/usr/include/thrust/detail/tuple.inl is in libthrust-dev 1.6.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 | /*
* Copyright 2008-2012 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <thrust/detail/type_traits.h>
#include <thrust/detail/swap.h>
namespace thrust
{
// define null_type
struct null_type {};
// null_type comparisons
__host__ __device__ inline
bool operator==(const null_type&, const null_type&) { return true; }
__host__ __device__ inline
bool operator>=(const null_type&, const null_type&) { return true; }
__host__ __device__ inline
bool operator<=(const null_type&, const null_type&) { return true; }
__host__ __device__ inline
bool operator!=(const null_type&, const null_type&) { return false; }
__host__ __device__ inline
bool operator<(const null_type&, const null_type&) { return false; }
__host__ __device__ inline
bool operator>(const null_type&, const null_type&) { return false; }
// forward declaration for tuple
template <
class T0 = null_type, class T1 = null_type, class T2 = null_type,
class T3 = null_type, class T4 = null_type, class T5 = null_type,
class T6 = null_type, class T7 = null_type, class T8 = null_type,
class T9 = null_type>
class tuple;
// forward declaration of tuple_element
template<int i, typename T> struct tuple_element;
// specializations for tuple_element
template<class T>
struct tuple_element<0,T>
{
typedef typename T::head_type type;
}; // end tuple_element<0,T>
template<int N, class T>
struct tuple_element<N, const T>
{
private:
typedef typename T::tail_type Next;
typedef typename tuple_element<N-1, Next>::type unqualified_type;
public:
typedef typename thrust::detail::add_const<unqualified_type>::type type;
}; // end tuple_element<N, const T>
template<class T>
struct tuple_element<0,const T>
{
typedef typename thrust::detail::add_const<typename T::head_type>::type type;
}; // end tuple_element<0,const T>
// forward declaration of tuple_size
template<class T> struct tuple_size;
// specializations for tuple_size
template<>
struct tuple_size< tuple<> >
{
static const int value = 0;
}; // end tuple_size< tuple<> >
template<>
struct tuple_size<null_type>
{
static const int value = 0;
}; // end tuple_size<null_type>
// forward declaration of detail::cons
namespace detail
{
template <class HT, class TT> struct cons;
} // end detail
// -- some traits classes for get functions
template <class T> struct access_traits
{
typedef const T& const_type;
typedef T& non_const_type;
typedef const typename thrust::detail::remove_cv<T>::type& parameter_type;
// used as the tuple constructors parameter types
// Rationale: non-reference tuple element types can be cv-qualified.
// It should be possible to initialize such types with temporaries,
// and when binding temporaries to references, the reference must
// be non-volatile and const. 8.5.3. (5)
}; // end access_traits
template <class T> struct access_traits<T&>
{
typedef T& const_type;
typedef T& non_const_type;
typedef T& parameter_type;
}; // end access_traits<T&>
// forward declarations of get()
template<int N, class HT, class TT>
__host__ __device__
inline typename access_traits<
typename tuple_element<N, detail::cons<HT, TT> >::type
>::non_const_type
// XXX we probably don't need to do this for any compiler we care about -jph
//get(cons<HT, TT>& c BOOST_APPEND_EXPLICIT_TEMPLATE_NON_TYPE(int, N));
get(detail::cons<HT, TT>& c);
template<int N, class HT, class TT>
__host__ __device__
inline typename access_traits<
typename tuple_element<N, detail::cons<HT, TT> >::type
>::const_type
// XXX we probably don't need to do this for any compiler we care about -jph
//get(const cons<HT, TT>& c BOOST_APPEND_EXPLICIT_TEMPLATE_NON_TYPE(int, N));
get(const detail::cons<HT, TT>& c);
namespace detail
{
// -- generate error template, referencing to non-existing members of this
// template is used to produce compilation errors intentionally
template<class T>
class generate_error;
// - cons getters --------------------------------------------------------
// called: get_class<N>::get<RETURN_TYPE>(aTuple)
template< int N >
struct get_class
{
template<class RET, class HT, class TT >
__host__ __device__
inline static RET get(const cons<HT, TT>& t)
{
// XXX we may not need to deal with this for any compiler we care about -jph
//return get_class<N-1>::BOOST_NESTED_TEMPLATE get<RET>(t.tail);
return get_class<N-1>::template get<RET>(t.tail);
// gcc 4.3 couldn't compile this:
//return get_class<N-1>::get<RET>(t.tail);
}
template<class RET, class HT, class TT >
__host__ __device__
inline static RET get(cons<HT, TT>& t)
{
// XXX we may not need to deal with this for any compiler we care about -jph
//return get_class<N-1>::BOOST_NESTED_TEMPLATE get<RET>(t.tail);
return get_class<N-1>::template get<RET>(t.tail);
// gcc 4.3 couldn't compile this:
//return get_class<N-1>::get<RET>(t.tail);
}
}; // end get_class
template<>
struct get_class<0>
{
template<class RET, class HT, class TT>
__host__ __device__
inline static RET get(const cons<HT, TT>& t)
{
return t.head;
}
template<class RET, class HT, class TT>
__host__ __device__
inline static RET get(cons<HT, TT>& t)
{
return t.head;
}
}; // get get_class<0>
template <bool If, class Then, class Else> struct IF
{
typedef Then RET;
};
template <class Then, class Else> struct IF<false, Then, Else>
{
typedef Else RET;
};
// These helper templates wrap void types and plain function types.
// The rationale is to allow one to write tuple types with those types
// as elements, even though it is not possible to instantiate such object.
// E.g: typedef tuple<void> some_type; // ok
// but: some_type x; // fails
template <class T> class non_storeable_type
{
__host__ __device__
non_storeable_type();
};
template <class T> struct wrap_non_storeable_type
{
// XXX is_function looks complicated; punt for now -jph
//typedef typename IF<
// ::thrust::detail::is_function<T>::value, non_storeable_type<T>, T
//>::RET type;
typedef T type;
};
template <> struct wrap_non_storeable_type<void>
{
typedef non_storeable_type<void> type;
};
template <class HT, class TT>
struct cons
{
typedef HT head_type;
typedef TT tail_type;
typedef typename
wrap_non_storeable_type<head_type>::type stored_head_type;
stored_head_type head;
tail_type tail;
inline __host__ __device__
typename access_traits<stored_head_type>::non_const_type
get_head() { return head; }
inline __host__ __device__
typename access_traits<tail_type>::non_const_type
get_tail() { return tail; }
inline __host__ __device__
typename access_traits<stored_head_type>::const_type
get_head() const { return head; }
inline __host__ __device__
typename access_traits<tail_type>::const_type
get_tail() const { return tail; }
inline __host__ __device__
cons(void) : head(), tail() {}
// cons() : head(detail::default_arg<HT>::f()), tail() {}
// the argument for head is not strictly needed, but it prevents
// array type elements. This is good, since array type elements
// cannot be supported properly in any case (no assignment,
// copy works only if the tails are exactly the same type, ...)
inline __host__ __device__
cons(typename access_traits<stored_head_type>::parameter_type h,
const tail_type& t)
: head (h), tail(t) {}
template <class T1, class T2, class T3, class T4, class T5,
class T6, class T7, class T8, class T9, class T10>
inline __host__ __device__
cons( T1& t1, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (t1),
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, static_cast<const null_type&>(null_type()))
{}
template <class T2, class T3, class T4, class T5,
class T6, class T7, class T8, class T9, class T10>
inline __host__ __device__
cons( const null_type& /*t1*/, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (),
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, static_cast<const null_type&>(null_type()))
{}
template <class HT2, class TT2>
inline __host__ __device__
cons( const cons<HT2, TT2>& u ) : head(u.head), tail(u.tail) {}
template <class HT2, class TT2>
inline __host__ __device__
cons& operator=( const cons<HT2, TT2>& u ) {
head=u.head; tail=u.tail; return *this;
}
// must define assignment operator explicitly, implicit version is
// illformed if HT is a reference (12.8. (12))
inline __host__ __device__
cons& operator=(const cons& u) {
head = u.head; tail = u.tail; return *this;
}
// XXX enable when we support std::pair -jph
//template <class T1, class T2>
//__host__ __device__
//cons& operator=( const std::pair<T1, T2>& u ) {
// //BOOST_STATIC_ASSERT(length<cons>::value == 2); // check length = 2
// head = u.first; tail.head = u.second; return *this;
//}
// get member functions (non-const and const)
template <int N>
__host__ __device__
typename access_traits<
typename tuple_element<N, cons<HT, TT> >::type
>::non_const_type
get() {
return thrust::get<N>(*this); // delegate to non-member get
}
template <int N>
__host__ __device__
typename access_traits<
typename tuple_element<N, cons<HT, TT> >::type
>::const_type
get() const {
return thrust::get<N>(*this); // delegate to non-member get
}
inline __host__ __device__
void swap(cons &c)
{
using thrust::swap;
swap(head, c.head);
tail.swap(c.tail);
}
};
template <class HT>
struct cons<HT, null_type>
{
typedef HT head_type;
typedef null_type tail_type;
typedef cons<HT, null_type> self_type;
typedef typename
wrap_non_storeable_type<head_type>::type stored_head_type;
stored_head_type head;
typename access_traits<stored_head_type>::non_const_type
inline __host__ __device__
get_head() { return head; }
inline __host__ __device__
null_type get_tail() { return null_type(); }
inline __host__ __device__
typename access_traits<stored_head_type>::const_type
get_head() const { return head; }
inline __host__ __device__
null_type get_tail() const { return null_type(); }
inline __host__ __device__
cons() : head() {}
inline __host__ __device__
cons(typename access_traits<stored_head_type>::parameter_type h,
const null_type& = null_type())
: head (h) {}
template<class T1>
inline __host__ __device__
cons(T1& t1, const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&)
: head (t1) {}
inline __host__ __device__
cons(const null_type&,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&)
: head () {}
template <class HT2>
inline __host__ __device__
cons( const cons<HT2, null_type>& u ) : head(u.head) {}
template <class HT2>
inline __host__ __device__
cons& operator=(const cons<HT2, null_type>& u )
{
head = u.head;
return *this;
}
// must define assignment operator explicitly, implicit version
// is illformed if HT is a reference
inline __host__ __device__
cons& operator=(const cons& u) { head = u.head; return *this; }
template <int N>
inline __host__ __device__
typename access_traits<
typename tuple_element<N, self_type>::type
>::non_const_type
// XXX we probably don't need this for the compilers we care about -jph
//get(BOOST_EXPLICIT_TEMPLATE_NON_TYPE(int, N))
get(void)
{
return thrust::get<N>(*this);
}
template <int N>
inline __host__ __device__
typename access_traits<
typename tuple_element<N, self_type>::type
>::const_type
// XXX we probably don't need this for the compilers we care about -jph
//get(BOOST_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) const
get(void) const
{
return thrust::get<N>(*this);
}
inline __host__ __device__
void swap(cons &c)
{
using thrust::swap;
swap(head, c.head);
}
}; // end cons
template <class T0, class T1, class T2, class T3, class T4,
class T5, class T6, class T7, class T8, class T9>
struct map_tuple_to_cons
{
typedef cons<T0,
typename map_tuple_to_cons<T1, T2, T3, T4, T5,
T6, T7, T8, T9, null_type>::type
> type;
}; // end map_tuple_to_cons
// The empty tuple is a null_type
template <>
struct map_tuple_to_cons<null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type>
{
typedef null_type type;
}; // end map_tuple_to_cons<...>
// ---------------------------------------------------------------------------
// The call_traits for make_tuple
// Must be instantiated with plain or const plain types (not with references)
// from template<class T> foo(const T& t) : make_tuple_traits<const T>::type
// from template<class T> foo(T& t) : make_tuple_traits<T>::type
// Conversions:
// T -> T,
// references -> compile_time_error
// array -> const ref array
template<class T>
struct make_tuple_traits {
typedef T type;
// commented away, see below (JJ)
// typedef typename IF<
// boost::is_function<T>::value,
// T&,
// T>::RET type;
};
// The is_function test was there originally for plain function types,
// which can't be stored as such (we must either store them as references or
// pointers). Such a type could be formed if make_tuple was called with a
// reference to a function.
// But this would mean that a const qualified function type was formed in
// the make_tuple function and hence make_tuple can't take a function
// reference as a parameter, and thus T can't be a function type.
// So is_function test was removed.
// (14.8.3. says that type deduction fails if a cv-qualified function type
// is created. (It only applies for the case of explicitly specifying template
// args, though?)) (JJ)
template<class T>
struct make_tuple_traits<T&> {
typedef typename
detail::generate_error<T&>::
do_not_use_with_reference_type error;
};
// Arrays can't be stored as plain types; convert them to references.
// All arrays are converted to const. This is because make_tuple takes its
// parameters as const T& and thus the knowledge of the potential
// non-constness of actual argument is lost.
template<class T, int n> struct make_tuple_traits <T[n]> {
typedef const T (&type)[n];
};
template<class T, int n>
struct make_tuple_traits<const T[n]> {
typedef const T (&type)[n];
};
template<class T, int n> struct make_tuple_traits<volatile T[n]> {
typedef const volatile T (&type)[n];
};
template<class T, int n>
struct make_tuple_traits<const volatile T[n]> {
typedef const volatile T (&type)[n];
};
// XXX enable these if we ever care about reference_wrapper -jph
//template<class T>
//struct make_tuple_traits<reference_wrapper<T> >{
// typedef T& type;
//};
//
//template<class T>
//struct make_tuple_traits<const reference_wrapper<T> >{
// typedef T& type;
//};
// a helper traits to make the make_tuple functions shorter (Vesa Karvonen's
// suggestion)
template <
class T0 = null_type, class T1 = null_type, class T2 = null_type,
class T3 = null_type, class T4 = null_type, class T5 = null_type,
class T6 = null_type, class T7 = null_type, class T8 = null_type,
class T9 = null_type
>
struct make_tuple_mapper {
typedef
tuple<typename make_tuple_traits<T0>::type,
typename make_tuple_traits<T1>::type,
typename make_tuple_traits<T2>::type,
typename make_tuple_traits<T3>::type,
typename make_tuple_traits<T4>::type,
typename make_tuple_traits<T5>::type,
typename make_tuple_traits<T6>::type,
typename make_tuple_traits<T7>::type,
typename make_tuple_traits<T8>::type,
typename make_tuple_traits<T9>::type> type;
};
} // end detail
template<int N, class HT, class TT>
__host__ __device__
inline typename access_traits<
typename tuple_element<N, detail::cons<HT, TT> >::type
>::non_const_type
get(detail::cons<HT, TT>& c)
{
//return detail::get_class<N>::BOOST_NESTED_TEMPLATE
// gcc 4.3 couldn't compile this:
//return detail::get_class<N>::
return detail::get_class<N>::template
get<
typename access_traits<
typename tuple_element<N, detail::cons<HT, TT> >::type
>::non_const_type,
HT,TT
>(c);
}
// get function for const cons-lists, returns a const reference to
// the element. If the element is a reference, returns the reference
// as such (that is, can return a non-const reference)
template<int N, class HT, class TT>
__host__ __device__
inline typename access_traits<
typename tuple_element<N, detail::cons<HT, TT> >::type
>::const_type
get(const detail::cons<HT, TT>& c)
{
//return detail::get_class<N>::BOOST_NESTED_TEMPLATE
// gcc 4.3 couldn't compile this:
//return detail::get_class<N>::
return detail::get_class<N>::template
get<
typename access_traits<
typename tuple_element<N, detail::cons<HT, TT> >::type
>::const_type,
HT,TT
>(c);
}
template<class T0>
__host__ __device__ inline
typename detail::make_tuple_mapper<T0>::type
make_tuple(const T0& t0)
{
typedef typename detail::make_tuple_mapper<T0>::type t;
return t(t0);
} // end make_tuple()
template<class T0, class T1>
__host__ __device__ inline
typename detail::make_tuple_mapper<T0, T1>::type
make_tuple(const T0& t0, const T1& t1)
{
typedef typename detail::make_tuple_mapper<T0,T1>::type t;
return t(t0,t1);
} // end make_tuple()
template<class T0, class T1, class T2>
__host__ __device__ inline
typename detail::make_tuple_mapper<T0, T1, T2>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2)
{
typedef typename detail::make_tuple_mapper<T0,T1,T2>::type t;
return t(t0,t1,t2);
} // end make_tuple()
template<class T0, class T1, class T2, class T3>
__host__ __device__ inline
typename detail::make_tuple_mapper<T0, T1, T2, T3>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3)
{
typedef typename detail::make_tuple_mapper<T0,T1,T2,T3>::type t;
return t(t0,t1,t2,t3);
} // end make_tuple()
template<class T0, class T1, class T2, class T3, class T4>
__host__ __device__ inline
typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3, const T4& t4)
{
typedef typename detail::make_tuple_mapper<T0,T1,T2,T3,T4>::type t;
return t(t0,t1,t2,t3,t4);
} // end make_tuple()
template<class T0, class T1, class T2, class T3, class T4, class T5>
__host__ __device__ inline
typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5)
{
typedef typename detail::make_tuple_mapper<T0,T1,T2,T3,T4,T5>::type t;
return t(t0,t1,t2,t3,t4,t5);
} // end make_tuple()
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6>
__host__ __device__ inline
typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6)
{
typedef typename detail::make_tuple_mapper<T0,T1,T2,T3,T4,T5,T6>::type t;
return t(t0,t1,t2,t3,t4,t5,t6);
} // end make_tuple()
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6, class T7>
__host__ __device__ inline
typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6, T7>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6, const T7& t7)
{
typedef typename detail::make_tuple_mapper<T0,T1,T2,T3,T4,T5,T6,T7>::type t;
return t(t0,t1,t2,t3,t4,t5,t6,t7);
} // end make_tuple()
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8>
__host__ __device__ inline
typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6, T7, T8>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6, const T7& t7, const T8& t8)
{
typedef typename detail::make_tuple_mapper<T0,T1,T2,T3,T4,T5,T6,T7,T8>::type t;
return t(t0,t1,t2,t3,t4,t5,t6,t7,t8);
} // end make_tuple()
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9>
__host__ __device__ inline
typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6, const T7& t7, const T8& t8, const T9& t9)
{
typedef typename detail::make_tuple_mapper<T0,T1,T2,T3,T4,T5,T6,T7,T8,T9>::type t;
return t(t0,t1,t2,t3,t4,t5,t6,t7,t8,t9);
} // end make_tuple()
template<typename T0>
__host__ __device__ inline
tuple<T0&> tie(T0 &t0)
{
return tuple<T0&>(t0);
}
template<typename T0,typename T1>
__host__ __device__ inline
tuple<T0&,T1&> tie(T0 &t0, T1 &t1)
{
return tuple<T0&,T1&>(t0,t1);
}
template<typename T0,typename T1, typename T2>
__host__ __device__ inline
tuple<T0&,T1&,T2&> tie(T0 &t0, T1 &t1, T2 &t2)
{
return tuple<T0&,T1&,T2&>(t0,t1,t2);
}
template<typename T0,typename T1, typename T2, typename T3>
__host__ __device__ inline
tuple<T0&,T1&,T2&,T3&> tie(T0 &t0, T1 &t1, T2 &t2, T3 &t3)
{
return tuple<T0&,T1&,T2&,T3&>(t0,t1,t2,t3);
}
template<typename T0,typename T1, typename T2, typename T3, typename T4>
__host__ __device__ inline
tuple<T0&,T1&,T2&,T3&,T4&> tie(T0 &t0, T1 &t1, T2 &t2, T3 &t3, T4 &t4)
{
return tuple<T0&,T1&,T2&,T3&,T4&>(t0,t1,t2,t3,t4);
}
template<typename T0,typename T1, typename T2, typename T3, typename T4, typename T5>
__host__ __device__ inline
tuple<T0&,T1&,T2&,T3&,T4&,T5&> tie(T0 &t0, T1 &t1, T2 &t2, T3 &t3, T4 &t4, T5 &t5)
{
return tuple<T0&,T1&,T2&,T3&,T4&,T5&>(t0,t1,t2,t3,t4,t5);
}
template<typename T0,typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
__host__ __device__ inline
tuple<T0&,T1&,T2&,T3&,T4&,T5&,T6&> tie(T0 &t0, T1 &t1, T2 &t2, T3 &t3, T4 &t4, T5 &t5, T6 &t6)
{
return tuple<T0&,T1&,T2&,T3&,T4&,T5&,T6&>(t0,t1,t2,t3,t4,t5,t6);
}
template<typename T0,typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
__host__ __device__ inline
tuple<T0&,T1&,T2&,T3&,T4&,T5&,T6&,T7&> tie(T0 &t0, T1 &t1, T2 &t2, T3 &t3, T4 &t4, T5 &t5, T6 &t6, T7 &t7)
{
return tuple<T0&,T1&,T2&,T3&,T4&,T5&,T6&,T7&>(t0,t1,t2,t3,t4,t5,t6,t7);
}
template<typename T0,typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8>
__host__ __device__ inline
tuple<T0&,T1&,T2&,T3&,T4&,T5&,T6&,T7&,T8&> tie(T0 &t0, T1 &t1, T2 &t2, T3 &t3, T4 &t4, T5 &t5, T6 &t6, T7 &t7, T8 &t8)
{
return tuple<T0&,T1&,T2&,T3&,T4&,T5&,T6&,T7&,T8&>(t0,t1,t2,t3,t4,t5,t6,t7,t8);
}
template<typename T0,typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9>
__host__ __device__ inline
tuple<T0&,T1&,T2&,T3&,T4&,T5&,T6&,T7&,T8&,T9&> tie(T0 &t0, T1 &t1, T2 &t2, T3 &t3, T4 &t4, T5 &t5, T6 &t6, T7 &t7, T8 &t8, T9 &t9)
{
return tuple<T0&,T1&,T2&,T3&,T4&,T5&,T6&,T7&,T8&,T9&>(t0,t1,t2,t3,t4,t5,t6,t7,t8,t9);
}
template<
typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9,
typename U0, typename U1, typename U2, typename U3, typename U4, typename U5, typename U6, typename U7, typename U8, typename U9
>
__host__ __device__ inline
void swap(thrust::tuple<T0,T1,T2,T3,T4,T5,T6,T7,T8,T9> &x,
thrust::tuple<U0,U1,U2,U3,U4,U5,U6,U7,U8,U9> &y)
{
return x.swap(y);
}
namespace detail
{
template<class T1, class T2>
__host__ __device__
inline bool eq(const T1& lhs, const T2& rhs) {
return lhs.get_head() == rhs.get_head() &&
eq(lhs.get_tail(), rhs.get_tail());
}
template<>
inline bool eq<null_type,null_type>(const null_type&, const null_type&) { return true; }
template<class T1, class T2>
__host__ __device__
inline bool neq(const T1& lhs, const T2& rhs) {
return lhs.get_head() != rhs.get_head() ||
neq(lhs.get_tail(), rhs.get_tail());
}
template<>
__host__ __device__
inline bool neq<null_type,null_type>(const null_type&, const null_type&) { return false; }
template<class T1, class T2>
__host__ __device__
inline bool lt(const T1& lhs, const T2& rhs) {
return (lhs.get_head() < rhs.get_head()) ||
(!(rhs.get_head() < lhs.get_head()) &&
lt(lhs.get_tail(), rhs.get_tail()));
}
template<>
__host__ __device__
inline bool lt<null_type,null_type>(const null_type&, const null_type&) { return false; }
template<class T1, class T2>
__host__ __device__
inline bool gt(const T1& lhs, const T2& rhs) {
return (lhs.get_head() > rhs.get_head()) ||
(!(rhs.get_head() > lhs.get_head()) &&
gt(lhs.get_tail(), rhs.get_tail()));
}
template<>
__host__ __device__
inline bool gt<null_type,null_type>(const null_type&, const null_type&) { return false; }
template<class T1, class T2>
__host__ __device__
inline bool lte(const T1& lhs, const T2& rhs) {
return lhs.get_head() <= rhs.get_head() &&
( !(rhs.get_head() <= lhs.get_head()) ||
lte(lhs.get_tail(), rhs.get_tail()));
}
template<>
__host__ __device__
inline bool lte<null_type,null_type>(const null_type&, const null_type&) { return true; }
template<class T1, class T2>
__host__ __device__
inline bool gte(const T1& lhs, const T2& rhs) {
return lhs.get_head() >= rhs.get_head() &&
( !(rhs.get_head() >= lhs.get_head()) ||
gte(lhs.get_tail(), rhs.get_tail()));
}
template<>
__host__ __device__
inline bool gte<null_type,null_type>(const null_type&, const null_type&) { return true; }
} // end detail
// equal ----
template<class T1, class T2, class S1, class S2>
__host__ __device__
inline bool operator==(const detail::cons<T1, T2>& lhs, const detail::cons<S1, S2>& rhs)
{
// XXX support this eventually -jph
//// check that tuple lengths are equal
//BOOST_STATIC_ASSERT(tuple_size<T2>::value == tuple_size<S2>::value);
return detail::eq(lhs, rhs);
} // end operator==()
// not equal -----
template<class T1, class T2, class S1, class S2>
__host__ __device__
inline bool operator!=(const detail::cons<T1, T2>& lhs, const detail::cons<S1, S2>& rhs)
{
// XXX support this eventually -jph
//// check that tuple lengths are equal
//BOOST_STATIC_ASSERT(tuple_size<T2>::value == tuple_size<S2>::value);
return detail::neq(lhs, rhs);
} // end operator!=()
// <
template<class T1, class T2, class S1, class S2>
__host__ __device__
inline bool operator<(const detail::cons<T1, T2>& lhs, const detail::cons<S1, S2>& rhs)
{
// XXX support this eventually -jph
//// check that tuple lengths are equal
//BOOST_STATIC_ASSERT(tuple_size<T2>::value == tuple_size<S2>::value);
return detail::lt(lhs, rhs);
} // end operator<()
// >
template<class T1, class T2, class S1, class S2>
__host__ __device__
inline bool operator>(const detail::cons<T1, T2>& lhs, const detail::cons<S1, S2>& rhs)
{
// XXX support this eventually -jph
//// check that tuple lengths are equal
//BOOST_STATIC_ASSERT(tuple_size<T2>::value == tuple_size<S2>::value);
return detail::gt(lhs, rhs);
} // end operator>()
// <=
template<class T1, class T2, class S1, class S2>
__host__ __device__
inline bool operator<=(const detail::cons<T1, T2>& lhs, const detail::cons<S1, S2>& rhs)
{
// XXX support this eventually -jph
//// check that tuple lengths are equal
//BOOST_STATIC_ASSERT(tuple_size<T2>::value == tuple_size<S2>::value);
return detail::lte(lhs, rhs);
} // end operator<=()
// >=
template<class T1, class T2, class S1, class S2>
__host__ __device__
inline bool operator>=(const detail::cons<T1, T2>& lhs, const detail::cons<S1, S2>& rhs)
{
// XXX support this eventually -jph
//// check that tuple lengths are equal
//BOOST_STATIC_ASSERT(tuple_size<T2>::value == tuple_size<S2>::value);
return detail::gte(lhs, rhs);
} // end operator>=()
} // end thrust
|