/usr/share/perl5/Bio/Restriction/EnzymeI.pm is in libbio-perl-perl 1.6.901-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 | #------------------------------------------------------------------
#
# BioPerl module Bio::Restriction::EnzymeI
#
# Please direct questions and support issues to <bioperl-l@bioperl.org>
#
# Cared for by Heikki Lehvaslaiho, heikki-at-bioperl-dot-org
#
# You may distribute this module under the same terms as perl itself
#------------------------------------------------------------------
## POD Documentation:
=head1 NAME
Bio::Restriction::EnzymeI - Interface class for restriction endonuclease
=head1 SYNOPSIS
# do not run this class directly
=head1 DESCRIPTION
This module defines methods for a single restriction endonuclease. For an
implementation, see L<Bio::Restriction::Enzyme>.
=head1 FEEDBACK
=head2 Mailing Lists
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to one
of the Bioperl mailing lists. Your participation is much appreciated.
bioperl-l@bioperl.org - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
=head2 Support
Please direct usage questions or support issues to the mailing list:
I<bioperl-l@bioperl.org>
rather than to the module maintainer directly. Many experienced and
reponsive experts will be able look at the problem and quickly
address it. Please include a thorough description of the problem
with code and data examples if at all possible.
=head2 Reporting Bugs
Report bugs to the Bioperl bug tracking system to help us keep track
the bugs and their resolution. Bug reports can be submitted via the
web:
https://redmine.open-bio.org/projects/bioperl/
=head1 AUTHOR
Heikki Lehvaslaiho, heikki-at-bioperl-dot-org
=head1 CONTRIBUTORS
Rob Edwards, redwards@utmem.edu
=head1 SEE ALSO
L<Bio::Restriction::Enzyme>
=head1 APPENDIX
Methods beginning with a leading underscore are considered private and
are intended for internal use by this module. They are not considered
part of the public interface and are described here for documentation
purposes only.
=cut
package Bio::Restriction::EnzymeI;
use strict;
use base qw(Bio::Root::RootI);
=head1 Essential methods
=cut
=head2 name
Title : name
Usage : $re->name($newval)
Function : Gets/Sets the restriction enzyme name
Example : $re->name('EcoRI')
Returns : value of name
Args : newvalue (optional)
This will also clean up the name. I have added this because some
people get confused about restriction enzyme names. The name should
be One upper case letter, and two lower case letters (because it is
derived from the organism name, eg. EcoRI is from E. coli). After
that it is all confused, but the numbers should be roman numbers not
numbers, therefore we'll correct those. At least this will provide
some standard, I hope.
=cut
sub name { shift->throw_not_implemented; }
=head2 site
Title : site
Usage : $re->site();
Function : Gets/sets the recognition sequence for the enzyme.
Example : $seq_string = $re->site();
Returns : String containing recognition sequence indicating
: cleavage site as in 'G^AATTC'.
Argument : n/a
Throws : n/a
Side effect: the sequence is always converted to upper case.
The cut site can also be set by using methods L<cut|cut> and
L<complementary_cut|complementary_cut>.
This will pad out missing sequence with N's. For example the enzyme
Acc36I cuts at ACCTGC(4/8). This will be returned as ACCTGCNNNN^
Note that the common notation ACCTGC(4/8) means that the forward
strand cut is four nucleotides after the END of the recognition
site. The forward cut() in the coordinates used here in Acc36I
ACCTGC(4/8) is at 6+4 i.e. 10.
** This is the main setable method for the recognition site.
=cut
sub site { shift->throw_not_implemented; }
=head2 revcom_site
Title : revcom_site
Usage : $re->revcom_site();
Function : Gets/sets the complementary recognition sequence for the enzyme.
Example : $seq_string = $re->revcom_site();
Returns : String containing recognition sequence indicating
: cleavage site as in 'G^AATTC'.
Argument : Sequence of the site
Throws : n/a
This is the same as site, except it returns the revcom site. For
palindromic enzymes these two are identical. For non-palindromic
enzymes they are not!
See also L<site|site> above.
=cut
sub cuts_after { shift->throw_not_implemented; }
=head2 cut
Title : cut
Usage : $num = $re->cut(1);
Function : Sets/gets an integer indicating the position of cleavage
relative to the 5' end of the recognition sequence in the
forward strand.
For type II enzymes, sets the symmetrically positioned
reverse strand cut site by calling complementary_cut().
Returns : Integer, 0 if not set
Argument : an integer for the forward strand cut site (optional)
Note that the common notation ACCTGC(4/8) means that the forward
strand cut is four nucleotides after the END of the recognition
site. The forwad cut in the coordinates used here in Acc36I
ACCTGC(4/8) is at 6+4 i.e. 10.
Note that REBASE uses notation where cuts within symmetic sites are
marked by '^' within the forward sequence but if the site is
asymmetric the parenthesis syntax is used where numbering ALWAYS
starts from last nucleotide in the forward strand. That's why AciI has
a site usually written as CCGC(-3/-1) actualy cuts in
C^C G C
G G C^G
In our notation, these locations are 1 and 3.
The cuts locations in the notation used are relative to the first
(non-N) nucleotide of the reported forward strand of the recognition
sequence. The following diagram numbers the phosphodiester bonds
(marked by + ) which can be cut by the restriction enzymes:
1 2 3 4 5 6 7 8 ...
N + N + N + N + N + G + A + C + T + G + G + N + N + N
... -5 -4 -3 -2 -1
=cut
sub cut { shift->throw_not_implemented; }
=head2 complementary_cut
Title : complementary_cut
Usage : $num = $re->complementary_cut('1');
Function : Sets/Gets an integer indicating the position of cleavage
: on the reverse strand of the restriction site.
Returns : Integer
Argument : An integer (optional)
Throws : Exception if argument is non-numeric.
This method determines the cut on the reverse strand of the sequence.
For most enzymes this will be within the sequence, and will be set
automatically based on the forward strand cut, but it need not be.
B<Note> that the returned location indicates the location AFTER the
first non-N site nucleotide in the FORWARD strand.
=cut
sub complementary_cut { shift->throw_not_implemented; }
=head1 Read only (usually) recognition site descriptive methods
=cut
=head2 type
Title : type
Usage : $re->type();
Function : Get/set the restriction system type
Returns :
Argument : optional type: ('I'|II|III)
Restriction enzymes have been catezorized into three types. Some
REBASE formats give the type, but the following rules can be used to
classify the known enzymes:
=over 4
=item 1
Bipartite site (with 6-8 Ns in the middle and the cut site
is E<gt> 50 nt away) =E<gt> type I
=item 2
Site length E<lt> 3 =E<gt> type I
=item 3
5-6 asymmetric site and cuts E<gt>20 nt away =E<gt> type III
=item 4
All other =E<gt> type II
=back
There are some enzymes in REBASE which have bipartite recognition site
and cat far from the site but are still classified as type I. I've no
idea if this is really so.
=cut
sub type { shift->throw_not_implemented; }
=head2 seq
Title : seq
Usage : $re->seq();
Function : Get the Bio::PrimarySeq.pm object representing
: the recognition sequence
Returns : A Bio::PrimarySeq object representing the
enzyme recognition site
Argument : n/a
Throws : n/a
=cut
sub seq { shift->throw_not_implemented; }
=head2 string
Title : string
Usage : $re->string();
Function : Get a string representing the recognition sequence.
Returns : String. Does NOT contain a '^' representing the cut location
as returned by the site() method.
Argument : n/a
Throws : n/a
=cut
sub string { shift->throw_not_implemented; }
=head2 revcom
Title : revcom
Usage : $re->revcom();
Function : Get a string representing the reverse complement of
: the recognition sequence.
Returns : String
Argument : n/a
Throws : n/a
=cut
sub revcom { shift->throw_not_implemented; }
=head2 recognition_length
Title : recognition_length
Usage : $re->recognition_length();
Function : Get the length of the RECOGNITION sequence.
This is the total recognition sequence,
inluding the ambiguous codes.
Returns : An integer
Argument : Nothing
See also: L<non_ambiguous_length>
=cut
sub recognition_length { shift->throw_not_implemented; }
=head2 non_ambiguous_length
Title : non_ambiguous_length
Usage : $re->non_ambiguous_length();
Function : Get the nonambiguous length of the RECOGNITION sequence.
This is the total recognition sequence,
excluding the ambiguous codes.
Returns : An integer
Argument : Nothing
See also: L<non_ambiguous_length>
=cut
sub non_ambiguous_length { shift->throw_not_implemented; }
=head2 cutter
Title : cutter
Usage : $re->cutter
Function : Returns the "cutter" value of the recognition site.
This is a value relative to site length and lack of
ambiguity codes. Hence: 'RCATGY' is a five (5) cutter site
and 'CCTNAGG' a six cutter
This measure correlates to the frequency of the enzyme
cuts much better than plain recognition site length.
Example : $re->cutter
Returns : integer or float number
Args : none
Why is this better than just stripping the ambiguous codes? Think about
it like this: You have a random sequence; all nucleotides are equally
probable. You have a four nucleotide re site. The probability of that
site finding a match is one out of 4^4 or 256, meaning that on average
a four cutter finds a match every 256 nucleotides. For a six cutter,
the average fragment length is 4^6 or 4096. In the case of ambiguity
codes the chances are finding the match are better: an R (A|T) has 1/2
chance of finding a match in a random sequence. Therefore, for RGCGCY
the probability is one out of (2*4*4*4*4*2) which exactly the same as
for a five cutter! Cutter, although it can have non-integer values
turns out to be a useful and simple measure.
From bug 2178: VHDB are ambiguity symbols that match three different
nucleotides, so they contribute less to the effective recognition sequence
length than e.g. Y which matches only two nucleotides. A symbol which matches n
of the 4 nucleotides has an effective length of 1 - log(n) / log(4).
=cut
sub cutter { shift->throw_not_implemented; }
=head2 is_palindromic
Title : is_palindromic
Usage : $re->is_palindromic();
Function : Determines if the recognition sequence is palindromic
: for the current restriction enzyme.
Returns : Boolean
Argument : n/a
Throws : n/a
A palindromic site (EcoRI):
5-GAATTC-3
3-CTTAAG-5
=cut
sub is_palindromic { shift->throw_not_implemented; }
=head2 overhang
Title : overhang
Usage : $re->overhang();
Function : Determines the overhang of the restriction enzyme
Returns : "5'", "3'", "blunt" of undef
Argument : n/a
Throws : n/a
A blunt site in SmaI returns C<blunt>
5' C C C^G G G 3'
3' G G G^C C C 5'
A 5' overhang in EcoRI returns C<5'>
5' G^A A T T C 3'
3' C T T A A^G 5'
A 3' overhang in KpnI returns C<3'>
5' G G T A C^C 3'
3' C^C A T G G 5'
=cut
sub overhang { shift->throw_not_implemented; }
=head2 overhang_seq
Title : overhang_seq
Usage : $re->overhang_seq();
Function : Determines the overhang sequence of the restriction enzyme
Returns : a Bio::LocatableSeq
Argument : n/a
Throws : n/a
I do not think it is necessary to create a seq object of these. (Heikki)
Note: returns empty string for blunt sequences and undef for ones that
we don't know. Compare these:
A blunt site in SmaI returns empty string
5' C C C^G G G 3'
3' G G G^C C C 5'
A 5' overhang in EcoRI returns C<AATT>
5' G^A A T T C 3'
3' C T T A A^G 5'
A 3' overhang in KpnI returns C<GTAC>
5' G G T A C^C 3'
3' C^C A T G G 5'
Note that you need to use method L<overhang|overhang> to decide
whether it is a 5' or 3' overhang!!!
Note: The overhang stuff does not work if the site is asymmetric! Rethink!
=cut
sub overhang_seq { shift->throw_not_implemented; }
=head2 compatible_ends
Title : compatible_ends
Usage : $re->compatible_ends($re2);
Function : Determines if the two restriction enzyme cut sites
have compatible ends.
Returns : 0 if not, 1 if only one pair ends match, 2 if both ends.
Argument : a Bio::Restriction::Enzyme
Throws : unless the argument is a Bio::Resriction::Enzyme and
if there are Ns in the ovarhangs
In case of type II enzymes which which cut symmetrically, this
function can be considered to return a boolean value.
=cut
sub compatible_ends {shift->throw_not_implemented;}
=head2 is_ambiguous
Title : is_ambiguous
Usage : $re->is_ambiguous();
Function : Determines if the restriction enzyme contains ambiguous sequences
Returns : Boolean
Argument : n/a
Throws : n/a
=cut
sub is_ambiguous { shift->throw_not_implemented; }
=head2 Additional methods from Rebase
=cut
=head2 is_prototype
Title : is_prototype
Usage : $re->is_prototype
Function : Get/Set method for finding out if this enzyme is a prototype
Example : $re->is_prototype(1)
Returns : Boolean
Args : none
Prototype enzymes are the most commonly available and usually first
enzymes discoverd that have the same recognition site. Using only
prototype enzymes in restriciton analysis avoids redundacy and
speeds things up.
=cut
sub is_prototype { shift->throw_not_implemented; }
=head2 prototype_name
Title : prototype_name
Usage : $re->prototype_name
Function : Get/Set method for the name of prototype for
this enzyme's recognition site
Example : $re->prototype_name(1)
Returns : prototype enzyme name string or an empty string
Args : optional prototype enzyme name string
If the enzyme itself is the protype, its own name is returned. Not to
confuse the negative result with an unset value, use method
L<is_prototype|is_prototype>.
This method is called I<prototype_name> rather than I<prototype>,
because it returns a string rather than on object.
=cut
sub prototype_name { shift->throw_not_implemented; }
=head2 isoschizomers
Title : isoschizomers
Usage : $re->isoschizomers(@list);
Function : Gets/Sets a list of known isoschizomers (enzymes that
recognize the same site, but don't necessarily cut at
the same position).
Arguments : A reference to an array that contains the isoschizomers
Returns : A reference to an array of the known isoschizomers or 0
if not defined.
Added for compatibility to REBASE
=cut
sub isoschizomers { shift->throw_not_implemented; }
=head2 purge_isoschizomers
Title : purge_isoschizomers
Usage : $re->purge_isoschizomers();
Function : Purges the set of isoschizomers for this enzyme
Arguments :
Returns : 1
=cut
sub purge_isoschizomers { shift->throw_not_implemented; }
=head2 methylation_sites
Title : methylation_sites
Usage : $re->methylation_sites(\%sites);
Function : Gets/Sets known methylation sites (positions on the sequence
that get modified to promote or prevent cleavage).
Arguments : A reference to a hash that contains the methylation sites
Returns : A reference to a hash of the methylation sites or
an empty string if not defined.
There are three types of methylation sites:
=over 3
=item * (6) = N6-methyladenosine
=item * (5) = 5-methylcytosine
=item * (4) = N4-methylcytosine
=back
These are stored as 6, 5, and 4 respectively. The hash has the
sequence position as the key and the type of methylation as the value.
A negative number in the sequence position indicates that the DNA is
methylated on the complementary strand.
Note that in REBASE, the methylation positions are given
Added for compatibility to REBASE.
=cut
sub methylation_sites { shift->throw_not_implemented; }
=head2 purge_methylation_sites
Title : purge_methylation_sites
Usage : $re->purge_methylation_sites();
Function : Purges the set of methylation_sites for this enzyme
Arguments :
Returns :
=cut
sub purge_methylation_sites { shift->throw_not_implemented; }
=head2 microbe
Title : microbe
Usage : $re->microbe($microbe);
Function : Gets/Sets microorganism where the restriction enzyme was found
Arguments : A scalar containing the microbes name
Returns : A scalar containing the microbes name or 0 if not defined
Added for compatibility to REBASE
=cut
sub microbe { shift->throw_not_implemented; }
=head2 source
Title : source
Usage : $re->source('Rob Edwards');
Function : Gets/Sets the person who provided the enzyme
Arguments : A scalar containing the persons name
Returns : A scalar containing the persons name or 0 if not defined
Added for compatibility to REBASE
=cut
sub source { shift->throw_not_implemented; }
=head2 vendors
Title : vendors
Usage : $re->vendor(@list_of_companies);
Function : Gets/Sets the a list of companies that you can get the enzyme from.
Also sets the commercially_available boolean
Arguments : A reference to an array containing the names of companies
that you can get the enzyme from
Returns : A reference to an array containing the names of companies
that you can get the enzyme from
Added for compatibility to REBASE
=cut
sub vendors { shift->throw_not_implemented; }
=head2 purge_vendors
Title : purge_vendors
Usage : $re->purge_references();
Function : Purges the set of references for this enzyme
Arguments :
Returns :
=cut
sub purge_vendors { shift->throw_not_implemented; }
=head2 vendor
Title : vendor
Usage : $re->vendor(@list_of_companies);
Function : Gets/Sets the a list of companies that you can get the enzyme from.
Also sets the commercially_available boolean
Arguments : A reference to an array containing the names of companies
that you can get the enzyme from
Returns : A reference to an array containing the names of companies
that you can get the enzyme from
Added for compatibility to REBASE
=cut
sub vendor { shift->throw_not_implemented; }
=head2 references
Title : references
Usage : $re->references(string);
Function : Gets/Sets the references for this enzyme
Arguments : an array of string reference(s) (optional)
Returns : an array of references
Use L<purge_references|purge_references> to reset the list of references
This should be a L<Bio::Biblio> or L<Bio::Annotation::Reference> object, but its not (yet)
=cut
sub references { shift->throw_not_implemented; }
=head2 purge_references
Title : purge_references
Usage : $re->purge_references();
Function : Purges the set of references for this enzyme
Arguments :
Returns : 1
=cut
sub purge_references { shift->throw_not_implemented; }
=head2 clone
Title : clone
Usage : $re->clone
Function : Deep copy of the object
Arguments : -
Returns : new Bio::Restriction::EnzymeI object
This works as long as the object is a clean in-memory object using
scalars, arrays and hashes. You have been warned.
If you have module Storable, it is used, otherwise local code is used.
Todo: local code cuts circular references.
=cut
sub clone { shift->throw_not_implemented; }
1;
|