/usr/share/psychtoolbox-3/PsychCal/CompareMonCalOverTime.m is in psychtoolbox-3-common 3.0.9+svn2579.dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | % CompareMonCalOverTime
%
% Compare two calibrations of a display.
%
% Refits all files to with common number of primary bases and gamma fitting method.
% These are prompted for.
%
% 1/20/05 dhb, bx Wrote it.
% 2/12/10 dhb Don't ask for load code, just prompt for name.
% dhb Better plots. And, ask for which times to compare.
% 2/15/10 dhb Fix input, not a string.
% 3/1/10 dhb Allow drawing from different files, refitting data, etc.
% 6/23/11 dhb Make a chromaticity plot of the comparison as well.
%% Clear and close
clear; close all;
%% Get first calibration file and extract desired calibration
defaultFileName = 'LCDScreen';
thePrompt = sprintf('Enter first calibration filename [%s]: ',defaultFileName);
thenFileName = input(thePrompt,'s');
if (isempty(thenFileName))
thenFileName = defaultFileName;
end
fprintf(1,'\nLoading from %s.mat\n',thenFileName);
[cal,cals] = LoadCalFile(thenFileName);
fprintf('Calibration file %s read\n',thenFileName);
% Print out available dates
fprintf('Calibration file contains %d calibrations\n',length(cals));
fprintf('Dates:\n');
for i = 1:length(cals)
fprintf('\tCalibration %d, date %s\n',i,cals{i}.describe.date);
end
% Get which to compare
defaultThen = length(cals)-1;
thenIndex = input(sprintf('Enter number of first calibration to compare [%d]: ',defaultThen));
if (isempty(thenIndex))
thenIndex = defaultThen;
end
if (thenIndex < 1 || thenIndex > length(cals))
error('Calibration number out of range\n');
end
calThen = cals{thenIndex};
%% Get second calibration file and extract desired calibration.
% This can be the same file, or a different one.
defaultFileName = thenFileName;
thePrompt = sprintf('\nEnter second calibration filename [%s]: ',defaultFileName);
nowFileName = input(thePrompt,'s');
if (isempty(nowFileName))
nowFileName = defaultFileName;
end
fprintf(1,'\nLoading from %s.mat\n',nowFileName);
[cal,cals] = LoadCalFile(nowFileName);
fprintf('Calibration file %s read\n',nowFileName);
% Print out available dates
fprintf('Calibration file contains %d calibrations\n',length(cals));
fprintf('Dates:\n');
for i = 1:length(cals)
fprintf('\tCalibration %d, date %s\n',i,cals{i}.describe.date);
end
defaultNow = length(cals);
nowIndex = input(sprintf('Enter number of second calibration to compare [%d]: ',defaultNow));
if (isempty(nowIndex))
nowIndex = defaultNow;
end
if (nowIndex < 1 || nowIndex > length(cals))
error('Calibration number out of range\n');
end
calNow = cals{nowIndex};
%% Put them on common fitting basis, so that we are comparing the underlying
% data and not how it happened to be fit.
%
% Linear model basis
defaultNPrimaryBases = calNow.nPrimaryBases;
nPrimaryBases = input(sprintf('\nEnter number of primary bases [%d]: ',defaultNPrimaryBases));
if (isempty(nPrimaryBases))
nPrimaryBases = defaultNPrimaryBases;
end
calThen.nPrimaryBases = nPrimaryBases;
calNow.nPrimaryBases = nPrimaryBases;
calThen = CalibrateFitLinMod(calThen);
calNow = CalibrateFitLinMod(calNow);
% Gamma type
defaultFitType = calNow.describe.gamma.fitType;
fitType = input(sprintf('Enter gamma fit type [%s]: ',defaultFitType),'s');
if (isempty(fitType))
fitType = defaultFitType;
end
calThen.describe.gamma.fitType = fitType;
calNow.describe.gamma.fitType = fitType;
calThen = CalibrateFitGamma(calThen);
calNow = CalibrateFitGamma(calNow);
%% Say what we're doing
fprintf('\nComparing calibrations:\n');
fprintf('\t%s, %d, %s\n',thenFileName,thenIndex,calThen.describe.date);
fprintf('\t%s, %d, %s\n',nowFileName,nowIndex,calNow.describe.date);
%% Plot spectral power distributions.
%
% Plot as one plot if 3 or fewer primaries.
% Otherwise separate main measurements from what
% are probably the linear model correction terms.
if (size(calNow.gammaTable,2) <= calNow.nDevices)
figure; clf; hold on
plot(SToWls(calThen.S_device),calThen.P_device,'r');
plot(SToWls(calNow.S_device),calNow.P_device,'g-');
xlabel('Wavelength (nm)');
ylabel('Power');
title('Primaries');
else
figure; clf;
subplot(1,2,1); hold on
plot(SToWls(calThen.S_device),calThen.P_device(:,1:calNow.nDevices),'r');
plot(SToWls(calNow.S_device),calNow.P_device(:,1:calNow.nDevices),'g-');
xlabel('Wavelength (nm)');
ylabel('Power');
title('Primaries');
subplot(1,2,2); hold on
plot(SToWls(calThen.S_device),calThen.P_device(:,calNow.nDevices+1:end),'r');
plot(SToWls(calNow.S_device),calNow.P_device(:,calNow.nDevices+1:end),'g-');
xlabel('Wavelength (nm)');
ylabel('Power');
title('Primaries (high order)');
end
%% Plot ambient
figure; clf; hold on
plot(SToWls(calThen.S_ambient),calThen.P_ambient,'r');
plot(SToWls(calNow.S_ambient),calNow.P_ambient,'g-');
xlabel('Wavelength (nm)');
ylabel('Power');
title('Ambient');
%% Explicitly compute and report ratio of R, G, and B full on spectra
rRatio = calThen.P_device(:,1)\calNow.P_device(:,1);
gRatio = calThen.P_device(:,2)\calNow.P_device(:,2);
bRatio = calThen.P_device(:,3)\calNow.P_device(:,3);
fprintf('Phosphor intensity ratios (now/then): %0.3g, %0.3g, %0.3g\n', ...
rRatio,gRatio,bRatio);
%% Plot gamma functions
%
% Plot as one plot if 3 or fewer primaries.
% Otherwise separate main measurements from what
% are probably the linear model correction terms.
if (size(calNow.gammaTable,2) <= calNow.nDevices)
figure; clf; hold on
plot(calThen.gammaInput,calThen.gammaTable,'r');
plot(calNow.gammaInput,calNow.gammaTable,'g-');
xlabel('Input');
ylabel('Output');
title('Gamma');
ylim([0 1.2]);
else
figure; clf;
subplot(1,2,1); hold on
plot(calThen.gammaInput,calThen.gammaTable(:,1:calNow.nDevices),'r');
plot(calNow.gammaInput,calNow.gammaTable(:,1:calNow.nDevices),'g-');
xlabel('Input');
ylabel('Output');
title('Gamma');
ylim([0 1.2]);
subplot(1,2,2); hold on
plot(calThen.gammaInput,calThen.gammaTable(:,calNow.nDevices+1:end),'r');
plot(calNow.gammaInput,calNow.gammaTable(:,calNow.nDevices+1:end),'g-');
xlabel('Input');
ylabel('Output');
title('Gamma (high order)');
ylim([-1.2 1.2]);
end
%% Let's print some luminance information
load T_xyzJuddVos;
T_xyz = SplineCmf(S_xyzJuddVos,683*T_xyzJuddVos,calThen.S_device);
S_xyz = calThen.S_device;
lumsThen = T_xyz(2,:)*calThen.P_device;
maxLumThen = sum(lumsThen(1:calNow.nDevices));
lumsNow = T_xyz(2,:)*calNow.P_device;
maxLumNow = sum(lumsNow(1:calNow.nDevices));
fprintf('Maximum luminance summing primaries: then %0.3g; now %0.3g\n',maxLumThen,maxLumNow);
minLumThen = T_xyz(2,:)*calThen.P_ambient;
minLumNow = T_xyz(2,:)*calNow.P_ambient;
fprintf('Minimum luminance: then %0.3g; now %0.3g\n',minLumThen,minLumNow);
%% Get max lum using calibration routines
calThen = SetSensorColorSpace(calThen,T_xyz,S_xyz);
calNow = SetSensorColorSpace(calNow,T_xyz,S_xyz);
maxXYZThen1 = SettingsToSensor(calThen,[1 1 1]');
maxXYZThen2 = SettingsToSensorAcc(calThen,[1 1 1]');
maxXYZNow1 = SettingsToSensor(calNow,[1 1 1]');
maxXYZNow2 = SettingsToSensorAcc(calNow,[1 1 1]');
fprintf('Maximum luminance SettingsToSensor: then %0.3g; now %0.3g\n',maxXYZThen1(2),maxXYZNow1(2));
fprintf('Maximum luminance SettingsToSensorAcc: then %0.3g; now %0.3g\n',maxXYZThen2(2),maxXYZNow2(2));
%% Plot new and old white point and channel chromaticities
figure; clf; hold on
maxxyYThen = XYZToxyY(maxXYZThen1);
maxxyYNow = XYZToxyY(maxXYZNow1);
plot(maxxyYThen(1),maxxyYThen(2),'ro','MarkerFaceColor','r','MarkerSize',10);
plot(maxxyYNow(1),maxxyYNow(2),'go','MarkerFaceColor','g','MarkerSize',10);
redxyYThen = XYZToxyY(SettingsToSensor(calThen,[1 0 0]'));
greenxyYThen = XYZToxyY(SettingsToSensor(calThen,[0 1 0]'));
bluexyYThen = XYZToxyY(SettingsToSensor(calThen,[0 0 1]'));
redxyYNow = XYZToxyY(SettingsToSensor(calNow,[1 0 0]'));
greenxyYNow = XYZToxyY(SettingsToSensor(calNow,[0 1 0]'));
bluexyYNow = XYZToxyY(SettingsToSensor(calNow,[0 0 1]'));
plot(redxyYThen(1),redxyYThen(2),'ro','MarkerFaceColor','r','MarkerSize',10);
plot(redxyYNow(1),redxyYNow(2),'go','MarkerFaceColor','g','MarkerSize',10);
plot(greenxyYThen(1),greenxyYThen(2),'ro','MarkerFaceColor','r','MarkerSize',10);
plot(greenxyYNow(1),greenxyYNow(2),'go','MarkerFaceColor','g','MarkerSize',10);
plot(bluexyYThen(1),bluexyYThen(2),'ro','MarkerFaceColor','r','MarkerSize',10);
plot(bluexyYNow(1),bluexyYNow(2),'go','MarkerFaceColor','g','MarkerSize',10);
axis('square');
axis([0.0 0.8 0.0 0.8]);
xlabel('x chromaticity');
ylabel('y chromaticity');
|