This file is indexed.

/usr/share/octave/packages/nnet-0.1.13/__calcjacobian.m is in octave-nnet 0.1.13-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
## Copyright (C) 2006 Michel D. Schmid   <michaelschmid@users.sourceforge.net>
##
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2, or (at your option)
## any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {}@var{Jj} = __calcjacobian (@var{net},@var{Im},@var{Nn},@var{Aa},@var{vE})
## This function calculates the jacobian matrix. It's used inside the
## Levenberg-Marquardt algorithm of the neural network toolbox.
## PLEASE DO NOT USE IT ELSEWEHRE, it proparly will not work!
## @end deftypefn

## Author: Michel D. Schmid


function [Jj] = __calcjacobian(net,Im,Nn,Aa,vE)

  ## comment:
  ## - return value Jj is jacobi matrix
  ##   for this calculation, see "Neural Network Design; Hagan, Demuth & Beale page 12-45"


  ## check range of input arguments
  error(nargchk(5,5,nargin))

  ## get signals from inside the network
  bias  = net.b;

  ## calculate some help matrices
  mInputWeight = net.IW{1} * Im;
  nLayers = net.numLayers;
  for i=2:nLayers
    mLayerWeight{i,1} = net.LW{i,i-1} * Aa{i-1,1};
  endfor

  ## calculate number of columns and rows in jacobi matrix
  ## firstly, number of columns
  a = ones(nLayers+1,1); # +1 is for the input
  a(1) = net.inputs{1}.size;
  for iLayers = 1:nLayers
    a(iLayers+1) = net.layers{iLayers}.size;
  endfor
  nColumnsJacobiMatrix = 0;
  for iLayers = 1:nLayers
    nColumnsJacobiMatrix = (a(iLayers)+1)*a(iLayers+1) + nColumnsJacobiMatrix;
  endfor
  ## secondly, number of rows
  ve = vE{nLayers,1};
  nRowsJacobiMatrix = length(ve(:));


  ## FIRST STEP -----------------------------------------------------
  ## calculate the neuron outputs without the transfer function
  ## - n1_1 = W^1*a_1^0+b^1: the ^x factor defined the xth train data set
  ##   the _x factor defines the layer
  ## **********  this datas should be hold in Nn
  ## **********  should be calculated in "__calcperf"
  ## **********  so Nn{1} means hidden layer
  ## **********  so Nn{2} means second hidden layer or output layer
  ## **********  and so on ...
  ## END FIRST STEP -------------------------------------------------

  ## now we can rerange the signals ... this will be done only for
  ## matrix calculation ...
  [nRowsError nColumnsError] = size(ve);
  errorSize = size(ve(:),1); # this will calculate, if only one row
  # of errors exist... in other words... two rows will be reranged to
  # one row with the same number of elements.
  rerangeIndex = floor([0:(errorSize-1)]/nRowsError)+1;
  nLayers = net.numLayers;

  for i = 1:nLayers
    Nn{i,1} = Nn{i,1}(:,rerangeIndex);
    Aa{i,1} = Aa{i,1}(:,rerangeIndex);
    [nRows nColumns] = size(Nn{i,1});
    bTemp = bias{i,1};
    bias{i,1} = repmat(bTemp,1,nColumns);
    bias{i,1} = bias{i,1}(:,rerangeIndex);
  endfor
  mInputWeight = mInputWeight(:,rerangeIndex);
  for i=2:nLayers
    mLayerWeight{i,1} = mLayerWeight{i,1}(:,rerangeIndex);
  endfor
  Im = Im(:,rerangeIndex);

  ## define how the errors are connected
  ## ATTENTION! this happens in row order...
  numTargets = net.numTargets;
  mIdentity = -eye(numTargets);
  cols = size(mIdentity,2);
  mIdentity = mIdentity(:,rem(0:(cols*nColumnsError-1),cols)+1);
  errorConnect = cell(net.numLayers,1);
  startPos = 0;
  for i=net.numLayers
    targSize = net.layers{i}.size;
    errorConnect{i} = mIdentity(startPos+[1:targSize],:);
    startPos = startPos + targSize;
  endfor

  ## SECOND STEP ----------------------------------------------
  ## define and calculate the derivative matrix dF
  ## - this is "done" by the two first derivative functions
  ##   of the transfer functions
  ##   e.g. __dpureline, __dtansig, __dlogsig and so on ...

  ## calculate the sensitivity matrix tildeS
  ## start at the end layer, this means of course the output layer,
  ## the transfer function is selectable
  
  ## for calculating the last layer
  ## this should happen like following:
  ## tildeSx = -dFx(n_x^x)
  ## use mIdentity to calculate the number of targets correctly
  ## for all other layers, use instead:
  ## tildeSx(-1) = dF1(n_x^(x-1))(W^x)' * tildeSx;

  for iLayers = nLayers:-1:1 # this will count from the last
                             # layer to the first layer ...
    n = Nn{iLayers}; # nLayers holds the value of the last layer...
    ## which transfer function should be used?
    if (iLayers==nLayers)
      switch(net.layers{iLayers}.transferFcn)
        case "radbas"
          tildeSxTemp = __dradbas(n);
        case "purelin"
          tildeSxTemp = __dpurelin(n);
        case "tansig"
          n = tansig(n);
          tildeSxTemp = __dtansig(n);
        case "logsig"
          n = logsig(n);
          tildeSxTemp = __dlogsig(n);
        otherwise	
          error(["transfer function argument: " net.layers{iLayers}.transferFcn  " is not valid!"])
      endswitch
      tildeSx{iLayers,1} = tildeSxTemp .* mIdentity;
      n = bias{nLayers,1};
      switch(net.layers{iLayers}.transferFcn)
        case "radbas"
          tildeSbxTemp = __dradbas(n);
        case "purelin"
          tildeSbxTemp = __dpurelin(n);
        case "tansig"
          n = tansig(n);
          tildeSbxTemp = __dtansig(n);
        case "logsig"
          n = logsig(n);
          tildeSbxTemp = __dlogsig(n);
        otherwise
          error(["transfer function argument: " net.layers{iLayers}.transferFcn  " is not valid!"])
      endswitch
      tildeSbx{iLayers,1} = tildeSbxTemp .* mIdentity;
    endif

    if (iLayers<nLayers)
      dFx = ones(size(n));
      switch(net.layers{iLayers}.transferFcn) ######## new lines ...
        case "radbas"
          nx = radbas(n);
          dFx = __dradbas(nx);
        case "purelin"
	  nx = purelin(n);
	  dFx = __dpurelin(nx);
        case "tansig"         ######## new lines ...
	  nx = tansig(n);
	  dFx = __dtansig(nx);
	case "logsig"    ######## new lines ...
          nx = logsig(n);  ######## new lines ...
	  dFx = __dlogsig(nx); ######## new lines ...
	otherwise     ######## new lines ...
	  error(["transfer function argument: " net.layers{iLayers}.transferFcn  " is not valid!"])######## new lines ...
       endswitch ############# new lines ....
	  LWtranspose = net.LW{iLayers+1,iLayers};
      if iLayers<(nLayers-1)
        mIdentity = -ones(net.layers{iLayers}.size,size(mIdentity,2));
      endif

      mTest = tildeSx{iLayers+1,1};
      LWtranspose = LWtranspose' * mTest;
      tildeSx{iLayers,1} = dFx .* LWtranspose;
      tildeSxTemp = dFx .* LWtranspose;
      tildeSbx{iLayers,1} = ones(size(nx)).*tildeSxTemp;
    endif

  endfor #  if iLayers = nLayers:-1:1
  ## END SECOND STEP -------------------------------------------------

  ## THIRD STEP ------------------------------------------------------
  ## some problems occur if we have more than only one target... so how
  ## does the jacobi matrix looks like?

  ## each target will cause an extra row in the jacobi matrix, for
  ## each training set..  this means, 2 targets --> double of rows in the
  ## jacobi matrix ... 3 targets --> three times the number of rows like
  ## with one target and so on.

  ## now calculate jacobi matrix
  ## to do this, define first the transposed of it
  ## this makes it easier to calculate on the "batch" way, means all inputs
  ## at the same time...
  ## and it makes it easier to use the matrix calculation way..

  JjTrans = zeros(nRowsJacobiMatrix,nColumnsJacobiMatrix)'; # transposed jacobi matrix

  ## Weight Gradients
  for i=1:net.numLayers
    if i==1
      newInputs = Im;
      newTemps =  tildeSx{i,1};
      gIW{i,1} = copyRows(newTemps,net.inputs{i}.size) .* copyRowsInt(newInputs,net.layers{i}.size);
    endif
    if i>1
      Ad = cell2mat(Aa(i-1,1)');
      newInputs = Ad;
      newTemps = tildeSx{i,1};
      gLW{i,1} = copyRows(newTemps,net.layers{i-1}.size) .* copyRowsInt(newInputs,net.layers{i}.size);
    endif
  endfor

  for i=1:net.numLayers
    [nRows, nColumns] = size(Im);
    if (i==1)
      nWeightElements = a(i)*a(i+1); # n inputs * n hidden neurons
      JjTrans(1:nWeightElements,:) =  gIW{i}(1:nWeightElements,:);
      nWeightBias = a(i+1);
      start = nWeightElements;
      JjTrans(start+1:start+nWeightBias,:) = tildeSbx{i,1};
      start = start+nWeightBias;
    endif
    if (i>1)
      nLayerElements = a(i)*a(i+1); # n hidden neurons * n output neurons
      JjTrans(start+1:start+nLayerElements,:)=gLW{i}(1:nLayerElements,:);
      start = start +  nLayerElements;
      nLayerBias = a(i+1);
      JjTrans(start+1:start+nLayerBias,:) = tildeSbx{i,1};
      start = start + nLayerBias;
    endif
  endfor
  Jj = JjTrans';
  ## END THIRD STEP -------------------------------------------------


#=======================================================
#
# additional functions
#
#=======================================================

  function k = copyRows(k,m)
    # make copies of the ROWS of Aa matrix

    mRows = size(k,1);
    k = k(rem(0:(mRows*m-1),mRows)+1,:);
  endfunction

# -------------------------------------------------------

  function k = copyRowsInt(k,m)
    # make copies of the ROWS of matrix with elements INTERLEAVED

    mRows = size(k,1);
    k = k(floor([0:(mRows*m-1)]/m)+1,:);
  endfunction

# =====================================================================
#
# END additional functions
#
# =====================================================================

endfunction