/usr/share/perl5/Statistics/Distributions.pm is in libstatistics-distributions-perl 1.02-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 | package Statistics::Distributions;
use strict;
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK);
use constant PI => 3.1415926536;
use constant SIGNIFICANT => 5; # number of significant digits to be returned
require Exporter;
@ISA = qw(Exporter AutoLoader);
# Items to export into callers namespace by default. Note: do not export
# names by default without a very good reason. Use EXPORT_OK instead.
# Do not simply export all your public functions/methods/constants.
@EXPORT_OK = qw(chisqrdistr tdistr fdistr udistr uprob chisqrprob tprob fprob);
$VERSION = '1.02';
# Preloaded methods go here.
sub chisqrdistr { # Percentage points X^2(x^2,n)
my ($n, $p) = @_;
if ($n <= 0 || abs($n) - abs(int($n)) != 0) {
die "Invalid n: $n\n"; # degree of freedom
}
if ($p <= 0 || $p > 1) {
die "Invalid p: $p\n";
}
return precision_string(_subchisqr($n, $p));
}
sub udistr { # Percentage points N(0,1^2)
my ($p) = (@_);
if ($p > 1 || $p <= 0) {
die "Invalid p: $p\n";
}
return precision_string(_subu($p));
}
sub tdistr { # Percentage points t(x,n)
my ($n, $p) = @_;
if ($n <= 0 || abs($n) - abs(int($n)) != 0) {
die "Invalid n: $n\n";
}
if ($p <= 0 || $p >= 1) {
die "Invalid p: $p\n";
}
return precision_string(_subt($n, $p));
}
sub fdistr { # Percentage points F(x,n1,n2)
my ($n, $m, $p) = @_;
if (($n<=0) || ((abs($n)-(abs(int($n))))!=0)) {
die "Invalid n: $n\n"; # first degree of freedom
}
if (($m<=0) || ((abs($m)-(abs(int($m))))!=0)) {
die "Invalid m: $m\n"; # second degree of freedom
}
if (($p<=0) || ($p>1)) {
die "Invalid p: $p\n";
}
return precision_string(_subf($n, $m, $p));
}
sub uprob { # Upper probability N(0,1^2)
my ($x) = @_;
return precision_string(_subuprob($x));
}
sub chisqrprob { # Upper probability X^2(x^2,n)
my ($n,$x) = @_;
if (($n <= 0) || ((abs($n) - (abs(int($n)))) != 0)) {
die "Invalid n: $n\n"; # degree of freedom
}
return precision_string(_subchisqrprob($n, $x));
}
sub tprob { # Upper probability t(x,n)
my ($n, $x) = @_;
if (($n <= 0) || ((abs($n) - abs(int($n))) !=0)) {
die "Invalid n: $n\n"; # degree of freedom
}
return precision_string(_subtprob($n, $x));
}
sub fprob { # Upper probability F(x,n1,n2)
my ($n, $m, $x) = @_;
if (($n<=0) || ((abs($n)-(abs(int($n))))!=0)) {
die "Invalid n: $n\n"; # first degree of freedom
}
if (($m<=0) || ((abs($m)-(abs(int($m))))!=0)) {
die "Invalid m: $m\n"; # second degree of freedom
}
return precision_string(_subfprob($n, $m, $x));
}
sub _subfprob {
my ($n, $m, $x) = @_;
my $p;
if ($x<=0) {
$p=1;
} elsif ($m % 2 == 0) {
my $z = $m / ($m + $n * $x);
my $a = 1;
for (my $i = $m - 2; $i >= 2; $i -= 2) {
$a = 1 + ($n + $i - 2) / $i * $z * $a;
}
$p = 1 - ((1 - $z) ** ($n / 2) * $a);
} elsif ($n % 2 == 0) {
my $z = $n * $x / ($m + $n * $x);
my $a = 1;
for (my $i = $n - 2; $i >= 2; $i -= 2) {
$a = 1 + ($m + $i - 2) / $i * $z * $a;
}
$p = (1 - $z) ** ($m / 2) * $a;
} else {
my $y = atan2(sqrt($n * $x / $m), 1);
my $z = sin($y) ** 2;
my $a = ($n == 1) ? 0 : 1;
for (my $i = $n - 2; $i >= 3; $i -= 2) {
$a = 1 + ($m + $i - 2) / $i * $z * $a;
}
my $b = PI;
for (my $i = 2; $i <= $m - 1; $i += 2) {
$b *= ($i - 1) / $i;
}
my $p1 = 2 / $b * sin($y) * cos($y) ** $m * $a;
$z = cos($y) ** 2;
$a = ($m == 1) ? 0 : 1;
for (my $i = $m-2; $i >= 3; $i -= 2) {
$a = 1 + ($i - 1) / $i * $z * $a;
}
$p = max(0, $p1 + 1 - 2 * $y / PI
- 2 / PI * sin($y) * cos($y) * $a);
}
return $p;
}
sub _subchisqrprob {
my ($n,$x) = @_;
my $p;
if ($x <= 0) {
$p = 1;
} elsif ($n > 100) {
$p = _subuprob((($x / $n) ** (1/3)
- (1 - 2/9/$n)) / sqrt(2/9/$n));
} elsif ($x > 400) {
$p = 0;
} else {
my ($a, $i, $i1);
if (($n % 2) != 0) {
$p = 2 * _subuprob(sqrt($x));
$a = sqrt(2/PI) * exp(-$x/2) / sqrt($x);
$i1 = 1;
} else {
$p = $a = exp(-$x/2);
$i1 = 2;
}
for ($i = $i1; $i <= ($n-2); $i += 2) {
$a *= $x / $i;
$p += $a;
}
}
return $p;
}
sub _subu {
my ($p) = @_;
my $y = -log(4 * $p * (1 - $p));
my $x = sqrt(
$y * (1.570796288
+ $y * (.03706987906
+ $y * (-.8364353589E-3
+ $y *(-.2250947176E-3
+ $y * (.6841218299E-5
+ $y * (0.5824238515E-5
+ $y * (-.104527497E-5
+ $y * (.8360937017E-7
+ $y * (-.3231081277E-8
+ $y * (.3657763036E-10
+ $y *.6936233982E-12)))))))))));
$x = -$x if ($p>.5);
return $x;
}
sub _subuprob {
my ($x) = @_;
my $p = 0; # if ($absx > 100)
my $absx = abs($x);
if ($absx < 1.9) {
$p = (1 +
$absx * (.049867347
+ $absx * (.0211410061
+ $absx * (.0032776263
+ $absx * (.0000380036
+ $absx * (.0000488906
+ $absx * .000005383)))))) ** -16/2;
} elsif ($absx <= 100) {
for (my $i = 18; $i >= 1; $i--) {
$p = $i / ($absx + $p);
}
$p = exp(-.5 * $absx * $absx)
/ sqrt(2 * PI) / ($absx + $p);
}
$p = 1 - $p if ($x<0);
return $p;
}
sub _subt {
my ($n, $p) = @_;
if ($p >= 1 || $p <= 0) {
die "Invalid p: $p\n";
}
if ($p == 0.5) {
return 0;
} elsif ($p < 0.5) {
return - _subt($n, 1 - $p);
}
my $u = _subu($p);
my $u2 = $u ** 2;
my $a = ($u2 + 1) / 4;
my $b = ((5 * $u2 + 16) * $u2 + 3) / 96;
my $c = (((3 * $u2 + 19) * $u2 + 17) * $u2 - 15) / 384;
my $d = ((((79 * $u2 + 776) * $u2 + 1482) * $u2 - 1920) * $u2 - 945)
/ 92160;
my $e = (((((27 * $u2 + 339) * $u2 + 930) * $u2 - 1782) * $u2 - 765) * $u2
+ 17955) / 368640;
my $x = $u * (1 + ($a + ($b + ($c + ($d + $e / $n) / $n) / $n) / $n) / $n);
if ($n <= log10($p) ** 2 + 3) {
my $round;
do {
my $p1 = _subtprob($n, $x);
my $n1 = $n + 1;
my $delta = ($p1 - $p)
/ exp(($n1 * log($n1 / ($n + $x * $x))
+ log($n/$n1/2/PI) - 1
+ (1/$n1 - 1/$n) / 6) / 2);
$x += $delta;
$round = sprintf("%.".abs(int(log10(abs $x)-4))."f",$delta);
} while (($x) && ($round != 0));
}
return $x;
}
sub _subtprob {
my ($n, $x) = @_;
my ($a,$b);
my $w = atan2($x / sqrt($n), 1);
my $z = cos($w) ** 2;
my $y = 1;
for (my $i = $n-2; $i >= 2; $i -= 2) {
$y = 1 + ($i-1) / $i * $z * $y;
}
if ($n % 2 == 0) {
$a = sin($w)/2;
$b = .5;
} else {
$a = ($n == 1) ? 0 : sin($w)*cos($w)/PI;
$b= .5 + $w/PI;
}
return max(0, 1 - $b - $a * $y);
}
sub _subf {
my ($n, $m, $p) = @_;
my $x;
if ($p >= 1 || $p <= 0) {
die "Invalid p: $p\n";
}
if ($p == 1) {
$x = 0;
} elsif ($m == 1) {
$x = 1 / (_subt($n, 0.5 - $p / 2) ** 2);
} elsif ($n == 1) {
$x = _subt($m, $p/2) ** 2;
} elsif ($m == 2) {
my $u = _subchisqr($m, 1 - $p);
my $a = $m - 2;
$x = 1 / ($u / $m * (1 +
(($u - $a) / 2 +
(((4 * $u - 11 * $a) * $u + $a * (7 * $m - 10)) / 24 +
(((2 * $u - 10 * $a) * $u + $a * (17 * $m - 26)) * $u
- $a * $a * (9 * $m - 6)
)/48/$n
)/$n
)/$n));
} elsif ($n > $m) {
$x = 1 / _subf2($m, $n, 1 - $p)
} else {
$x = _subf2($n, $m, $p)
}
return $x;
}
sub _subf2 {
my ($n, $m, $p) = @_;
my $u = _subchisqr($n, $p);
my $n2 = $n - 2;
my $x = $u / $n *
(1 +
(($u - $n2) / 2 +
(((4 * $u - 11 * $n2) * $u + $n2 * (7 * $n - 10)) / 24 +
(((2 * $u - 10 * $n2) * $u + $n2 * (17 * $n - 26)) * $u
- $n2 * $n2 * (9 * $n - 6)) / 48 / $m) / $m) / $m);
my $delta;
do {
my $z = exp(
(($n+$m) * log(($n+$m) / ($n * $x + $m))
+ ($n - 2) * log($x)
+ log($n * $m / ($n+$m))
- log(4 * PI)
- (1/$n + 1/$m - 1/($n+$m))/6
)/2);
$delta = (_subfprob($n, $m, $x) - $p) / $z;
$x += $delta;
} while (abs($delta)>3e-4);
return $x;
}
sub _subchisqr {
my ($n, $p) = @_;
my $x;
if (($p > 1) || ($p <= 0)) {
die "Invalid p: $p\n";
} elsif ($p == 1){
$x = 0;
} elsif ($n == 1) {
$x = _subu($p / 2) ** 2;
} elsif ($n == 2) {
$x = -2 * log($p);
} else {
my $u = _subu($p);
my $u2 = $u * $u;
$x = max(0, $n + sqrt(2 * $n) * $u
+ 2/3 * ($u2 - 1)
+ $u * ($u2 - 7) / 9 / sqrt(2 * $n)
- 2/405 / $n * ($u2 * (3 *$u2 + 7) - 16));
if ($n <= 100) {
my ($x0, $p1, $z);
do {
$x0 = $x;
if ($x < 0) {
$p1 = 1;
} elsif ($n>100) {
$p1 = _subuprob((($x / $n)**(1/3) - (1 - 2/9/$n))
/ sqrt(2/9/$n));
} elsif ($x>400) {
$p1 = 0;
} else {
my ($i0, $a);
if (($n % 2) != 0) {
$p1 = 2 * _subuprob(sqrt($x));
$a = sqrt(2/PI) * exp(-$x/2) / sqrt($x);
$i0 = 1;
} else {
$p1 = $a = exp(-$x/2);
$i0 = 2;
}
for (my $i = $i0; $i <= $n-2; $i += 2) {
$a *= $x / $i;
$p1 += $a;
}
}
$z = exp((($n-1) * log($x/$n) - log(4*PI*$x)
+ $n - $x - 1/$n/6) / 2);
$x += ($p1 - $p) / $z;
$x = sprintf("%.5f", $x);
} while (($n < 31) && (abs($x0 - $x) > 1e-4));
}
}
return $x;
}
sub log10 {
my $n = shift;
return log($n) / log(10);
}
sub max {
my $max = shift;
my $next;
while (@_) {
$next = shift;
$max = $next if ($next > $max);
}
return $max;
}
sub min {
my $min = shift;
my $next;
while (@_) {
$next = shift;
$min = $next if ($next < $min);
}
return $min;
}
sub precision {
my ($x) = @_;
return abs int(log10(abs $x) - SIGNIFICANT);
}
sub precision_string {
my ($x) = @_;
if ($x) {
return sprintf "%." . precision($x) . "f", $x;
} else {
return "0";
}
}
# Autoload methods go after =cut, and are processed by the autosplit program.
1;
__END__
# Below is the stub of documentation for your module. You better edit it!
=head1 NAME
Statistics::Distributions - Perl module for calculating critical values and upper probabilities of common statistical distributions
=head1 SYNOPSIS
use Statistics::Distributions;
$chis=Statistics::Distributions::chisqrdistr (2,.05);
print "Chi-squared-crit (2 degrees of freedom, 95th percentile "
."= 0.05 level) = $chis\n";
$u=Statistics::Distributions::udistr (.05);
print "u-crit (95th percentile = 0.05 level) = $u\n";
$t=Statistics::Distributions::tdistr (1,.005);
print "t-crit (1 degree of freedom, 99.5th percentile = 0.005 level) "
."= $t\n";
$f=Statistics::Distributions::fdistr (1,3,.01);
print "F-crit (1 degree of freedom in numerator, 3 degrees of freedom "
."in denominator, 99th percentile = 0.01 level) = $f\n";
$uprob=Statistics::Distributions::uprob (-0.85);
print "upper probability of the u distribution (u = -0.85): Q(u) "
."= 1-G(u) = $uprob\n";
$chisprob=Statistics::Distributions::chisqrprob (3,6.25);
print "upper probability of the chi-square distribution (3 degrees "
."of freedom, chi-squared = 6.25): Q = 1-G = $chisprob\n";
$tprob=Statistics::Distributions::tprob (3,6.251);
print "upper probability of the t distribution (3 degrees of "
."freedom, t = 6.251): Q = 1-G = $tprob\n";
$fprob=Statistics::Distributions::fprob (3,5,.625);
print "upper probability of the F distribution (3 degrees of freedom "
."in numerator, 5 degrees of freedom in denominator, F = 6.25): "
."Q = 1-G = $fprob\n";
=head1 DESCRIPTION
This Perl module calculates percentage points (5 significant digits) of the u (standard normal) distribution, the student's t distribution, the chi-square distribution and the F distribution. It can also calculate the upper probability (5 significant digits) of the u (standard normal), the chi-square, the t and the F distribution.
These critical values are needed to perform statistical tests, like the u test, the t test, the F test and the chi-squared test, and to calculate confidence intervals.
If you are interested in more precise algorithms you could look at:
StatLib: http://lib.stat.cmu.edu/apstat/ ;
Applied Statistics Algorithms by Griffiths, P. and Hill, I.D., Ellis Horwood: Chichester (1985)
=head1 BUGS
This final version 1.02 has been released after more than one year without a bug report on the previous version 0.07.
Nevertheless, if you find any bugs or oddities, please do inform the author.
=head1 INSTALLATION
See perlmodinstall for information and options on installing Perl modules.
=head1 AVAILABILITY
The latest version of this module is available from the Distribution Perl Archive Network (CPAN). Please visit http://www.cpan.org/ to find a CPAN site near you or see http://www.cpan.org/authors/id/M/MI/MIKEK/ .
=head1 AUTHOR
Michael Kospach <mike.perl@gmx.at>
Nice formating, simplification and bug repair by Matthias Trautner Kromann <mtk@id.cbs.dk>
=head1 COPYRIGHT
Copyright 2003 Michael Kospach. All rights reserved.
This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself.
=head1 SEE ALSO
Statistics::ChiSquare, Statistics::Table::t, Statistics::Table::F, perl(1).
=cut
|