This file is indexed.

/usr/share/psychtoolbox-3/PsychTests/HighPrecisionLuminanceOutputDriversImagingPipelineTest.m is in psychtoolbox-3-common 3.0.9+svn2579.dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
function HighPrecisionLuminanceOutputDriversImagingPipelineTest(whichDriver, whichScreen, plotdiffs, forcesuccess)
% HighPrecisionLuminanceOutputDriversImagingPipelineTest(whichDriver, [whichScreen][,plotdiffs=0][, forcesuccess=0])
%
% Tests correct function of a variety of high precision luminance output
% device drivers (so called "output formatters") with imaging pipeline.
%
% This test script needs to be run once after each graphics card or
% graphics driver or Psychtoolbox upgrade, or after any other major change
% in system configuration and display settings.
%
% This test verifies that the Psychtoolbox image processing pipeline is
% capable to correctly convert a high dynamic range / high bit precision
% luminance image into a output format suitable for driving one of the
% supported high precision luminance output devices, e.g., different Pelli,
% Zhang, Watson style video attenuators, Xiangru Li et al. VideoSwitchers,
% Pseudo-Gray output formatters, etc.
%
% It does so by generating a test stimulus, converting it into a properly
% formatted image via the "known good" Matlab reference implementation of
% an output driver, then again via the  use of the imaging pipeline. Then
% it reads back and compares the conversion results of both to verify that
% the imaging pipeline produces exactly the same results as the Matlab
% routines.
%
% If the results are the same, it will write some info file to the
% filesystem to confirm this test was successfully run, otherwise it will
% fail with a description of the discrepancy. In case of failure, fast
% stimulus conversion will not work via the imaging pipeline.
%
% The required parameter 'whichDriver' defines the type of output driver to
% test. It can be any of the following:
%
% * 'GenericLUT': Test the generic lookup-table based driver that can handle
% arbitrary devices, albeit not with maximum speed. 'whichDriver' must be a
% struct with the following fields:
%
% whichDriver.name = 'GenericLUT'
%
% Then either one of these for testing of a generic LUT:
%
% whichDriver.bpc = Bitdepths of LUT to test - Anything between 1 and 16.
% whichDriver.nslots = Size of LUT in slots - Anything between 2 and 65536.
%
% Alternatively you can test with an existing self-created LUT:
% whichDriver.lut = A 3 rows by nslots column uint8 matrix which encodes
% the LUT: Rows 1,2 and 3 encode Red, Green and Blue channel, each of the
% 'nslots' columns encodes a LUT slot. The driver will map luminance values
% between 0.0 and 1.0 to the corresponding LUT slots in range 1 to nslots,
% then readout the stored column vector with the output RGBA8 pixels to
% poke into the framebuffer.
%
% * 'VideoSwitcherSimple': Test the "simple" driver for the VideoSwitcher
% video attenuator. The simple driver implements a closed-form solution, a
% formula, to map luminance values between 0.0 - 1.0 to output values for
% the Red and Blue channel, just using the 'BTRR' ratio as parameter. This
% is the fast driver, as it doesn't need any lookup tables.
% 
% You should provide the whichDriver.btrr BTRR ratio when testing this
% driver. If you omit it, it will be loaded from the configuration file in
% the Psychtoolbox configuration directory.
%
% * 'VideoSwitcherCalibrated': Test the LUT based driver for the VideoSwitcher
% video attenuator. This driver computes the Blue channel value by
% searching for the given luminance value in a 256 entry lookup table, then
% uses a closed-form formula to compute the Red channel drive value from
% the luminance and the looked-up blue channel value. This is slower due to table
% lookups and requires more involved calibration procedures to build a
% lookup table, but it is also potentially more accurate.
%
% You should provide the whichDriver.btrr BTRR ratio when testing this
% driver, as well as the 257 slot whichDriver.lut lookup table for blue
% channel to measured luminance mapping. See help PsychVideoSwitcher for
% more info. If you omit these parameters, a default BTRR and LUT will be
% loaded from the Psychtoolbox configuration subdirectory.
%
% Optional parameters:
%
% whichScreen  = Screen id of display to test on. Will be the secondardy
%                display if none provided.
%
% plotdiffs    = If set to one, plot diagnostic difference images, if any
%                differences are detected. By default no such images are
%                plotted. No images will be plotted if no differences
%                exist.
%
% forcesuccess = Set this to one if you want to force the test to succeed,
%                despite detected errors, ie., if you want the GPU
%                conversion to be used. Only use this if you really know
%                what you are doing!
%
% Please note that this test script can only test if the correct output to
% your systems framebuffer is generated by Psychtoolbox. It can't detect if
% the electronic high precision converter device itself is working
% correctly with this data. Only visual inspection and a
% photometer/colorimeter test can really tell you if the whole system is
% working correctly!
%

% History:
% 05/24/08 mk    Initial implementation.

oldverbosity = Screen('Preference', 'Verbosity', 2);
oldsynclevel = Screen('Preference', 'SkipSyncTests', 2);

% Which driver to test?
if nargin < 1 || isempty(whichDriver)
    error('You must provide a valid "whichDriver" argument!');
end

% Define screen:
if nargin < 2 || isempty(whichScreen)
    whichScreen=max(Screen('Screens'));
end

if nargin < 3 || isempty(plotdiffs)
    plotdiffs = 0;
end

if nargin < 4 || isempty(forcesuccess)
    forcesuccess = 0;
end

if isstruct(whichDriver)
    % Extract 'bpc' subfield, if any:
    if isfield(whichDriver, 'bpc')
        driverBpc = whichDriver.bpc;
        if ~isscalar(driverBpc) || driverBpc < 1 || driverBpc > 16
            error('"whichDriver.bpc" argument is not a integral bitdepths value in valid range 1 - 16!');
        end
    else
        driverBpc = [];
    end
    
    % Extract 'nslots' subfield, if any:
    if isfield(whichDriver, 'nslots')
        driverNSlots = whichDriver.nslots;
        if ~isscalar(driverNSlots) || driverNSlots < 2 || driverNSlots > 2^16
            error('"whichDriver.nslots" argument is not an integral value in valid range 2 - 65536!');
        end
    else
        driverNSlots = [];
    end

    % Extract 'lut' subfield, if any:
    if isfield(whichDriver, 'lut')
        driverLUT = whichDriver.lut;
        if ~isa(driverLUT, 'uint8') || size(driverLUT, 1) < 3 || size(driverLUT, 1) > 4 || size(driverLUT, 2) < 2 || size(driverLUT, 2) > 65536 
            error('"whichDriver.lut" argument is not a LUT definition matrix: Must be a matrix of class uint8 with 3 or 4 rows and between 2 and 65536 columns!');
        end
        
        if size(driverLUT, 1)~=4
            % Extend with 4th row of all zero bytes:
            driverLUT = [driverLUT ; uint8(zeros(1, size(driverLUT, 2)))];
        end
    else
        driverLUT = [];
    end

    % Extract 'bpc' subfield, if any:
    if isfield(whichDriver, 'btrr')
        driverBTRR = whichDriver.btrr;
        if ~isscalar(driverBTRR) || ~isnumeric(driverBTRR) || driverBTRR < 0
            error('"whichDriver.btrr" argument is not a scalar Blue-To-Red-Ratio value greater than zero.');
        end
    else
        driverBTRR = [];
    end

    % This comes last! Check if .name subfield provided and replace whole
    % struct with that name:
    if isfield(whichDriver, 'name')
        whichDriver = whichDriver.name;
    else
        error('Argument "whichDriver" is a struct, but lacks the mandatory subfield "name"!');
    end
else
    driverBpc = [];
    driverNSlots = [];
    driverLUT = [];
    driverBTRR = [];
end

if ~ischar(whichDriver)
    error('"whichDriver" or "whichDriver.name" is not a driver name string!');
end

if isempty(driverNSlots) & ~isempty(driverBpc)
    driverNSlots = 2^driverBpc;
end

if ~isempty(driverLUT)
    driverNSlots = size(driverLUT, 2);
end

% Prepare imaging pipeline setup:
PsychImaging('PrepareConfiguration');

% Make sure we run with our default color correction mode for this test:
% 'ClampOnly' is the default, but we set it here explicitely, so no state
% from previously running scripts can bleed through. This will also setup
% the default clamping range to our wanted 0.0 - 1.0 range:
PsychImaging('AddTask', 'FinalFormatting', 'DisplayColorCorrection', 'ClampOnly');

fprintf('Testing output formatting driver of type: %s\n', whichDriver);
fprintf('Number of slots (if any): %i\n', driverNSlots);
fprintf('Number of bpc bits (if any): %i\n', driverBpc);
fprintf('BTRR (if any): %i\n', driverBTRR);

fprintf('\n\n\n');

% Select whichDriver to test:
switch (whichDriver)
    case {'GenericLUT'}
        % Generic LUT conversion with a LUT that has driverNSlots slots
        % to map the 0.0 - 1.0 input range into 0 - driverNSlots - 1
        % integral range, then lookup the value:
        if isempty(driverNSlots)
            error('Driver type "GenericLUT" selected, but "whichDriver.nslots" argument missing!');
        end
        
        if isempty(driverLUT)
            % Build standard testing LUT with driverNSlots slots for testing:
            lut = uint8(zeros(4, driverNSlots));
            theRange = 0:driverNSlots-1;
            theInverseRange = (driverNSlots-1) - theRange;
            lut(1, 1:driverNSlots) = uint8(floor(theRange/256));                % Red channel: High Byte.
            lut(2, 1:driverNSlots) = uint8(floor(mod(theRange, 256)));          % Green channel: Low Byte.
            lut(3, 1:driverNSlots) = uint8(floor(theInverseRange/256));         % Blue channel: Inverse range High Byte.
            lut(4, 1:driverNSlots) = uint8(floor(mod(theInverseRange, 256)));   % Alpha channel: Inverse range Low Byte.
            plotchannel = [1,1,1,1];
        else
            % LUT provided: Just use it "as is":
            lut = driverLUT;
            plotchannel = [1,1,1,0];
        end
        
        
        % Enable generic LUT luminance output formatter and provide it with
        % our lut:
        PsychImaging('AddTask', 'General', 'EnableGenericHighPrecisionLuminanceOutput', lut);
        
        % Build test image:
        theInImage = reshape(linspace(0, 1, 2^16), 256, 256);
        
        % Build reference image:
        theIntImage = uint32( floor(theInImage * (driverNSlots-1)) );
        theRefImage = zeros(256, 256, 4);
        
        % Recompute theInImage from the theIntImage -- theInImage shall
        % become a quantized version of itself - quantized to
        % driverNSlots-1 levels. This way we can be sure that the GPU and
        % CPU get initially fed with the same data for conversion:
        theInImage = double(theIntImage) / (driverNSlots-1);

        uniqueValsA = length(unique(theInImage));
        uniqueValsB = length(unique(theIntImage));

        if (uniqueValsA~=uniqueValsB) | (uniqueValsA~=driverNSlots)
            fprintf('Ouch! Number of unique test samples in different images is not the same! Bug in test code?!?\n');
            fprintf('Input to GPU (float) = %i, Input to CPU (uint32) = %i, Reference Expected (nr. slots) = %i\n', uniqueValsA, uniqueValsB, driverNSlots);
            error('Mismatch in unique values count! Likely a bug in this test code!');
        end
        
        theRefImage(:,:,1:3) = ind2rgb(theIntImage, double(lut(1:3,:)')); 
        
        % Need to treat alpha channel separately, as ind2rgb can only
        % handle 3 layer images...
        theAlphaImage = ind2rgb(theIntImage, double(repmat(lut(4,:)', 1, 3)));
        theRefImage(:,:,4) = theAlphaImage(:,:,1);

        % Convert to uint8:
        theRefImage = uint8(theRefImage);
        
    case {'VideoSwitcherSimple'}

        % Select simple VideoSwitcher output formatter:
        PsychImaging('AddTask', 'General', 'EnableVideoSwitcherSimpleLuminanceOutput', driverBTRR);
        
        if isempty(driverBTRR)
            % Fetch default from file:
            driverBTRR = PsychVideoSwitcher('GetDefaultConfig', whichScreen);
        end
        
        % Build test image:
        theInImage = reshape(linspace(0, 1, 2^16), 256, 256);
        
        % Build reference image:
        theRefImage = uint8(zeros(256, 256, 4));
        theRefImage(:,:,1:3) = PsychVideoSwitcher('MapLuminanceToRGB', theInImage, driverBTRR, 0);
        plotchannel = [1,0,1,0];

    case {'VideoSwitcherCalibrated'}

        if isempty(driverBTRR) || isempty(driverLUT)
            [mydriverBTRR, mydriverLUT] = PsychVideoSwitcher('GetDefaultConfig', whichScreen);
            if isempty(driverBTRR)
                driverBTRR = mydriverBTRR;
            end
            
            if isempty(driverLUT)
                driverLUT = mydriverLUT;
            end
        end
        
        % Select calibrated VideoSwitcher output formatter:
        PsychImaging('AddTask', 'General', 'EnableVideoSwitcherCalibratedLuminanceOutput', driverBTRR, driverLUT);
        
        % Build test image:
        theInImage = reshape(linspace(0, 1, 2^16), 256, 256);
        
        % Build reference image:
        theRefImage = uint8(zeros(256, 256, 4));
        theRefImage(:,:,1:3) = PsychVideoSwitcher('MapLuminanceToRGBCalibrated', theInImage, driverBTRR, driverLUT, 0);
        plotchannel = [1,0,1,1];

    otherwise
        error('Unknown drivername provided. Not supported! Typo?!?');
end

% Common code for testing:

% Perform GPU conversion and readback results:
[m,n,p] = size(theRefImage);
rect = [0 0 m n];

% Show the image
window = PsychImaging('OpenWindow', whichScreen, 0);

% Double-Check for bugs in PsychImaging:
winfo = Screen('GetWindowInfo', window);
if ~bitand(winfo.ImagingMode, kPsychNeed32BPCFloat)
    Screen('CloseAll');
    RestoreCluts;
    error('Onscreen window not configured for 32 bpc float drawing! This should not happen and is a bug in PsychImaging.m setup code for this formatter!!');
end

% Find out how big the window is:
[screenWidth, screenHeight]=Screen('WindowSize', window);

% Build HDR input texture as 32 bpc float luminance texture:
hdrtexIndex= Screen('MakeTexture', window, double(theInImage), [], [], 2);

% Draw image as generated by PTB GPU imaging pipeline:
dstRect = Screen('Rect', hdrtexIndex);

% Draw with nearest neighbour filtering - no bilinear filtering!
Screen('DrawTexture', window, hdrtexIndex, [], dstRect, [], 0);

% Finalize image before we take a screenshot:
Screen('DrawingFinished', window, 0, 1);

% Take screenshot of GPU converted image:
convImage=Screen('GetImage', window, dstRect, 'backBuffer', 0, 4);

% Show GPU converted image. Should obviously not make any visual difference if
% it is the same as the Matlab converted image.
vbl = Screen('Flip', window);

% Disable output formatters:
Screen('HookFunction', window, 'Disable', 'FinalOutputFormattingBlit');

% Build and draw texture from reference image - This is just for
% visualization, not used for comparison:
texpacked= Screen('MakeTexture', window, theRefImage);
dstRect = Screen('Rect', texpacked);
Screen('DrawTexture', window, texpacked, [], dstRect, [], 0);

% Show it:
vbl = Screen('Flip', window, vbl + 1);

% Keep it onscreen for 2 seconds, then blank screen:
Screen('Flip', window, vbl + 2);

% Done. Close everything down:
Screen('CloseAll');
RestoreCluts;

% Comparisons...

% Compute difference images between Matlab converted packedImage and GPU converted
% HDR image:
diffred   = (double(theRefImage(:,:,1)) - double(convImage(:,:,1)));
diffgreen = (double(theRefImage(:,:,2)) - double(convImage(:,:,2)));
diffblue  = (double(theRefImage(:,:,3)) - double(convImage(:,:,3)));
diffalpha = (double(theRefImage(:,:,4)) - double(convImage(:,:,4)));

% Compute maximum deviation of framebuffer raw data:
mdr = max(max(abs(diffred)));
mdg = max(max(abs(diffgreen)));
mdb = max(max(abs(diffblue)));
mda = max(max(abs(diffalpha)));

fprintf('\n\nMaximum raw data difference: red= %f green = %f blue = %f alpha = %f\n', mdr, mdg, mdb, mda);

% If there is a difference, show plotted difference if requested:
if (mdr>0 || mdg>0 || mdb>0 || mda>0) && plotdiffs
    % Differences detected!
    close all;
    if plotchannel(1), figure; imagesc(diffred); title('Difference map - Channel 1 (Red):'); end
    if plotchannel(2), figure; imagesc(diffgreen); title('Difference map - Channel 2 (Green):'); end
    if plotchannel(3), figure; imagesc(diffblue);title('Difference map - Channel 3 (Blue):'); end
    if plotchannel(4), figure; imagesc(diffalpha);title('Difference map - Channel 4 (Alpha):'); end
end

if (mdr>0 || mdg>0 || mdb>0 || mda>0) || (plotdiffs > 1)
    % Now compute a more meaningful difference: The difference between the
    % stimulus as the Bits++ box would see it (i.e. how much do the 16 bit
    % intensity values of each color channel differ?):
    c=1;
    convImage = double(convImage);
    packedImage = double(theRefImage);

    switch (whichDriver)
        case {'GenericLUT'}
            % Test of generic LUT conversion:
            deconvImage = zeros(size(convImage,1), size(convImage,2));
            depackImage = zeros(size(packedImage,1), size(packedImage,2));

            if isempty(driverLUT)
                % Invert conversion: Compute 16 bpc color values from high/low byte
                % pixel data:
                deconvImage(:,:) = 256 * convImage(:, :, 1) + convImage(:, :, 2);
                depackImage(:,:) = 256 * packedImage(:, :, 1) + packedImage(:, :, 2);
            else
                % Invert conversion by use of 'driverLUT':
                fprintf('Inverting user provided LUT mapping - This can take very long...\n');
                for row=1:size(convImage,1)
                    fprintf('Pass 1 of 2: Row %i of %i...\n', row, size(convImage,1));
                    for col=1:size(convImage,2)
                        candidatesa = find(lut(1, :) == convImage(row,col,1));
                        candidatesb = find(lut(2, :) == convImage(row,col,2));
                        candidatesc = find(lut(3, :) == convImage(row,col,3));
                        candidatesd = find(lut(4, :) == convImage(row,col,4));
                        candidates1 = intersect(candidatesa, candidatesb);
                        candidates2 = intersect(candidatesc, candidatesd);
                        deconvImage(row,col) = min(intersect(candidates1, candidates2) - 1);
                    end
                end

                for row=1:size(packedImage,1)
                    fprintf('Pass 2 of 2: Row %i of %i...\n', row, size(convImage,1));
                    for col=1:size(convImage,2)
                        candidatesa = find(lut(1, :) == packedImage(row,col,1));
                        candidatesb = find(lut(2, :) == packedImage(row,col,2));
                        candidatesc = find(lut(3, :) == packedImage(row,col,3));
                        candidatesd = find(lut(4, :) == packedImage(row,col,4));
                        candidates1 = intersect(candidatesa, candidatesb);
                        candidates2 = intersect(candidatesc, candidatesd);
                        depackImage(row,col) = min(intersect(candidates1, candidates2) - 1);
                    end
                end
            end

        case {'VideoSwitcherSimple'}
            % Test of simple VideoSwitcher driver:
            % This is the (kind of) real value range of the device:
            driverNSlots = 256 * driverBTRR;
            
            % Remap:
            deconvImage = ((convImage(:, :, 1) + convImage(:, :, 3) * driverBTRR) / (driverBTRR + 1)) / 255 * (driverNSlots - 1);
            depackImage = ((packedImage(:, :, 1) + packedImage(:, :, 3) * driverBTRR) / (driverBTRR + 1)) / 255 * (driverNSlots - 1);
            
            figure;
            hiconvImage = convImage(:,:,3);
            loconvImage = convImage(:,:,1);
            higpu = hiconvImage(:);
            lowgpu = loconvImage(:);
            lumi = theInImage(:);
            j = 1:length(higpu);
            plot(lumi, higpu, '-', lumi, lowgpu, '--');
            legend('High-Byte', 'Low-Byte');
            title('GPU results in raw bytes: (x=Normalized Luminance (Req.) No., y = Byte value)');

        case {'VideoSwitcherCalibrated'}
            % Test of LUT calibrated VideoSwitcher driver:
            % This is the (kind of) real value range of the device:
            driverNSlots = 256 * driverBTRR;
            
            % Remap:
            deconvImage = ((convImage(:, :, 1) + convImage(:, :, 3) * driverBTRR) / (driverBTRR + 1)) / 255 * (driverNSlots - 1);
            depackImage = ((packedImage(:, :, 1) + packedImage(:, :, 3) * driverBTRR) / (driverBTRR + 1)) / 255 * (driverNSlots - 1);
            
            figure;
            hiconvImage = convImage(:,:,3);
            loconvImage = convImage(:,:,1);
            higpu = hiconvImage(:);
            lowgpu = loconvImage(:);
            lumi = theInImage(:);
            j = 1:length(higpu);
            plot(lumi, higpu, '-', lumi, lowgpu, '--');
            legend('High-Byte', 'Low-Byte');
            title('GPU results in raw bytes: (x=Normalized Luminance (Req.) No., y = Byte value)');
            
            % Compute average iteration count in shader etc.:
            meaniterations = mean(mean(convImage(:,:,4)));
            miniterations = min(min(convImage(:,:,4)));
            maxiterations = max(max(convImage(:,:,4)));
            fprintf('Per-Pixel search iterations in conversion shader: Min = %i, Max = %i, Mean = %f.\n', miniterations, maxiterations, meaniterations);
            
        otherwise
            error('Switch statement in deconversion part does not recognize driver name! Implementation bug!?!');
    end
    
    % Difference image:
    diffImage = (deconvImage - depackImage);

    % Find locations where pixels differ:
    idxdiff = find(abs(diffImage) > 0);
    numdiff(c) = length(idxdiff);
    numtot(c) = size(diffImage,1)*size(diffImage,2);
    maxdiff(c) = max(max(abs(diffImage)));
    
    if plotdiffs > 1
        idxdiff = find(diffImage~=inf);
    end
    
    [row col] = ind2sub(size(diffImage), idxdiff);

    % Print out all pixels values which differ, and their difference:
    if plotdiffs
        figure;
        dgpu = deconvImage(:);
        dcpu = depackImage(:);
        lumi = theInImage(:);
        j = 1:length(dgpu);
        plot(lumi, dgpu, '-', lumi, dcpu, '--');
        legend('GPU', 'Matlab/Octave');
        title('GPU vs. CPU results in device units: (x=Normalized Luminance (Req.) No., y = Luminance units)');

        for j=1:length(row)
            fprintf('Diff: %.2f Requested: %.10f  Actual: GPU %f vs. CPU %f\n', diffImage(row(j), col(j)), theInImage(row(j), col(j)) * (driverNSlots-1), deconvImage(row(j), col(j)), depackImage(row(j), col(j)));
        end
    end

    totalmaxdiff = max(maxdiff);
    
    % Summarize for this color channel:
    fprintf('\n\nIn remapped image: %i out of %i pixels differ. The maximum absolute difference is %f device units.\nTotal difference range: [%f  -  %f]\n', numdiff(c), numtot(c), maxdiff(c), min(min(diffImage)), max(max(diffImage)));
    fprintf('The maximum absolute difference corresponds to %f %% of the total operating range of the device.\n', maxdiff(c) / (driverNSlots-1) * 100);
    fprintf('Displayed differences and values are in "device units". They are proportional to levels of luminance (by an unknown factor)');
else
    % No difference in raw values implies no difference at all:
    totalmaxdiff = 0;
end

if (mdr>0 || mdg>0 || mdb>0 || mda>0) && (totalmaxdiff > 1.1) && ~forcesuccess
    fprintf('\n\n');
    fprintf('------------------ SIGNIFICANT DIFFERENCE IN CONVERSION DETECTED -----------------------\n');
    fprintf('The difference is %f, ie., it is more than 1 device unit.\n', totalmaxdiff);
    fprintf('This should not happen on properly and accurately working graphics hardware.\n');
    fprintf('Either there is a bug in the graphics driver, or something is misconfigured or\n');
    fprintf('your hardware is too old and not capable of performing the calculations in sufficient\n');
    fprintf('precision.\nYou may want to check your configuration and upgrade your driver. If that\n');
    fprintf('does not help, upgrade your graphics hardware. Alternatively you may want to use the old\n');
    fprintf('Matlab-based conversion function for slow conversion of images.\n\n');
    fprintf('Please report this failure with a description of your hardware setup to the Psychtoolbox\n');
    fprintf('forum (http://psychtoolbox.org --> Link to the forum.)\n\n');
    fprintf('You can force this test to succeed if you set the optional "forcesuccess" flag for this\n');
    fprintf('script to one and rerun it.\n\n');

    Screen('Preference', 'Verbosity', oldverbosity);
    Screen('Preference', 'SkipSyncTests', oldsynclevel);

    error('Conversion test failed. Results of Matlab code and GPU conversion differ!');
end

if (mdr>0 || mdg>0 || mdb>0 || mda>0) && (totalmaxdiff <= 1.1)
    fprintf('\n\n');
    fprintf('------------------ SMALL, PROBABLY INSIGNIFICANT DIFFERENCE IN CONVERSION DETECTED -----\n');
    fprintf('The difference is %f, ie., it is only 1 device unit or less.\n', totalmaxdiff);
    fprintf('Such a small deviation between Matlab''s/Octave''s result and the GPU result is usually \n');
    fprintf('within the tolerable range of deviations. It is likely an artifact of the test procedure\n');
    fprintf('itself or smallish numeric precision error on either GPU or CPU. Anyway, this minimal   \n');
    fprintf('difference will likely introduce an error that is much smaller than the error introduced\n');
    fprintf('by drift and tolerances of your converter and display device, and errors in calibration.\n');
    fprintf('You should inspect the numeric output above, and the plots and stimuli, but likely you  \n');
    fprintf('do not need to worry about this off-by-one difference.\n\n');

end

if (mdr==0 && mdg==0 && mdb==0 && mda==0)
    fprintf('\n\n');
    fprintf('------------------ PERFECT CONVERSION DETECTED -------------------------------\n');
    fprintf('The difference is zero - All implementations deliver exactly the same results.\n');
end

fprintf('\n\n------------------- Conversion test success! -------------------------------------\n\n');
fprintf('Imaging pipeline conversion verified to work correctly. Validation info stored.\n');

% Done for now.
return;