):
                i = i + offset
                result.append(Line(
                    Point(self.left(x), self.top(y+d*i)),
                    Point(self.right(x), self.top(y+d*i))
                ))
                #~ if n:
                    #~ result.append(Line(Point(self.left(x+d*i), self.bottom(y)), Point(self.right(x), self.top(y+d*i))))
        return result

    def _fill_trail(self, x, y):
        return [
            Line(
                Point(self.left(x+0.707), self.top(y)),
                Point(self.right(x), self.bottom(y-0.707))
            ),
            Line(
                Point(self.left(x), self.top(y+0.707)),
                Point(self.right(x-0.707), self.bottom(y))
            )
        ]

    def _fill_foreground(self, x, y):
        return [
            Rectangle(
                Point(self.left(x), self.top(y)),
                Point(self.right(x), self.bottom(y))
            )
        ]

    def _fill_background(self, x, y):
        return []

    def _fill_small_circle(self, x, y):
        return [
            Circle(Point(self.left(x+0.5), self.top(y+0.5)), 0.2)
        ]

    def _fill_medium_circle(self, x, y):
        return [
            Circle(Point(self.left(x+0.5), self.top(y+0.5)), 0.4)
        ]

    def _fill_large_circle(self, x, y):
        return [
            Circle(Point(self.left(x+0.5), self.top(y+0.5)), 0.9)
        ]

    def _fill_qmark(self, x, y):
        return [
            Label(Point(self.left(x), self.bottom(y)), '?')
        ]

    def _fill_triangles(self, x, y):
        return [
            Line(Point(self.left(x+0.5), self.top(y+0.2)), Point(self.left(x+0.75), self.top(y+0.807))),
            Line(Point(self.left(x+0.7), self.top(y+0.807)), Point(self.left(x+0.25), self.top(y+0.807))),
            Line(Point(self.left(x+0.25), self.top(y+0.807)), Point(self.left(x+0.5), self.top(y+0.2))),
        ]

    FILL_TYPES = [
        ('A', '_hatch_left'),
        ('B', '_hatch_right'),
        ('C', '_cross_hatch'),
        ('D', '_double_hatch_left'),
        ('E', '_double_hatch_right'),
        ('F', '_double_cross_hatch'),
        ('G', '_triple_hatch_left'),
        ('H', '_triple_hatch_right'),
        ('I', '_triple_cross_hatch'),
        ('J', '_hatch_v'),
        ('K', '_hatch_h'),
        ('L', '_hv_hatch'),
        ('M', '_double_hatch_v'),
        ('N', '_double_hatch_h'),
        ('O', '_double_hv_hatch'),
        ('P', '_triple_hatch_v'),
        ('Q', '_triple_hatch_h'),
        ('R', '_triple_hv_hatch'),
        ('S', '_fill_qmark'),
        ('T', '_fill_trail'),
        ('U', '_fill_small_circle'),
        ('V', '_fill_medium_circle'),
        ('W', '_fill_large_circle'),
        ('X', '_fill_foreground'),
        ('Y', '_fill_triangles'),
        ('Z', '_fill_background'),
    ]

    FILL_CHARACTERS = ''.join([t+t.lower() for (t, f) in FILL_TYPES])

    def get_fill(self, character):
        """return fill function"""
        for head, function_name in self.FILL_TYPES:
            if character == head:
                return getattr(self, function_name)
        raise ValueError('no such fill type')

    # - - - - - - - - - fixed characters and their shapes - - - - - - - - -

    def _open_triangle_left(self, x, y):
        return [
            Line(
                Point(self.left(x), self.vcenter(y)),
                Point(self.right(x), self.top(y))
            ),
            Line(
                Point(self.left(x), self.vcenter(y)),
                Point(self.right(x), self.bottom(y))
            )
        ]
    def _open_triangle_right(self, x, y):
        return [
            Line(
                Point(self.right(x), self.vcenter(y)),
                Point(self.left(x), self.top(y))
            ),
            Line(
                Point(self.right(x), self.vcenter(y)),
                Point(self.left(x), self.bottom(y))
            )
        ]

    def _circle(self, x, y):
        return [
            Circle(Point(self.hcenter(x), self.vcenter(y)), NOMINAL_SIZE/2.0)
        ]


    FIXED_TYPES = [
        ('{', '_open_triangle_left'),
        ('}', '_open_triangle_right'),
        ('*', '_circle'),
    ]
    FIXED_CHARACTERS = ''.join([t for (t, f) in FIXED_TYPES])

    def get_fixed_character(self, character):
        """return fill function"""
        for head, function_name in self.FIXED_TYPES:
            if character == head:
                return getattr(self, function_name)
        raise ValueError('no such character')

    # - - - - - - - - - helper function for shape recognition - - - - - - - - -

    def _follow_vertical_line(self, x, y):
        """find a vertical line with optional arrow heads"""
        # follow line to the bottom
        _, end_y, line_end_style = self._follow_line(x, y, dy=1, line_character='|')
        # follow line to the top
        _, start_y, line_start_style = self._follow_line(x, y, dy=-1, line_character='|')
        # if a '+' follows a line, then the line is stretched to hit the '+' center
        start_y_fix = end_y_fix = 0
        if self.get(x, start_y - 1) == '+':
            start_y_fix = -0.5
        if self.get(x, end_y + 1) == '+':
            end_y_fix = 0.5
        # tag characters as used (not the arrow heads)
        self.tag([(x, y) for y in range(start_y, end_y + 1)], CLASS_LINE)
        # return the new shape object with arrows etc.
        p1 = complex(self.hcenter(x), self.top(start_y + start_y_fix))
        p2 = complex(self.hcenter(x), self.bottom(end_y + end_y_fix))
        shapes = []
        if line_start_style:
            p1, arrow_shapes = line_start_style(p1, p2)
            shapes.extend(arrow_shapes)
        if line_end_style:
            p2, arrow_shapes = line_end_style(p2, p1)
            shapes.extend(arrow_shapes)
        shapes.append(Line(p1, p2))
        return group(shapes)

    def _follow_horizontal_line(self, x, y, thick=False):
        """find a horizontal line with optional arrow heads"""
        if thick:
            line_character = '='
        else:
            line_character = '-'
        # follow line to the right
        end_x, _, line_end_style = self._follow_line(x, y, dx=1, line_character=line_character)
        # follow line to the left
        start_x, _, line_start_style = self._follow_line(x, y, dx=-1, line_character=line_character)
        start_x_fix = end_x_fix = 0
        if self.get(start_x - 1, y) == '+':
            start_x_fix = -0.5
        if self.get(end_x + 1, y) == '+':
            end_x_fix = 0.5
        self.tag([(x, y) for x in range(start_x, end_x+1)], CLASS_LINE)
        # return the new shape object with arrows etc.
        p1 = complex(self.left(start_x + start_x_fix), self.vcenter(y))
        p2 = complex(self.right(end_x + end_x_fix), self.vcenter(y))
        shapes = []
        if line_start_style:
            p1, arrow_shapes = line_start_style(p1, p2)
            shapes.extend(arrow_shapes)
        if line_end_style:
            p2, arrow_shapes = line_end_style(p2, p1)
            shapes.extend(arrow_shapes)
        shapes.append(Line(p1, p2, thick=thick))
        return group(shapes)

    def _follow_lower_horizontal_line(self, x, y):
        """find a horizontal line, the line is aligned to the bottom and a bit
           wider, so that it can be used for shapes like this:
              ___
           __|   |___
        """
        # follow line to the right
        end_x, _, line_end_style = self._follow_line(x, y, dx=1, line_character='_', arrows=False)
        # follow line to the left
        start_x, _, line_start_style = self._follow_line(x, y, dx=-1, line_character='_', arrows=False)
        self.tag([(x, y) for x in range(start_x, end_x+1)], CLASS_LINE)
        # return the new shape object with arrows etc.
        p1 = complex(self.hcenter(start_x-1), self.bottom(y))
        p2 = complex(self.hcenter(end_x+1), self.bottom(y))
        return [Line(p1, p2)]

    def _follow_upper_horizontal_line(self, x, y):
        """find a horizontal line, the line is aligned to the bottom and a bit
           wider, so that it can be used for shapes like this:

             |~~~|
           ~~     ~~~
        """
        # follow line to the right
        end_x, _, line_end_style = self._follow_line(x, y, dx=1, line_character='~', arrows=False)
        # follow line to the left
        start_x, _, line_start_style = self._follow_line(x, y, dx=-1, line_character='~', arrows=False)
        self.tag([(x, y) for x in range(start_x, end_x+1)], CLASS_LINE)
        # return the new shape object with arrows etc.
        p1 = complex(self.hcenter(start_x-1), self.top(y))
        p2 = complex(self.hcenter(end_x+1), self.top(y))
        return [Line(p1, p2)]

    def _follow_line(self, x, y, dx=0, dy=0, line_character=None, arrows=True):
        """helper function for all the line functions"""
        # follow line in the given direction
        while 0 <= x < self.width and 0<= y < self.height and self.get(x+dx, y+dy) == line_character:
            x += dx
            y += dy
        if arrows:
            # check for arrow head
            following_character = self.get(x + dx, y + dy)
            if following_character in self.ARROW_HEADS:
                line_end_style = self.get_arrow(following_character, dx, dy)
                if line_end_style:
                    x += dx
                    y += dy
            else:
                line_end_style = None
        else:
            line_end_style = None
        return x, y, line_end_style

    def _plus_joiner(self, x, y):
        """adjacent '+' signs are connected with a line from center to center
           required for images like these:

              +---+         The box should be closed on all sides
              |   +--->     and the arrow start should touch the box
              +---+
        """
        result = []
        #~ for dx, dy in ((1,0), (-1,0), (0,1), (0,-1)):
        # looking right and down is sufficient as the scan is done from left to
        # right, top to bottom
        for dx, dy in ((1, 0), (0, 1)):
            if self.get(x + dx, y + dy) == '+':
                result.append(Line(
                    Point(self.hcenter(x), self.vcenter(y)),
                    Point(self.hcenter(x + dx), self.vcenter(y + dy))
                ))
        self.tag([(x, y)], CLASS_JOIN)
        return result


    def _follow_fill(self, character, start_x, start_y):
        """fill shapes like the ones below with a pattern. when the character is
           upper case, draw a border too.

            XXX  aaa  BB
           XXX    a
        """
        fill = self.get_fill(character.upper())
        border = character.isupper()
        result = []
        # flood fill algorithm, searching for similar characters
        coordinates = []
        to_scan = [(start_x, start_y)]
        while to_scan:
            x, y = to_scan.pop()
            if self.cls(x, y) is None:
                if self.get(x, y) == character:
                    result.extend(fill(x, y))
                    self.tag([(x, y)], CLASS_RECTANGLE)
                if self.get(x + 1, y) == character:
                    if self.cls(x + 1, y) is None:
                        to_scan.append((x + 1, y))
                elif border:
                    result.append(Line(
                        Point(self.right(x), self.top(y)),
                        Point(self.right(x), self.bottom(y))))
                if self.get(x - 1, y) == character:
                    if self.cls(x - 1, y) is None:
                        to_scan.append((x - 1, y))
                elif border:
                    result.append(Line(
                        Point(self.left(x), self.top(y)),
                        Point(self.left(x), self.bottom(y))))
                if self.get(x, y + 1) == character:
                    if self.cls(x, y + 1) is None:
                        to_scan.append((x, y + 1))
                elif border:
                    result.append(Line(
                        Point(self.left(x), self.bottom(y)),
                        Point(self.right(x), self.bottom(y))))
                if self.get(x, y - 1) == character:
                    if self.cls(x, y - 1) is None:
                        to_scan.append((x, y - 1))
                elif border:
                    result.append(Line(
                        Point(self.left(x), self.top(y)),
                        Point(self.right(x), self.top(y))))
        return group(result)

    def _follow_horizontal_string(self, start_x, y, accept_anything=False, quoted=False):
        """find a string. may contain single spaces, but the detection is
           aborted after more than one space.

              Text one   "Text two"

           accept_anything means that all non space characters are interpreted
           as text.
        """
        # follow line from left to right
        if quoted:
            quotation_character = self.get(start_x, y)
            x = start_x + 1
        else:
            quotation_character = None
            x = start_x
        text = []
        if self.get(x, y) != ' ':
            text.append(self.get(x, y))
            self.tag([(x, y)], CLASS_STRING)
            is_first_space = True
            while 0 <= x + 1 < self.width and self.cls(x + 1, y) is None:
                if not quoted:
                    if self.get(x + 1, y) == ' ' and not is_first_space:
                        break
                    if not accept_anything and not self.get(x + 1, y).isalnum():
                        break
                x += 1
                character = self.get(x, y)
                if character == quotation_character:
                    self.tag([(x, y)], CLASS_STRING)
                    break
                text.append(character)
                if character == ' ':
                    is_first_space = False
                else:
                    is_first_space = True
            if text[-1] == ' ':
                del text[-1]
                x -= 1
            self.tag([(x, y) for x in range(start_x, x + 1)], CLASS_STRING)
            return [Label(
                Point(self.left(start_x), self.bottom(y)),
                ''.join(text)
            )]
        else:
            return []

    def _follow_rounded_edge(self, x, y):
        """check for rounded edges:
            /-    |     -\-    |   and also \    /  etc.
            |    -/      |     \-            -  |
        """
        result = []
        if self.get(x, y) == '/':
            # rounded rectangles
            if (self.get(x + 1, y) == '-' and self.get(x, y + 1) == '|'):
                # upper left corner
                result.append(Arc(
                    Point(self.hcenter(x), self.bottom(y)), 90,
                    Point(self.right(x), self.vcenter(y)),  180
                ))
            if self.get(x - 1, y) == '-' and self.get(x, y - 1) == '|':
                # lower right corner
                result.append(Arc(
                    Point(self.hcenter(x), self.top(y)),  -90,
                    Point(self.left(x), self.vcenter(y)), 0
                ))
            if not result:
                # if used as diagonal line
                p1 = p2 = None
                a1 = a2 = 0
                arc = c1 = c2 = False
                if self.get(x + 1, y - 1) == '|':
                    p1 = Point(self.hcenter(x + 1), self.top(y))
                    a1 = -90
                    arc = c1 = True
                elif self.get(x + 1, y - 1) == '+':
                    p1 = Point(self.hcenter(x + 1), self.vcenter(y - 1))
                    a1 = -135
                elif self.get(x + 1, y - 1) == '-':
                    p1 = Point(self.right(x), self.vcenter(y - 1))
                    a1 = 180
                    arc = c1 = True
                elif self.get(x + 1, y - 1) == '/':
                    p1 = Point(self.right(x), self.top(y))
                    a1 = -135
                    c1 = True
                elif self.get(x + 1, y) == '|':
                    p1 = Point(self.hcenter(x + 1), self.top(y))
                elif self.get(x, y - 1) == '-':
                    p1 = Point(self.right(x), self.vcenter(y - 1))

                if self.get(x - 1, y + 1) == '|':
                    p2 = Point(self.hcenter(x - 1), self.top(y + 1))
                    a2 = 90
                    arc = c2 = True
                elif self.get(x - 1, y + 1) == '+':
                    p2 = Point(self.hcenter(x - 1), self.vcenter(y + 1))
                    a2 = 45
                elif self.get(x - 1, y + 1) == '-':
                    p2 = Point(self.left(x), self.vcenter(y + 1))
                    a2 = 0
                    arc = c2 = True
                elif self.get(x - 1, y + 1) == '/':
                    p2 = Point(self.left(x), self.bottom(y))
                    a2 = 45
                    c2 = True
                elif self.get(x - 1, y) == '|':
                    p2 = Point(self.hcenter(x - 1), self.bottom(y))
                elif self.get(x, y + 1) == '-':
                    p2 = Point(self.left(x), self.vcenter(y + 1))

                if p1 or p2:
                    if not p1:
                        p1 = Point(self.right(x), self.top(y))
                    if not p2:
                        p2 = Point(self.left(x), self.bottom(y))
                    if arc:
                        result.append(Arc(p1, a1, p2, a2, c1, c2))
                    else:
                        result.append(Line(p1, p2))
        else: # '\'
            # rounded rectangles
            if self.get(x-1, y) == '-' and self.get(x, y + 1) == '|':
                # upper right corner
                result.append(Arc(
                    Point(self.hcenter(x), self.bottom(y)), 90,
                    Point(self.left(x), self.vcenter(y)),   0
                ))
            if self.get(x+1, y) == '-' and self.get(x, y - 1) == '|':
                # lower left corner
                result.append(Arc(
                    Point(self.hcenter(x), self.top(y)),   -90,
                    Point(self.right(x), self.vcenter(y)), 180
                ))
            if not result:
                # if used as diagonal line
                p1 = p2 = None
                a1 = a2 = 0
                arc = c1 = c2 = False
                if self.get(x - 1, y - 1) == '|':
                    p1 = Point(self.hcenter(x-1), self.top(y))
                    a1 = -90
                    arc = c1 = True
                elif self.get(x - 1, y - 1) == '+':
                    p1 = Point(self.hcenter(x-1), self.vcenter(y - 1))
                    a1 = -45
                elif self.get(x - 1, y - 1) == '-':
                    p1 = Point(self.left(x), self.vcenter(y-1))
                    a1 = 0
                    arc = c1 = True
                elif self.get(x - 1, y - 1) == '\\':
                    p1 = Point(self.left(x), self.top(y))
                    a1 = -45
                    c1 = True
                elif self.get(x - 1, y) == '|':
                    p1 = Point(self.hcenter(x-1), self.top(y))
                elif self.get(x, y - 1) == '-':
                    p1 = Point(self.left(x), self.hcenter(y - 1))

                if self.get(x + 1, y + 1) == '|':
                    p2 = Point(self.hcenter(x+1), self.top(y + 1))
                    a2 = 90
                    arc = c2 = True
                elif self.get(x + 1, y + 1) == '+':
                    p2 = Point(self.hcenter(x+1), self.vcenter(y + 1))
                    a2 = 135
                elif self.get(x + 1, y + 1) == '-':
                    p2 = Point(self.right(x), self.vcenter(y + 1))
                    a2 = 180
                    arc = c2 = True
                elif self.get(x + 1, y + 1) == '\\':
                    p2 = Point(self.right(x), self.bottom(y))
                    a2 = 135
                    c2 = True
                elif self.get(x + 1, y) == '|':
                    p2 = Point(self.hcenter(x+1), self.bottom(y))
                elif self.get(x, y + 1) == '-':
                    p2 = Point(self.right(x), self.vcenter(y + 1))

                if p1 or p2:
                    if not p1:
                        p1 = Point(self.left(x), self.top(y))
                    if not p2:
                        p2 = Point(self.right(x), self.bottom(y))
                    if arc:
                        result.append(Arc(p1, a1, p2, a2, c1, c2))
                    else:
                        result.append(Line(p1, p2))
        if result:
            self.tag([(x, y)], CLASS_JOIN)
        return group(result)


def process(input, visitor_class, options=None):
    """\
    Parse input and render using the given visitor class.

    :param input: String or file like object with the image as text.

    :param visitor_class: A class object, it will be used to render the
        resulting image.

    :param options: A dictionary containing the settings. When ``None`` is
        given, defaults are used.

    :returns: instantiated ``visitor_class`` and the image has already been
        processed with the visitor.

    :exception: This function can raise an ``UnsupportedFormatError`` exception
        if the specified format is not supported.
    """

    # remember user options (don't want to rename function parameter above)
    user_options = options
    # start with a copy of the defaults
    options = DEFAULT_OPTIONS.copy()
    if user_options is not None:
        # override with settings passed by caller
        options.update(user_options)

    if 'fill' not in options or options['fill'] is None:
        options['fill'] = options['foreground']

    # if input is a file like object, read from it (otherwise it is assumed to
    # be a string)
    if hasattr(input, 'read'):
        input = input.read()

    if options['debug']:
        sys.stderr.write('%r\n' % (input,))

    aaimg = AsciiArtImage(input, options['aspect'], options['textual'], options['widechars'])

    if options['debug']:
        sys.stderr.write('%s\n' % (aaimg,))
    aaimg.recognize()

    visitor = visitor_class(options)
    visitor.visit_image(aaimg)
    return visitor


def render(input, output=None, options=None):
    """
    Render an ASCII art figure to a file or file-like.

    :param input: If ``input`` is a basestring subclass (str or unicode), the
        text contained in ``input`` is rendered. If ``input is a file-like
        object, the text to render is taken using ``input.read()``.

    :param output: If no ``output`` is specified, the resulting rendered image
        is returned as a string. If output is a basestring subclass, a file
        with the name of ``output`` contents is created and the rendered image
        is saved there. If ``output`` is a file-like object, ``output.write()``
        is used to save the rendered image.

    :param options: A dictionary containing the settings. When ``None`` is
        given, defaults are used.

    :returns: This function returns a tuple ``(visitor, output)``, where
        ``visitor`` is visitor instance that rendered the image and ``output``
        is the image as requested by the ``output`` parameter (a ``str`` if it
        was ``None``, or a file-like object otherwise, which you should
        ``close()`` if needed).

    :exception: This function can raise an ``UnsupportedFormatError`` exception
        if the specified format is not supported.
    """

    if options is None:
        options = {}

    close_output = False
    if output is None:
        import StringIO
        options['file_like'] = StringIO.StringIO()
    elif isinstance(output, basestring):
        options['file_like'] = file(output, 'wb')
        close_output = True
    else:
        options['file_like'] = output
    try:
        # late import of visitor classes to not cause any import errors for
        # unsupported backends (this would happen when a library a backend
        # depends on is not installed)
        if options['format'].lower() == 'svg':
            import svg
            visitor_class = svg.SVGOutputVisitor
        elif options['format'].lower() == 'pdf':
            import pdf
            visitor_class = pdf.PDFOutputVisitor
        elif options['format'].lower() == 'ascii':
            import aa
            visitor_class = aa.AsciiOutputVisitor
        else:
            # for all other formats, it may be a bitmap type. let
            # PIL decide if it can write a file of that type.
            import pil
            visitor_class = pil.PILOutputVisitor
        # now render and output the image
        visitor = process(input, visitor_class, options)
    finally:
        if close_output:
            options['file_like'].close()
    return (visitor, options['file_like'])


def main():
    """implement an useful main for use as command line program"""
    import sys
    import optparse
    import os.path

    parser = optparse.OptionParser(
        usage = "%prog [options] [file]",
        version = """\
%prog 0.5

Copyright (C) 2006-2010 aafigure-team

Redistribution and use in source and binary forms, with or without
modification, are permitted under the terms of the BSD License.

THIS SOFTWARE IS PROVIDED BY THE AAFIGURE-TEAM ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AAFIGURE-TEAM BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
""",
    description = "ASCII art to image (SVG, PNG, JPEG, PDF and more) converter."
    )

    parser.add_option("-e", "--encoding",
        dest = "encoding",
        action = "store",
        help = "character encoding of input text",
        default = DEFAULT_OPTIONS['encoding'],
    )

    parser.add_option("-w", "--wide-chars",
        dest = "widechars",
        action = "store",
        help = "unicode properties to be treated as wide glyph (e.g. 'F,W,A')",
        default = DEFAULT_OPTIONS['widechars'],
    )

    parser.add_option("-o", "--output",
        dest = "output",
        metavar = "FILE",
        help = "write output to FILE"
    )

    parser.add_option("-t", "--type",
        dest = "format",
        help = "filetype: png, jpg, svg (by default autodetect from filename)",
        default = None,
    )

    parser.add_option("-D", "--debug",
        dest = "debug",
        action = "store_true",
        help = "enable debug outputs",
        default = DEFAULT_OPTIONS['debug'],
    )

    parser.add_option("-T", "--textual",
        dest = "textual",
        action = "store_true",
        help = "disable horizontal fill detection",
        default = DEFAULT_OPTIONS['textual'],
    )

    parser.add_option("-s", "--scale",
        dest = "scale",
        action = "store",
        type = 'float',
        help = "set scale",
        default = DEFAULT_OPTIONS['scale'],
    )

    parser.add_option("-a", "--aspect",
        dest = "aspect",
        action = "store",
        type = 'float',
        help = "set aspect ratio",
        default = DEFAULT_OPTIONS['aspect'],
    )

    parser.add_option("-l", "--linewidth",
        dest = "line_width",
        action = "store",
        type = 'float',
        help = "set width, svg only",
        default = DEFAULT_OPTIONS['line_width'],
    )

    parser.add_option("--proportional",
        dest = "proportional",
        action = "store_true",
        help = "use proportional font instead of fixed width",
        default = DEFAULT_OPTIONS['proportional'],
    )

    parser.add_option("-f", "--foreground",
        dest = "foreground",
        action = "store",
        help = "foreground color default=%default",
        default = DEFAULT_OPTIONS['foreground'],
    )

    parser.add_option("-x", "--fill",
        dest = "fill",
        action = "store",
        help = "foreground color default=foreground",
        default = None,
    )

    parser.add_option("-b", "--background",
        dest = "background",
        action = "store",
        help = "foreground color default=%default",
        default = DEFAULT_OPTIONS['background'],
    )

    parser.add_option("-O", "--option",
        dest = "_extra_options",
        action = "append",
        help = "pass special options to backends (expert user)",
    )

    (options, args) = parser.parse_args()

    if len(args) > 1:
        parser.error("too many arguments")

    if options.format is None:
        if options.output is None:
            parser.error("Please specify output format with --type")
        else:
            options.format = os.path.splitext(options.output)[1][1:]

    if args:
        _input = file(args[0])
    else:
        _input = sys.stdin
    input = codecs.getreader(options.encoding)(_input)

    if options.output is None:
        output = sys.stdout
    else:
        output = file(options.output, 'wb')

    # explicit copying of parameters to the options dictionary
    options_dict = {}
    for key in ('widechars', 'textual', 'proportional',
                'line_width', 'aspect', 'scale',
                'format', 'debug'):
        options_dict[key] = getattr(options, key)
    # ensure all color parameters start with a '#'
    # this is for the convenience of the user as typing the shell comment
    # character isn't for everyone ;-)
    for color in ('foreground', 'background', 'fill'):
        value = getattr(options, color)
        if value is not None:
            if value[0] != '#':
                options_dict[color] = '#%s' % value
            else:
                options_dict[color] = value
    # copy extra options
    if options._extra_options is not None:
        for keyvalue in options._extra_options:
            try:
                key, value = keyvalue.split('=')
            except ValueError:
                parser.error('--option must be in the format <key>=<value> (not %r)' % (keyvalue,))
            options_dict[key] = value

    if options.debug:
        sys.stderr.write('options=%r\n' % (options_dict,))

    try:
        (visitor, output) = render(input, output, options_dict)
        output.close()
    except UnsupportedFormatError, e:
        print "ERROR: Can't output format '%s': %s" % (options.format, e)


# when module is run, run the command line tool
if __name__ == '__main__':
    main()