This file is indexed.

/usr/lib/lazarus/0.9.30.4/lcl/graphmath.pp is in lazarus-src-0.9.30.4 0.9.30.4-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
{
/***************************************************************************
                             GraphMath.pp
                             ------------
         Math helper routines for use within Graphics/Drawing & related
                   Initial Revision  : Wed Aug 07 2002


***************************************************************************/

*****************************************************************************
*                                                                           
*  This file is part of the Lazarus Component Library (LCL)
*
*  See the file COPYING.modifiedLGPL.txt, included in this distribution,
*  for details about the copyright.
*
*  This program is distributed in the hope that it will be useful,
*  but WITHOUT ANY WARRANTY; without even the implied warranty of
*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
*****************************************************************************
}
{
@abstract(A Set of Math Helper routines to simply Cross-Platfrom Canvas, 
etc)
@author(Andrew Johnson <AJ_Genius@Hotmail.com>)
@created(2002)
@lastmod(2002)
}
unit GraphMath;

{$Mode OBJFPC} {$H+}

interface

Uses
  Types, Classes, SysUtils, Math, LCLProc;

Type
  TFloatPoint = Record
    X, Y : Extended;
  end;

  TBezier = Array[0..3] of TFloatPoint;

  PPoint = ^TPoint;

procedure Angles2Coords(X,Y, Width, Height : Integer;
  Angle1, Angle2 : Extended; var SX, SY, EX, EY : Integer);

procedure Arc2Bezier(X, Y, Width, Height : Longint; Angle1, Angle2,
  Rotation : Extended; var Points : TBezier);

function Bezier(const C1,C2,C3,C4 : TFloatPoint): TBezier; Overload; inline;
function Bezier(const C1,C2,C3,C4 : TPoint): TBezier; Overload; inline;

procedure Bezier2Polyline(const Bezier : TBezier; var Points : PPoint;
  var Count : Longint);

procedure BezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
  Rotation : Extended; var Points : PPoint; var Count : Longint);

function BezierMidPoint(Bezier : TBezier) : TFloatPoint;

procedure Coords2Angles(X, Y, Width, Height : Integer; SX, SY,
  EX, EY : Integer; var Angle1, Angle2 : Extended);

function Distance(PT1,Pt2 : TPoint) : Extended; overload;
function Distance(Pt, SP, EP : TFloatPoint) : Extended; overload;

function EccentricAngle(PT : TPoint; Rect : TRect) : Extended;

function EllipseRadialLength(Rect : TRect; EccentricAngle : Extended) : Longint;

function FloatPoint(AX,AY : Extended): TFloatPoint;

function LineEndPoint(StartPoint : TPoint; Angle, Length : Extended) : TPoint;

procedure PolyBezier2Polyline(Beziers: Array of TBezier;
  var Points : PPoint; var Count : Longint); Overload;
procedure PolyBezier2Polyline(Beziers : Array of TPoint; 
  var Points : PPoint; var Count : Longint; 
  Continuous : Boolean); Overload;
procedure PolyBezier2Polyline(Beziers : PPoint; BCount : Longint;
  var Points : PPoint; var Count : Longint; 
  Continuous : Boolean); Overload;

procedure PolyBezierArcPoints(X, Y, Width, Height : Longint; Angle1,
  Angle2, Rotation : Extended; var Points : PPoint; var Count : Longint);

function Quadrant(PT, Center : TPoint) : Integer;

function RadialPoint(EccentricAngle : Extended; Rect : TRect) : TPoint;

procedure SplitBezier(Bezier : TBezier; var Left, Right : TBezier);

Operator + (Addend1, Addend2 : TFloatPoint) : TFloatPoint;
Operator + (Addend1 : TFloatPoint; Addend2 : Extended) : TFloatPoint;
Operator + (Addend1 : Extended; Addend2 : TFloatPoint) : TFloatPoint;
Operator + (Addend1 : TFloatPoint; Addend2 : TPoint) : TFloatPoint;
Operator + (Addend1 : TPoint; Addend2 : TFloatPoint) : TFloatPoint;

Operator - (Minuend : TFloatPoint; Subtrahend : Extended) : TFloatPoint;
Operator - (Minuend, Subtrahend : TFloatPoint) : TFloatPoint;
Operator - (Minuend : TFloatPoint; Subtrahend : TPoint) : TFloatPoint;
Operator - (Minuend : TPoint; Subtrahend : TFloatPoint) : TFloatPoint;

Operator * (Multiplicand, Multiplier : TFloatPoint) : TFloatPoint;
Operator * (Multiplicand : TFloatPoint; Multiplier : Extended) : TFloatPoint;
Operator * (Multiplicand : Extended; Multiplier : TFloatPoint) : TFloatPoint;
Operator * (Multiplicand : TFloatPoint; Multiplier : TPoint) : TFloatPoint;
Operator * (Multiplicand : TPoint; Multiplier : TFloatPoint) : TFloatPoint;

Operator / (Dividend, Divisor : TFloatPoint) : TFloatPoint;
Operator / (Dividend : TFloatPoint; Divisor : Extended) : TFloatPoint;
Operator / (Dividend : TFloatPoint; Divisor : TPoint) : TFloatPoint;
Operator / (Dividend : TPoint; Divisor : TFloatPoint) : TFloatPoint;

Operator = (Compare1, Compare2  : TPoint) : Boolean;
Operator = (Compare1, Compare2  : TFloatPoint) : Boolean;

Operator := (Value : TFloatPoint) : TPoint;

Operator := (Value : TPoint) : TFloatPoint;

Operator = (Compare1, Compare2  : TRect) : Boolean;


implementation


Operator + (Addend1, Addend2 : TFloatPoint) : TFloatPoint;
Begin
  With Result do begin
    X := Addend1.X + Addend2.X;
    Y := Addend1.Y + Addend2.Y;
  end;
end;

Operator + (Addend1 : TFloatPoint; Addend2 : Extended) : TFloatPoint;
Begin
  With Result do begin
    X := Addend1.X + Addend2;
    Y := Addend1.Y + Addend2;
  end;
end;

Operator + (Addend1 : Extended; Addend2 : TFloatPoint) : TFloatPoint;
begin
  Result := Addend2 + Addend1;
end;

Operator + (Addend1 : TFloatPoint; Addend2 : TPoint) : TFloatPoint;
Begin
  With Result do begin
    X := Addend1.X + Addend2.X;
    Y := Addend1.Y + Addend2.Y;
  end;
end;

Operator + (Addend1 : TPoint; Addend2 : TFloatPoint) : TFloatPoint;
begin
  Result := Addend2 + Addend1;
end;

Operator - (Minuend, Subtrahend:TFloatPoint) : TFloatPoint;
Begin
  With Result do begin
    X := Minuend.X - Subtrahend.X;
    Y := Minuend.Y - Subtrahend.Y;
  end;
end;

Operator - (Minuend : TFloatPoint; Subtrahend : Extended) : TFloatPoint;
Begin
  With Result do begin
    X := Minuend.X - Subtrahend;
    Y := Minuend.Y - Subtrahend;
  end;
end;

Operator - (Minuend : TFloatPoint; Subtrahend : TPoint) : TFloatPoint;
begin
  With Result do begin
    X := Minuend.X - Subtrahend.X;
    Y := Minuend.Y - Subtrahend.Y;
  end;
end;

Operator - (Minuend : TPoint; Subtrahend : TFloatPoint) : TFloatPoint;
begin
  With Result do begin
    X := Minuend.X - Subtrahend.X;
    Y := Minuend.Y - Subtrahend.Y;
  end;
end;

Operator * (Multiplicand, Multiplier : TFloatPoint) : TFloatPoint;
Begin
  With Result do begin
    X := Multiplicand.X * Multiplier.X;
    Y := Multiplicand.Y * Multiplier.Y;
  end;
end;

Operator * (Multiplicand : TFloatPoint; Multiplier : Extended) : TFloatPoint;
Begin
  With Result do begin
    X := Multiplicand.X * Multiplier;
    Y := Multiplicand.Y * Multiplier;
  end;
end;

Operator * (Multiplicand : Extended; Multiplier : TFloatPoint) : TFloatPoint;
Begin
  Result := Multiplier*Multiplicand;
end;

Operator * (Multiplicand : TFloatPoint; Multiplier : TPoint) : TFloatPoint;
begin
  With Result do begin
    X := Multiplicand.X * Multiplier.X;
    Y := Multiplicand.Y * Multiplier.Y;
  end;
end;

Operator * (Multiplicand : TPoint; Multiplier : TFloatPoint) : TFloatPoint;
begin
  Result := Multiplier*Multiplicand;
end;

Operator / (Dividend, Divisor : TFloatPoint) : TFloatPoint;
Begin
  With Result do begin
    X := Dividend.X / Divisor.X;
    Y := Dividend.Y / Divisor.Y;
  end;
end;

Operator / (Dividend : TFloatPoint; Divisor : Extended) : TFloatPoint;
begin
  With Result do begin
    X := Dividend.X / Divisor;
    Y := Dividend.Y / Divisor;
  end;
end;

Operator / (Dividend : TFloatPoint; Divisor : TPoint) : TFloatPoint;
begin
  With Result do begin
    X := Dividend.X / Divisor.X;
    Y := Dividend.Y / Divisor.Y;
  end;
end;

Operator / (Dividend : TPoint; Divisor : TFloatPoint) : TFloatPoint;
begin
  With Result do begin
    X := Dividend.X / Divisor.X;
    Y := Dividend.Y / Divisor.Y;
  end;
end;

Operator = (Compare1, Compare2  : TPoint) : Boolean;
begin
  Result := (Compare1.X = Compare2.X) and (Compare1.Y = Compare2.Y);
end;

Operator = (Compare1, Compare2  : TFloatPoint) : Boolean;
begin
  Result := (Compare1.X = Compare2.X) and (Compare1.Y = Compare2.Y);
end;

Operator := (Value : TFloatPoint) : TPoint;
begin
  With Result do begin
    X := Trunc(SimpleRoundTo(Value.X, 0));
    Y := Trunc(SimpleRoundTo(Value.Y, 0));
  end;
end;

Operator := (Value : TPoint) : TFloatPoint;
begin
  With Result do begin
    X := Value.X;
    Y := Value.Y;
  end;
end;

Operator = (Compare1, Compare2  : TRect) : Boolean;
begin
  Result := (Compare1.Left = Compare2.Left) and
            (Compare1.Top = Compare2.Top) and
            (Compare1.Right = Compare2.Right) and
            (Compare1.Bottom = Compare2.Bottom);
end;

{------------------------------------------------------------------------------
  Method:   Angles2Coords
  Params:   x,y,width,height,angle1,angle2, sx, sy, ex, ey
  Returns:  Nothing

  Use Angles2Coords to convert an Eccentric(aka Radial) Angle and an
  Angle-Length, such as are used in X-Windows and GTK, into the coords,
  for Start and End Radial-Points, such as are used in the Windows API Arc
  Pie and Chord routines. The angles are 1/16th of a degree. For example, a
  full circle equals 5760 (16*360). Positive values of Angle and AngleLength
  mean counter-clockwise while negative values mean clockwise direction. 
  Zero degrees is at the 3'o clock position.

------------------------------------------------------------------------------}
procedure Angles2Coords(X, Y, Width, Height : Integer;
  Angle1, Angle2 : Extended; var SX, SY, EX, EY : Integer);
var
  aRect : TRect;
  SP, EP : TPoint;
begin
  aRect := Rect(X,Y,X + Width,Y + Height);
  SP := RadialPoint(Angle1 , aRect);
  If Angle2 + Angle1 > 360*16 then
    Angle2 := (Angle2 + Angle1) - 360*16
  else
    Angle2 := Angle2 + Angle1;
  EP := RadialPoint(Angle2, aRect);
  SX := SP.X;
  SY := SP.Y;
  EX := EP.X;
  EY := EP.Y;
end;

{------------------------------------------------------------------------------
  Method:   Arc2Bezier
  Params:   X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
  Returns:  Nothing

  Use Arc2Bezier to convert an Arc and ArcLength into a Bezier Aproximation
  of the Arc. The Rotation parameter accepts a Rotation-Angle for a rotated
  Ellipse'- for a non-rotated ellipse this value would be 0, or 360. If the
  AngleLength is greater than 90 degrees, or is equal to 0, it automatically
  exits, as Bezier cannot accurately aproximate any angle greater then 90
  degrees, and in fact for best result no angle greater than 45 should be
  converted, instead an array of Bezier's should be created, each Bezier
  descibing a portion of the total arc no greater than 45 degrees. The angles
  are 1/16th of a degree. For example, a full circle equals 5760 (16*360).
  Positive values of Angle and AngleLength mean counter-clockwise while
  negative values mean clockwise direction. Zero degrees is at the 3'o clock
  position.

------------------------------------------------------------------------------}
procedure Arc2Bezier(X, Y, Width, Height : Longint; Angle1, Angle2,
  Rotation : Extended; var Points : TBezier);

  function Rotate(Point : TFloatPoint; Rotation : Extended) : TFloatPoint;
  var
    SinA,CosA : Extended;
  begin
    CosA := cos(Rotation);
    SinA := Sin(Rotation);
    Result.X := Point.X*CosA + Point.Y*SinA;
    Result.Y := Point.X*SinA - Point.Y*CosA;
  end;

  function Scale(Point : TFloatPoint; ScaleX, ScaleY : Extended) : TFloatPoint;
  begin
    Result := Point*FloatPoint(ScaleX,ScaleY);
  end;

var
  Beta : Extended;
  P : array[0..3] of TFLoatPoint;
  SinA,CosA : Extended;
  A,B : Extended;
  I : Longint;
  PT : TPoint;
  ScaleX, ScaleY : Extended;
begin
  If ABS(Angle2) > 90*16 then
    exit;
  If Angle2 = 0 then
    exit;

  B := Extended(Height) / 2;
  A := Extended(Width) / 2;

  If (A <> B) and (A <> 0) and (B <> 0) then begin
    If A > B then begin
      ScaleX := Extended(Width) / Height;
      ScaleY := 1;
      A := B;
    end
    else begin
      ScaleX := 1;
      ScaleY := Extended(Height) / Width;
      B := A;
    end;
  end
  else begin
    ScaleX := 1;
    ScaleY := 1;
  end;

  Angle1 := DegToRad(Angle1/16);
  Angle2 := DegToRad(Angle2/16);
  Rotation := -DegToRad(Rotation/16);
  Beta := (4/3)*(1 - Cos(Angle2/2))/(Sin(Angle2/2));
  PT := CenterPoint(Rect(X, Y, X+Width, Y + Height));

  CosA := cos(Angle1);
  SinA := sin(Angle1);

  P[0].X := A *CosA;
  P[0].Y := B *SinA;
  P[1].X := P[0].X - Beta * A * SinA;
  P[1].Y := P[0].Y + Beta * B * CosA;

  CosA := cos(Angle1 + Angle2);
  SinA := sin(Angle1 + Angle2);

  P[3].X := A *CosA;
  P[3].Y := B *SinA;
  P[2].X := P[3].X + Beta * A * SinA;
  P[2].Y := P[3].Y - Beta * B * CosA;

  For I := 0 to 3 do
  begin
    Points[I] := Scale(P[I],ScaleX, ScaleY); //Scale to proper size
    Points[I] := Rotate(Points[I], Rotation); //Rotate Counter-Clockwise
    Points[I] := Points[I] + PT; //Translate to Center
  end;
end;

{------------------------------------------------------------------------------
  Method:   Bezier
  Params:   C1,C2,C3,C4
  Returns:  TBezier

  Use Bezier to get a TBezier. It is Primarily for use with and in Bezier
  routines.

------------------------------------------------------------------------------}
function Bezier(const C1,C2,C3,C4 : TFloatPoint): TBezier;
begin
  Result[0] := C1;
  Result[1] := C2;
  Result[2] := C3;
  Result[3] := C4;
end;

{------------------------------------------------------------------------------
  Method:   Bezier
  Params:   C1,C2,C3,C4
  Returns:  TBezier

  Use Bezier to get a TBezier. It is Primarily for use with and in Bezier
  routines.

------------------------------------------------------------------------------}
function Bezier(const C1,C2,C3,C4 : TPoint): TBezier;
begin
  Result[0] := FloatPoint(C1.X,C1.Y);
  Result[1] := FloatPoint(C2.X,C2.Y);
  Result[2] := FloatPoint(C3.X,C3.Y);
  Result[3] := FloatPoint(C4.X,C4.Y);
end;

{------------------------------------------------------------------------------
  Method:   Bezier2Polyline
  Params:   Bezier, Points, Count
  Returns:  Nothing

  Use BezierToPolyline to convert a 4-Point Bezier into a Pointer Array of
  TPoint and a Count variable which can then be used within either a Polyline,
  or Polygon routine. It is primarily for use within PolyBezier2Polyline. If
  Points is not initialized or Count is less then 0, it is set to nil and
  the array starts at 0, otherwise it tries to append points
  to the array starting at Count. Points should ALWAYS be Freed when done
  by calling to ReallocMem(Points, 0) or FreeMem.

------------------------------------------------------------------------------}
procedure Bezier2Polyline(const Bezier : TBezier; var Points : PPoint;
  var Count : Longint);
var
  Pt : TPoint;

  procedure AddPoint(const Point : TFloatPoint);
  var
    P : TPoint;
  begin
    P := Point;
    if (Pt <> P) then
    begin
      Inc(Count);
      ReallocMem(Points, SizeOf(TPoint) * Count);
      Points[Count - 1] := P;
      Pt := P;
    end;
  end;

  function Colinear(BP : TBezier; Tolerance : Extended) : Boolean;
  var
    D : Extended;
  begin
    D := SQR(Distance(BP[1], BP[0], BP[3]));
    Result := D < Tolerance;
    D := SQR(Distance(BP[2], BP[0], BP[3]));
    If Result then
      Result := Result and (D < Tolerance);
  end;

  procedure SplitRecursive(B : TBezier);
  var
    Left,
    Right : TBezier;
  begin
    If Colinear(B, 1) then begin
      AddPoint(B[0]);
      AddPoint(B[3]);
    end
    else begin
      SplitBezier(B,left,right);
      SplitRecursive(left);
      SplitRecursive(right);
    end;
  end;

begin
  Pt := Point(-1,-1);
  If (not Assigned(Points)) or (Count <= 0) then
  begin
    Count := 0;

    if Assigned(Points) then
      ReallocMem(Points, 0);
  end;
  SplitRecursive(Bezier);
end;

{------------------------------------------------------------------------------
  Method:   BezierArcPoints
  Params:   X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
  Returns:  Nothing

  Use BezierArcPoints to convert an Arc and ArcLength into a Pointer Array
  of TPoints for use with Polyline or Polygon. The Rotation parameter accepts
  a Rotation-Angle for a rotated Ellipse'- for a non-rotated ellipse this
  value would be 0, or 360. The result is an Aproximation based on 1 or more
  Beziers. If the AngleLength is greater than 90 degrees, it calls
  PolyBezierArcPoints, otherwise it Converts the angles into a Bezier by
  calling to Arc2Bezier, and then converts the Bezier into an array of Points
  by calling to Bezier2Polyline. The angles are 1/16th of a degree. For example,
  a full circle equals 5760 (16*360). Positive values of Angle and AngleLength
  mean counter-clockwise while negative values mean clockwise direction. Zero
  degrees is at the 3'o clock position. If Points is not initialized or Count
  is less then 0, it is set to nil and the array starts at 0,
  otherwise it tries to append points to the array starting at Count. Points
  should ALWAYS be Freed when done by calling ReallocMem(Points, 0) or FreeMem.

------------------------------------------------------------------------------}
procedure BezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
  Rotation : Extended; var Points : PPoint; var Count : Longint);
var
  B : TBezier;
begin
  If ABS(Angle2) > 90*16 then begin
    PolyBezierArcPoints(X, Y, Width, Height, Angle1, Angle2, Rotation, Points,
                        Count);
    Exit;
  end;
  If Angle2 = 0 then
    exit;

  If (not Assigned(Points)) or (Count <= 0) then
  begin
    Count := 0;
    
    if Assigned(Points) then
      ReallocMem(Points, 0);
  end;
  
  Arc2Bezier(X, Y, Width, Height, Angle1, Angle2, Rotation, B);
  Bezier2Polyline(B,Points,Count);
end;

{------------------------------------------------------------------------------
  Method:   BezierMidPoint
  Params:   Bezier
  Returns:  TFloatPoint

  Use BezierMidPoint to get the Mid-Point of any 4-Point Bezier. It is
  primarily for use in SplitBezier.

------------------------------------------------------------------------------}
function BezierMidPoint(Bezier : TBezier) : TFloatPoint;
begin
  Result := (Bezier[0] + 3*Bezier[1] + 3*Bezier[2] + Bezier[3]) / 8;
end;

{------------------------------------------------------------------------------
  Method:   Coords2Angles
  Params:   x,y,width,height,sx,sy,ex,ey, angle1,angle2
  Returns:  Nothing

  Use Coords2Angles to convert the coords for Start and End Radial-Points, such
  as are used in the Windows API Arc Pie and Chord routines, into an Eccentric
  (aka Radial) counter clockwise Angle and an Angle-Length, such as are used in
  X-Windows and GTK. The angles angle1 and angle2 are returned in 1/16th of a
  degree. For example, a full circle equals 5760 (16*360). Zero degrees is at
  the 3'o clock position.

------------------------------------------------------------------------------}
procedure Coords2Angles(X, Y, Width, Height : Integer; SX, SY,
  EX, EY : Integer; var Angle1, Angle2 : Extended);
var
  aRect : TRect;
  SP,EP : TPoint;
begin
  aRect := Rect(X,Y,X + Width,Y + Height);
  SP := Point(SX,SY);
  EP := Point(EX,EY);
  Angle1 := EccentricAngle(SP, aRect);
  Angle2 := EccentricAngle(EP, aRect);
  If Angle2 < Angle1 then
    Angle2 := 360*16 - (Angle1 - Angle2)
  else
    Angle2 := Angle2 - Angle1;
end;

{------------------------------------------------------------------------------
  Method:   Distance
  Params:   PT1, PT2
  Returns:  Extended

  Use Distance to get the distance between any two Points. It is primarily
  for use in other routines such as EccentricAngle.

------------------------------------------------------------------------------}
function Distance(Pt1,Pt2 : TPoint) : Extended;
begin
  Result := Sqrt(Sqr(Pt2.X - Pt1.X) + Sqr(Pt2.Y - Pt1.Y));
end;

{------------------------------------------------------------------------------
  Method:   Distance
  Params:   PT, SP,EP
  Returns:  Extended

  Use Distance to get the distance between any point(PT) and a line defined
  by any two points(SP, EP). Intended for use in Bezier2Polyline, so params
  are TFloatPoint's, NOT TPoint's.

------------------------------------------------------------------------------}
function Distance(Pt, SP, EP : TFloatPoint) : Extended;
var
  A, B, C : Extended;

  function Slope(PT1,Pt2 : TFloatPoint) : Extended;
  begin
    If Pt2.X <> Pt1.X then
      Result := (Pt2.Y - Pt1.Y) / (Pt2.X - Pt1.X)
    else
      Result := 1;
  end;

  function YIntercept(PT1,Pt2 : TFloatPoint) : Extended;
  begin
    Result := Pt1.Y - Slope(Pt1,Pt2)*Pt1.X;
  end;

begin
  A := -Slope(SP,EP);
  B := 1;
  C := -YIntercept(SP, EP);
  Result := ABS(A*Pt.X + B*Pt.Y + C)/Sqrt(Sqr(A) + Sqr(B));
end;

{------------------------------------------------------------------------------
  Method:   EccentricAngle
  Params:   Pt, Rect
  Returns:  Extended

  Use EccentricAngle to get the Eccentric( aka Radial ) Angle of a given
  point on any non-rotated ellipse. It is primarily for use in Coords2Angles.
  The result is in 1/16th of a degree. For example, a full circle equals
  5760 (16*360).  Zero degrees is at the 3'o clock position.

------------------------------------------------------------------------------}
function EccentricAngle(PT : TPoint; Rect : TRect) : Extended;
var
  CenterPt : TPoint;
  Quad : Integer;
  Theta : Extended;
begin
  CenterPt := CenterPoint(Rect);
  Quad := Quadrant(Pt,CenterPt);
  Theta := -1;
  Case Quad of
    1..4:
      begin
        Theta := Distance(CenterPt,Pt);
        If Theta > 0 then
          Theta := RadToDeg(ArcSin(ABS(PT.Y - CenterPt.Y) / Theta));
      end;
  end;
  Case Quad of
    0:{ 0, 0}
      Theta := -1;
    1:{ X, Y}
      Theta := Theta;
    2:{-X, Y}
      Theta := 180 - Theta;
    3:{-X,-Y}
      Theta := 180 + Theta;
    4:{ X,-Y}
      Theta := 360 - Theta;
    5:{ 0, Y}
      Theta := 90;
    6:{ X, 0}
      Theta := 0;
    7:{ 0,-Y}
      Theta := 270;
    8:{-X, 0}
      Theta := 180;
  end;
  Result := Theta*16;
end;

{------------------------------------------------------------------------------
  Method:   EllipseRadialLength
  Params:   Rect, EccentricAngle
  Returns:  Longint

  Use EllipseRadialLength to get the Radial-Length of non-rotated ellipse at
  any given Eccentric( aka Radial ) Angle. It is primarily for use in other
  routines such as RadialPoint. The Eccentric angle is in 1/16th of a degree.
  For example, a full circle equals 5760 (16*360).  Zero degrees is at the
  3'o clock position.

------------------------------------------------------------------------------}
function EllipseRadialLength(Rect : TRect; EccentricAngle : Extended) : Longint;
var
  a, b, R : Extended;
begin
  a := (Rect.Right - Rect.Left) div 2;
  b := (Rect.Bottom - Rect.Top) div 2;
  R := Sqr(a)*Sqr(b);
  if R <> 0 then
    R := Sqrt(R / ((Sqr(b)*Sqr(Cos(DegToRad(EccentricAngle/16)))) +
      (Sqr(a)*Sqr(Sin(DegToRad(EccentricAngle/16))))));
  Result := TruncToInt(R);
end;

{------------------------------------------------------------------------------
  Method:   FloatPoint
  Params:   AX, AY
  Returns:  TFloatPoint

  Use FloatPoint to get a TFloatPoint. It is essentialy like Classes. Point in
  use, except that it excepts Extended Parameters. It is Primarily for use with
  and in Bezier routines.

------------------------------------------------------------------------------}
function FloatPoint(AX,AY : Extended): TFloatPoint;
begin
  With Result do begin
    X := AX;
    Y := AY;
  end;
end;

{------------------------------------------------------------------------------
  Method:   LineEndPoint
  Params:   StartPoint, Angle, Length
  Returns:  TPoint

  Use LineEndPoint to get the End-Point of a line of any given Length at
  any given angle with any given Start-Point. It is primarily for use in
  other routines such as RadialPoint. The angle is in 1/16th of a degree.
  For example, a full circle equals 5760 (16*360).  Zero degrees is at the
  3'o clock position.

------------------------------------------------------------------------------}
function LineEndPoint(StartPoint : TPoint; Angle, Length : Extended) : 
TPoint;
begin
  if Angle > 360*16 then
    Angle := Frac(Angle / 360*16) * 360*16;

  if Angle < 0 then
    Angle := 360*16 - abs(Angle);

  Result.Y := StartPoint.Y - Round(Length*Sin(DegToRad(Angle/16)));
  Result.X := StartPoint.X + Round(Length*Cos(DegToRad(Angle/16)));
end;


{------------------------------------------------------------------------------
  Method:   PolyBezier2Polyline
  Params:   Beziers, Points, Count
  Returns:  Nothing

  Use BezierToPolyline to convert an array of 4-Point Bezier into a Pointer
  Array of TPoint and a Count variable which can then be used within either a
  Polyline, or Polygon routine. Points is automatically initialized, so any
  existing information is lost, and the array starts at 0. Points should ALWAYS
  be Freed when done by calling to ReallocMem(Points, 0).

------------------------------------------------------------------------------}
procedure PolyBezier2Polyline(Beziers: Array of TBezier;
  var Points : PPoint; var Count : Longint);
var
  I : Integer;
begin
  If (High(Beziers) < 1) then
    exit;
  Count := 0;
  If Assigned(Points) then
    Try
      ReallocMem(Points, 0)
    Finally
      Points := nil;
    end;
  For I := 0 to High(Beziers) - 1 do
    Bezier2PolyLine(Beziers[I], Points, Count);
end;

{------------------------------------------------------------------------------
  Method:   PolyBezier2Polyline
  Params:   Beziers, Points, Count, Continuous
  Returns:  Nothing

  Use BezierToPolyline to convert an array of TPoints descibing 1 or more
  4-Point Beziers into a Pointer Array of TPoint and a Count variable which
  can then be used within either a Polyline, or Polygon routine. If Continuous
  is set to true then the first point of each Bezier is the last point of
  the preceding Bezier, so every bezier must have 3 described points, in
  addition to the initial Starting Point; otherwise each Bezier must have 4
  points. If there are an uneven number of points then the last set of points
  is ignored. Points is automatically initialized, so any existing information
  is lost, and the array starts at 0. Points should ALWAYS be Freed when done
  by calling to ReallocMem(Points, 0).

------------------------------------------------------------------------------}
procedure PolyBezier2Polyline(Beziers : Array of TPoint; var Points : PPoint;
  var Count : Longint; Continuous : Boolean);
begin  
  PolyBezier2Polyline(@Beziers[0],High(Beziers) + 1, Points, Count, 
    	              Continuous);
end;

procedure PolyBezier2Polyline(Beziers : PPoint; BCount : Longint;
  var Points : PPoint; var Count : Longint; Continuous : Boolean);
var
  I : Integer;
  NB : Longint;
begin
  If BCount < 4 then
    exit;
  Count := 0;
  If Assigned(Points) then
    Try
      ReallocMem(Points, 0)
    Finally
      Points := nil;
    end;
  If Not Continuous then begin
    NB := BCount;
    NB := NB div 4;
    For I := 0 to NB - 1 do
      Bezier2PolyLine(Bezier(Beziers[I*4],Beziers[I*4+1],
        Beziers[I*4+2],Beziers[I*4+3]), Points, Count);
  end
  else begin
    NB := BCount - 1;
    NB := NB div 3;
    For I := 0 to NB-1 do
      Bezier2PolyLine(Bezier(Beziers[(I - 1)*3 + 3],Beziers[I*3 + 1],
        Beziers[I*3+2],Beziers[I*3+3]), Points, Count);
  end;
end;
  
{------------------------------------------------------------------------------
  Method:   PolyBezierArcPoints
  Params:   X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
  Returns:  Nothing

  Use PolyBezierArcPoints to convert an Agnle and AgnleLength into a
  Pointer Array of TPoints for use with Polyline or Polygon.
  The Rotation parameter accepts a Rotation-Angle for a rotated Ellipse'- for
  a non-rotated ellipse this value would be 0, or 360*16.
  The result is an Aproximation based on 1 or more Beziers. If the AngleLength
  is greater than 45*16 degrees, it recursively breaks the Arc into Arcs of
  45*16 degrees or less, and converts them into Beziers with BezierArcPoints.
  The angles are 1/16th of a degree. For example, a full circle equals
  5760 (16*360).
  Positive values of Angle and AngleLength mean counter-clockwise while negative
  values mean clockwise direction. Zero degrees is at the 3'o clock position.
  Points is automatically initialized, so any existing information is lost,
  and the array starts at 0. Points should ALWAYS be Freed when done by calling
  to ReallocMem(Points, 0).

------------------------------------------------------------------------------}
procedure PolyBezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
  Rotation : Extended; var Points : PPoint; var Count : Longint);
var
  I,K : Integer;
  FullAngle : Extended;
  TST : Boolean;
begin
  If Abs(Angle2) > 360*16 then begin
    Angle2 := 360*16;
    Angle1 := 0;
  end;
  If Abs(Rotation) > 360*16 then
    Rotation := Frac(Rotation / 360*16)*360*16;
  FullAngle := Angle1 + Angle2;
  K := Ceil(ABS(Angle2/16) / 45);
  Count := 0;
  If Assigned(Points) then
    Try
      ReallocMem(Points, 0)
    Finally
      Points := nil;
    end;
  If Angle2 > 45*16 then
    Angle2 := 45*16
  else
    If Angle2 < -45*16 then
      Angle2 := -45*16;
  For I := 0 to K - 1 do begin
    BezierArcPoints(X, Y, Width,Height,Angle1,Angle2,Rotation,Points,Count);
    Angle1 := Angle1 + Angle2;
    If Angle2 > 0 then
      TST := (FullAngle - Angle1) > 45*16
    else
      TST := ABS(FullAngle - Angle1) > 45*16;
    If TST then begin
      If Angle2 > 0 then
        Angle2 := 45*16
      else
        Angle2 := -45*16;
    end
    else begin
      If Angle2 > 0 then
        Angle2 := FullAngle - Angle1
      else
        Angle2 := -(FullAngle - Angle1);
    end;
  end;
end;

{------------------------------------------------------------------------------
  Method:   Quadrant
  Params:   PT, Center
  Returns:  Integer

  Use Quadrant to determine the Quadrant of any point, given the Center.
  It is primarily for use in other routines such as EccentricAngle. A result
  of 1-4 represents the primary 4 quardants. A result of 5-8 means the point
  lies on one of the Axis', 5 = -Y Axis, 6 = +X Axis, 7 = +Y Axis, and
  8 = -X Axis. A result of -1 means that it does not fall in any quadrant,
  that is, it is the Center.

------------------------------------------------------------------------------}
function Quadrant(Pt,Center : TPoint) : Integer;
var
  X,Y,CX,CY : Longint;
begin
  X  := Pt.X;
  Y  := Pt.Y;
  CX := Center.X;
  CY := Center.Y;
  Result := -1;
  If (Y < CY) then begin
    If (X > CX) then begin
      Result := 1;
    end
    else
      If (X < CX) then begin
        Result := 2;
      end
    else begin
      Result := 5;
    end;
  end
  else
    If (Y > CY) then begin
      If (X < CX) then begin
        Result := 3;
      end
      else
        If (X > CX) then begin
          Result := 4;
        end
      else begin
        Result := 7;
      end;
    end
  else
    If (Y = CY) then begin
      If (X > CX) then begin
        Result := 6;
      end
      else
        If (X < CX) then begin
          Result := 8;
        end;
    end;
end;

{------------------------------------------------------------------------------
  Method:   RadialPointAngle
  Params:   EccentricAngle, Rect
  Returns:  TPoint

  Use RadialPoint to get the Radial-Point at any given Eccentric( aka Radial )
  angle on any non-rotated ellipse. It is primarily for use in Angles2Coords.
  The EccentricAngle is in 1/16th of a degree. For example, a full circle
  equals 5760 (16*360).  Zero degrees is at the 3'o clock position.

------------------------------------------------------------------------------}
function RadialPoint(EccentricAngle : Extended; Rect : TRect) : TPoint;
var
  R : Longint;
Begin
  R := EllipseRadialLength(Rect,EccentricAngle);
  Result := LineEndPoint(CenterPoint(Rect), EccentricAngle, R);
end;

{------------------------------------------------------------------------------
  Method:   SplitBezier
  Params:   Bezier, Left, Right
  Returns:  Nothing

  Use SplitBezier to split any 4-Point Bezier into two 4-Point Bezier's :
  a 'Left' and a 'Right'. It is primarily for use in Bezier2Polyline.

------------------------------------------------------------------------------}
procedure SplitBezier(Bezier : TBezier; var Left, Right : TBezier);
var
  Tmp : TFloatPoint;
begin
  Tmp := (Bezier[1] + Bezier[2]) / 2;

  left[0]  := Bezier[0];
  Left[1]  := (Bezier[0] + Bezier[1]) / 2;
  left[2]  := (Left[1] + Tmp) / 2;
  Left[3]  := BezierMidPoint(Bezier);

  right[3] := Bezier[3];
  right[2] := (Bezier[2] + Bezier[3]) / 2;
  Right[1] := (Right[2] + Tmp) / 2;
  right[0] := BezierMidPoint(Bezier);
end;

end.