/usr/share/perl5/Data/Float.pm is in libdata-float-perl 0.012-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 | =head1 NAME
Data::Float - details of the floating point data type
=head1 SYNOPSIS
use Data::Float qw(have_signed_zero);
if(have_signed_zero) { ...
# and many other constants; see text
use Data::Float qw(
float_class float_is_normal float_is_subnormal
float_is_nzfinite float_is_zero float_is_finite
float_is_infinite float_is_nan
);
$class = float_class($value);
if(float_is_normal($value)) { ...
if(float_is_subnormal($value)) { ...
if(float_is_nzfinite($value)) { ...
if(float_is_zero($value)) { ...
if(float_is_finite($value)) { ...
if(float_is_infinite($value)) { ...
if(float_is_nan($value)) { ...
use Data::Float qw(float_sign signbit float_parts);
$sign = float_sign($value);
$sign_bit = signbit($value);
($sign, $exponent, $significand) = float_parts($value);
use Data::Float qw(float_hex hex_float);
print float_hex($value);
$value = hex_float($string);
use Data::Float qw(float_id_cmp totalorder);
@sorted_floats = sort { float_id_cmp($a, $b) } @floats;
if(totalorder($a, $b)) { ...
use Data::Float qw(
pow2 mult_pow2 copysign
nextup nextdown nextafter
);
$x = pow2($exp);
$x = mult_pow2($value, $exp);
$x = copysign($magnitude, $sign_from);
$x = nextup($x);
$x = nextdown($x);
$x = nextafter($x, $direction);
=head1 DESCRIPTION
This module is about the native floating point numerical data type.
A floating point number is one of the types of datum that can appear
in the numeric part of a Perl scalar. This module supplies constants
describing the native floating point type, classification functions,
and functions to manipulate floating point values at a low level.
=head1 FLOATING POINT
=head2 Classification
Floating point values are divided into five subtypes:
=over
=item normalised
The value is made up of a sign bit (making the value positive or
negative), a significand, and exponent. The significand is a number
in the range [1, 2), expressed as a binary fraction of a certain fixed
length. (Significands requiring a longer binary fraction, or lacking a
terminating binary representation, cannot be obtained.) The exponent
is an integer in a certain fixed range. The magnitude of the value
represented is the product of the significand and two to the power of
the exponent.
=item subnormal
The value is made up of a sign bit, significand, and exponent, as
for normalised values. However, the exponent is fixed at the minimum
possible for a normalised value, and the significand is in the range
(0, 1). The length of the significand is the same as for normalised
values. This is essentially a fixed-point format, used to provide
gradual underflow. Not all floating point formats support this subtype.
Where it is not supported, underflow is sudden, and the difference between
two minimum-exponent normalised values cannot be exactly represented.
=item zero
Depending on the floating point type, there may be either one or two
zero values: zeroes may carry a sign bit. Where zeroes are signed,
it is primarily in order to indicate the direction from which a value
underflowed (was rounded) to zero. Positive and negative zero compare
as numerically equal, and they give identical results in most arithmetic
operations. They are on opposite sides of some branch cuts in complex
arithmetic.
=item infinite
Some floating point formats include special infinite values. These are
generated by overflow, and by some arithmetic cases that mathematically
generate infinities. There are two infinite values: positive infinity
and negative infinity.
Perl does not always generate infinite values when normal floating point
behaviour calls for it. For example, the division C<1.0/0.0> causes an
exception rather than returning an infinity.
=item not-a-number (NaN)
This type of value exists in some floating point formats to indicate
error conditions. Mathematically undefined operations may generate NaNs,
and NaNs propagate through all arithmetic operations. A NaN has the
distinctive property of comparing numerically unequal to all floating
point values, including itself.
Perl does not always generate NaNs when normal floating point behaviour
calls for it. For example, the division C<0.0/0.0> causes an exception
rather than returning a NaN.
Perl has only (at most) one NaN value, even if the underlying system
supports different NaNs. (IEEE 754 arithmetic has NaNs which carry a
quiet/signal bit, a sign bit (yes, a sign on a not-number), and many
bits of implementation-defined data.)
=back
=head2 Mixing floating point and integer values
Perl does not draw a strong type distinction between native integer
(see L<Data::Integer>) and native floating point values. Both types
of value can be stored in the numeric part of a plain (string) scalar.
No distinction is made between the integer representation and the floating
point representation where they encode identical values. Thus, for
floating point arithmetic, native integer values that can be represented
exactly in floating point may be freely used as floating point values.
Native integer arithmetic has exactly one zero value, which has no sign.
If the floating point type does not have signed zeroes then the floating
point and integer zeroes are exactly equivalent. If the floating point
type does have signed zeroes then the integer zero can still be used in
floating point arithmetic, and it behaves as an unsigned floating point
zero. On such systems there are therefore three types of zero available.
There is a bug in Perl which sometimes causes floating point zeroes to
change into integer zeroes; see L</BUGS> for details.
Where a native integer value is used that is too large to exactly
represent in floating point, it will be rounded as necessary to a
floating point value. This rounding will occur whenever an operation
has to be performed in floating point because the result could not be
exactly represented as an integer. This may be confusing to functions
that expect a floating point argument.
Similarly, some operations on floating point numbers will actually be
performed in integer arithmetic, and may result in values that cannot
be exactly represented in floating point. This happens whenever the
arguments have integer values that fit into the native integer type and
the mathematical result can be exactly represented as a native integer.
This may be confusing in cases where floating point semantics are
expected.
See L<perlnumber(1)> for discussion of Perl's numeric semantics.
=cut
package Data::Float;
{ use 5.006; }
use warnings;
use strict;
use Carp qw(croak);
our $VERSION = "0.012";
use parent "Exporter";
our @EXPORT_OK = qw(
float_class float_is_normal float_is_subnormal float_is_nzfinite
float_is_zero float_is_finite float_is_infinite float_is_nan
float_sign signbit float_parts
float_hex hex_float
float_id_cmp totalorder
pow2 mult_pow2 copysign nextup nextdown nextafter
);
# constant functions get added to @EXPORT_OK later
=head1 CONSTANTS
=head2 Features
=over
=item have_signed_zero
Truth value indicating whether floating point zeroes carry a sign. If yes,
then there are two floating point zero values: +0.0 and -0.0. (Perl
scalars can nevertheless also hold an integer zero, which is unsigned.)
If no, then there is only one zero value, which is unsigned.
=item have_subnormal
Truth value indicating whether there are subnormal floating point values.
=item have_infinite
Truth value indicating whether there are infinite floating point values.
=item have_nan
Truth value indicating whether there are NaN floating point values.
It is difficult to reliably generate a NaN in Perl, so in some unlikely
circumstances it is possible that there might be NaNs that this module
failed to detect. In that case this constant would be false but a NaN
might still turn up somewhere. What this constant reliably indicates
is the availability of the C<nan> constant below.
=back
=head2 Extrema
=over
=item significand_bits
The number of fractional bits in the significand of finite floating
point values. The significand also has an implicit integer bit, not
counted in this constant; the integer bit is always 1 for normalised
values and always 0 for subnormal values.
=item significand_step
The difference between adjacent representable values in the range [1, 2]
(where the exponent is zero). This is equal to 2^-significand_bits.
=item max_finite_exp
The maximum exponent permitted for finite floating point values.
=item max_finite_pow2
The maximum representable power of two. This is 2^max_finite_exp.
=item max_finite
The maximum representable finite value. This is 2^(max_finite_exp+1)
- 2^(max_finite_exp-significand_bits).
=item max_number
The maximum representable number. This is positive infinity if there
are infinite values, or max_finite if there are not.
=item max_integer
The maximum integral value for which all integers from zero to that
value inclusive are representable. Equivalently: the minimum positive
integral value N for which the value N+1 is not representable. This is
2^(significand_bits+1). The name is somewhat misleading.
=item min_normal_exp
The minimum exponent permitted for normalised floating point values.
=item min_normal
The minimum positive value representable as a normalised floating
point value. This is 2^min_normal_exp.
=item min_finite_exp
The base two logarithm of the minimum representable positive finite value.
If there are subnormals then this is min_normal_exp - significand_bits.
If there are no subnormals then this is min_normal_exp.
=item min_finite
The minimum representable positive finite value. This is
2^min_finite_exp.
=back
=head2 Special Values
=over
=item pos_zero
The positive zero value. (Exists only if zeroes are signed, as indicated
by the C<have_signed_zero> constant.)
If Perl is at risk of transforming floating point zeroes into integer
zeroes (see L</BUGS>), then this is actually a non-constant function
that always returns a fresh floating point zero. Thus the return value
is always a true floating point zero, regardless of what happened to
zeroes previously returned.
=item neg_zero
The negative zero value. (Exists only if zeroes are signed, as indicated
by the C<have_signed_zero> constant.)
If Perl is at risk of transforming floating point zeroes into integer
zeroes (see L</BUGS>), then this is actually a non-constant function
that always returns a fresh floating point zero. Thus the return value
is always a true floating point zero, regardless of what happened to
zeroes previously returned.
=item pos_infinity
The positive infinite value. (Exists only if there are infinite values,
as indicated by the C<have_infinite> constant.)
=item neg_infinity
The negative infinite value. (Exists only if there are infinite values,
as indicated by the C<have_infinite> constant.)
=item nan
Not-a-number. (Exists only if NaN values were detected, as indicated
by the C<have_nan> constant.)
=back
=cut
sub _mk_constant($$) {
my($name, $value) = @_;
no strict "refs";
*{__PACKAGE__."::".$name} = sub () { $value };
push @EXPORT_OK, $name;
}
#
# mult_pow2() multiplies a specified value by a specified power of two.
# This is done using repeated multiplication, and can cope with cases
# where the power of two cannot be directly represented as a floating
# point value. (E.g., 0x1.b2p-900 can be multiplied by 2^1500 to get
# to 0x1.b2p+600; the input and output values can be represented in
# IEEE double, but 2^1500 cannot.) Overflow and underflow can occur.
#
# @powtwo is an array such that powtwo[i] = 2^2^i. Its elements are
# used in the repeated multiplication in mult_pow2. Similarly,
# @powhalf is such that powhalf[i] = 2^-2^i. Reading the exponent
# in binary indicates which elements of @powtwo/@powhalf to multiply
# by, except that it may indicate elements that don't exist, either
# because they're not representable or because the arrays haven't
# been filled yet. mult_pow2() will use the last element of the array
# repeatedly in this case. Thus array elements after the first are
# only an optimisation, and do not change behaviour.
#
my @powtwo = (2.0);
my @powhalf = (0.5);
sub mult_pow2($$) {
my($value, $exp) = @_;
return $_[0] if $value == 0.0;
my $powa = \@powtwo;
if($exp < 0) {
$powa = \@powhalf;
$exp = -$exp;
}
for(my $i = 0; $i != $#$powa && $exp != 0; $i++) {
$value *= $powa->[$i] if $exp & 1;
$exp >>= 1;
}
$value *= $powa->[-1] while $exp--;
return $value;
}
#
# Range of finite exponent values.
#
my $min_finite_exp;
my $max_finite_exp;
my $max_finite_pow2;
my $min_finite;
my @directions = (
{
expsign => -1,
powa => \@powhalf,
xexp => \$min_finite_exp,
xpower => \$min_finite,
},
{
expsign => +1,
powa => \@powtwo,
xexp => \$max_finite_exp,
xpower => \$max_finite_pow2,
},
);
while(!$directions[0]->{done} || !$directions[1]->{done}) {
foreach my $direction (@directions) {
next if $direction->{done};
my $lastpow = $direction->{powa}->[-1];
my $nextpow = $lastpow * $lastpow;
unless(mult_pow2($nextpow, -$direction->{expsign} *
(1 << (@{$direction->{powa}} - 1)))
== $lastpow) {
$direction->{done} = 1;
next;
}
push @{$direction->{powa}}, $nextpow;
}
}
foreach my $direction (@directions) {
my $expsign = $direction->{expsign};
my $xexp = 1 << (@{$direction->{powa}} - 1);
my $extremum = $direction->{powa}->[-1];
for(my $addexp = $xexp; $addexp >>= 1; ) {
my $nx = mult_pow2($extremum, $expsign*$addexp);
if(mult_pow2($nx, -$expsign*$addexp) == $extremum) {
$xexp += $addexp;
$extremum = $nx;
}
}
${$direction->{xexp}} = $expsign * $xexp;
${$direction->{xpower}} = $extremum;
}
_mk_constant("min_finite_exp", $min_finite_exp);
_mk_constant("min_finite", $min_finite);
_mk_constant("max_finite_exp", $max_finite_exp);
_mk_constant("max_finite_pow2", $max_finite_pow2);
#
# pow2() generates a power of two from scratch. It complains if given
# an exponent that would make an unrepresentable value.
#
sub pow2($) {
my($exp) = @_;
croak "exponent $exp out of range [$min_finite_exp, $max_finite_exp]"
unless $exp >= $min_finite_exp && $exp <= $max_finite_exp;
return mult_pow2(1.0, $exp);
}
#
# Significand size.
#
my($significand_bits, $significand_step);
{
my $i;
for($i = 1; ; $i++) {
my $tryeps = $powhalf[$i];
last unless (1.0 + $tryeps) - 1.0 == $tryeps;
}
$i--;
$significand_bits = 1 << $i;
$significand_step = $powhalf[$i];
while($i--) {
my $tryeps = $significand_step * $powhalf[$i];
if((1.0 + $tryeps) - 1.0 == $tryeps) {
$significand_bits += 1 << $i;
$significand_step = $tryeps;
}
}
}
_mk_constant("significand_bits", $significand_bits);
_mk_constant("significand_step", $significand_step);
my $max_finite = $max_finite_pow2 -
pow2($max_finite_exp - $significand_bits - 1);
$max_finite += $max_finite;
my $max_integer = pow2($significand_bits + 1);
_mk_constant("max_finite", $max_finite);
_mk_constant("max_integer", $max_integer);
#
# Subnormals.
#
my $have_subnormal;
{
my $testval = $min_finite * 1.5;
$have_subnormal = $testval == $min_finite ||
$testval == ($min_finite + $min_finite);
}
_mk_constant("have_subnormal", $have_subnormal);
my $min_normal_exp = $have_subnormal ?
$min_finite_exp + $significand_bits :
$min_finite_exp;
my $min_normal = $have_subnormal ?
mult_pow2($min_finite, $significand_bits) :
$min_finite;
_mk_constant("min_normal_exp", $min_normal_exp);
_mk_constant("min_normal", $min_normal);
#
# Feature tests.
#
my $have_signed_zero = sprintf("%e", -0.0) =~ /\A-/;
_mk_constant("have_signed_zero", $have_signed_zero);
my($pos_zero, $neg_zero);
if($have_signed_zero) {
$pos_zero = +0.0;
$neg_zero = -0.0;
my $tzero = -0.0;
{ no warnings "void"; $tzero == $tzero; }
my $ntzero = -$tzero;
if(sprintf("%e", -$ntzero) =~ /\A-/) {
_mk_constant("pos_zero", $pos_zero);
_mk_constant("neg_zero", $neg_zero);
} else {
# Zeroes lose their signedness upon arithmetic operations.
# Therefore make the pos_zero and neg_zero functions
# return fresh zeroes to avoid trouble.
*pos_zero = sub () { my $ret = $pos_zero };
*neg_zero = sub () { my $ret = $neg_zero };
push @EXPORT_OK, "pos_zero", "neg_zero";
}
}
my($have_infinite, $pos_infinity, $neg_infinity);
{
my $testval = $max_finite * $max_finite;
$have_infinite = $testval == $testval && $testval != $max_finite;
_mk_constant("have_infinite", $have_infinite);
if($have_infinite) {
_mk_constant("pos_infinity", $pos_infinity = $testval);
_mk_constant("neg_infinity", $neg_infinity = -$testval);
}
}
my $max_number = $have_infinite ? $pos_infinity : $max_finite;
_mk_constant("max_number", $max_number);
my($have_nan, $nan);
foreach my $nan_formula (
'$have_infinite && $pos_infinity/$pos_infinity',
'log(-1.0)',
'0.0/0.0',
'"nan"') {
my $maybe_nan =
eval 'local $SIG{__DIE__}; local $SIG{__WARN__} = sub { }; '.
$nan_formula;
if(do { local $SIG{__WARN__} = sub { }; $maybe_nan != $maybe_nan }) {
$have_nan = 1;
$nan = $maybe_nan;
_mk_constant("nan", $nan);
last;
}
}
_mk_constant("have_nan", $have_nan);
# The rest of the code is parsed after the constants have been calculated
# and installed, so that it can benefit from their constancy.
{
local $/ = undef;
my $code = <DATA>;
close(DATA);
{
local $SIG{__DIE__};
eval $code;
}
die $@ if $@ ne "";
}
1;
__DATA__
=head1 FUNCTIONS
Each "float_" function takes a floating point argument to operate on. The
argument must be a native floating point value, or a native integer with
a value that can be represented in floating point. Giving a non-numeric
argument will cause mayhem. See L<Params::Classify/is_number> for a way
to check for numericness. Only the numeric value of the scalar is used;
the string value is completely ignored, so dualvars are not a problem.
=head2 Classification
Each "float_is_" function returns a simple truth value result.
=over
=item float_class(VALUE)
Determines which of the five classes described above VALUE falls
into. Returns "NORMAL", "SUBNORMAL", "ZERO", "INFINITE", or "NAN"
accordingly.
=cut
sub float_class($) {
my($val) = @_;
return "ZERO" if $val == 0.0;
return "NAN" if $val != $val;
$val = -$val if $val < 0;
return "INFINITE" if have_infinite && $val == $pos_infinity;
return have_subnormal && $val < min_normal ? "SUBNORMAL" : "NORMAL";
}
=item float_is_normal(VALUE)
Returns true iff VALUE is a normalised floating point value.
=cut
sub float_is_normal($) { float_class($_[0]) eq "NORMAL" }
=item float_is_subnormal(VALUE)
Returns true iff VALUE is a subnormal floating point value.
=cut
sub float_is_subnormal($) { float_class($_[0]) eq "SUBNORMAL" }
=item float_is_nzfinite(VALUE)
Returns true iff VALUE is a non-zero finite value (either normal or
subnormal; not zero, infinite, or NaN).
=cut
sub float_is_infinite($);
sub float_is_nzfinite($) {
my($val) = @_;
return $val != 0.0 && $val == $val && !float_is_infinite($val);
}
=item float_is_zero(VALUE)
Returns true iff VALUE is a zero. If zeroes are signed then the sign
is irrelevant.
=cut
sub float_is_zero($) {
my($val) = @_;
return $val == 0.0;
}
=item float_is_finite(VALUE)
Returns true iff VALUE is a finite value (either normal, subnormal,
or zero; not infinite or NaN).
=cut
sub float_is_finite($) {
my($val) = @_;
return $val == $val && !float_is_infinite($val);
}
=item float_is_infinite(VALUE)
Returns true iff VALUE is an infinity (either positive infinity or
negative infinity).
=cut
sub float_is_infinite($) {
return undef unless have_infinite;
my($val) = @_;
return $val == $pos_infinity || $val == $neg_infinity;
}
=item float_is_nan(VALUE)
Returns true iff VALUE is a NaN.
=cut
sub float_is_nan($) {
my($val) = @_;
return $val != $val;
}
=back
=head2 Examination
=over
=item float_sign(VALUE)
Returns "B<+>" or "B<->" to indicate the sign of VALUE. An unsigned
zero returns the sign "B<+>". C<die>s if VALUE is a NaN.
=cut
sub signbit($);
sub float_sign($) {
my($val) = @_;
croak "can't get sign of a NaN" if $val != $val;
return signbit($val) ? "-" : "+";
}
=item signbit(VALUE)
VALUE must be a floating point value. Returns the sign bit of VALUE:
0 if VALUE is positive or a positive or unsigned zero, or 1 if VALUE is
negative or a negative zero. Returns an unpredictable value if VALUE
is a NaN.
This is an IEEE 754 standard function. According to the standard NaNs
have a well-behaved sign bit, but Perl can't see that bit.
=cut
sub signbit($) {
my($val) = @_;
return (have_signed_zero && $val == 0.0 ?
sprintf("%+.f", $val) eq "-0" : $val < 0.0) ? 1 : 0;
}
=item float_parts(VALUE)
Divides up a non-zero finite floating point value into sign, exponent,
and significand, returning these as a three-element list in that order.
The significand is returned as a floating point value, in the range
[1, 2) for normalised values, and in the range (0, 1) for subnormals.
C<die>s if VALUE is not finite and non-zero.
=cut
sub float_parts($) {
my($val) = @_;
croak "$val is not non-zero finite" unless float_is_nzfinite($val);
my $sign = "+";
if($val < 0.0) {
$sign = "-";
$val = -$val;
}
if(have_subnormal && $val < min_normal) {
return ($sign, min_normal_exp,
mult_pow2($val, -(min_normal_exp)));
}
my $exp = 0;
if($val < 1.0) {
for(my $i = @powhalf; $i--; ) {
$exp <<= 1;
if($val < $powhalf[$i]) {
$exp |= 1;
$val = mult_pow2($val, 1 << $i);
}
}
$val *= 2.0;
$exp = -1-$exp;
} elsif($val >= 2.0) {
for(my $i = @powtwo; $i--; ) {
$exp <<= 1;
if($val >= $powtwo[$i]) {
$exp |= 1;
$val = mult_pow2($val, -(1 << $i));
}
}
}
return ($sign, $exp, $val);
}
=back
=head2 String conversion
=over
=item float_hex(VALUE[, OPTIONS])
Encodes the exact value of VALUE as a hexadecimal fraction, returning
the fraction as a string. Specifically, for finite values the output is
of the form "I<s>B<0x>I<m>B<.>I<mmmmm>B<p>I<eee>", where "I<s>" is the
sign, "I<m>B<.>I<mmmm>" is the significand in hexadecimal, and "I<eee>"
is the exponent in decimal with a sign.
The details of the output format are very configurable. If OPTIONS
is supplied, it must be a reference to a hash, in which these keys may
be present:
=over
=item B<exp_digits>
The number of digits of exponent to show, unless this is modified by
B<exp_digits_range_mod> or more are required to show the exponent exactly.
(The exponent is always shown in full.) Default 0, so the minimum
possible number of digits is used.
=item B<exp_digits_range_mod>
Modifies the number of exponent digits to show, based on the number of
digits required to show the full range of exponents for normalised and
subnormal values. If "B<IGNORE>" then nothing is done. If "B<ATLEAST>"
then at least this many digits are shown. Default "B<IGNORE>".
=item B<exp_neg_sign>
The string that is prepended to a negative exponent. Default "B<->".
=item B<exp_pos_sign>
The string that is prepended to a non-negative exponent. Default "B<+>".
Make it the empty string to suppress the positive sign.
=item B<frac_digits>
The number of fractional digits to show, unless this is modified by
B<frac_digits_bits_mod> or B<frac_digits_value_mod>. Default 0, but by
default this gets modified.
=item B<frac_digits_bits_mod>
Modifies the number of fractional digits to show, based on the length of
the significand. There is a certain number of digits that is the minimum
required to explicitly state every bit that is stored, and the number
of digits to show might get set to that number depending on this option.
If "B<IGNORE>" then nothing is done. If "B<ATLEAST>" then at least this
many digits are shown. If "B<ATMOST>" then at most this many digits
are shown. If "B<EXACTLY>" then exactly this many digits are shown.
Default "B<ATLEAST>".
=item B<frac_digits_value_mod>
Modifies the number of fractional digits to show, based on the number
of digits required to show the actual value exactly. Works the same
way as B<frac_digits_bits_mod>. Default "B<ATLEAST>".
=item B<hex_prefix_string>
The string that is prefixed to hexadecimal digits. Default "B<0x>".
Make it the empty string to suppress the prefix.
=item B<infinite_string>
The string that is returned for an infinite magnitude. Default "B<inf>".
=item B<nan_string>
The string that is returned for a NaN value. Default "B<nan>".
=item B<neg_sign>
The string that is prepended to a negative value (including negative
zero). Default "B<->".
=item B<pos_sign>
The string that is prepended to a positive value (including positive or
unsigned zero). Default "B<+>". Make it the empty string to suppress
the positive sign.
=item B<subnormal_strategy>
The manner in which subnormal values are displayed. If "B<SUBNORMAL>",
they are shown with the minimum exponent for normalised values and
a significand in the range (0, 1). This matches how they are stored
internally. If "B<NORMAL>", they are shown with a significand in the
range [1, 2) and a lower exponent, as if they were normalised. This gives
a consistent appearance for magnitudes regardless of normalisation.
Default "B<SUBNORMAL>".
=item B<zero_strategy>
The manner in which zero values are displayed. If "B<STRING=>I<str>",
the string I<str> is used, preceded by a sign. If "B<SUBNORMAL>",
it is shown with significand zero and the minimum normalised exponent.
If "B<EXPONENT=>I<exp>", it is shown with significand zero and exponent
I<exp>. Default "B<STRING=0.0>". An unsigned zero is treated as having
a positive sign.
=back
=cut
my %float_hex_defaults = (
infinite_string => "inf",
nan_string => "nan",
exp_neg_sign => "-",
exp_pos_sign => "+",
pos_sign => "+",
neg_sign => "-",
hex_prefix_string => "0x",
subnormal_strategy => "SUBNORMAL",
zero_strategy => "STRING=0.0",
frac_digits => 0,
frac_digits_bits_mod => "ATLEAST",
frac_digits_value_mod => "ATLEAST",
exp_digits => 0,
exp_digits_range_mod => "IGNORE",
);
sub _float_hex_option($$) {
my($options, $name) = @_;
my $val = defined($options) ? $options->{$name} : undef;
return defined($val) ? $val : $float_hex_defaults{$name};
}
use constant exp_digits_range => do {
my $minexp = min_normal_exp - significand_bits;
my $maxexp = max_finite_exp + 1;
my $len_minexp = length(-$minexp);
my $len_maxexp = length($maxexp);
$len_minexp > $len_maxexp ? $len_minexp : $len_maxexp;
};
use constant frac_digits_bits => (significand_bits + 3) >> 2;
use constant frac_sections => do { use integer; (frac_digits_bits + 6) / 7; };
sub float_hex($;$) {
my($val, $options) = @_;
return _float_hex_option($options, "nan_string") if $val != $val;
if(have_infinite) {
my $inf_sign;
if($val == $pos_infinity) {
$inf_sign = _float_hex_option($options, "pos_sign");
EMIT_INFINITY:
return $inf_sign.
_float_hex_option($options, "infinite_string");
} elsif($val == $neg_infinity) {
$inf_sign = _float_hex_option($options, "neg_sign");
goto EMIT_INFINITY;
}
}
my($sign, $exp, $sgnf);
if($val == 0.0) {
$sign = float_sign($val);
my $strat = _float_hex_option($options, "zero_strategy");
if($strat =~ /\ASTRING=(.*)\z/s) {
my $string = $1;
return _float_hex_option($options,
$sign eq "-" ? "neg_sign" : "pos_sign").
$string;
} elsif($strat eq "SUBNORMAL") {
$exp = min_normal_exp;
} elsif($strat =~ /\AEXPONENT=([-+]?[0-9]+)\z/) {
$exp = $1;
} else {
croak "unrecognised zero strategy `$strat'";
}
$sgnf = 0.0;
} else {
($sign, $exp, $sgnf) = float_parts($val);
}
my $digits = int($sgnf);
if($digits eq "0" && $sgnf != 0.0) {
my $strat = _float_hex_option($options, "subnormal_strategy");
if($strat eq "NORMAL") {
my $add_exp;
(undef, $add_exp, $sgnf) = float_parts($sgnf);
$exp += $add_exp;
$digits = "1";
} elsif($strat eq "SUBNORMAL") {
# do nothing extra
} else {
croak "unrecognised subnormal strategy `$strat'";
}
}
$sgnf -= $digits;
for(my $i = frac_sections; $i--; ) {
$sgnf *= 268435456.0;
my $section = int($sgnf);
$digits .= sprintf("%07x", $section);
$sgnf -= $section;
}
$digits =~ s/(.)0+\z/$1/;
my $ndigits = 1 + _float_hex_option($options, "frac_digits");
croak "negative number of digits requested" if $ndigits <= 0;
my $mindigits = 1;
my $maxdigits = $ndigits + frac_digits_bits;
foreach my $constraint (["frac_digits_bits_mod", 1+frac_digits_bits],
["frac_digits_value_mod", length($digits)]) {
my($optname, $number) = @$constraint;
my $mod = _float_hex_option($options, $optname);
if($mod =~ /\A(?:ATLEAST|EXACTLY)\z/) {
$mindigits = $number if $mindigits < $number;
}
if($mod =~ /\A(?:ATMOST|EXACTLY)\z/) {
$maxdigits = $number if $maxdigits > $number;
}
croak "unrecognised length modification setting `$mod'"
unless $mod =~ /\A(?:AT(?:MO|LEA)ST|EXACTLY|IGNORE)\z/;
}
croak "incompatible length constraints" if $maxdigits < $mindigits;
$ndigits = $ndigits < $mindigits ? $mindigits :
$ndigits > $maxdigits ? $maxdigits : $ndigits;
if($ndigits > length($digits)) {
$digits .= "0" x ($ndigits - length($digits));
} elsif($ndigits < length($digits)) {
my $chopped = substr($digits, $ndigits, length($digits), "");
if($chopped =~ /\A[89abcdef]/ &&
!($chopped =~ /\A80*\z/ &&
$digits =~ /[02468ace]\z/)) {
for(my $i = length($digits) - 1; ; ) {
my $d = substr($digits, $i, 1);
$d =~ tr/0-9a-f/1-9a-f0/;
substr($digits, $i, 1, $d);
last unless $d eq "0";
}
if($digits =~ /\A2/) {
$exp++;
substr($digits, 0, 1, "1");
}
}
}
my $nexpdigits = _float_hex_option($options, "exp_digits");
my $mod = _float_hex_option($options, "exp_digits_range_mod");
if($mod eq "ATLEAST") {
$nexpdigits = exp_digits_range
if $nexpdigits < exp_digits_range;
} elsif($mod ne "IGNORE") {
croak "unrecognised exponent length ".
"modification setting `$mod'";
}
$digits =~ s/\A(.)(.)/$1.$2/;
return sprintf("%s%s%sp%s%0*d",
_float_hex_option($options,
$sign eq "-" ? "neg_sign" : "pos_sign"),
_float_hex_option($options, "hex_prefix_string"),
$digits,
_float_hex_option($options,
$exp < 0 ? "exp_neg_sign" : "exp_pos_sign"),
$nexpdigits, abs($exp));
}
=item hex_float(STRING)
Generates and returns a floating point value from a string
encoding it in hexadecimal. The standard input form is
"[I<s>][B<0x>]I<m>[B<.>I<mmmmm>][B<p>I<eee>]", where "I<s>" is the sign,
"I<m>[B<.>I<mmmm>]" is a (fractional) hexadecimal number, and "I<eee>"
an optionally-signed exponent in decimal. If present, the exponent
identifies a power of two (not sixteen) by which the given fraction will
be multiplied.
If the value given in the string cannot be exactly represented in the
floating point type because it has too many fraction bits, the nearest
representable value is returned, with ties broken in favour of the value
with a zero low-order bit. If the value given is too large to exactly
represent then an infinity is returned, or the largest finite value if
there are no infinities.
Additional input formats are accepted for special values.
"[I<s>]B<inf>[B<inity>]" returns an infinity, or C<die>s if there are
no infinities. "[I<s>][B<s>]B<nan>" returns a NaN, or C<die>s if there
are no NaNs available.
All input formats are understood case insensitively. The function
correctly interprets all possible outputs from C<float_hex> with default
settings.
=cut
sub hex_float($) {
my($str) = @_;
if($str =~ /\A([-+]?)(?:0x)?([0-9a-f]+)(?:\.([0-9a-f]+)+)?
(?:p([-+]?[0-9]+))?\z/xi) {
my($sign, $digits, $frac_digits, $in_exp) = ($1, $2, $3, $4);
my $value;
$frac_digits = "" unless defined $frac_digits;
$in_exp = "0" unless defined $in_exp;
$digits .= $frac_digits;
$digits =~ s/\A0+//;
if($digits eq "") {
$value = 0.0;
goto GOT_MAG;
}
my $digit_exp = (length($digits) - length($frac_digits)) * 4;
my @limbs;
push @limbs, hex($1) while $digits =~ /(.{7})/sgc;
push @limbs, hex(substr($1."000000", 0, 7))
if $digits =~ /(.+)/sg;
my $skip_bits = $limbs[0] < 0x4000000 ?
$limbs[0] < 0x2000000 ? 3 : 2 :
$limbs[0] < 0x8000000 ? 1 : 0;
my $val_exp = $digit_exp - $skip_bits - 1 + $in_exp;
my $sig_bits;
if($val_exp > max_finite_exp) {
$value = have_infinite ? Data::Float::pos_infinity() :
max_finite;
goto GOT_MAG;
} elsif($val_exp < min_finite_exp-1) {
$value = 0.0;
goto GOT_MAG;
} elsif($val_exp < min_normal_exp) {
$sig_bits = $val_exp - (min_finite_exp-1);
} else {
$sig_bits = significand_bits+1;
}
my $gbit_lpos = do { use integer; ($skip_bits+$sig_bits)/28 };
if(@limbs > $gbit_lpos) {
my $gbit_bpos = 27 - ($skip_bits + $sig_bits) % 28;
my $sbit = 0;
while(@limbs > $gbit_lpos+1) {
$sbit = 1 if pop(@limbs) != 0;
}
my $gbit_mask = 1 << $gbit_bpos;
my $sbit_mask = $gbit_mask - 1;
if($limbs[$gbit_lpos] & $sbit_mask) {
$sbit = 1;
$limbs[$gbit_lpos] &= ~$sbit_mask;
}
if($limbs[$gbit_lpos] & $gbit_mask) {
unless($sbit) {
if($gbit_bpos == 27 &&
$gbit_lpos != 0) {
$sbit = $limbs[$gbit_lpos - 1]
& 1;
} else {
$sbit = $limbs[$gbit_lpos] &
($gbit_mask << 1);
}
}
if($sbit) {
$limbs[$gbit_lpos] += $gbit_mask;
} else {
$limbs[$gbit_lpos] -= $gbit_mask;
}
}
}
$value = 0.0;
for(my $i = @limbs; $i--; ) {
$value += mult_pow2($limbs[$i], -28*($i+1));
}
$value = mult_pow2($value, $in_exp + $digit_exp);
GOT_MAG:
return $sign eq "-" ? -$value : $value;
} elsif($str =~ /\A([-+]?)inf(?:inity)?\z/i) {
croak "infinite values not available" unless have_infinite;
return $1 eq "-" ? Data::Float::neg_infinity() :
Data::Float::pos_infinity();
} elsif($str =~ /\A([-+]?)s?nan\z/si) {
croak "Nan value not available" unless have_nan;
return Data::Float::nan();
} else {
croak "bad syntax for hexadecimal floating point value";
}
}
=back
=head2 Comparison
=over
=item float_id_cmp(A, B)
This is a comparison function supplying a total ordering of floating
point values. A and B must both be floating point values. Returns -1,
0, or +1, indicating whether A is to be sorted before, the same as,
or after B.
The ordering is of the identities of floating point values, not their
numerical values. If zeroes are signed, then the two types are considered
to be distinct. NaNs compare equal to each other, but different from
all numeric values. The exact ordering provided is mostly numerical
order: NaNs come first, followed by negative infinity, then negative
finite values, then negative zero, then positive (or unsigned) zero,
then positive finite values, then positive infinity.
In addition to sorting, this function can be useful to check for a zero
of a particular sign.
=cut
sub float_id_cmp($$) {
my($a, $b) = @_;
if(float_is_nan($a)) {
return float_is_nan($b) ? 0 : -1;
} elsif(float_is_nan($b)) {
return +1;
} elsif(float_is_zero($a) && float_is_zero($b)) {
return signbit($b) - signbit($a);
} else {
return $a <=> $b;
}
}
=item totalorder(A, B)
This is a comparison function supplying a total ordering of floating point
values. A and B must both be floating point values. Returns a truth value
indicating whether A is to be sorted before-or-the-same-as B. That is,
it is a <= predicate on the total ordering. The ordering is the same as
that provided by C<float_id_cmp>: NaNs come first, followed by negative
infinity, then negative finite values, then negative zero, then positive
(or unsigned) zero, then positive finite values, then positive infinity.
This is an IEEE 754r standard function. According to the standard it
is meant to distinguish different kinds of NaNs, based on their sign
bit, quietness, and payload, but this function (like the rest of Perl)
perceives only one NaN.
=cut
sub totalorder($$) { float_id_cmp($_[0], $_[1]) <= 0 }
=back
=head2 Manipulation
=over
=item pow2(EXP)
EXP must be an integer. Returns the value two the the power EXP.
C<die>s if that value cannot be represented exactly as a floating
point value. The return value may be either normalised or subnormal.
=item mult_pow2(VALUE, EXP)
EXP must be an integer, and VALUE a floating point value. Multiplies
VALUE by two to the power EXP. This gives exact results, except in
cases of underflow and overflow. The range of EXP is not constrained.
All normal floating point multiplication behaviour applies.
=item copysign(VALUE, SIGN_FROM)
VALUE and SIGN_FROM must both be floating point values. Returns a
floating point value with the magnitude of VALUE and the sign of
SIGN_FROM. If SIGN_FROM is an unsigned zero then it is treated as
positive. If VALUE is an unsigned zero then it is returned unchanged.
If VALUE is a NaN then it is returned unchanged. If SIGN_FROM is a NaN
then the sign copied to VALUE is unpredictable.
This is an IEEE 754 standard function. According to the standard NaNs
have a well-behaved sign bit, which can be read and modified by this
function, but Perl only perceives one NaN and can't see its sign bit,
so behaviour on NaNs is not standard-conforming.
=cut
sub copysign($$) {
my($val, $signfrom) = @_;
return $val if float_is_nan($val);
$val = -$val if signbit($val) != signbit($signfrom);
return $val;
}
=item nextup(VALUE)
VALUE must be a floating point value. Returns the next representable
floating point value adjacent to VALUE with a numerical value that is
strictly greater than VALUE, or returns VALUE unchanged if there is
no such value. Infinite values are regarded as being adjacent to the
largest representable finite values. Zero counts as one value, even if
it is signed, and it is adjacent to the smallest representable positive
and negative finite values. If a zero is returned, because VALUE is
the smallest representable negative value, and zeroes are signed, it is
a negative zero that is returned. Returns NaN if VALUE is a NaN.
This is an IEEE 754r standard function.
=cut
sub nextup($) {
my($val) = @_;
return $val if $val != $val || $val == max_number;
return -(max_finite) if have_infinite && $val == -(max_number);
return min_finite if $val == 0.0;
my($sign, $exp, $significand) = float_parts($val);
if($sign eq "+") {
$significand += significand_step;
if($significand == 2.0) {
return max_number
if have_infinite && $exp == max_finite_exp;
$significand = 1.0;
$exp++;
}
} else {
if($significand == 1.0 && $exp != min_normal_exp) {
$significand = 2.0;
$exp--;
}
$significand -= significand_step;
}
return copysign(mult_pow2($significand, $exp), $val);
}
=item nextdown(VALUE)
VALUE must be a floating point value. Returns the next representable
floating point value adjacent to VALUE with a numerical value that
is strictly less than VALUE, or returns VALUE unchanged if there is
no such value. Infinite values are regarded as being adjacent to the
largest representable finite values. Zero counts as one value, even if
it is signed, and it is adjacent to the smallest representable positive
and negative finite values. If a zero is returned, because VALUE is
the smallest representable positive value, and zeroes are signed, it is
a positive zero that is returned. Returns NaN if VALUE is a NaN.
This is an IEEE 754r standard function.
=cut
sub nextdown($) { -nextup(-(my $n = $_[0])) }
=item nextafter(VALUE, DIRECTION)
VALUE and DIRECTION must both be floating point values. Returns the
next representable floating point value adjacent to VALUE in the
direction of DIRECTION, or returns DIRECTION if it is numerically
equal to VALUE. Infinite values are regarded as being adjacent to
the largest representable finite values. Zero counts as one value,
even if it is signed, and it is adjacent to the positive and negative
smallest representable finite values. If a zero is returned and zeroes
are signed then it has the same sign as VALUE. Returns NaN if either
argument is a NaN.
This is an IEEE 754 standard function.
=cut
sub nextafter($$) {
my($val, $dir) = @_;
return $_[1] if $dir != $dir || $val == $dir;
return $dir > $val ? nextup($_[0]) : nextdown($_[0]);
}
=back
=head1 BUGS
As of Perl 5.8.7 floating point zeroes will be partially transformed into
integer zeroes if used in almost any arithmetic, including numerical
comparisons. Such a transformed zero appears as a floating point zero
(with its original sign) for some purposes, but behaves as an integer
zero for other purposes. Where this happens to a positive zero the
result is indistinguishable from a true integer zero. Where it happens
to a negative zero the result is a fourth type of zero, the existence of
which is a bug in Perl. This fourth type of zero will give confusing
results, and in particular will elicit inconsistent behaviour from the
functions in this module.
Because of this transforming behaviour, it is best to avoid relying on
the sign of zeroes. If you require signed-zero semantics then take
special care to maintain signedness. Avoid using a zero directly
in arithmetic and handle it as a special case. Any flavour of zero
can be accurately copied from one scalar to another without affecting
the original. The functions in this module all avoid modifying their
arguments, and where they are meant to return signed zeroes they always
return a pristine one.
As of Perl 5.8.7 stringification of a floating point zero does not
preserve its signedness. The number-to-string-to-number round trip
turns a positive floating point zero into an integer zero, but accurately
maintains negative and integer zeroes. If a negative zero gets partially
transformed into an integer zero, as described above, the stringification
that it gets is based on its state at the first occasion on which the
scalar was stringified.
NaN handling is generally not well defined in Perl. Arithmetic with
a mathematically undefined result may either C<die> or generate a NaN.
Avoid relying on any particular behaviour for such operations, even if
your hardware's behaviour is known.
As of Perl 5.8.7 the B<%> operator truncates its arguments to integers, if
the divisor is within the range of the native integer type. It therefore
operates correctly on non-integer values only when the divisor is
very large.
=head1 SEE ALSO
L<Data::Integer>,
L<Scalar::Number>,
L<perlnumber(1)>
=head1 AUTHOR
Andrew Main (Zefram) <zefram@fysh.org>
=head1 COPYRIGHT
Copyright (C) 2006, 2007, 2008, 2010, 2012
Andrew Main (Zefram) <zefram@fysh.org>
=head1 LICENSE
This module is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
=cut
1;
|