This file is indexed.

/usr/share/pyshared/gvbmod/dispositions.py is in gvb 1.2.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# GVB - a GTK+/GNOME vibrations simulator
#
# Copyright (C) 2008 Pietro Battiston
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

#Give startup dispositions of the points

from scipy import array, zeros, sin, cos, pi, concatenate, ones, prod, sqrt
from scipy.linalg import norm

from gvbi18n import _

def disposition(shape, type_descriptor):
#	print "shape", shape
	if len(shape) in dispositions and type_descriptor in dispositions[len(shape)]:
		return dispositions_dict[len(shape)][type_descriptor](shape)
	else:
		print "type not found:", type_descriptor
		return zeros(shape)

waveforms_dict = {	#hl=half wave lenght, cen=centering (from 0 to 1), x is between 1 (not 0) and wl-1
	'square': (lambda hl, ce, t: 1)
	,
	'triangular': (lambda hl, ce, t: min(float(t)/ce, float(hl-t)/(1-ce))/hl )
	,
	'sinusoidal': (lambda hl, ce, t: sin(min(float(t)/(2*ce), float(hl-t)/(2*(1-ce))) * pi/hl) )
	,
	'peak': (lambda hl, ce, t: max((abs(hl*ce-t),0),(.5,1))[1] )
				}

waveforms = ['sinusoidal', 'triangular', 'square', 'peak']


def waveformer_1d((n,), waveform, lenght, shift, wavelenght, fase_angle, height, centering, rule = None):

	singlewave = array([waveforms_dict[waveform](wavelenght/2+1, centering, t)	for t in range (1,wavelenght/2+1)])
	doublewave = concatenate([singlewave, zeros(1), -1*singlewave])*height

	fase = wavelenght * fase_angle/360
	calculated = doublewave
	while len(calculated) < lenght+fase:
		calculated = concatenate([calculated, array([0]), doublewave])

#	print "stopped extending:", len(calculated)

	calculated = calculated[fase:lenght+fase]

#	print "calculated clipped:", len(calculated)

	wave_clip = lenght - max(0, shift + lenght - n)

	zeros_before = shift-(lenght-wave_clip)
	zeros_after = n - (shift + wave_clip)

	wave_final = concatenate([ calculated[wave_clip:], zeros(zeros_before), calculated[:wave_clip], zeros(zeros_after) ])
#	print "first trunk:", calculated[wave_clip:]
#	print "fase:", fase, "wave_clipped:", wave_clip

	return wave_final

def waveformer_2d((n1,n2), *args):

	wave1 = waveformer_1d((n1,), *args[:7])
	wave2 = waveformer_1d((n2,), *args[7:14])

	rules = {'sum' : sum, 'prod' : prod, 'max' : max, 'min': min}

	rule = rules[args[14]]

#	print "rule:", rule

	#FIXME: really not efficient... should someway use scipy.
	wave_final = array( [[rule([wave1[i], wave2[j]]) for i in range(n1)] for j in range(n2)] )
#	print "max final:", max ([max(i) for i in wave_final])

	return wave_final

waveformer = {1: waveformer_1d, 2: waveformer_2d}


dispositions_1d={	#Dispositions are created combining waveformers and/or other dispositions
	'flat': zeros
	,
#	'sin': (lambda (n,): array([sin(t*pi*2/(n+1)) for t in range(1,n+1)]))
	'sin': (lambda shape: waveformer_1d(shape, 'sinusoidal', shape[0], 0, shape[0], 0, 1, .5 ) )
	,
#	'half sin': (lambda (n,): array([sin(t*pi/(n+1)) for t in range(1,n+1)]))
	'half sin': (lambda shape: waveformer_1d(shape, 'sinusoidal', shape[0], 0, 2*shape[0]+1, 0, 1, .5 ) )
	,
#	'picked': (lambda (n,): array([float(2*min(t, n-t+1))/n for t in range(1,n+1) ]))
	'picked': (lambda shape: waveformer_1d(shape, 'triangular', shape[0], 0, 2*shape[0]+1, 0, 1, .5 ) )
	,
	'triangular signal': (lambda (n,): concatenate([ disposition((n/4,), 'picked'), disposition((n-n/4,), 'flat') ]))
	,
	'sinusoidal signal': (lambda (n,): concatenate([ disposition((n/4,), 'sin'), disposition((n-n/4,), 'flat') ]))
	,
#	'picked lateral':  (lambda (n,): array([float(min(float(2*t)/n, float(n-t+1)/n)) for t in range(1,n+1) ]))
	'picked lateral': (lambda shape: waveformer_1d(shape, 'triangular', shape[0], 0, 2*shape[0]+1, 0, 1, .25 ) )
	,
	'opposite triangulars': (lambda (n,): concatenate([ disposition((n/4,), 'picked'), disposition((n-n/4-n/4,), 'flat'), disposition((n/4,), 'picked') ]))
	,
	'opposite sinusoidals': (lambda (n,): concatenate([ disposition((n/4,), 'sin'), disposition((n-n/4-n/4,), 'flat'), disposition((n/4,), 'sin') ]))
	,
	'square': ones
	,
	'square signal': (lambda (n,): concatenate([ disposition((n/4,), 'square'), disposition((n-n/4,), 'flat') ]))
	,
#	'discontinuous peak': (lambda (n,): concatenate([ disposition((n/2,), 'flat'), [1], disposition((n-n/2-1,), 'flat') ]))
	'discontinuous peak': (lambda shape: waveformer_1d(shape, 'peak', shape[0], 0, 2*shape[0]+1, 0, 1, .5 ) )
	,
	'cos (shifted)': (lambda shape: waveformer_1d(shape, 'sinusoidal', shape[0], 0, shape[0], 270, 1, .5) + ones(shape) )
				}


dispositions_2d={
	'flat': zeros
	,
#	'picked': (lambda (n,m): array([array([float(2*min(t, m-t+1))/n for t in range(1,m+1) ])*float(2*min(j, n-j+1))/n for j in range(1,n+1)]))
	'picked': (lambda shape: waveformer_2d(shape, 'triangular', shape[0], 0, 2*shape[0]+1, 0, .5, .5, 'triangular', shape[0], 0, 2*shape[0]+1, 0, .5, .5 , 'sum' ) )
	,
	'sin': (lambda shape: waveformer_2d(shape, 'sinusoidal', shape[0], 0, shape[0], 0, 1, .5, 'sinusoidal', shape[0], 0, shape[0], 0, 1, .5 , 'prod' ) )
	,
	'half sin': (lambda shape: waveformer_2d(shape, 'sinusoidal', shape[0], 0, 2*shape[0]+1, 0, .5, .5, 'sinusoidal', shape[0], 0, 2*shape[0]+1, 0, .5, .5 , 'sum' ) )
	,
	'pond': (lambda (n,m): array([[(lambda x,y,r : -.1*cos(10*pi*norm([x,y])/r) * max(1-norm([x,y])/r, 0) ) (i-float(m)/2, j-float(n)/2, float(min(m,n))/2) for i in range(1,m+1) ] for j in range(1,n+1)]))
	,
	'waterfall': (lambda (n,m): array([[(lambda x,y : 1 if norm([x,y]) < min(m,n)/10 else 0)(i-float(m)/2, j-float(n)/2) for i in range(1,m+1) ] for j in range(1,n+1)]))
	,
	'gut': (lambda (n,m): array([[(lambda x,y,r : -1-cos(8*pi*norm([x,y])/r) if norm([x,y]) < r/8 else 0) (i-float(m)/2, j-float(n)/2, float(min(m,n))) for i in range(1,m+1) ] for j in range(1,n+1)]))
				}

dispositions_dict={1:dispositions_1d, 2:dispositions_2d}

dispositions={}


for dim in [1,2]:
	keys=dispositions_dict[dim].keys()
	keys.sort()
	dispositions[dim]=keys






dummy_list_for_gettext=[_('flat'),	_('sin'), _('half sin'), _('picked'), _('triangular signal'), _('sinusoidal signal'), _('picked lateral'), _('opposite triangulars'), _('picked'), _('opposite sinusoidals'), _('square'), _('square signal'), _('discontinuous peak'), _('cos (shifted)'), _('pond'), _('waterfall'), _('gut'), _('peak'), _('sinusoidal') ]