/usr/share/psychtoolbox-3/PsychCal/CalibrateFitYoked.m is in psychtoolbox-3-common 3.0.9+svn2579.dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | function cal = CalibrateFitYoked(cal)
% cal = CalibrateFitYoked(cal)
%
% Fit the gamma data from the yoked measurements.
%
% 4/30/10 dhb, kmo, ar Wrote it.
% 5/24/10 dhb Update comment.
% 5/25/10 dhb, ar New input format.
% 5/28/10 dhb, ar Execute conditionally.
% 6/10/10 dhb Make sure returned gamma values in range an monotonic.
%% Debugging switch
DEBUG = 0;
%% Check that this is possible
OKTODO = 1;
if (~isfield(cal.describe,'yokedmethod') || cal.describe.yokedmethod == 0)
OKTODO = 0;
end
if (~isfield(cal,'yoked') || ~isfield(cal.yoked,'spectra'))
OKTODO = 0;
end
if (cal.nPrimaryBases == 0)
OKTODO = 0;
end
if (~OKTODO)
return;
end
%% Average yoked measurements for this primary
yokedSpds = cal.yoked.spectra;
%% Fit each spectrum with the linear model for all three primaries
% and project down onto this
projectedYokedSpd = cal.P_device*(cal.P_device\yokedSpds);
%% Now we have to adjust the linear model so that it has our standard
% properties.
% Make first three basis functions fit maxSpd exactly
maxSpd = projectedYokedSpd(:,end);
weights = cal.P_device\maxSpd;
currentLinMod = zeros(size(cal.P_device));
for i = 1:cal.nDevices
tempLinMod = 0;
for j = 1:cal.nPrimaryBases
tempLinMod = tempLinMod + cal.P_device(:,i+(j-1)*cal.nDevices)*weights(i+(j-1)*cal.nDevices);
end
currentLinMod(:,i) = tempLinMod;
end
weights = currentLinMod(:,1:cal.nDevices)\maxSpd;
for i = 1:cal.nDevices
currentLinMod(:,i) = currentLinMod(:,i)*weights(i);
end
maxPow = max(max(currentLinMod(:,1:cal.nDevices)));
% Now find the rest of the linear model
clear tempLinMod
for i = 1:cal.nDevices
for j = 1:cal.nPrimaryBases
tempLinMod(:,j) = cal.P_device(:,i+(j-1)*cal.nDevices); %#ok<AGROW>
end
residual = tempLinMod - currentLinMod(:,i)*(currentLinMod(:,i)\tempLinMod);
restOfLinMod = FindLinMod(residual,cal.nPrimaryBases-1);
for j = 2:cal.nPrimaryBases
tempMax = max(abs(restOfLinMod(:,j-1)));
currentLinMod(:,i+(j-1)*cal.nDevices) = maxPow*restOfLinMod(:,j-1)/tempMax;
end
end
% Span of cal.P_device and currentLinMod should be the same. Check this.
if (DEBUG)
check = currentLinMod - cal.P_device*(cal.P_device\currentLinMod);
if (max(abs(check(:))) > 1e-10)
error('Two linear models that should have the same span don''t');
end
end
% Express yoked spectra in terms of model weights
gammaTable = currentLinMod\cal.yoked.spectra;
tempSpd = currentLinMod*gammaTable;
for i = 1:cal.nDevices
index = gammaTable(i,:) > 1;
gammaTable(i,index) = 1;
gammaTable(i,:) = MakeMonotonic(HalfRect(gammaTable(i,:)'))';
end
% Stash info in calibration structure
cal.P_device = currentLinMod;
% When R=G=B, we just use the common settings.
if (cal.describe.yokedmethod == 1)
cal.rawdata.rawGammaInput = cal.yoked.settings(1,:)';
cal.rawdata.rawGammaTable = gammaTable';
% When measurements are at a specified chromaticity, need to interpolate gamma
% functions so that we have them for each device on a common scale.
elseif (cal.describe.yokedmethod == 2)
cal.rawdata.rawGammaInput = cal.yoked.settings';
cal.rawdata.rawGammaTable = gammaTable';
end
%% Debugging
if (DEBUG)
S = [380 4 101];
load T_xyz1931
T_xyz=683*SplineCmf(S_xyz1931, T_xyz1931, S);
% Meausured xyY
measuredYokedxyY = XYZToxyY(T_xyz*cal.yoked.spectra);
% Raw linear model fit xyY
projectedYokedxyY = XYZToxyY(T_xyz*projectedYokedSpd);
% Predicted xyY
predictedSpd = cal.P_device*cal.rawdata.rawGammaTable';
predictedYokedxyY = XYZToxyY(T_xyz*predictedSpd);
% Plot luminance obtained vs. desired
[lumPlot,f] = StartFigure('standard');
f.xrange = [0 size(cal.yoked.settings, 2)]; f.nxticks = 6;
f.yrange = [0 360]; f.nyticks = 5;
f.xtickformat = '%0.0f'; f.ytickformat = '%0.2f ';
plot(measuredYokedxyY(3,:)','ro','MarkerSize',f.basicmarkersize,'MarkerFaceColor','r');
plot(projectedYokedxyY(3,:)','bo','MarkerSize',f.basicmarkersize,'MarkerFaceColor','b');
plot(predictedYokedxyY(3,:)','go','MarkerSize',f.basicmarkersize,'MarkerFaceColor','g');
xlabel('Test #','FontName',f.fontname,'FontSize',f.labelfontsize);
ylabel('Luminance (cd/m2)','FontName',f.fontname,'FontSize',f.labelfontsize);
FinishFigure(lumPlot,f);
% Plot x chromaticity obtained vs. desired
[xPlot,f] = StartFigure('standard');
f.xrange = [0 size(cal.yoked.settings, 2)]; f.nxticks = 6;
f.yrange = [0.2 0.6]; f.nyticks = 5;
f.xtickformat = '%0.0f'; f.ytickformat = '%0.2f ';
plot(measuredYokedxyY(1,:)','ro','MarkerSize',f.basicmarkersize,'MarkerFaceColor','r');
plot(projectedYokedxyY(1,:)','bo','MarkerSize',f.basicmarkersize,'MarkerFaceColor','b');
plot(predictedYokedxyY(1,:)','go','MarkerSize',f.basicmarkersize,'MarkerFaceColor','g');
xlabel('Test #','FontName',f.fontname,'FontSize',f.labelfontsize);
ylabel('x chromaticity','FontName',f.fontname,'FontSize',f.labelfontsize);
FinishFigure(xPlot,f);
% Plot y chromaticity obtained vs. desired
[yPlot,f] = StartFigure('standard');
f.xrange = [0 size(cal.yoked.settings, 2)]; f.nxticks = 6;
f.yrange = [0.2 0.6]; f.nyticks = 5;
f.xtickformat = '%0.0f'; f.ytickformat = '%0.2f ';
plot(measuredYokedxyY(2,:)','ro','MarkerSize',f.basicmarkersize,'MarkerFaceColor','r');
plot(projectedYokedxyY(2,:)','bo','MarkerSize',f.basicmarkersize,'MarkerFaceColor','b');
plot(predictedYokedxyY(2,:)','go','MarkerSize',f.basicmarkersize,'MarkerFaceColor','g');
xlabel('Test #','FontName',f.fontname,'FontSize',f.labelfontsize);
ylabel('y chromaticity','FontName',f.fontname,'FontSize',f.labelfontsize);
FinishFigure(yPlot,f);
drawnow;
end
return
|