/usr/lib/lazarus/0.9.30.4/lcl/graphmath.pp is in lazarus-src-0.9.30.4 0.9.30.4-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 | {
/***************************************************************************
GraphMath.pp
------------
Math helper routines for use within Graphics/Drawing & related
Initial Revision : Wed Aug 07 2002
***************************************************************************/
*****************************************************************************
*
* This file is part of the Lazarus Component Library (LCL)
*
* See the file COPYING.modifiedLGPL.txt, included in this distribution,
* for details about the copyright.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
*****************************************************************************
}
{
@abstract(A Set of Math Helper routines to simply Cross-Platfrom Canvas,
etc)
@author(Andrew Johnson <AJ_Genius@Hotmail.com>)
@created(2002)
@lastmod(2002)
}
unit GraphMath;
{$Mode OBJFPC} {$H+}
interface
Uses
Types, Classes, SysUtils, Math, LCLProc;
Type
TFloatPoint = Record
X, Y : Extended;
end;
TBezier = Array[0..3] of TFloatPoint;
PPoint = ^TPoint;
procedure Angles2Coords(X,Y, Width, Height : Integer;
Angle1, Angle2 : Extended; var SX, SY, EX, EY : Integer);
procedure Arc2Bezier(X, Y, Width, Height : Longint; Angle1, Angle2,
Rotation : Extended; var Points : TBezier);
function Bezier(const C1,C2,C3,C4 : TFloatPoint): TBezier; Overload; inline;
function Bezier(const C1,C2,C3,C4 : TPoint): TBezier; Overload; inline;
procedure Bezier2Polyline(const Bezier : TBezier; var Points : PPoint;
var Count : Longint);
procedure BezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
Rotation : Extended; var Points : PPoint; var Count : Longint);
function BezierMidPoint(Bezier : TBezier) : TFloatPoint;
procedure Coords2Angles(X, Y, Width, Height : Integer; SX, SY,
EX, EY : Integer; var Angle1, Angle2 : Extended);
function Distance(PT1,Pt2 : TPoint) : Extended; overload;
function Distance(Pt, SP, EP : TFloatPoint) : Extended; overload;
function EccentricAngle(PT : TPoint; Rect : TRect) : Extended;
function EllipseRadialLength(Rect : TRect; EccentricAngle : Extended) : Longint;
function FloatPoint(AX,AY : Extended): TFloatPoint;
function LineEndPoint(StartPoint : TPoint; Angle, Length : Extended) : TPoint;
procedure PolyBezier2Polyline(Beziers: Array of TBezier;
var Points : PPoint; var Count : Longint); Overload;
procedure PolyBezier2Polyline(Beziers : Array of TPoint;
var Points : PPoint; var Count : Longint;
Continuous : Boolean); Overload;
procedure PolyBezier2Polyline(Beziers : PPoint; BCount : Longint;
var Points : PPoint; var Count : Longint;
Continuous : Boolean); Overload;
procedure PolyBezierArcPoints(X, Y, Width, Height : Longint; Angle1,
Angle2, Rotation : Extended; var Points : PPoint; var Count : Longint);
function Quadrant(PT, Center : TPoint) : Integer;
function RadialPoint(EccentricAngle : Extended; Rect : TRect) : TPoint;
procedure SplitBezier(Bezier : TBezier; var Left, Right : TBezier);
Operator + (Addend1, Addend2 : TFloatPoint) : TFloatPoint;
Operator + (Addend1 : TFloatPoint; Addend2 : Extended) : TFloatPoint;
Operator + (Addend1 : Extended; Addend2 : TFloatPoint) : TFloatPoint;
Operator + (Addend1 : TFloatPoint; Addend2 : TPoint) : TFloatPoint;
Operator + (Addend1 : TPoint; Addend2 : TFloatPoint) : TFloatPoint;
Operator - (Minuend : TFloatPoint; Subtrahend : Extended) : TFloatPoint;
Operator - (Minuend, Subtrahend : TFloatPoint) : TFloatPoint;
Operator - (Minuend : TFloatPoint; Subtrahend : TPoint) : TFloatPoint;
Operator - (Minuend : TPoint; Subtrahend : TFloatPoint) : TFloatPoint;
Operator * (Multiplicand, Multiplier : TFloatPoint) : TFloatPoint;
Operator * (Multiplicand : TFloatPoint; Multiplier : Extended) : TFloatPoint;
Operator * (Multiplicand : Extended; Multiplier : TFloatPoint) : TFloatPoint;
Operator * (Multiplicand : TFloatPoint; Multiplier : TPoint) : TFloatPoint;
Operator * (Multiplicand : TPoint; Multiplier : TFloatPoint) : TFloatPoint;
Operator / (Dividend, Divisor : TFloatPoint) : TFloatPoint;
Operator / (Dividend : TFloatPoint; Divisor : Extended) : TFloatPoint;
Operator / (Dividend : TFloatPoint; Divisor : TPoint) : TFloatPoint;
Operator / (Dividend : TPoint; Divisor : TFloatPoint) : TFloatPoint;
Operator = (Compare1, Compare2 : TPoint) : Boolean;
Operator = (Compare1, Compare2 : TFloatPoint) : Boolean;
Operator := (Value : TFloatPoint) : TPoint;
Operator := (Value : TPoint) : TFloatPoint;
Operator = (Compare1, Compare2 : TRect) : Boolean;
implementation
Operator + (Addend1, Addend2 : TFloatPoint) : TFloatPoint;
Begin
With Result do begin
X := Addend1.X + Addend2.X;
Y := Addend1.Y + Addend2.Y;
end;
end;
Operator + (Addend1 : TFloatPoint; Addend2 : Extended) : TFloatPoint;
Begin
With Result do begin
X := Addend1.X + Addend2;
Y := Addend1.Y + Addend2;
end;
end;
Operator + (Addend1 : Extended; Addend2 : TFloatPoint) : TFloatPoint;
begin
Result := Addend2 + Addend1;
end;
Operator + (Addend1 : TFloatPoint; Addend2 : TPoint) : TFloatPoint;
Begin
With Result do begin
X := Addend1.X + Addend2.X;
Y := Addend1.Y + Addend2.Y;
end;
end;
Operator + (Addend1 : TPoint; Addend2 : TFloatPoint) : TFloatPoint;
begin
Result := Addend2 + Addend1;
end;
Operator - (Minuend, Subtrahend:TFloatPoint) : TFloatPoint;
Begin
With Result do begin
X := Minuend.X - Subtrahend.X;
Y := Minuend.Y - Subtrahend.Y;
end;
end;
Operator - (Minuend : TFloatPoint; Subtrahend : Extended) : TFloatPoint;
Begin
With Result do begin
X := Minuend.X - Subtrahend;
Y := Minuend.Y - Subtrahend;
end;
end;
Operator - (Minuend : TFloatPoint; Subtrahend : TPoint) : TFloatPoint;
begin
With Result do begin
X := Minuend.X - Subtrahend.X;
Y := Minuend.Y - Subtrahend.Y;
end;
end;
Operator - (Minuend : TPoint; Subtrahend : TFloatPoint) : TFloatPoint;
begin
With Result do begin
X := Minuend.X - Subtrahend.X;
Y := Minuend.Y - Subtrahend.Y;
end;
end;
Operator * (Multiplicand, Multiplier : TFloatPoint) : TFloatPoint;
Begin
With Result do begin
X := Multiplicand.X * Multiplier.X;
Y := Multiplicand.Y * Multiplier.Y;
end;
end;
Operator * (Multiplicand : TFloatPoint; Multiplier : Extended) : TFloatPoint;
Begin
With Result do begin
X := Multiplicand.X * Multiplier;
Y := Multiplicand.Y * Multiplier;
end;
end;
Operator * (Multiplicand : Extended; Multiplier : TFloatPoint) : TFloatPoint;
Begin
Result := Multiplier*Multiplicand;
end;
Operator * (Multiplicand : TFloatPoint; Multiplier : TPoint) : TFloatPoint;
begin
With Result do begin
X := Multiplicand.X * Multiplier.X;
Y := Multiplicand.Y * Multiplier.Y;
end;
end;
Operator * (Multiplicand : TPoint; Multiplier : TFloatPoint) : TFloatPoint;
begin
Result := Multiplier*Multiplicand;
end;
Operator / (Dividend, Divisor : TFloatPoint) : TFloatPoint;
Begin
With Result do begin
X := Dividend.X / Divisor.X;
Y := Dividend.Y / Divisor.Y;
end;
end;
Operator / (Dividend : TFloatPoint; Divisor : Extended) : TFloatPoint;
begin
With Result do begin
X := Dividend.X / Divisor;
Y := Dividend.Y / Divisor;
end;
end;
Operator / (Dividend : TFloatPoint; Divisor : TPoint) : TFloatPoint;
begin
With Result do begin
X := Dividend.X / Divisor.X;
Y := Dividend.Y / Divisor.Y;
end;
end;
Operator / (Dividend : TPoint; Divisor : TFloatPoint) : TFloatPoint;
begin
With Result do begin
X := Dividend.X / Divisor.X;
Y := Dividend.Y / Divisor.Y;
end;
end;
Operator = (Compare1, Compare2 : TPoint) : Boolean;
begin
Result := (Compare1.X = Compare2.X) and (Compare1.Y = Compare2.Y);
end;
Operator = (Compare1, Compare2 : TFloatPoint) : Boolean;
begin
Result := (Compare1.X = Compare2.X) and (Compare1.Y = Compare2.Y);
end;
Operator := (Value : TFloatPoint) : TPoint;
begin
With Result do begin
X := Trunc(SimpleRoundTo(Value.X, 0));
Y := Trunc(SimpleRoundTo(Value.Y, 0));
end;
end;
Operator := (Value : TPoint) : TFloatPoint;
begin
With Result do begin
X := Value.X;
Y := Value.Y;
end;
end;
Operator = (Compare1, Compare2 : TRect) : Boolean;
begin
Result := (Compare1.Left = Compare2.Left) and
(Compare1.Top = Compare2.Top) and
(Compare1.Right = Compare2.Right) and
(Compare1.Bottom = Compare2.Bottom);
end;
{------------------------------------------------------------------------------
Method: Angles2Coords
Params: x,y,width,height,angle1,angle2, sx, sy, ex, ey
Returns: Nothing
Use Angles2Coords to convert an Eccentric(aka Radial) Angle and an
Angle-Length, such as are used in X-Windows and GTK, into the coords,
for Start and End Radial-Points, such as are used in the Windows API Arc
Pie and Chord routines. The angles are 1/16th of a degree. For example, a
full circle equals 5760 (16*360). Positive values of Angle and AngleLength
mean counter-clockwise while negative values mean clockwise direction.
Zero degrees is at the 3'o clock position.
------------------------------------------------------------------------------}
procedure Angles2Coords(X, Y, Width, Height : Integer;
Angle1, Angle2 : Extended; var SX, SY, EX, EY : Integer);
var
aRect : TRect;
SP, EP : TPoint;
begin
aRect := Rect(X,Y,X + Width,Y + Height);
SP := RadialPoint(Angle1 , aRect);
If Angle2 + Angle1 > 360*16 then
Angle2 := (Angle2 + Angle1) - 360*16
else
Angle2 := Angle2 + Angle1;
EP := RadialPoint(Angle2, aRect);
SX := SP.X;
SY := SP.Y;
EX := EP.X;
EY := EP.Y;
end;
{------------------------------------------------------------------------------
Method: Arc2Bezier
Params: X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
Returns: Nothing
Use Arc2Bezier to convert an Arc and ArcLength into a Bezier Aproximation
of the Arc. The Rotation parameter accepts a Rotation-Angle for a rotated
Ellipse'- for a non-rotated ellipse this value would be 0, or 360. If the
AngleLength is greater than 90 degrees, or is equal to 0, it automatically
exits, as Bezier cannot accurately aproximate any angle greater then 90
degrees, and in fact for best result no angle greater than 45 should be
converted, instead an array of Bezier's should be created, each Bezier
descibing a portion of the total arc no greater than 45 degrees. The angles
are 1/16th of a degree. For example, a full circle equals 5760 (16*360).
Positive values of Angle and AngleLength mean counter-clockwise while
negative values mean clockwise direction. Zero degrees is at the 3'o clock
position.
------------------------------------------------------------------------------}
procedure Arc2Bezier(X, Y, Width, Height : Longint; Angle1, Angle2,
Rotation : Extended; var Points : TBezier);
function Rotate(Point : TFloatPoint; Rotation : Extended) : TFloatPoint;
var
SinA,CosA : Extended;
begin
CosA := cos(Rotation);
SinA := Sin(Rotation);
Result.X := Point.X*CosA + Point.Y*SinA;
Result.Y := Point.X*SinA - Point.Y*CosA;
end;
function Scale(Point : TFloatPoint; ScaleX, ScaleY : Extended) : TFloatPoint;
begin
Result := Point*FloatPoint(ScaleX,ScaleY);
end;
var
Beta : Extended;
P : array[0..3] of TFLoatPoint;
SinA,CosA : Extended;
A,B : Extended;
I : Longint;
PT : TPoint;
ScaleX, ScaleY : Extended;
begin
If ABS(Angle2) > 90*16 then
exit;
If Angle2 = 0 then
exit;
B := Extended(Height) / 2;
A := Extended(Width) / 2;
If (A <> B) and (A <> 0) and (B <> 0) then begin
If A > B then begin
ScaleX := Extended(Width) / Height;
ScaleY := 1;
A := B;
end
else begin
ScaleX := 1;
ScaleY := Extended(Height) / Width;
B := A;
end;
end
else begin
ScaleX := 1;
ScaleY := 1;
end;
Angle1 := DegToRad(Angle1/16);
Angle2 := DegToRad(Angle2/16);
Rotation := -DegToRad(Rotation/16);
Beta := (4/3)*(1 - Cos(Angle2/2))/(Sin(Angle2/2));
PT := CenterPoint(Rect(X, Y, X+Width, Y + Height));
CosA := cos(Angle1);
SinA := sin(Angle1);
P[0].X := A *CosA;
P[0].Y := B *SinA;
P[1].X := P[0].X - Beta * A * SinA;
P[1].Y := P[0].Y + Beta * B * CosA;
CosA := cos(Angle1 + Angle2);
SinA := sin(Angle1 + Angle2);
P[3].X := A *CosA;
P[3].Y := B *SinA;
P[2].X := P[3].X + Beta * A * SinA;
P[2].Y := P[3].Y - Beta * B * CosA;
For I := 0 to 3 do
begin
Points[I] := Scale(P[I],ScaleX, ScaleY); //Scale to proper size
Points[I] := Rotate(Points[I], Rotation); //Rotate Counter-Clockwise
Points[I] := Points[I] + PT; //Translate to Center
end;
end;
{------------------------------------------------------------------------------
Method: Bezier
Params: C1,C2,C3,C4
Returns: TBezier
Use Bezier to get a TBezier. It is Primarily for use with and in Bezier
routines.
------------------------------------------------------------------------------}
function Bezier(const C1,C2,C3,C4 : TFloatPoint): TBezier;
begin
Result[0] := C1;
Result[1] := C2;
Result[2] := C3;
Result[3] := C4;
end;
{------------------------------------------------------------------------------
Method: Bezier
Params: C1,C2,C3,C4
Returns: TBezier
Use Bezier to get a TBezier. It is Primarily for use with and in Bezier
routines.
------------------------------------------------------------------------------}
function Bezier(const C1,C2,C3,C4 : TPoint): TBezier;
begin
Result[0] := FloatPoint(C1.X,C1.Y);
Result[1] := FloatPoint(C2.X,C2.Y);
Result[2] := FloatPoint(C3.X,C3.Y);
Result[3] := FloatPoint(C4.X,C4.Y);
end;
{------------------------------------------------------------------------------
Method: Bezier2Polyline
Params: Bezier, Points, Count
Returns: Nothing
Use BezierToPolyline to convert a 4-Point Bezier into a Pointer Array of
TPoint and a Count variable which can then be used within either a Polyline,
or Polygon routine. It is primarily for use within PolyBezier2Polyline. If
Points is not initialized or Count is less then 0, it is set to nil and
the array starts at 0, otherwise it tries to append points
to the array starting at Count. Points should ALWAYS be Freed when done
by calling to ReallocMem(Points, 0) or FreeMem.
------------------------------------------------------------------------------}
procedure Bezier2Polyline(const Bezier : TBezier; var Points : PPoint;
var Count : Longint);
var
Pt : TPoint;
procedure AddPoint(const Point : TFloatPoint);
var
P : TPoint;
begin
P := Point;
if (Pt <> P) then
begin
Inc(Count);
ReallocMem(Points, SizeOf(TPoint) * Count);
Points[Count - 1] := P;
Pt := P;
end;
end;
function Colinear(BP : TBezier; Tolerance : Extended) : Boolean;
var
D : Extended;
begin
D := SQR(Distance(BP[1], BP[0], BP[3]));
Result := D < Tolerance;
D := SQR(Distance(BP[2], BP[0], BP[3]));
If Result then
Result := Result and (D < Tolerance);
end;
procedure SplitRecursive(B : TBezier);
var
Left,
Right : TBezier;
begin
If Colinear(B, 1) then begin
AddPoint(B[0]);
AddPoint(B[3]);
end
else begin
SplitBezier(B,left,right);
SplitRecursive(left);
SplitRecursive(right);
end;
end;
begin
Pt := Point(-1,-1);
If (not Assigned(Points)) or (Count <= 0) then
begin
Count := 0;
if Assigned(Points) then
ReallocMem(Points, 0);
end;
SplitRecursive(Bezier);
end;
{------------------------------------------------------------------------------
Method: BezierArcPoints
Params: X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
Returns: Nothing
Use BezierArcPoints to convert an Arc and ArcLength into a Pointer Array
of TPoints for use with Polyline or Polygon. The Rotation parameter accepts
a Rotation-Angle for a rotated Ellipse'- for a non-rotated ellipse this
value would be 0, or 360. The result is an Aproximation based on 1 or more
Beziers. If the AngleLength is greater than 90 degrees, it calls
PolyBezierArcPoints, otherwise it Converts the angles into a Bezier by
calling to Arc2Bezier, and then converts the Bezier into an array of Points
by calling to Bezier2Polyline. The angles are 1/16th of a degree. For example,
a full circle equals 5760 (16*360). Positive values of Angle and AngleLength
mean counter-clockwise while negative values mean clockwise direction. Zero
degrees is at the 3'o clock position. If Points is not initialized or Count
is less then 0, it is set to nil and the array starts at 0,
otherwise it tries to append points to the array starting at Count. Points
should ALWAYS be Freed when done by calling ReallocMem(Points, 0) or FreeMem.
------------------------------------------------------------------------------}
procedure BezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
Rotation : Extended; var Points : PPoint; var Count : Longint);
var
B : TBezier;
begin
If ABS(Angle2) > 90*16 then begin
PolyBezierArcPoints(X, Y, Width, Height, Angle1, Angle2, Rotation, Points,
Count);
Exit;
end;
If Angle2 = 0 then
exit;
If (not Assigned(Points)) or (Count <= 0) then
begin
Count := 0;
if Assigned(Points) then
ReallocMem(Points, 0);
end;
Arc2Bezier(X, Y, Width, Height, Angle1, Angle2, Rotation, B);
Bezier2Polyline(B,Points,Count);
end;
{------------------------------------------------------------------------------
Method: BezierMidPoint
Params: Bezier
Returns: TFloatPoint
Use BezierMidPoint to get the Mid-Point of any 4-Point Bezier. It is
primarily for use in SplitBezier.
------------------------------------------------------------------------------}
function BezierMidPoint(Bezier : TBezier) : TFloatPoint;
begin
Result := (Bezier[0] + 3*Bezier[1] + 3*Bezier[2] + Bezier[3]) / 8;
end;
{------------------------------------------------------------------------------
Method: Coords2Angles
Params: x,y,width,height,sx,sy,ex,ey, angle1,angle2
Returns: Nothing
Use Coords2Angles to convert the coords for Start and End Radial-Points, such
as are used in the Windows API Arc Pie and Chord routines, into an Eccentric
(aka Radial) counter clockwise Angle and an Angle-Length, such as are used in
X-Windows and GTK. The angles angle1 and angle2 are returned in 1/16th of a
degree. For example, a full circle equals 5760 (16*360). Zero degrees is at
the 3'o clock position.
------------------------------------------------------------------------------}
procedure Coords2Angles(X, Y, Width, Height : Integer; SX, SY,
EX, EY : Integer; var Angle1, Angle2 : Extended);
var
aRect : TRect;
SP,EP : TPoint;
begin
aRect := Rect(X,Y,X + Width,Y + Height);
SP := Point(SX,SY);
EP := Point(EX,EY);
Angle1 := EccentricAngle(SP, aRect);
Angle2 := EccentricAngle(EP, aRect);
If Angle2 < Angle1 then
Angle2 := 360*16 - (Angle1 - Angle2)
else
Angle2 := Angle2 - Angle1;
end;
{------------------------------------------------------------------------------
Method: Distance
Params: PT1, PT2
Returns: Extended
Use Distance to get the distance between any two Points. It is primarily
for use in other routines such as EccentricAngle.
------------------------------------------------------------------------------}
function Distance(Pt1,Pt2 : TPoint) : Extended;
begin
Result := Sqrt(Sqr(Pt2.X - Pt1.X) + Sqr(Pt2.Y - Pt1.Y));
end;
{------------------------------------------------------------------------------
Method: Distance
Params: PT, SP,EP
Returns: Extended
Use Distance to get the distance between any point(PT) and a line defined
by any two points(SP, EP). Intended for use in Bezier2Polyline, so params
are TFloatPoint's, NOT TPoint's.
------------------------------------------------------------------------------}
function Distance(Pt, SP, EP : TFloatPoint) : Extended;
var
A, B, C : Extended;
function Slope(PT1,Pt2 : TFloatPoint) : Extended;
begin
If Pt2.X <> Pt1.X then
Result := (Pt2.Y - Pt1.Y) / (Pt2.X - Pt1.X)
else
Result := 1;
end;
function YIntercept(PT1,Pt2 : TFloatPoint) : Extended;
begin
Result := Pt1.Y - Slope(Pt1,Pt2)*Pt1.X;
end;
begin
A := -Slope(SP,EP);
B := 1;
C := -YIntercept(SP, EP);
Result := ABS(A*Pt.X + B*Pt.Y + C)/Sqrt(Sqr(A) + Sqr(B));
end;
{------------------------------------------------------------------------------
Method: EccentricAngle
Params: Pt, Rect
Returns: Extended
Use EccentricAngle to get the Eccentric( aka Radial ) Angle of a given
point on any non-rotated ellipse. It is primarily for use in Coords2Angles.
The result is in 1/16th of a degree. For example, a full circle equals
5760 (16*360). Zero degrees is at the 3'o clock position.
------------------------------------------------------------------------------}
function EccentricAngle(PT : TPoint; Rect : TRect) : Extended;
var
CenterPt : TPoint;
Quad : Integer;
Theta : Extended;
begin
CenterPt := CenterPoint(Rect);
Quad := Quadrant(Pt,CenterPt);
Theta := -1;
Case Quad of
1..4:
begin
Theta := Distance(CenterPt,Pt);
If Theta > 0 then
Theta := RadToDeg(ArcSin(ABS(PT.Y - CenterPt.Y) / Theta));
end;
end;
Case Quad of
0:{ 0, 0}
Theta := -1;
1:{ X, Y}
Theta := Theta;
2:{-X, Y}
Theta := 180 - Theta;
3:{-X,-Y}
Theta := 180 + Theta;
4:{ X,-Y}
Theta := 360 - Theta;
5:{ 0, Y}
Theta := 90;
6:{ X, 0}
Theta := 0;
7:{ 0,-Y}
Theta := 270;
8:{-X, 0}
Theta := 180;
end;
Result := Theta*16;
end;
{------------------------------------------------------------------------------
Method: EllipseRadialLength
Params: Rect, EccentricAngle
Returns: Longint
Use EllipseRadialLength to get the Radial-Length of non-rotated ellipse at
any given Eccentric( aka Radial ) Angle. It is primarily for use in other
routines such as RadialPoint. The Eccentric angle is in 1/16th of a degree.
For example, a full circle equals 5760 (16*360). Zero degrees is at the
3'o clock position.
------------------------------------------------------------------------------}
function EllipseRadialLength(Rect : TRect; EccentricAngle : Extended) : Longint;
var
a, b, R : Extended;
begin
a := (Rect.Right - Rect.Left) div 2;
b := (Rect.Bottom - Rect.Top) div 2;
R := Sqr(a)*Sqr(b);
if R <> 0 then
R := Sqrt(R / ((Sqr(b)*Sqr(Cos(DegToRad(EccentricAngle/16)))) +
(Sqr(a)*Sqr(Sin(DegToRad(EccentricAngle/16))))));
Result := TruncToInt(R);
end;
{------------------------------------------------------------------------------
Method: FloatPoint
Params: AX, AY
Returns: TFloatPoint
Use FloatPoint to get a TFloatPoint. It is essentialy like Classes. Point in
use, except that it excepts Extended Parameters. It is Primarily for use with
and in Bezier routines.
------------------------------------------------------------------------------}
function FloatPoint(AX,AY : Extended): TFloatPoint;
begin
With Result do begin
X := AX;
Y := AY;
end;
end;
{------------------------------------------------------------------------------
Method: LineEndPoint
Params: StartPoint, Angle, Length
Returns: TPoint
Use LineEndPoint to get the End-Point of a line of any given Length at
any given angle with any given Start-Point. It is primarily for use in
other routines such as RadialPoint. The angle is in 1/16th of a degree.
For example, a full circle equals 5760 (16*360). Zero degrees is at the
3'o clock position.
------------------------------------------------------------------------------}
function LineEndPoint(StartPoint : TPoint; Angle, Length : Extended) :
TPoint;
begin
if Angle > 360*16 then
Angle := Frac(Angle / 360*16) * 360*16;
if Angle < 0 then
Angle := 360*16 - abs(Angle);
Result.Y := StartPoint.Y - Round(Length*Sin(DegToRad(Angle/16)));
Result.X := StartPoint.X + Round(Length*Cos(DegToRad(Angle/16)));
end;
{------------------------------------------------------------------------------
Method: PolyBezier2Polyline
Params: Beziers, Points, Count
Returns: Nothing
Use BezierToPolyline to convert an array of 4-Point Bezier into a Pointer
Array of TPoint and a Count variable which can then be used within either a
Polyline, or Polygon routine. Points is automatically initialized, so any
existing information is lost, and the array starts at 0. Points should ALWAYS
be Freed when done by calling to ReallocMem(Points, 0).
------------------------------------------------------------------------------}
procedure PolyBezier2Polyline(Beziers: Array of TBezier;
var Points : PPoint; var Count : Longint);
var
I : Integer;
begin
If (High(Beziers) < 1) then
exit;
Count := 0;
If Assigned(Points) then
Try
ReallocMem(Points, 0)
Finally
Points := nil;
end;
For I := 0 to High(Beziers) - 1 do
Bezier2PolyLine(Beziers[I], Points, Count);
end;
{------------------------------------------------------------------------------
Method: PolyBezier2Polyline
Params: Beziers, Points, Count, Continuous
Returns: Nothing
Use BezierToPolyline to convert an array of TPoints descibing 1 or more
4-Point Beziers into a Pointer Array of TPoint and a Count variable which
can then be used within either a Polyline, or Polygon routine. If Continuous
is set to true then the first point of each Bezier is the last point of
the preceding Bezier, so every bezier must have 3 described points, in
addition to the initial Starting Point; otherwise each Bezier must have 4
points. If there are an uneven number of points then the last set of points
is ignored. Points is automatically initialized, so any existing information
is lost, and the array starts at 0. Points should ALWAYS be Freed when done
by calling to ReallocMem(Points, 0).
------------------------------------------------------------------------------}
procedure PolyBezier2Polyline(Beziers : Array of TPoint; var Points : PPoint;
var Count : Longint; Continuous : Boolean);
begin
PolyBezier2Polyline(@Beziers[0],High(Beziers) + 1, Points, Count,
Continuous);
end;
procedure PolyBezier2Polyline(Beziers : PPoint; BCount : Longint;
var Points : PPoint; var Count : Longint; Continuous : Boolean);
var
I : Integer;
NB : Longint;
begin
If BCount < 4 then
exit;
Count := 0;
If Assigned(Points) then
Try
ReallocMem(Points, 0)
Finally
Points := nil;
end;
If Not Continuous then begin
NB := BCount;
NB := NB div 4;
For I := 0 to NB - 1 do
Bezier2PolyLine(Bezier(Beziers[I*4],Beziers[I*4+1],
Beziers[I*4+2],Beziers[I*4+3]), Points, Count);
end
else begin
NB := BCount - 1;
NB := NB div 3;
For I := 0 to NB-1 do
Bezier2PolyLine(Bezier(Beziers[(I - 1)*3 + 3],Beziers[I*3 + 1],
Beziers[I*3+2],Beziers[I*3+3]), Points, Count);
end;
end;
{------------------------------------------------------------------------------
Method: PolyBezierArcPoints
Params: X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
Returns: Nothing
Use PolyBezierArcPoints to convert an Agnle and AgnleLength into a
Pointer Array of TPoints for use with Polyline or Polygon.
The Rotation parameter accepts a Rotation-Angle for a rotated Ellipse'- for
a non-rotated ellipse this value would be 0, or 360*16.
The result is an Aproximation based on 1 or more Beziers. If the AngleLength
is greater than 45*16 degrees, it recursively breaks the Arc into Arcs of
45*16 degrees or less, and converts them into Beziers with BezierArcPoints.
The angles are 1/16th of a degree. For example, a full circle equals
5760 (16*360).
Positive values of Angle and AngleLength mean counter-clockwise while negative
values mean clockwise direction. Zero degrees is at the 3'o clock position.
Points is automatically initialized, so any existing information is lost,
and the array starts at 0. Points should ALWAYS be Freed when done by calling
to ReallocMem(Points, 0).
------------------------------------------------------------------------------}
procedure PolyBezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
Rotation : Extended; var Points : PPoint; var Count : Longint);
var
I,K : Integer;
FullAngle : Extended;
TST : Boolean;
begin
If Abs(Angle2) > 360*16 then begin
Angle2 := 360*16;
Angle1 := 0;
end;
If Abs(Rotation) > 360*16 then
Rotation := Frac(Rotation / 360*16)*360*16;
FullAngle := Angle1 + Angle2;
K := Ceil(ABS(Angle2/16) / 45);
Count := 0;
If Assigned(Points) then
Try
ReallocMem(Points, 0)
Finally
Points := nil;
end;
If Angle2 > 45*16 then
Angle2 := 45*16
else
If Angle2 < -45*16 then
Angle2 := -45*16;
For I := 0 to K - 1 do begin
BezierArcPoints(X, Y, Width,Height,Angle1,Angle2,Rotation,Points,Count);
Angle1 := Angle1 + Angle2;
If Angle2 > 0 then
TST := (FullAngle - Angle1) > 45*16
else
TST := ABS(FullAngle - Angle1) > 45*16;
If TST then begin
If Angle2 > 0 then
Angle2 := 45*16
else
Angle2 := -45*16;
end
else begin
If Angle2 > 0 then
Angle2 := FullAngle - Angle1
else
Angle2 := -(FullAngle - Angle1);
end;
end;
end;
{------------------------------------------------------------------------------
Method: Quadrant
Params: PT, Center
Returns: Integer
Use Quadrant to determine the Quadrant of any point, given the Center.
It is primarily for use in other routines such as EccentricAngle. A result
of 1-4 represents the primary 4 quardants. A result of 5-8 means the point
lies on one of the Axis', 5 = -Y Axis, 6 = +X Axis, 7 = +Y Axis, and
8 = -X Axis. A result of -1 means that it does not fall in any quadrant,
that is, it is the Center.
------------------------------------------------------------------------------}
function Quadrant(Pt,Center : TPoint) : Integer;
var
X,Y,CX,CY : Longint;
begin
X := Pt.X;
Y := Pt.Y;
CX := Center.X;
CY := Center.Y;
Result := -1;
If (Y < CY) then begin
If (X > CX) then begin
Result := 1;
end
else
If (X < CX) then begin
Result := 2;
end
else begin
Result := 5;
end;
end
else
If (Y > CY) then begin
If (X < CX) then begin
Result := 3;
end
else
If (X > CX) then begin
Result := 4;
end
else begin
Result := 7;
end;
end
else
If (Y = CY) then begin
If (X > CX) then begin
Result := 6;
end
else
If (X < CX) then begin
Result := 8;
end;
end;
end;
{------------------------------------------------------------------------------
Method: RadialPointAngle
Params: EccentricAngle, Rect
Returns: TPoint
Use RadialPoint to get the Radial-Point at any given Eccentric( aka Radial )
angle on any non-rotated ellipse. It is primarily for use in Angles2Coords.
The EccentricAngle is in 1/16th of a degree. For example, a full circle
equals 5760 (16*360). Zero degrees is at the 3'o clock position.
------------------------------------------------------------------------------}
function RadialPoint(EccentricAngle : Extended; Rect : TRect) : TPoint;
var
R : Longint;
Begin
R := EllipseRadialLength(Rect,EccentricAngle);
Result := LineEndPoint(CenterPoint(Rect), EccentricAngle, R);
end;
{------------------------------------------------------------------------------
Method: SplitBezier
Params: Bezier, Left, Right
Returns: Nothing
Use SplitBezier to split any 4-Point Bezier into two 4-Point Bezier's :
a 'Left' and a 'Right'. It is primarily for use in Bezier2Polyline.
------------------------------------------------------------------------------}
procedure SplitBezier(Bezier : TBezier; var Left, Right : TBezier);
var
Tmp : TFloatPoint;
begin
Tmp := (Bezier[1] + Bezier[2]) / 2;
left[0] := Bezier[0];
Left[1] := (Bezier[0] + Bezier[1]) / 2;
left[2] := (Left[1] + Tmp) / 2;
Left[3] := BezierMidPoint(Bezier);
right[3] := Bezier[3];
right[2] := (Bezier[2] + Bezier[3]) / 2;
Right[1] := (Right[2] + Tmp) / 2;
right[0] := BezierMidPoint(Bezier);
end;
end.
|