This file is indexed.

/usr/share/doc/mlton/guide/StaticSum is in mlton-doc 20100608-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta name="robots" content="index,nofollow">



<title>StaticSum - MLton Standard ML Compiler (SML Compiler)</title>
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="all" href="common.css">
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="screen" href="screen.css">
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="print" href="print.css">


<link rel="Start" href="Home">


</head>

<body lang="en" dir="ltr">

<script src="http://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
_uacct = "UA-833377-1";
urchinTracker();
</script>
<table bgcolor = lightblue cellspacing = 0 style = "border: 0px;" width = 100%>
  <tr>
    <td style = "
		border: 0px;
		color: darkblue; 
		font-size: 150%;
		text-align: left;">
      <a class = mltona href="Home">MLton MLTONWIKIVERSION</a>
    <td style = "
		border: 0px;
		font-size: 150%;
		text-align: center;
		width: 50%;">
      StaticSum
    <td style = "
		border: 0px;
		text-align: right;">
      <table cellspacing = 0 style = "border: 0px">
        <tr style = "vertical-align: middle;">
      </table>
  <tr style = "background-color: white;">
    <td colspan = 3
	style = "
		border: 0px;
		font-size:70%;
		text-align: right;">
      <a href = "Home">Home</a>
      &nbsp;<a href = "TitleIndex">Index</a>
      &nbsp;
</table>
<div id="content" lang="en" dir="ltr">
While SML makes it impossible to write functions whose types would depend on the values of their arguments, or so called dependently typed functions, it is possible, and arguably commonplace, to write functions whose types depend on the types of their arguments.  Indeed, the types of parametrically polymorphic functions like <tt>map</tt> and <tt>foldl</tt> can be said to depend on the types of their arguments.  What is less commonplace, however, is to write functions whose behavior would depend on the types of their arguments.  Nevertheless, there are several techniques for writing such functions.  <a href="TypeIndexedValues">Type-indexed values</a> and <a href="Fold">fold</a> are two such techniques.  This page presents another such technique dubbed static sums. <h3 id="head-bae05e6c3c767f4336636316b765315a47f6a398">Ordinary Sums</h3>
<p>
Consider the sum type as defined below: 
<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> Sum = <B><FONT COLOR="#0000FF">struct</FONT></B>
   <B><FONT COLOR="#A020F0">datatype</FONT></B><B><FONT COLOR="#228B22"> ('a, 'b) t </FONT></B>=<B><FONT COLOR="#228B22"> <FONT COLOR="#B8860B">INL</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> 'a </FONT></B>|<B><FONT COLOR="#228B22"> <FONT COLOR="#B8860B">INR</FONT> <B><FONT COLOR="#A020F0">of</FONT></B> 'b
</FONT></B><B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
 While a generic sum type such as defined above is very useful, it has a number of limitations.  As an example, we could write the function <tt>out</tt> to extract the value from a sum as follows: 
<pre class=code>
<B><FONT COLOR="#A020F0">fun</FONT></B> out (s : ('a, 'a) Sum.t) : 'a =
    <B><FONT COLOR="#A020F0">case</FONT></B> s
     <B><FONT COLOR="#A020F0">of</FONT></B> Sum.INL a =&gt; a
      | Sum.INR a =&gt; a
</PRE>
 As can be seen from the type of <tt>out</tt>, it is limited in the sense that it requires both variants of the sum to have the same type.  So, <tt>out</tt> cannot be used to extract the value of a sum of two different types, such as the type <tt>(int,&nbsp;real)&nbsp;Sum.t</tt>.  As another example of a limitation, consider the following attempt at a <tt>succ</tt> function: 
<pre class=code>
<B><FONT COLOR="#A020F0">fun</FONT></B> succ (s : (int, real) Sum.t) : ??? =
    <B><FONT COLOR="#A020F0">case</FONT></B> s
     <B><FONT COLOR="#A020F0">of</FONT></B> Sum.INL i =&gt; i + <B><FONT COLOR="#5F9EA0">1</FONT></B>
      | Sum.INR r =&gt; Real.nextAfter (r, Real.posInf)
</PRE>
 The above definition of <tt>succ</tt> cannot be typed, because there is no type for the codomain within SML. 
</p>
<h3 id="head-abe64b6ebfd4251ca72fe68475928c5d6be71820">Static Sums</h3>
<p>
Interestingly, it is possible to define values <tt>inL</tt>, <tt>inR</tt>, and <tt>match</tt> that satisfy the laws 
<pre>match (inL x) (f, g) = f x
match (inR x) (f, g) = g x
</pre>and do not suffer from the same limitions.  The definitions are actually quite trivial: 
<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> StaticSum = <B><FONT COLOR="#0000FF">struct</FONT></B>
   <B><FONT COLOR="#A020F0">fun</FONT></B> inL x (f, _) = f x
   <B><FONT COLOR="#A020F0">fun</FONT></B> inR x (_, g) = g x
   <B><FONT COLOR="#A020F0">fun</FONT></B> match x = x
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
 
</p>
<p>
Now, given the <tt>succ</tt> function defined as 
<pre class=code>
<B><FONT COLOR="#A020F0">fun</FONT></B> succ s =
    StaticSum.match s
       (<B><FONT COLOR="#A020F0">fn</FONT></B> i =&gt; i + <B><FONT COLOR="#5F9EA0">1</FONT></B>,
        <B><FONT COLOR="#A020F0">fn</FONT></B> r =&gt; Real.nextAfter (r, Real.posInf))
</PRE>
 we get 
<pre class=code>
succ (StaticSum.inL <B><FONT COLOR="#5F9EA0">1</FONT></B>) = <B><FONT COLOR="#5F9EA0">2</FONT></B>
succ (StaticSum.inR Real.maxFinite) = Real.posInf
</PRE>
 
</p>
<p>
To better understand how this works, consider the following signature for static sums: 
<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> StaticSum :&gt; <B><FONT COLOR="#0000FF">sig</FONT></B>
   <B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> ('dL, 'cL, 'dR, 'cR, 'c) t
   </FONT></B><B><FONT COLOR="#A020F0">val</FONT></B> inL : 'dL -&gt; ('dL, 'cL, 'dR, 'cR, 'cL) t
   <B><FONT COLOR="#A020F0">val</FONT></B> inR : 'dR -&gt; ('dL, 'cL, 'dR, 'cR, 'cR) t
   <B><FONT COLOR="#A020F0">val</FONT></B> match : ('dL, 'cL, 'dR, 'cR, 'c) t -&gt; ('dL -&gt; 'cL) * ('dR -&gt; 'cR) -&gt; 'c
<B><FONT COLOR="#0000FF">end</FONT></B> = <B><FONT COLOR="#0000FF">struct</FONT></B>
   <B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> ('dL, 'cL, 'dR, 'cR, 'c) t </FONT></B>=<B><FONT COLOR="#228B22"> ('dL -&gt; 'cL) * ('dR -&gt; 'cR) -&gt; 'c
   </FONT></B><B><FONT COLOR="#0000FF">open</FONT></B> StaticSum
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
 Above, <tt>'d</tt> stands for domain and <tt>'c</tt> for codomain.  The key difference between an ordinary sum type, like <tt>(int,&nbsp;real)&nbsp;Sum.t</tt>, and a static sum type, like <tt>(int,&nbsp;real,&nbsp;real,&nbsp;int,&nbsp;real)&nbsp;StaticSum.t</tt>, is that the ordinary sum type says nothing about the type of the result of deconstructing a sum while the static sum type specifies the type. 
</p>
<p>
With the sealed static sum module, we get the type 
<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> succ : (int, int, real, real, 'a) StaticSum.t -&gt; 'a
</PRE>
 for the previously defined <tt>succ</tt> function.  The type specifies that <tt>succ</tt> maps a left <tt>int</tt> to an <tt>int</tt> and a right <tt>real</tt> to a <tt>real</tt>.  For example, the type of <tt>StaticSum.inL&nbsp;1</tt> is <tt>(int,&nbsp;'cL,&nbsp;'dR,&nbsp;'cR,&nbsp;'cL)&nbsp;StaticSum.t</tt>.  Unifying this with the argument type of <tt>succ</tt> gives the type <tt>(int,&nbsp;int,&nbsp;real,&nbsp;real,&nbsp;int)&nbsp;StaticSum.t&nbsp;-&gt;&nbsp;int</tt>. 
</p>
<p>
The <tt>out</tt> function is quite useful on its own.  Here is how it can be defined: 
<pre class=code>
<B><FONT COLOR="#0000FF">structure</FONT></B> StaticSum = <B><FONT COLOR="#0000FF">struct</FONT></B>
   <B><FONT COLOR="#0000FF">open</FONT></B> StaticSum
   <B><FONT COLOR="#A020F0">val</FONT></B> out : ('a, 'a, 'b, 'b, 'c) t -&gt; 'c =
    <B><FONT COLOR="#A020F0">fn</FONT></B> s =&gt; match s (<B><FONT COLOR="#A020F0">fn</FONT></B> x =&gt; x, <B><FONT COLOR="#A020F0">fn</FONT></B> x =&gt; x)
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
 
</p>
<p>
Due to the value restriction, lack of first class polymorphism and polymorphic recursion, the usefulness and convenience of static sums is somewhat limited in SML.  So, don't throw away the ordinary sum type just yet.  Static sums can nevertheless be quite useful. 
</p>
<h3 id="head-3bdb7cbf1ec43160b51d72f6f6cf74d016effb4f">Example: Send and Receive with Argument Type Dependent Result Types</h3>
<p>
In some situations it would seem useful to define functions whose result type would depend on some of the arguments.  Traditionally such functions have been thought to be impossible in SML and the solution has been to define multiple functions.  For example, the <a class="external" href="http://mlton.org/basis/socket.html"><img src="moin-www.png" alt="[WWW]" height="11" width="11">Socket structure</a> of the Basis library defines 16 <tt>send</tt> and 16 <tt>recv</tt> functions.  In contrast, the Net structure (<a href = "http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/sweeks/basic/unstable/net.sig?view=markup"><img src="moin-www.png" alt="[WWW]" height="11" width="11">net.sig</a>) of the Basic library designed by Stephen Weeks defines only a single <tt>send</tt> and a single <tt>receive</tt> and the result types of the functions depend on their arguments.  The implementation (<a href = "http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/sweeks/basic/unstable/net.sml?view=markup"><img src="moin-www.png" alt="[WWW]" height="11" width="11">net.sml</a>) uses static sums (with a slighly different signature: <a href = "http://mlton.org/cgi-bin/viewsvn.cgi/mltonlib/trunk/com/sweeks/basic/unstable/static-sum.sig?view=markup"><img src="moin-www.png" alt="[WWW]" height="11" width="11">static-sum.sig</a>). 
</p>
<h3 id="head-a2ce759ad335eb8fd953a3a53cf16230241d83f0">Example: Picking Monad Results</h3>
<p>
Suppose that we need to write a parser that accepts a pair of integers and returns their sum given a monadic parsing combinator library.  A part of the signature of such library could look like this 
<pre class=code>
<B><FONT COLOR="#0000FF">signature</FONT></B> PARSING = <B><FONT COLOR="#0000FF">sig</FONT></B>
   <B><FONT COLOR="#0000FF">include</FONT></B> MONAD
   <B><FONT COLOR="#A020F0">val</FONT></B> int : int t
   <B><FONT COLOR="#A020F0">val</FONT></B> lparen : unit t
   <B><FONT COLOR="#A020F0">val</FONT></B> rparen : unit t
   <B><FONT COLOR="#A020F0">val</FONT></B> comma : unit t
   <I><FONT COLOR="#B22222">(* ... *)</FONT></I>
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
 where the <tt>MONAD</tt> signature could be defined as 
<pre class=code>
<B><FONT COLOR="#0000FF">signature</FONT></B> MONAD = <B><FONT COLOR="#0000FF">sig</FONT></B>
   <B><FONT COLOR="#A020F0">type</FONT></B><B><FONT COLOR="#228B22"> 'a t
   </FONT></B><B><FONT COLOR="#A020F0">val</FONT></B> return : 'a -&gt; 'a t
   <B><FONT COLOR="#A020F0">val</FONT></B> &gt;&gt;= : 'a t * ('a -&gt; 'b t) -&gt; 'b t
<B><FONT COLOR="#0000FF">end</FONT></B>
<B><FONT COLOR="#A020F0">infix</FONT></B> &gt;&gt;=
</PRE>
 
</p>
<p>
The straightforward, but tedious, way to write the desired parser is: 
<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> p = lparen &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> _ =&gt;
        int    &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> x =&gt;
        comma  &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> _ =&gt;
        int    &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> y =&gt;
        rparen &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> _ =&gt;
        return (x + y))))))
</PRE>
 In Haskell, the parser could be written using the <tt>do</tt> notation considerably less verbosely as: 
<pre class=code>
p = <B><FONT COLOR="#A020F0">do</FONT></B> { lparen ; x &lt;- int ; comma ; y &lt;- int ; rparen ; return $ x + y }
</PRE>
 SML doesn't provide a <tt>do</tt> notation, so we need another solution. 
</p>
<p>
Suppose we would have a "pick" notation for monads that would allows us to write the parser as 
<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> p = `lparen ^ \int ^ `comma ^ \int ^ `rparen @ (<B><FONT COLOR="#A020F0">fn</FONT></B> x &amp; y =&gt; x + y)
</PRE>
 using four auxiliary combinators: <tt>`</tt>, <tt>\</tt>, <tt>^</tt>, and <tt>@</tt>. Roughly speaking 
</p>

    <ul>

    <li>
<p>
 <tt>`p</tt> means that the result of <tt>p</tt> is dropped, 
</p>
</li>
    <li>
<p>
 <tt>\p</tt> means that the result of <tt>p</tt> is taken, 
</p>
</li>
    <li>
<p>
 <tt>p&nbsp;^&nbsp;q</tt> means that results of <tt>p</tt> and <tt>q</tt> are taken as a  product, and 
</p>
</li>
    <li>
<p>
 <tt>p&nbsp;@&nbsp;a</tt> means that the results of <tt>p</tt> are passed to the  function <tt>a</tt> and that result is returned. 
</p>
</li>

    </ul>


<p>
The difficulty is in implementing the concatenation combinator <tt>^</tt>. The type of the result of the concatenation depends on the types of the arguments. 
</p>
<p>
Using static sums and the <a href="ProductType">product type</a>, the pick notation for monads can be implemented as follows: 
<pre class=code>
<B><FONT COLOR="#0000FF">functor</FONT></B> MkMonadPick (<B><FONT COLOR="#0000FF">include</FONT></B> MONAD) = <B><FONT COLOR="#0000FF">let</FONT></B>
   <B><FONT COLOR="#0000FF">open</FONT></B> StaticSum
<B><FONT COLOR="#0000FF">in</FONT></B>
   <B><FONT COLOR="#0000FF">struct</FONT></B>
      <B><FONT COLOR="#A020F0">fun</FONT></B> `a = inL (a &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> _ =&gt; return ()))
      <B><FONT COLOR="#A020F0">val</FONT></B> \ = inR
      <B><FONT COLOR="#A020F0">fun</FONT></B> a @ f = out a &gt;&gt;= (return o f)
      <B><FONT COLOR="#A020F0">fun</FONT></B> a ^ b =
          (match b o match a)
             (<B><FONT COLOR="#A020F0">fn</FONT></B> a =&gt;
                 (<B><FONT COLOR="#A020F0">fn</FONT></B> b =&gt; inL (a &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> _ =&gt; b)),
                  <B><FONT COLOR="#A020F0">fn</FONT></B> b =&gt; inR (a &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> _ =&gt; b))),
              <B><FONT COLOR="#A020F0">fn</FONT></B> a =&gt;
                 (<B><FONT COLOR="#A020F0">fn</FONT></B> b =&gt; inR (a &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> a =&gt; b &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> _ =&gt; return a))),
                  <B><FONT COLOR="#A020F0">fn</FONT></B> b =&gt; inR (a &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> a =&gt; b &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> b =&gt; return (a &amp; b))))))
   <B><FONT COLOR="#0000FF">end</FONT></B>
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
 The above implementation is inefficient, however.  It uses many more bind operations, <tt>&gt;&gt;=</tt>, than necessary.  That can be solved with an additional level of abstraction: 
<pre class=code>
<B><FONT COLOR="#0000FF">functor</FONT></B> MkMonadPick (<B><FONT COLOR="#0000FF">include</FONT></B> MONAD) = <B><FONT COLOR="#0000FF">let</FONT></B>
   <B><FONT COLOR="#0000FF">open</FONT></B> StaticSum
<B><FONT COLOR="#0000FF">in</FONT></B>
   <B><FONT COLOR="#0000FF">struct</FONT></B>
      <B><FONT COLOR="#A020F0">fun</FONT></B> `a = inL (<B><FONT COLOR="#A020F0">fn</FONT></B> b =&gt; a &gt;&gt;= (<B><FONT COLOR="#A020F0">fn</FONT></B> _ =&gt; b ()))
      <B><FONT COLOR="#A020F0">fun</FONT></B> \a = inR (<B><FONT COLOR="#A020F0">fn</FONT></B> b =&gt; a &gt;&gt;= b)
      <B><FONT COLOR="#A020F0">fun</FONT></B> a @ f = out a (return o f)
      <B><FONT COLOR="#A020F0">fun</FONT></B> a ^ b =
          (match b o match a)
             (<B><FONT COLOR="#A020F0">fn</FONT></B> a =&gt; (<B><FONT COLOR="#A020F0">fn</FONT></B> b =&gt; inL (<B><FONT COLOR="#A020F0">fn</FONT></B> c =&gt; a (<B><FONT COLOR="#A020F0">fn</FONT></B> () =&gt; b c)),
                       <B><FONT COLOR="#A020F0">fn</FONT></B> b =&gt; inR (<B><FONT COLOR="#A020F0">fn</FONT></B> c =&gt; a (<B><FONT COLOR="#A020F0">fn</FONT></B> () =&gt; b c))),
              <B><FONT COLOR="#A020F0">fn</FONT></B> a =&gt; (<B><FONT COLOR="#A020F0">fn</FONT></B> b =&gt; inR (<B><FONT COLOR="#A020F0">fn</FONT></B> c =&gt; a (<B><FONT COLOR="#A020F0">fn</FONT></B> a =&gt; b (<B><FONT COLOR="#A020F0">fn</FONT></B> () =&gt; c a))),
                       <B><FONT COLOR="#A020F0">fn</FONT></B> b =&gt; inR (<B><FONT COLOR="#A020F0">fn</FONT></B> c =&gt; a (<B><FONT COLOR="#A020F0">fn</FONT></B> a =&gt; b (<B><FONT COLOR="#A020F0">fn</FONT></B> b =&gt; c (a &amp; b))))))
   <B><FONT COLOR="#0000FF">end</FONT></B>
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
 
</p>
<p>
After instantiating and opening either of the above monad pick implementations, the previously given definition of <tt>p</tt> can be compiled and results in a parser whose result is of type <tt>int</tt>.  Here is a functor to test the theory: 
<pre class=code>
<B><FONT COLOR="#0000FF">functor</FONT></B> Test (Arg : PARSING) = <B><FONT COLOR="#0000FF">struct</FONT></B>
   <B><FONT COLOR="#A020F0">local</FONT></B>
      <B><FONT COLOR="#0000FF">structure</FONT></B> Pick = MkMonadPick (Arg)
      <B><FONT COLOR="#0000FF">open</FONT></B> Pick Arg
   <B><FONT COLOR="#A020F0">in</FONT></B>
      <B><FONT COLOR="#A020F0">val</FONT></B> p : int t =
          `lparen ^ \int ^ `comma ^ \int ^ `rparen @ (<B><FONT COLOR="#A020F0">fn</FONT></B> x &amp; y =&gt; x + y)
   <B><FONT COLOR="#A020F0">end</FONT></B>
<B><FONT COLOR="#0000FF">end</FONT></B>
</PRE>
 
</p>
<h2 id="head-a4bc8bf5caf54b18cea9f58e83dd4acb488deb17">Also see</h2>
<p>
There are a number of related techniques.  Here are some of them. 
</p>

    <ul>

    <li>
<p>
 <a href="Fold">Fold</a> 
</p>
</li>
    <li>
<p>
 <a href="TypeIndexedValues">TypeIndexedValues</a> 
</p>
</li>
</ul>

</div>



<p>
<hr>
Last edited on 2009-06-10 19:23:13 by <span title="fenrir.uchicago.edu"><a href="MatthewFluet">MatthewFluet</a></span>.
</body></html>