/usr/share/psychtoolbox-3/PsychOneliners/Rot3d.m is in psychtoolbox-3-common 3.0.9+svn2579.dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | function out = Rot3d(in,n,dim)
% out = Rot3d(in,n,dim)
% rotates input matrix around x-, y- of z-axis
% IN is a vector, a 2D or a 3D matrix (all three can be rotated three
% dimensionally)
%
% rotation can only be performed by multiples of 90 degrees, N is the
% number of 90 degree steps by which the matrix will be rotated (clockwise,
% same as rot90())
% DIM indicates the axis to rotate about:
% 1=y; 2=x; 3=z
%
% Rot3d([1 2 3 4; 3 5 6 7],1,1)
% ans(:,:,1) =
% 4
% 7
% ans(:,:,2) =
% 3
% 6
% ans(:,:,3) =
% 2
% 5
% ans(:,:,4) =
% 1
% 3
% DN 2008
psychassert(nargin==3,'function requires three inputs');
psychassert(ndims(in)<=3,'input cannot have more than three dimensions');
psychassert(dim>0 && dim<=3,'invalid rotation axis specified (%d)\nuse 1=y; 2=x; 3=z',dim);
ss = AltSize(in,[1 2 3]);
[y,x,z] = meshgrid(1:ss(1),1:ss(2),1:ss(3));
yi = y(:);
xi = x(:);
zi = z(:);
incoords = [xi.'; yi.'; zi.']; % change to a 3xN matrix with [x; y; z]
rot = n*90;
switch dim
case 1
oc = Roty(incoords,rot);
case 2
oc = Rotx(incoords,rot);
case 3
oc = Rotz(incoords,rot);
end
% make all coordinates positive
rijplus = (max(abs(oc),[],2)+1) .* max(oc<=0,[],2);
yo = oc(2,:)+rijplus(2);
xo = oc(1,:)+rijplus(1);
zo = oc(3,:)+rijplus(3);
% use original and rotated indices to create output
out = zeros(max(yo),max(xo),max(zo));
ii = sub2ind(ss,yi,xi,zi);
oi = sub2ind(size(out),yo,xo,zo);
out(oi) = in(ii);
% subfunctions (multiplication with rotation matrices)
function [XYZ] = Rotx(XYZ,a)
Rx = [1 0 0; 0 cosd(a) -sind(a); 0 sind(a) cosd(a)];
XYZ = Rx * XYZ;
function [XYZ] = Roty(XYZ,b)
Ry = [cosd(b) 0 sind(b); 0 1 0; -sind(b) 0 cosd(b)];
XYZ = Ry * XYZ;
function [XYZ] = Rotz(XYZ,g)
Rz = [cosd(g) -sind(g) 0; sind(g) cosd(g) 0; 0 0 1];
XYZ = Rz * XYZ;
|