This file is indexed.

/usr/share/psychtoolbox-3/PsychCal/CalibrateFitYoked.m is in psychtoolbox-3-common 3.0.9+svn2579.dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
function cal = CalibrateFitYoked(cal)
% cal = CalibrateFitYoked(cal)
%
% Fit the gamma data from the yoked measurements.
%
% 4/30/10  dhb, kmo, ar  Wrote it.
% 5/24/10  dhb           Update comment.
% 5/25/10  dhb, ar       New input format.
% 5/28/10  dhb, ar       Execute conditionally.
% 6/10/10  dhb           Make sure returned gamma values in range an monotonic.

%% Debugging switch
DEBUG = 0;

%% Check that this is possible
OKTODO = 1;
if (~isfield(cal.describe,'yokedmethod') || cal.describe.yokedmethod == 0)
    OKTODO = 0;
end
if (~isfield(cal,'yoked') || ~isfield(cal.yoked,'spectra'))
    OKTODO = 0;
end
if (cal.nPrimaryBases == 0)
    OKTODO = 0;
end
if (~OKTODO)
    return;
end

%% Average yoked measurements for this primary
yokedSpds = cal.yoked.spectra;

%% Fit each spectrum with the linear model for all three primaries
% and project down onto this
projectedYokedSpd = cal.P_device*(cal.P_device\yokedSpds);

%% Now we have to adjust the linear model so that it has our standard 
% properties.

% Make first three basis functions fit maxSpd exactly
maxSpd = projectedYokedSpd(:,end);
weights = cal.P_device\maxSpd;
currentLinMod = zeros(size(cal.P_device));
for i = 1:cal.nDevices
    tempLinMod = 0;
    for j = 1:cal.nPrimaryBases
        tempLinMod = tempLinMod + cal.P_device(:,i+(j-1)*cal.nDevices)*weights(i+(j-1)*cal.nDevices);
    end
    currentLinMod(:,i) = tempLinMod;
end
weights = currentLinMod(:,1:cal.nDevices)\maxSpd;
for i = 1:cal.nDevices
    currentLinMod(:,i) = currentLinMod(:,i)*weights(i);
end
maxPow = max(max(currentLinMod(:,1:cal.nDevices)));

% Now find the rest of the linear model
clear tempLinMod
for i = 1:cal.nDevices
    for j = 1:cal.nPrimaryBases
        tempLinMod(:,j) = cal.P_device(:,i+(j-1)*cal.nDevices); %#ok<AGROW>
    end
    residual = tempLinMod - currentLinMod(:,i)*(currentLinMod(:,i)\tempLinMod);
    restOfLinMod = FindLinMod(residual,cal.nPrimaryBases-1);
    for j = 2:cal.nPrimaryBases
        tempMax = max(abs(restOfLinMod(:,j-1)));
        currentLinMod(:,i+(j-1)*cal.nDevices) = maxPow*restOfLinMod(:,j-1)/tempMax;
    end
end

% Span of cal.P_device and currentLinMod should be the same.  Check this.
if (DEBUG)
    check = currentLinMod - cal.P_device*(cal.P_device\currentLinMod);
    if (max(abs(check(:))) > 1e-10)
        error('Two linear models that should have the same span don''t');
    end
end

% Express yoked spectra in terms of model weights
gammaTable = currentLinMod\cal.yoked.spectra;
tempSpd = currentLinMod*gammaTable;
for i = 1:cal.nDevices
    index = gammaTable(i,:) > 1;
    gammaTable(i,index) = 1;
    gammaTable(i,:) = MakeMonotonic(HalfRect(gammaTable(i,:)'))';
end

% Stash info in calibration structure
cal.P_device = currentLinMod;

% When R=G=B, we just use the common settings.
if (cal.describe.yokedmethod == 1)
    cal.rawdata.rawGammaInput = cal.yoked.settings(1,:)';
	cal.rawdata.rawGammaTable = gammaTable';
    
% When measurements are at a specified chromaticity, need to interpolate gamma
% functions so that we have them for each device on a common scale.
elseif (cal.describe.yokedmethod == 2)
    cal.rawdata.rawGammaInput = cal.yoked.settings';
	cal.rawdata.rawGammaTable = gammaTable';
end

%% Debugging
if (DEBUG)
    S = [380 4 101];
    load T_xyz1931
    T_xyz=683*SplineCmf(S_xyz1931, T_xyz1931, S);
    
    % Meausured xyY
    measuredYokedxyY = XYZToxyY(T_xyz*cal.yoked.spectra);
    
    % Raw linear model fit xyY
    projectedYokedxyY = XYZToxyY(T_xyz*projectedYokedSpd);
    
    % Predicted xyY
    predictedSpd = cal.P_device*cal.rawdata.rawGammaTable';
    predictedYokedxyY = XYZToxyY(T_xyz*predictedSpd);
    
    % Plot luminance obtained vs. desired
    [lumPlot,f] = StartFigure('standard');
    f.xrange = [0 size(cal.yoked.settings, 2)]; f.nxticks = 6;
    f.yrange = [0 360]; f.nyticks = 5;
    f.xtickformat = '%0.0f'; f.ytickformat = '%0.2f ';
    plot(measuredYokedxyY(3,:)','ro','MarkerSize',f.basicmarkersize,'MarkerFaceColor','r');
    plot(projectedYokedxyY(3,:)','bo','MarkerSize',f.basicmarkersize,'MarkerFaceColor','b');
    plot(predictedYokedxyY(3,:)','go','MarkerSize',f.basicmarkersize,'MarkerFaceColor','g');
    
    xlabel('Test #','FontName',f.fontname,'FontSize',f.labelfontsize);
    ylabel('Luminance (cd/m2)','FontName',f.fontname,'FontSize',f.labelfontsize);
    FinishFigure(lumPlot,f);
    
    % Plot x chromaticity obtained vs. desired
    [xPlot,f] = StartFigure('standard');
    f.xrange = [0 size(cal.yoked.settings, 2)]; f.nxticks = 6;
    f.yrange = [0.2 0.6]; f.nyticks = 5;
    f.xtickformat = '%0.0f'; f.ytickformat = '%0.2f ';
    plot(measuredYokedxyY(1,:)','ro','MarkerSize',f.basicmarkersize,'MarkerFaceColor','r');
    plot(projectedYokedxyY(1,:)','bo','MarkerSize',f.basicmarkersize,'MarkerFaceColor','b');
    plot(predictedYokedxyY(1,:)','go','MarkerSize',f.basicmarkersize,'MarkerFaceColor','g');
    xlabel('Test #','FontName',f.fontname,'FontSize',f.labelfontsize);
    ylabel('x chromaticity','FontName',f.fontname,'FontSize',f.labelfontsize);
    FinishFigure(xPlot,f);
    
    % Plot y chromaticity obtained vs. desired
    [yPlot,f] = StartFigure('standard');
    f.xrange = [0 size(cal.yoked.settings, 2)]; f.nxticks = 6;
    f.yrange = [0.2 0.6]; f.nyticks = 5;
    f.xtickformat = '%0.0f'; f.ytickformat = '%0.2f ';
    plot(measuredYokedxyY(2,:)','ro','MarkerSize',f.basicmarkersize,'MarkerFaceColor','r');
    plot(projectedYokedxyY(2,:)','bo','MarkerSize',f.basicmarkersize,'MarkerFaceColor','b');
    plot(predictedYokedxyY(2,:)','go','MarkerSize',f.basicmarkersize,'MarkerFaceColor','g');
    xlabel('Test #','FontName',f.fontname,'FontSize',f.labelfontsize);
    ylabel('y chromaticity','FontName',f.fontname,'FontSize',f.labelfontsize);
    FinishFigure(yPlot,f);
    
    drawnow;
end


return