This file is indexed.

/usr/share/perl5/Bio/PopGen/Statistics.pm is in libbio-perl-perl 1.6.901-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
#
# BioPerl module for Bio::PopGen::Statistics
#
# Please direct questions and support issues to <bioperl-l@bioperl.org> 
#
# Cared for by Jason Stajich <jason-at-bioperl-dot-org>
#
# Copyright Jason Stajich
#
# You may distribute this module under the same terms as perl itself

# POD documentation - main docs before the code

=head1 NAME

Bio::PopGen::Statistics - Population Genetics statistical tests  

=head1 SYNOPSIS

  use Bio::PopGen::Statistics;
  use Bio::AlignIO;
  use Bio::PopGen::IO;
  use Bio::PopGen::Simulation::Coalescent;

  my $sim = Bio::PopGen::Simulation::Coalescent->new( -sample_size => 12);

  my $tree = $sim->next_tree;

  $sim->add_Mutations($tree,20);

  my $stats = Bio::PopGen::Statistics->new();
  my $individuals = [ $tree->get_leaf_nodes];
  my $pi = $stats->pi($individuals);
  my $D  = $stats->tajima_D($individuals);

  # Alternatively to do this on input data from
  # See the tests in t/PopGen.t for more examples
  my $parser = Bio::PopGen::IO->new(-format => 'prettybase',
                                   -file   => 't/data/popstats.prettybase');
  my $pop = $parser->next_population;
  # Note that you can also call the stats as a class method if you like
  # the only reason to instantiate it (as above) is if you want
  # to set the verbosity for debugging
  $pi     = Bio::PopGen::Statistics->pi($pop);
  $theta  = Bio::PopGen::Statistics->theta($pop);

  # Pi and Theta also take additional arguments,
  # see the documentation for more information

  use Bio::PopGen::Utilities;
  use Bio::AlignIO;

  my $in = Bio::AlignIO->new(-file   => 't/data/t7.aln',
                            -format => 'clustalw');
  my $aln = $in->next_aln;
  # get a population, each sequence is an individual and 
  # for the default case, every site which is not monomorphic
  # is a 'marker'.  Each individual will have a 'genotype' for the
  # site which will be the specific base in the alignment at that
  # site

  my $pop = Bio::PopGen::Utilities->aln_to_population(-alignment => $aln);


=head1 DESCRIPTION

This object is intended to provide implementations some standard
population genetics statistics about alleles in populations.

This module was previously named Bio::Tree::Statistics.

This object is a place to accumulate routines for calculating various
statistics from the coalescent simulation, marker/allele, or from
aligned sequence data given that you can calculate alleles, number of
segregating sites.

Currently implemented:
 Fu and Li's D    (fu_and_li_D)
 Fu and Li's D*   (fu_and_li_D_star)
 Fu and Li's F    (fu_and_li_F)
 Fu and Li's F*   (fu_and_li_F_star)
 Tajima's D       (tajima_D)
 Watterson's theta (theta)
 pi               (pi) - number of pairwise differences
 composite_LD     (composite_LD)
 McDonald-Kreitman (mcdonald_kreitman or MK)

Count based methods also exist in case you have already calculated the
key statistics (seg sites, num individuals, etc) and just want to
compute the statistic.

In all cases where a the method expects an arrayref of
L<Bio::PopGen::IndividualI> objects and L<Bio::PopGen::PopulationI>
object will also work.

=head2 REFERENCES

Fu Y.X and Li W.H. (1993) "Statistical Tests of Neutrality of
Mutations." Genetics 133:693-709.

Fu Y.X. (1996) "New Statistical Tests of Neutrality for DNA samples
from a Population." Genetics 143:557-570.

McDonald J, Kreitman M.

Tajima F. (1989) "Statistical method for testing the neutral mutation
hypothesis by DNA polymorphism." Genetics 123:585-595.


=head2 CITING THIS WORK

Please see this reference for use of this implementation.

Stajich JE and Hahn MW "Disentangling the Effects of Demography and Selection in Human History." (2005) Mol Biol Evol 22(1):63-73. 

If you use these Bio::PopGen modules please cite the Bioperl
publication (see FAQ) and the above reference.


=head1 FEEDBACK

=head2 Mailing Lists

User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to
the Bioperl mailing list.  Your participation is much appreciated.

  bioperl-l@bioperl.org                  - General discussion
  http://bioperl.org/wiki/Mailing_lists  - About the mailing lists

=head2 Support 

Please direct usage questions or support issues to the mailing list:

I<bioperl-l@bioperl.org>

rather than to the module maintainer directly. Many experienced and 
reponsive experts will be able look at the problem and quickly 
address it. Please include a thorough description of the problem 
with code and data examples if at all possible.

=head2 Reporting Bugs

Report bugs to the Bioperl bug tracking system to help us keep track
of the bugs and their resolution. Bug reports can be submitted via
the web:

  https://redmine.open-bio.org/projects/bioperl/

=head1 AUTHOR - Jason Stajich, Matthew Hahn

Email jason-at-bioperl-dot-org
Email matthew-dot-hahn-at-duke-dot-edu

McDonald-Kreitman implementation based on work by Alisha Holloway at
UC Davis.


=head1 APPENDIX

The rest of the documentation details each of the object methods.
Internal methods are usually preceded with a _

=cut


# Let the code begin...


package Bio::PopGen::Statistics;
use strict;
use constant { 
    in_label => 'ingroup',
    out_label => 'outgroup',
    non_syn   => 'non_synonymous',
    syn       => 'synonymous',
    default_codon_table => 1, # Standard Codon table
};

use Bio::MolEvol::CodonModel;
use List::Util qw(sum);

use base qw(Bio::Root::Root);
our $codon_table => default_codon_table;
our $has_twotailed => 0;
BEGIN {
    eval { require Text::NSP::Measures::2D::Fisher2::twotailed };
    if( $@ ) { $has_twotailed = 0; }
    else { $has_twotailed = 1; }
}






=head2 new

 Title   : new
 Usage   : my $obj = Bio::PopGen::Statistics->new();
 Function: Builds a new Bio::PopGen::Statistics object 
 Returns : an instance of Bio::PopGen::Statistics
 Args    : none


=cut


=head2 fu_and_li_D

 Title   : fu_and_li_D
 Usage   : my $D = $statistics->fu_and_li_D(\@ingroup,\@outgroup);
	    OR
	   my $D = $statistics->fu_and_li_D(\@ingroup,$extmutations);
 Function: Fu and Li D statistic for a list of individuals
           given an outgroup and the number of external mutations
           (either provided or calculated from list of outgroup individuals)
 Returns : decimal
 Args    : $individuals - array reference which contains ingroup individuals 
           (L<Bio::PopGen::Individual> or derived classes)
           $extmutations - number of external mutations OR
           arrayref of outgroup individuals

=cut

sub fu_and_li_D { 
    my ($self,$ingroup,$outgroup) = @_;

    my ($seg_sites,$n,$ancestral,$derived) = (0,0,0,0);
    if( ref($ingroup) =~ /ARRAY/i ) {
	$n = scalar @$ingroup;
	# pi - all pairwise differences 
	$seg_sites   = $self->segregating_sites_count($ingroup);
    } elsif( ref($ingroup) && 
	     $ingroup->isa('Bio::PopGen::PopulationI')) {
	$n = $ingroup->get_number_individuals;
	$seg_sites   = $self->segregating_sites_count($ingroup);
    } else { 
	$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_D");
	return 0;
    }
    
    if( $seg_sites <= 0 ) { 
	$self->warn("mutation total was not > 0, cannot calculate a Fu and Li D");
	return 0;
    }

    if( ! defined $outgroup ) {
	$self->warn("Need to provide either an array ref to the outgroup individuals or the number of external mutations");
	return 0;
    } elsif( ref($outgroup) ) {
	($ancestral,$derived) = $self->derived_mutations($ingroup,$outgroup);
	$ancestral = 0 unless defined $ancestral;
    } else { 
	$ancestral = $outgroup;
    }
   
    return $self->fu_and_li_D_counts($n,$seg_sites,
				     $ancestral,$derived);
}

=head2 fu_and_li_D_counts

 Title   : fu_li_D_counts
 Usage   : my $D = $statistics->fu_and_li_D_counts($samps,$sites,
                                                   $external);
 Function: Fu and Li D statistic for the raw counts of the number
           of samples, sites, external and internal mutations
 Returns : decimal number
 Args    : number of samples (N)
           number of segregating sites (n)
           number of external mutations (n_e)

=cut


sub fu_and_li_D_counts {
    my ($self,$n,$seg_sites, $external_mut) = @_;
    my $a_n = 0;
    for(my $k= 1; $k < $n; $k++ ) {
	$a_n += ( 1 / $k );
    }
    my $b = 0;
    for(my $k= 1; $k < $n; $k++ ) {
        $b += ( 1 / $k**2 );
    }

    my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) /
                  ( ( $n - 1) * ( $n - 2 ) ) );

    my $v = 1 + ( ( $a_n**2 / ( $b + $a_n**2 ) ) * 
		  ( $c - ( ( $n + 1) /
			   ( $n - 1) ) ));
    
    my $u = $a_n - 1 - $v;

    ($seg_sites - $a_n * $external_mut) / 
	sqrt( ($u * $seg_sites) + ($v * $seg_sites*$seg_sites));
    
}


=head2 fu_and_li_D_star

 Title   : fu_and_li_D_star
 Usage   : my $D = $statistics->fu_an_li_D_star(\@individuals);
 Function: Fu and Li's D* statistic for a set of samples
            Without an outgroup
 Returns : decimal number
 Args    : array ref of L<Bio::PopGen::IndividualI> objects
           OR
           L<Bio::PopGen::PopulationI> object

=cut

#'
# fu_and_li_D*

sub fu_and_li_D_star {
    my ($self,$individuals) = @_;

    my ($seg_sites,$n,$singletons);
    if( ref($individuals) =~ /ARRAY/i ) {
	$n = scalar @$individuals;
	$seg_sites   = $self->segregating_sites_count($individuals);
	$singletons  = $self->singleton_count($individuals);
    } elsif( ref($individuals) && 
	     $individuals->isa('Bio::PopGen::PopulationI')) {
	my $pop = $individuals;
	$n = $pop->get_number_individuals;
	$seg_sites   = $self->segregating_sites_count($pop);
	$singletons  = $self->singleton_count($pop);
    } else { 
	$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_D_star");
	return 0;
    }

    return $self->fu_and_li_D_star_counts($n,$seg_sites, $singletons);
}

=head2 fu_and_li_D_star_counts

 Title   : fu_li_D_star_counts
 Usage   : my $D = $statistics->fu_and_li_D_star_counts($samps,$sites,
                                                        $singletons);

 Function: Fu and Li D statistic for the raw counts of the number
           of samples, sites, external and internal mutations
 Returns : decimal number
 Args    : number of samples (N)
           number of segregating sites (n)
           singletons (n_s)

=cut


sub fu_and_li_D_star_counts {
    my ($self,$n,$seg_sites, $singletons) = @_;
    my $a_n;
    for(my $k = 1; $k < $n; $k++ ) {
	$a_n += ( 1 / $k );
    }

    my $a1 = $a_n + 1 / $n;

    my $b = 0;
    for(my $k= 1; $k < $n; $k++ ) {
        $b += ( 1 / $k**2 );
    }

    my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) /
                  ( ( $n - 1) * ( $n - 2 ) ) );

    my $d = $c + ($n -2) / ($n - 1)**2 +
	2 / ($n -1) * 
	( 1.5 - ( (2*$a1 - 3) / ($n -2) ) - 
	  1 / $n ); 
    
    my $v_star = ( ( ($n/($n-1) )**2)*$b + (($a_n**2)*$d) -
		 (2*( ($n*$a_n*($a_n+1)) )/(($n-1)**2)) )  /
		   (($a_n**2) + $b);

    my $u_star = ( ($n/($n-1))*
		   ($a_n - ($n/
			  ($n-1)))) - $v_star;


    return (($n / ($n - 1)) * $seg_sites - 
	    $a_n * $singletons) / 
	    sqrt( ($u_star * $seg_sites) + ($v_star * $seg_sites*$seg_sites));
}


=head2 fu_and_li_F

 Title   : fu_and_li_F
 Usage   : my $F = Bio::PopGen::Statistics->fu_and_li_F(\@ingroup,$ext_muts);
 Function: Calculate Fu and Li's F on an ingroup with either the set of 
           outgroup individuals, or the number of external mutations
 Returns : decimal number
 Args    : array ref of L<Bio::PopGen::IndividualI> objects for the ingroup
           OR a L<Bio::PopGen::PopulationI> object
           number of external mutations OR list of individuals for the outgroup

=cut

#'

sub fu_and_li_F {
    my ($self,$ingroup,$outgroup) = @_;
    my ($seg_sites,$pi,$n,$external,$internal);
    if( ref($ingroup) =~ /ARRAY/i ) {
	$n = scalar @$ingroup;
	# pi - all pairwise differences 
	$pi          = $self->pi($ingroup);  
	$seg_sites   = $self->segregating_sites_count($ingroup);
    } elsif( ref($ingroup) && 
	     $ingroup->isa('Bio::PopGen::PopulationI')) {
	$n = $ingroup->get_number_individuals;
	$pi          = $self->pi($ingroup);
	$seg_sites   = $self->segregating_sites_count($ingroup);
    } else { 
	$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to Fu and Li's F");
	return 0;
    }
    
    if( ! defined $outgroup ) {
	$self->warn("Need to provide either an array ref to the outgroup individuals or the number of external mutations");
	return 0;
    } elsif( ref($outgroup) ) {
	($external,$internal) = $self->derived_mutations($ingroup,$outgroup);
    } else { 
	$external = $outgroup;
    }
    $self->fu_and_li_F_counts($n,$pi,$seg_sites,$external);
}

=head2 fu_and_li_F_counts

 Title   : fu_li_F_counts
 Usage   : my $F = $statistics->fu_and_li_F_counts($samps,$pi,
                                                   $sites,
                                                   $external);
 Function: Fu and Li F statistic for the raw counts of the number
           of samples, sites, external and internal mutations
 Returns : decimal number
 Args    : number of samples (N)
           average pairwise differences (pi)
           number of segregating sites (n)
           external mutations (n_e)

=cut


sub fu_and_li_F_counts {
    my ($self,$n,$pi,$seg_sites, $external) = @_;
    my $a_n = 0;
    for(my $k= 1; $k < $n; $k++ ) {
	$a_n += ( 1 / $k );
    }

    my $a1 = $a_n + (1 / $n );

    my $b = 0;
    for(my $k= 1; $k < $n; $k++ ) {
	$b += ( 1 / $k**2 );
    }

    my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) / 
		  ( ( $n - 1) * ( $n - 2 ) ) );

    my $v_F = ( $c + ( (2*(($n**2)+$n+3)) / 
		       ( (9*$n)*($n-1) ) ) -
		(2/($n-1)) ) / ( ($a_n**2)+$b );

    my $u_F = ( 1 + ( ($n+1)/(3*($n-1)) )-
		( 4*( ($n+1)/(($n-1)**2) ))*
		($a1 - ((2*$n)/($n+1))) ) /
		$a_n - $v_F;

    # warn("$v_F vf $u_F uf n = $n\n");
    my $F = ($pi - $external) / ( sqrt( ($u_F*$seg_sites) +
					($v_F*($seg_sites**2)) ) );

    return $F;
}

=head2 fu_and_li_F_star

 Title   : fu_and_li_F_star
 Usage   : my $F = Bio::PopGen::Statistics->fu_and_li_F_star(\@ingroup);
 Function: Calculate Fu and Li's F* on an ingroup without an outgroup
           It uses count of singleton alleles instead 
 Returns : decimal number
 Args    : array ref of L<Bio::PopGen::IndividualI> objects for the ingroup
           OR
           L<Bio::PopGen::PopulationI> object

=cut

#' keep my emacs happy

sub fu_and_li_F_star {
    my ($self,$individuals) = @_;

    my ($seg_sites,$pi,$n,$singletons);
    if( ref($individuals) =~ /ARRAY/i ) {
	$n = scalar @$individuals;
	# pi - all pairwise differences 
	$pi          = $self->pi($individuals);  
	$seg_sites   = $self->segregating_sites_count($individuals);
	$singletons  = $self->singleton_count($individuals);
    } elsif( ref($individuals) && 
	     $individuals->isa('Bio::PopGen::PopulationI')) {
	my $pop = $individuals;
	$n = $pop->get_number_individuals;
	$pi          = $self->pi($pop);
	$seg_sites   = $self->segregating_sites_count($pop);
	$singletons  = $self->singleton_count($pop);
    } else { 
	$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_F_star");
	return 0;
    }
    return $self->fu_and_li_F_star_counts($n,
					  $pi,
					  $seg_sites,
					  $singletons);
} 

=head2 fu_and_li_F_star_counts

 Title   : fu_li_F_star_counts
 Usage   : my $F = $statistics->fu_and_li_F_star_counts($samps,
                                                   $pi,$sites,
                                                   $singletons);
 Function: Fu and Li F statistic for the raw counts of the number
           of samples, sites, external and internal mutations
 Returns : decimal number
 Args    : number of samples (N)
           average pairwise differences (pi)
           number of segregating sites (n)
           singleton  mutations (n_s)

=cut


sub fu_and_li_F_star_counts {
    my ($self,$n,$pi,$seg_sites, $singletons) = @_;
    if( $n <= 1 ) {
	$self->warn("N must be > 1\n");
	return;
    }
    if( $n == 2) { 
	return 0;
    } 

    my $a_n = 0;
    

    my $b = 0;
    for(my $k= 1; $k < $n; $k++ ) {
	$b += (1 / ($k**2));
	$a_n += ( 1 / $k );     # Eq (2)
    }
    my $a1 = $a_n + (1 / $n );

    # warn("a_n is $a_n a1 is $a1 n is $n b is $b\n");

    # From Simonsen et al (1995) instead of Fu and Li 1993
    my $v_F_star = ( (( 2 * $n ** 3 + 110 * $n**2 - (255 * $n) + 153)/
		      (9 * ($n ** 2) * ( $n - 1))) +
		     ((2 * ($n - 1) * $a_n ) / $n ** 2) -
		     (8 * $b / $n) ) / 
		     ( ($a_n ** 2) + $b );
    
    my $u_F_star = ((( (4* ($n**2)) + (19 * $n) + 3 - (12 * ($n + 1)* $a1)) /
		    (3 * $n * ( $n - 1))) / $a_n) - $v_F_star;

    # warn("vf* = $v_F_star uf* = $u_F_star n = $n\n");
    my $F_star = ( $pi - ($singletons*( ( $n-1) / $n)) ) /
	sqrt ( $u_F_star*$seg_sites + $v_F_star*$seg_sites**2);
    return $F_star;
}

=head2 tajima_D

 Title   : tajima_D
 Usage   : my $D = Bio::PopGen::Statistics->tajima_D(\@samples);
 Function: Calculate Tajima's D on a set of samples 
 Returns : decimal number
 Args    : array ref of L<Bio::PopGen::IndividualI> objects
           OR 
           L<Bio::PopGen::PopulationI> object


=cut

#'

sub tajima_D {
    my ($self,$individuals) = @_;
    my ($seg_sites,$pi,$n);

    if( ref($individuals) =~ /ARRAY/i ) {
	$n = scalar @$individuals;
	# pi - all pairwise differences 
	$pi          = $self->pi($individuals);  
	$seg_sites = $self->segregating_sites_count($individuals);

    } elsif( ref($individuals) && 
	     $individuals->isa('Bio::PopGen::PopulationI')) {
	my $pop = $individuals;
	$n = $pop->get_number_individuals;
	$pi          = $self->pi($pop);
	$seg_sites = $self->segregating_sites_count($pop);
    } else { 
	$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to tajima_D");
	return 0;
    }
    $self->tajima_D_counts($n,$seg_sites,$pi);
}

=head2 tajima_D_counts

 Title   : tajima_D_counts
 Usage   : my $D = $statistics->tajima_D_counts($samps,$sites,$pi);
 Function: Tajima's D statistic for the raw counts of the number
           of samples, sites, and avg pairwise distances (pi)
 Returns : decimal number
 Args    : number of samples (N)
           number of segregating sites (n)
           average pairwise differences (pi)

=cut

#'

sub tajima_D_counts {
    my ($self,$n,$seg_sites,$pi) = @_;
    my $a1 = 0; 
    for(my $k= 1; $k < $n; $k++ ) {
	$a1 += ( 1 / $k );
    }

     my $a2 = 0;
     for(my $k= 1; $k < $n; $k++ ) {
	 $a2 += ( 1 / $k**2 );
     }
    
    my $b1 = ( $n + 1 ) / ( 3* ( $n - 1) );
    my $b2 = ( 2 * ( $n ** 2 + $n + 3) ) / 
	     ( ( 9 * $n) * ( $n - 1) );
    my $c1 = $b1 - ( 1 / $a1 );
    my $c2 = $b2 - ( ( $n + 2 ) /
		     ( $a1 * $n))+( $a2 / $a1 ** 2);
    my $e1 = $c1 / $a1;
    my $e2 = $c2 / ( $a1**2 + $a2 );
    
    my $denom = sqrt ( ($e1 * $seg_sites) + (( $e2 * $seg_sites) * ( $seg_sites - 1)));
    return if $denom == 0;
    my $D = ( $pi - ( $seg_sites / $a1 ) ) / $denom;
    return $D;
}


=head2 pi

 Title   : pi
 Usage   : my $pi = Bio::PopGen::Statistics->pi(\@inds)
 Function: Calculate pi (average number of pairwise differences) given
           a list of individuals which have the same number of markers
           (also called sites) as available from the get_Genotypes()
           call in L<Bio::PopGen::IndividualI>
 Returns : decimal number
 Args    : Arg1= array ref of L<Bio::PopGen::IndividualI> objects
             which have markers/mutations.  We expect all individuals to
             have a marker - we will deal with missing data as a special case.
           OR
           Arg1= L<Bio::PopGen::PopulationI> object.  In the event that
                 only allele frequency data is available, storing it in
                 Population object will make this available.
           num sites [optional], an optional second argument (integer)
             which is the number of sites, then pi returned is pi/site.

=cut

sub pi {
    my ($self,$individuals,$numsites) = @_;
    my (%data,%marker_total,@marker_names,$n);

    if( ref($individuals) =~ /ARRAY/i ) {
	# one possible argument is an arrayref of Bio::PopGen::IndividualI objs
	@marker_names = $individuals->[0]->get_marker_names;
	$n = scalar @$individuals;

	# Here we are calculating the allele frequencies
	foreach my $ind ( @$individuals ) {
	    if( ! $ind->isa('Bio::PopGen::IndividualI') ) {
		$self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($ind)."\n");
		return 0;
	    }
	    foreach my $m ( @marker_names ) {
		foreach my $allele (map { $_->get_Alleles} 
				    $ind->get_Genotypes($m) ) {
		    $data{$m}->{$allele}++;
		    $marker_total{$m}++;
		}
	    }
	}
#	while( my ($marker,$count) =  each %marker_total ) {
#	    foreach my $c ( values %{$data{$marker}} ) {
#		$c /= $count;
#	    }
#	}
	# %data will contain allele frequencies for each marker, allele
    } elsif( ref($individuals) &&
	     $individuals->isa('Bio::PopGen::PopulationI') ) {
	my $pop = $individuals;
	$n = $pop->get_number_individuals;
	foreach my $marker( $pop->get_Markers ) {
	    push @marker_names, $marker->name;
	    #$data{$marker->name} = {$marker->get_Allele_Frequencies};
	    my @genotypes = $pop->get_Genotypes(-marker => $marker->name);
	    for my $al ( map { $_->get_Alleles} @genotypes ) {
	      $data{$marker->name}->{$al}++;
	      $marker_total{$marker->name}++;
	   }
	}
    } else {
	$self->throw("expected an array reference of a list of Bio::PopGen::IndividualI to pi");
    }
    # based on Kevin Thornton's code:
    # http://molpopgen.org/software/libsequence/doc/html/PolySNP_8cc-source.html#l00152
    # For now we assume that all individuals have the same markers
    my ($diffcount,$totalcompare) = (0,0);
    my $pi = 0;
    while ( my ($marker,$markerdat) = each %data ) {
      my $sampsize = $marker_total{$marker};
      my $ssh = 0;
      my @alleles = keys %$markerdat;
      if ( $sampsize > 1 ) {
	my $denom = $sampsize * ($sampsize - 1.0);
	foreach my $al ( @alleles ) {
	  $ssh += ($markerdat->{$al} * ($markerdat->{$al} - 1)) / $denom;
	}
	$pi += 1.0 - $ssh;
      }
    }
    $self->debug( "pi=$pi\n");
    if( $numsites ) {
	return $pi / $numsites;
    } else {
	return $pi;
    }
}


=head2 theta

 Title   : theta
 Usage   : my $theta = Bio::PopGen::Statistics->theta($sampsize,$segsites);
 Function: Calculates Watterson's theta from the sample size 
           and the number of segregating sites.
           Providing the third parameter, total number of sites will
           return theta per site.
           This is also known as K-hat = K / a_n   
 Returns : decimal number 
 Args    : sample size (integer),
           num segregating sites (integer)
           total sites (integer) [optional] (to calculate theta per site)
           OR
           provide an arrayref of the L<Bio::PopGen::IndividualI> objects
           total sites (integer) [optional] (to calculate theta per site)
           OR
           provide an L<Bio::PopGen::PopulationI> object
           total sites (integer)[optional]

=cut

#'

sub theta {
    my $self = shift;
    my ( $n, $seg_sites,$totalsites) = @_;
    if( ref($n) =~ /ARRAY/i ) {
	my $samps = $n;
	$totalsites = $seg_sites; # only 2 arguments if one is an array
	my %data;
	my @marker_names = $samps->[0]->get_marker_names;
	# we need to calculate number of polymorphic sites
	$seg_sites = $self->segregating_sites_count($samps);
	$n = scalar @$samps;

    } elsif(ref($n) &&
	    $n->isa('Bio::PopGen::PopulationI') ) {
	# This will handle the case when we pass in a PopulationI object
	my $pop = $n;
	$totalsites = $seg_sites; # shift the arguments over by one
	$n = $pop->haploid_population->get_number_individuals;
	$seg_sites = $self->segregating_sites_count($pop);
    }
    my $a1 = 0; 
    for(my $k= 1; $k < $n; $k++ ) {
	$a1 += ( 1 / $k );
    }    
    if( $totalsites ) { # 0 and undef are the same can't divide by them
	$seg_sites /= $totalsites;
    }
    if( $a1 == 0 ) { 
	return 0;
    } 
    return $seg_sites / $a1;
}

=head2 singleton_count

 Title   : singleton_count
 Usage   : my ($singletons) = Bio::PopGen::Statistics->singleton_count(\@inds)
 Function: Calculate the number of mutations/alleles which only occur once in
           a list of individuals for all sites/markers
 Returns : (integer) number of alleles which only occur once (integer)
 Args    : arrayref of L<Bio::PopGen::IndividualI> objects
           OR
           L<Bio::PopGen::PopulationI> object

=cut

sub singleton_count {
    my ($self,$individuals) = @_;

    my @inds;
    if( ref($individuals) =~ /ARRAY/ ) {
	@inds = @$individuals;
    } elsif( ref($individuals) && 
	     $individuals->isa('Bio::PopGen::PopulationI') ) {
	my $pop = $individuals;
	@inds = $pop->get_Individuals();
	unless( @inds ) { 
	    $self->warn("Need to provide a population which has individuals loaded, not just a population with allele frequencies");
	    return 0;
	}
    } else {
	$self->warn("Expected either a PopulationI object or an arrayref of IndividualI objects");
	return 0;
    }
    # find number of sites where a particular allele is only seen once

    my ($singleton_allele_ct,%sites) = (0);
    # first collect all the alleles into a hash structure
    
    foreach my $n ( @inds ) {
	if( ! $n->isa('Bio::PopGen::IndividualI') ) {
	    $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($n)."\n");
	    return 0;
	}
	foreach my $g ( $n->get_Genotypes ) {
	    my ($nm,@alleles) = ($g->marker_name, $g->get_Alleles);
	    foreach my $allele (@alleles ) {
		$sites{$nm}->{$allele}++;
	    }
	}
    }
    foreach my $site ( values %sites ) { # don't really care what the name is
	foreach my $allelect ( values %$site ) { # 
            # find the sites which have an allele with only 1 copy
 	    $singleton_allele_ct++ if( $allelect == 1 );
	}
    }
    return $singleton_allele_ct;
}

# Yes I know that singleton_count and segregating_sites_count are
# basically processing the same data so calling them both is
# redundant, something I want to fix later but want to make things
# correct and simple first

=head2 segregating_sites_count

 Title   : segregating_sites_count
 Usage   : my $segsites = Bio::PopGen::Statistics->segregating_sites_count
 Function: Gets the number of segregating sites (number of polymorphic sites)
 Returns : (integer) number of segregating sites
 Args    : arrayref of L<Bio::PopGen::IndividualI> objects 
           OR
           L<Bio::PopGen::PopulationI> object

=cut

# perhaps we'll change this in the future 
# to return the actual segregating sites
# so one can use this to pull in the names of those sites.
# Would be trivial if it is useful.

sub segregating_sites_count {
   my ($self,$individuals) = @_;
   my $type = ref($individuals);
   my $seg_sites = 0;
   if( $type =~ /ARRAY/i ) {
       my %sites;
       foreach my $n ( @$individuals ) {
	   if( ! $n->isa('Bio::PopGen::IndividualI') ) {
	       $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($n)."\n");
	       return 0;
	   }
	   foreach my $g ( $n->get_Genotypes ) {
	       my ($nm,@alleles) = ($g->marker_name, $g->get_Alleles);
	       foreach my $allele (@alleles ) {
		   $sites{$nm}->{$allele}++;
	       }
	   }
       }
       foreach my $site ( values %sites ) { # use values b/c we don't 
	                                    # really care what the name is
	   # find the sites which >1 allele
	   $seg_sites++ if( keys %$site > 1 );
       }
   } elsif( $type && $individuals->isa('Bio::PopGen::PopulationI') ) {
       foreach my $marker ( $individuals->haploid_population->get_Markers ) {  
	   my @alleles = $marker->get_Alleles;	    
	   $seg_sites++ if ( scalar @alleles > 1 );
       }
   } else { 
       $self->warn("segregating_sites_count expects either a PopulationI object or a list of IndividualI objects");
       return 0;
   } 
   return $seg_sites;
}


=head2 heterozygosity

 Title   : heterozygosity
 Usage   : my $het = Bio::PopGen::Statistics->heterozygosity($sampsize,$freq1);
 Function: Calculate the heterozgosity for a sample set for a set of alleles
 Returns : decimal number
 Args    : sample size (integer)
           frequency of one allele (fraction - must be less than 1)
           [optional] frequency of another allele - this is only needed
                      in a non-binary allele system

Note     : p^2 + 2pq + q^2

=cut


sub heterozygosity {
    my ($self,$samp_size, $freq1,$freq2) = @_;
    if( ! $freq2 ) { $freq2 = 1 - $freq1 }
    if( $freq1 > 1 || $freq2 > 1 ) { 
	$self->warn("heterozygosity expects frequencies to be less than 1");
    }
    my $sum = ($freq1**2) + (($freq2)**2);
    my $h = ( $samp_size*(1- $sum) ) / ($samp_size - 1) ;
    return $h;
}


=head2 derived_mutations

 Title   : derived_mutations
 Usage   : my $ext = Bio::PopGen::Statistics->derived_mutations($ingroup,$outgroup);
 Function: Calculate the number of alleles or (mutations) which are ancestral
           and the number which are derived (occurred only on the tips)
 Returns : array of 2 items - number of external and internal derived 
           mutation
 Args    : ingroup - L<Bio::PopGen::IndividualI>s arrayref OR 
                     L<Bio::PopGen::PopulationI>
           outgroup- L<Bio::PopGen::IndividualI>s arrayref OR 
                     L<Bio::PopGen::PopulationI> OR
                     a single L<Bio::PopGen::IndividualI>

=cut

sub derived_mutations {
   my ($self,$ingroup,$outgroup) = @_;
   my (%indata,%outdata,@marker_names);

   # basically we have to do some type checking
   # if that perl were typed...
   my ($itype,$otype) = (ref($ingroup),ref($outgroup));

   return $outgroup unless( $otype ); # we expect arrayrefs or objects, nums
                                      # are already the value we 
                                      # are searching for
   # pick apart the ingroup
   # get the data
   if( ref($ingroup) =~ /ARRAY/i ) {
       if( ! ref($ingroup->[0]) ||
	   ! $ingroup->[0]->isa('Bio::PopGen::IndividualI') ) {
	   $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects or a Population for ingroup in external_mutations");
	   return 0;
       }
       # we assume that all individuals have the same markers 
       # i.e. that they are aligned
       @marker_names = $ingroup->[0]->get_marker_names;
       for my $ind ( @$ingroup ) {
	   for my $m ( @marker_names ) {
	       for my $allele ( map { $_->get_Alleles }
				    $ind->get_Genotypes($m) ) {
		   $indata{$m}->{$allele}++;
	       }
	   }
       }	   
   } elsif( ref($ingroup) && $ingroup->isa('Bio::PopGen::PopulationI') ) {
       @marker_names = $ingroup->get_marker_names;
       for my $ind ( $ingroup->haploid_population->get_Individuals() ) {
	   for my $m ( @marker_names ) {
	       for my $allele ( map { $_->get_Alleles} 
				    $ind->get_Genotypes($m) ) {
		   $indata{$m}->{$allele}++;
	       }
	   }
       }
   } else { 
       $self->warn("Need an arrayref of Bio::PopGen::IndividualI objs or a Bio::PopGen::Population for ingroup in external_mutations");
       return 0;
   }
    
   if( $otype =~ /ARRAY/i ) {
       if( ! ref($outgroup->[0]) ||
	   ! $outgroup->[0]->isa('Bio::PopGen::IndividualI') ) {
	   $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects or a Population for outgroup in external_mutations");
	   return 0;
       }
       for my $ind ( @$outgroup ) {
	   for my $m ( @marker_names ) {
	       for my $allele ( map { $_->get_Alleles }
				$ind->get_Genotypes($m) ) {
		   $outdata{$m}->{$allele}++;
	       }
	   }
       }
   
   } elsif( $otype->isa('Bio::PopGen::PopulationI') ) {
       for my $ind ( $outgroup->haploid_population->get_Individuals() ) {
	   for my $m ( @marker_names ) {
	       for my $allele ( map { $_->get_Alleles} 
				    $ind->get_Genotypes($m) ) {
		   $outdata{$m}->{$allele}++;
	       }
	   }
       }
   } else {
       $self->warn("Need an arrayref of Bio::PopGen::IndividualI objs or a Bio::PopGen::Population for outgroup in external_mutations");
       return 0;
   }
   
   # derived mutations are defined as 
   # 
   # ingroup  (G A T)
   # outgroup (A)
   # derived mutations are G and T, A is the external mutation
   
   # ingroup  (A T)
   # outgroup (C)
   # derived mutations A,T no external/ancestral mutations
   
   # ingroup  (G A T)
   # outgroup (A T)
   # cannot determine
  
   my ($internal,$external);
   foreach my $marker ( @marker_names ) {
       my @outalleles = keys %{$outdata{$marker}};
       my @in_alleles = keys %{$indata{$marker}};
       next if( @outalleles > 1 || @in_alleles == 1);
       for my $allele ( @in_alleles ) {
	   if( ! exists $outdata{$marker}->{$allele} ) { 
	       if( $indata{$marker}->{$allele} == 1 ) { 
		   $external++;
	       } else { 
		   $internal++;
	       }
	   }
       }
   }
   return ($external, $internal);
}


=head2 composite_LD

 Title   : composite_LD
 Usage   : %matrix = Bio::PopGen::Statistics->composite_LD($population);
 Function: Calculate the Linkage Disequilibrium 
           This is for calculating LD for unphased data. 
           Other methods will be appropriate for phased haplotype data.

 Returns : Hash of Hashes - first key is site 1,second key is site 2
           and value is LD for those two sites.
           my $LDarrayref = $matrix{$site1}->{$site2};
           my ($ldval, $chisquared) = @$LDarrayref;
 Args    : L<Bio::PopGen::PopulationI> or arrayref of 
           L<Bio::PopGen::IndividualI>s 
 Reference: Weir B.S. (1996) "Genetic Data Analysis II", 
                      Sinauer, Sunderlanm MA.

=cut

sub composite_LD {
    my ($self,$pop) = @_;
    if( ref($pop) =~ /ARRAY/i ) {
	if( ref($pop->[0]) && $pop->[0]->isa('Bio::PopGen::IndividualI') ) {
	    $pop = Bio::PopGen::Population->new(-individuals => @$pop);
	} else { 
	    $self->warn("composite_LD expects a Bio::PopGen::PopulationI or an arrayref of Bio::PopGen::IndividualI objects");
	    return ();
	}
    } elsif( ! ref($pop) || ! $pop->isa('Bio::PopGen::PopulationI') ) {
	$self->warn("composite_LD expects a Bio::PopGen::PopulationI or an arrayref of Bio::PopGen::IndividualI objects");
	return ();
    }

    my @marker_names = $pop->get_marker_names;
    my @inds = $pop->get_Individuals;
    my $num_inds = scalar @inds;
    my (%lookup);
    # calculate allele frequencies for each marker from the population
    # use the built-in get_Marker to get the allele freqs
    # we still need to calculate the genotype frequencies
    foreach my $marker_name ( @marker_names ) {	
	my(%allelef);

	foreach my $ind ( @inds ) {
	    my ($genotype) = $ind->get_Genotypes(-marker => $marker_name);
	    if( ! defined $genotype ) { 
		$self->warn("no genotype for marker $marker_name for individual ". $ind->unique_id. "\n");
		next;
	    }
	    my @alleles  = sort $genotype->get_Alleles;
	    next if( scalar @alleles != 2);
	    my $genostr  = join(',', @alleles);
            $allelef{$alleles[0]}++;
            $allelef{$alleles[1]}++;
	}

	# we should check for cases where there > 2 alleles or
	# only 1 allele and throw out those markers.
	my @alleles      = sort keys %allelef;
	my $allele_count = scalar @alleles;
	# test if site is polymorphic
	if( $allele_count != 2) { 
	    # only really warn if we're seeing multi-allele
	    $self->warn("Skipping $marker_name because it has $allele_count alleles (".join(',',@alleles)."), \ncomposite_LD will currently only work for biallelic markers") if $allele_count > 2;
	    next;		# skip this marker
	}

	# Need to do something here to detect alleles which aren't 
	# a single character
	if( length($alleles[0]) != 1 ||
	    length($alleles[1]) != 1 ) {
	    $self->warn("An individual has an allele which is not a single base, this is currently not supported in composite_LD - consider recoding the allele as a single character");
	    next;
	}

	# fix the call for allele 1 (A or B) and 
	# allele 2 (a or b) in terms of how we'll do the 
	# N square from Weir p.126
	$self->debug( "$alleles[0] is 1, $alleles[1] is 2 for $marker_name\n");
	$lookup{$marker_name}->{'1'} = $alleles[0];
	$lookup{$marker_name}->{'2'} = $alleles[1];
    }

    @marker_names = sort keys %lookup;
    my $site_count   = scalar @marker_names;
    # where the final data will be stored
    my %stats_for_sites;

    # standard way of generating pairwise combos
    # LD is done by comparing all the pairwise site (marker)
    # combinations and keeping track of the genotype and 
    # pairwise genotype (ie genotypes of the 2 sites) frequencies
    for( my $i = 0; $i < $site_count - 1; $i++ ) {
	my $site1 = $marker_names[$i];

	for( my $j = $i+1; $j < $site_count ; $j++) { 	 
	    my (%genotypes, %total_genotype_count,$total_pairwisegeno_count,
		%pairwise_genotypes);
	 
	    my $site2 = $marker_names[$j];
	    my (%allele_count,%allele_freqs) = (0,0);
	    foreach my $ind ( @inds ) {
		# build string of genotype at site 1
		my ($genotype1) = $ind->get_Genotypes(-marker => $site1);
		my @alleles1  = sort $genotype1->get_Alleles;

                # if an individual has only one available allele
		# (has a blank or N for one of the chromosomes)
		# we don't want to use it in our calculation

		next unless( scalar @alleles1 == 2);
		my $genostr1  = join(',', @alleles1);

		# build string of genotype at site 2
		my ($genotype2) = $ind->get_Genotypes(-marker => $site2);
		my @alleles2  = sort $genotype2->get_Alleles;
		my $genostr2  = join(',', @alleles2);
		
		next unless( scalar @alleles2 == 2);
		for (@alleles1) {
		    $allele_count{$site1}++;
		    $allele_freqs{$site1}->{$_}++;
		}
		$genotypes{$site1}->{$genostr1}++;
		$total_genotype_count{$site1}++;

		for (@alleles2) {
		    $allele_count{$site2}++;
		    $allele_freqs{$site2}->{$_}++;
		}
		$genotypes{$site2}->{$genostr2}++;
		$total_genotype_count{$site2}++;

		# We are using the $site1,$site2 to signify
		# a unique key
		$pairwise_genotypes{"$genostr1,$genostr2"}++;
		# some individuals 
		$total_pairwisegeno_count++;
	    }
	    for my $site ( %allele_freqs ) {
		for my $al ( keys %{ $allele_freqs{$site} } ) {
		    $allele_freqs{$site}->{$al} /= $allele_count{$site};
		}
	    }
	    my $n = $total_pairwisegeno_count;	# number of pairs of comparisons
	    # 'A' and 'B' are two loci or in our case site1 and site2  
	    my $allele1_site1 = $lookup{$site1}->{'1'};	# this is the BigA allele
	    my $allele1_site2 = $lookup{$site2}->{'1'};	# this is the BigB allele
	    my $allele2_site1 = $lookup{$site1}->{'2'};	# this is the LittleA allele
	    my $allele2_site2 = $lookup{$site2}->{'2'};	# this is the LittleB allele
	    # AABB
	    my $N1genostr = join(",",( $allele1_site1, $allele1_site1,
				       $allele1_site2, $allele1_site2));
	    $self->debug(" [$site1,$site2](AABB) N1genostr=$N1genostr\n");
	    # AABb
	    my $N2genostr = join(",",( $allele1_site1, $allele1_site1,
				       $allele1_site2, $allele2_site2));
	    $self->debug(" [$site1,$site2](AABb) N2genostr=$N2genostr\n");
	    # AaBB
	    my $N4genostr = join(",",( $allele1_site1, $allele2_site1,
				       $allele1_site2, $allele1_site2));
	    $self->debug(" [$site1,$site2](AaBB) N4genostr=$N4genostr\n");
	    # AaBb
	    my $N5genostr = join(",",( $allele1_site1, $allele2_site1,
				       $allele1_site2, $allele2_site2));
	    $self->debug(" [$site1,$site2](AaBb) N5genostr=$N5genostr\n");
	    # count of AABB in 
	    my $n1 = $pairwise_genotypes{$N1genostr} || 0;
	    # count of AABb in 
	    my $n2 = $pairwise_genotypes{$N2genostr} || 0;
	    # count of AaBB in 
	    my $n4 = $pairwise_genotypes{$N4genostr} || 0;
	    # count of AaBb in 
	    my $n5 = $pairwise_genotypes{$N5genostr} || 0;

	    my $homozA_site1 = join(",", ($allele1_site1,$allele1_site1));
	    my $homozB_site2 = join(",", ($allele1_site2,$allele1_site2));
	    my $p_AA = ($genotypes{$site1}->{$homozA_site1} || 0) / $n;
	    my $p_BB = ($genotypes{$site2}->{$homozB_site2} || 0) / $n;
	    my $p_A  = $allele_freqs{$site1}->{$allele1_site1} || 0;	# an individual allele freq
	    my $p_a  =  1 - $p_A;

	    my $p_B  = $allele_freqs{$site2}->{$allele1_site2} || 0;	# an individual allele freq
	    my $p_b  =  1 - $p_B;

	    # variance of allele frequencies
	    my $pi_A = $p_A * $p_a;
	    my $pi_B = $p_B * $p_b;

	    # hardy weinberg
	    my $D_A  = $p_AA - $p_A**2;
	    my $D_B  = $p_BB - $p_B**2;
	    my $n_AB = 2*$n1 + $n2 + $n4 + 0.5 * $n5;
	    $self->debug("n_AB=$n_AB -- n1=$n1, n2=$n2 n4=$n4 n5=$n5\n");

	    my $delta_AB = (1 / $n ) * ( $n_AB ) - ( 2 * $p_A * $p_B );
	    $self->debug("delta_AB=$delta_AB -- n=$n, n_AB=$n_AB p_A=$p_A, p_B=$p_B\n");
	    $self->debug(sprintf(" (%d * %.4f) / ( %.2f + %.2f) * ( %.2f + %.2f) \n",
				 $n,$delta_AB**2, $pi_A, $D_A, $pi_B, $D_B));
	    
	    my $chisquared;
	    eval { $chisquared = ( $n * ($delta_AB**2) ) / 
		       ( ( $pi_A + $D_A) * ( $pi_B + $D_B) );
	       };
	    if( $@ ) {
		$self->debug("Skipping the site because the denom is 0.\nsite1=$site1, site2=$site2 : pi_A=$pi_A, pi_B=$pi_B D_A=$D_A, D_B=$D_B\n");
		next;
	    }
	    # this will be an upper triangular matrix
	    $stats_for_sites{$site1}->{$site2} = [$delta_AB,$chisquared];
	}
    }
    return %stats_for_sites;
}

=head2 mcdonald_kreitman

 Title   : mcdonald_kreitman
 Usage   : $Fstat = mcdonald_kreitman($ingroup, $outgroup);
 Function: Calculates McDonald-Kreitman statistic based on a set of ingroup
           individuals and an outgroup by computing the number of 
           differences at synonymous and non-synonymous sites
           for intraspecific comparisons and with the outgroup 
 Returns : 2x2 table, followed by a hash reference indicating any 
           warning messages about the status of the alleles or codons 
 Args    : -ingroup    => L<Bio::PopGen::Population> object or 
                          arrayref of L<Bio::PopGen::Individual>s 
           -outgroup   => L<Bio::PopGen::Population> object or 
                          arrayef of L<Bio::PopGen::Individual>s
           -polarized  => Boolean, to indicate if this should be 
                          a polarized test. Must provide two individuals 
                          as outgroups.

=cut

sub mcdonald_kreitman {
    my ($self,@args) = @_;
    my ($ingroup, $outgroup,$polarized) = 
	$self->_rearrange([qw(INGROUP OUTGROUP POLARIZED)],@args);
    my $verbose = $self->verbose;
    my $outgroup_count;
    my $gapchar = '\-';
    if( ref($outgroup) =~ /ARRAY/i ) {
	$outgroup_count = scalar @$outgroup;
    } elsif( UNIVERSAL::isa($outgroup,'Bio::PopGen::PopulationI') ) {
	$outgroup_count = $outgroup->get_number_individuals;
    } else {
	$self->throw("Expected an ArrayRef of Individuals OR a Bio::PopGen::PopulationI");
    }
	
    if( $polarized ) {
	if( $outgroup_count < 2 ) {
	    $self->throw("Need 2 outgroups with polarized option\n");
	}
    } elsif( $outgroup_count > 1 ) {
	$self->warn(sprintf("%s outgroup sequences provided, but only first will be used",$outgroup_count ));
    } elsif( $outgroup_count == 0 ) {
	$self->throw("No outgroup sequence provided");
    }
    
    my $codon_path = Bio::MolEvol::CodonModel->codon_path;
    
    my (%marker_names,%unique,@inds);
    for my $p ( $ingroup, $outgroup)  {
	if( ref($p) =~ /ARRAY/i ) {
	    push @inds, @$p;
	} else {
	    push @inds, $p->get_Individuals;
	}
    }
    for my $i ( @inds ) {
	if( $unique{$i->unique_id}++ ) {
	    $self->warn("Individual ". $i->unique_id. " is seen more than once in the ingroup or outgroup set\n");
	}
	for my $n ( $i->get_marker_names ) {
	    $marker_names{$n}++;
	}
    }

    my @marker_names = keys %marker_names;
    if( $marker_names[0] =~ /^(Site|Codon)/ ) {
	# sort by site or codon number and do it in 
	# a schwartzian transformation baby!
	@marker_names = map { $_->[1] } 
	sort { $a->[0] <=> $b->[0] }
	map { [$_ =~ /^(?:Codon|Site)-(\d+)/, $_] } @marker_names;
    }


    my $num_inds = scalar @inds;
    my %vals = ( 'ingroup'  => $ingroup,
		 'outgroup' => $outgroup,		 
		 );

    # Make the Codon Table type a parameter!
    my $table = Bio::Tools::CodonTable->new(-id => $codon_table);
    my @vt = qw(outgroup ingroup);
    my %changes;
    my %status;
    my %two_by_two = ( 'fixed_N' => 0,
		       'fixed_S' => 0,
		       'poly_N'  => 0,
		       'poly_S'  => 0);

    for my $codon ( @marker_names ) {
	my (%codonvals);
	my %all_alleles;
	for my $t ( @vt ) {
	    my $outcount = 1;
	    for my $ind ( @{$vals{$t}} ) {
		my @alleles = $ind->get_Genotypes($codon)->get_Alleles;
		if( @alleles > 1 ) {
		    die;
#		  warn("$codon $codon saw ", scalar @alleles, " for ind ", $ind->unique_id, "\n");
		} else {
		    my ($allele) = shift @alleles;
		    $all_alleles{$ind->unique_id} = $allele;
		    my $AA = $table->translate($allele);
		    next if( $AA eq 'X' || $AA eq '*' || $allele =~ /N/i);

		    my $label = $t;
		    if( $t eq 'outgroup' ) {
			$label = $t.$outcount++;
		    }
		    $codonvals{$label}->{$allele}++;
		    $codonvals{all}->{$allele}++;
		}
	    }
	}
	my $total = sum ( values %{$codonvals{'ingroup'}} );
	next if( $total && $total < 2 ); # skip sites with < alleles
	# process all the seen alleles (codons) 
	# this is a vertical slide through the alignment
	if( keys %{$codonvals{all}} <= 1 ) {
	    # no changes or no VALID codons - monomorphic
	} else { 
	    # grab only the first outgroup codon (what to do with rest?)
	    my ($outcodon) = keys %{$codonvals{'outgroup1'}};
            if( ! $outcodon ) { 
		$status{"no outgroup codon $codon"}++;
		next;
	    }
	    my $out_AA = $table->translate($outcodon);
	    my ($outcodon2) = keys %{$codonvals{'outgroup2'}};
	    if( ($polarized && ($outcodon ne $outcodon2)) ||
		$out_AA eq 'X' || $out_AA eq '*' ) {
		# skip if outgroup codons are different 
		# (when polarized option is on)
		# or skip if the outcodon is STOP or 'NNN'
		if( $verbose > 0 ) {
		    $self->debug("skipping $out_AA and $outcodon $outcodon2\n");
		}
		$status{'outgroup codons different'}++;
		next;
	    }

	    # check if ingroup is actually different from outgroup -
	    # if there are the same number of alleles when considering
	    # ALL or just the ingroup, then there is nothing new seen
	    # in the outgroup so it must be a shared allele (codon)

	    # so we just count how many total alleles were seen
	    # if this is the same as the number of alleles seen for just 
	    # the ingroup then the outgroup presents no new information

	    my @ingroup_codons = keys %{$codonvals{'ingroup'}};
	    my $diff_from_out = ! exists $codonvals{'ingroup'}->{$outcodon};

	    if( $verbose > 0 ) {
		$self->debug("alleles are in: ", join(",", @ingroup_codons),
			     " out: ", join(",", keys %{$codonvals{outgroup1}}),
			     " diff_from_out=$diff_from_out\n");

		for my $ind ( sort keys %all_alleles ) {
		    $self->debug( "$ind\t$all_alleles{$ind}\n");
		}
	    }
	    # are all the ingroup alleles the same and diferent from outgroup?
	    # fixed differences between species
	    if( $diff_from_out ) {
		if( scalar @ingroup_codons == 1 ) { 
		    # fixed differences
		    if( $outcodon =~ /^$gapchar/ ) {
			$status{'outgroup codons with gaps'}++;
			next;
		    } elsif( $ingroup_codons[0] =~ /$gapchar/) {
			$status{'ingroup codons with gaps'}++;
			next;
		    }
		    my $path = $codon_path->{uc $ingroup_codons[0].$outcodon};
		    $two_by_two{fixed_N} += $path->[0];
		    $two_by_two{fixed_S} += $path->[1];
		    if( $verbose > 0 ) {
			$self->debug("ingroup is @ingroup_codons outcodon is $outcodon\n");
			$self->debug("path is ",join(",",@$path),"\n");
			$self->debug
			    (sprintf("%-15s fixeddiff - %s;%s(%s) %d,%d\tNfix=%d Sfix=%d Npoly=%d Spoly=%s\n",$codon,$ingroup_codons[0], $outcodon,$out_AA,
				     @$path, map { $two_by_two{$_} } 
				     qw(fixed_N fixed_S poly_N poly_S)));
		    }
		} else { 
		    # polymorphic and all are different from outgroup
		    # Here we find the minimum number of NS subst
		    my ($Ndiff,$Sdiff) = (3,0);	# most different path
		    for my $c ( @ingroup_codons ) {
			next if( $c =~ /$gapchar/ || $outcodon =~ /$gapchar/);
			my $path = $codon_path->{uc $c.$outcodon};
			my ($tNdiff,$tSdiff) = @$path;
			if( $path->[0] < $Ndiff ||
			    ($tNdiff == $Ndiff &&
			     $tSdiff  <= $Sdiff)) {
			    ($Ndiff,$Sdiff) = ($tNdiff,$tSdiff);
			}
		    }
		    $two_by_two{fixed_N} += $Ndiff;
		    $two_by_two{fixed_S} += $Sdiff;
	            if( @ingroup_codons > 2 ) { 
			$status{"more than 2 ingroup codons $codon"}++;
			warn("more than 2 ingroup codons (@ingroup_codons)\n");	
		    } else {
		    	my $path = $codon_path->{uc join('',@ingroup_codons)};

		    	$two_by_two{poly_N} += $path->[0];
		    	$two_by_two{poly_S} += $path->[1];
		    	if( $verbose > 0 ) {
			    $self->debug(sprintf("%-15s polysite_all - %s;%s(%s) %d,%d\tNfix=%d Sfix=%d Npoly=%d Spoly=%s\n",$codon,join(',',@ingroup_codons), $outcodon,$out_AA,@$path, map { $two_by_two{$_} } qw(fixed_N fixed_S poly_N poly_S)));
			}
		    } 
		} 
	    } else {
		my %unq = map { $_ => 1 } @ingroup_codons;
		delete $unq{$outcodon};
		my @unique_codons = keys %unq;

		# calc path for diff add to poly
		# Here we find the minimum number of subst bw
		# codons
		my ($Ndiff,$Sdiff) = (3,0); # most different path
		for my $c ( @unique_codons ) {
		    my $path = $codon_path->{uc $c.$outcodon };
		    if( ! defined $path ) {
			die " cannot get path for ", $c.$outcodon, "\n";
		    }
		    my ($tNdiff,$tSdiff) = @$path;
		    if( $path->[0] < $Ndiff ||
			($tNdiff == $Ndiff &&
			 $tSdiff  <= $Sdiff)) {
			($Ndiff,$Sdiff) = ($tNdiff,$tSdiff);
		    }
		}

		if( @unique_codons == 2 ) {
		    my $path = $codon_path->{uc join('',@unique_codons)};
		    if( ! defined $path ) {
			$self->throw("no path for @unique_codons\n");
		    }
		    $Ndiff += $path->[0];
		    $Sdiff += $path->[1];
		}
		$two_by_two{poly_N} += $Ndiff;
		$two_by_two{poly_S} += $Sdiff;
		if( $verbose > 0 ) {
		    $self->debug(sprintf("%-15s polysite - %s;%s(%s) %d,%d\tNfix=%d Sfix=%d Npoly=%d Spoly=%s\n",$codon,join(',',@ingroup_codons), $outcodon,$out_AA,
					 $Ndiff, $Sdiff, map { $two_by_two{$_} } 
					 qw(fixed_N fixed_S poly_N poly_S)));
		}
	    }
	}	    
    }
    return ( $two_by_two{'poly_N'},
	     $two_by_two{'fixed_N'},
	     $two_by_two{'poly_S'},
	     $two_by_two{'fixed_S'},
	     {%status});
    
}

*MK = \&mcdonald_kreitman;


=head2 mcdonald_kreitman_counts

 Title   : mcdonald_kreitman_counts
 Usage   : my $MK = $statistics->mcdonald_kreitman_counts(

             N_poly -> integer of count of non-syn polymorphism
             N_fix  -> integer of count of non-syn fixed substitutions
             S_poly -> integer of count of syn polymorphism
             S_fix  -> integer of count of syn fixed substitutions
							  );
 Function:
 Returns : decimal number
 Args    : 

=cut


sub mcdonald_kreitman_counts {
    my ($self,$Npoly,$Nfix,$Spoly,$Sfix) = @_;
    if( $has_twotailed ) {
	return &Text::NSP::Measures::2D::Fisher2::twotailed::calculateStatistic 
	    (n11=>$Npoly,
	     n1p=>$Npoly+$Spoly,
	     np1=>$Npoly+$Nfix,
	     npp=>$Npoly+$Nfix+$Spoly+$Sfix);
    } else {
	$self->warn("cannot call mcdonald_kreitman_counts because no Fisher's exact is available - install Text::NSP::Measures::2D::Fisher2::twotailed");
	return 0;
    }
}


1;