/usr/lib/gpsman/acccomp.tcl is in gpsman 6.4.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 | #
# This file is part of:
#
# gpsman --- GPS Manager: a manager for GPS receiver data
#
# Copyright (c) 1998-2011 Miguel Filgueiras migf@portugalmail.pt
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.
#
# File: acccomp.tcl
# Last change: 19 July 2011
#
# Replacement procedures for more accurate and more slow computations of
# distances and bearings
# This file to be consulted after compute.tcl
## Formulae for distances and bearings taken from the program "inverse"
# available from ftp://www.ngs.noaa.gov/pub/pcsoft/for_inv.3d/
# They correspond to the modified Rainsford's Method with Helmert's
# elliptical terms, and are effective in any azimuth and at any
# distance short of antipodal, none of the points can be a pole
# If one of the points is a pole, or the points are nearly antipodal
# the Law of Cosines for Spherical Trigonometry, kindly supplied by
# Luisa Bastos (Universidade do Porto) and Gil Goncalves (Universidade
# de Coimbra), will be applied
##
proc ComputeDist {p1 p2 datum} {
# distance between positions $p1 and $p2 with same datum
# formulae from "inverse" program (see above)
set lad1 [lindex $p1 0] ; set lod1 [lindex $p1 1]
set lad2 [lindex $p2 0] ; set lod2 [lindex $p2 1]
if { $lad1==$lad2 && $lod1==$lod2 } { return 0 }
set la1 [expr $lad1*0.01745329251994329576]
set lo1 [expr $lod1*0.01745329251994329576]
set la2 [expr $lad2*0.01745329251994329576]
set lo2 [expr $lod2*0.01745329251994329576]
set dt [EllipsdData $datum]
set a [lindex $dt 0] ; set f [lindex $dt 1]
if { [expr abs(cos($la1))]<1.e-20 || [expr abs(cos($la2))]<1.e-20 || \
( $lad1+$lad2 < 1e-4 && abs(abs($lod1-$lod2)-180) < 1e-4 ) } {
# use Law of Cosines for Spherical Trigonometry
set x [expr cos($lo1-$lo2)*cos($la1)*cos($la2)+sin($la1)*sin($la2)]
if { $x >= 1 } { return 0 }
return [expr 1e-3*$a*acos($x)]
}
set eps 5e-12
set r [expr 1-$f]
set tu1 [expr $r*tan($la1)] ; set tu2 [expr $r*tan($la2)]
set cu1 [expr 1.0/sqrt($tu1*$tu1+1.0)]
set su1 [expr $cu1*$tu1]
set cu2 [expr 1.0/sqrt($tu2*$tu2+1.0)]
set s [expr $cu1*$cu2]
set baz [expr $s*$tu2] ; set faz [expr $baz*$tu1]
set x [expr $lo2-$lo1] ; set d [expr $x+1]
while { abs($d-$x) > $eps } {
set sx [expr sin($x)] ; set cx [expr cos($x)]
set tu1 [expr $cu2*$sx] ; set tu2 [expr $baz-$su1*$cu2*$cx]
set sy [expr sqrt($tu1*$tu1+$tu2*$tu2)]
set cy [expr $s*$cx+$faz] ; set y [expr atan2($sy,$cy)]
set sa [expr $s*$sx/$sy] ; set c2a [expr -$sa*$sa+1.0]
set cz [expr $faz+$faz]
if { $cz > 0 } { set cz [expr -$cz/$c2a+$cy] }
set e [expr $cz*$cz*2-1.0]
set c [expr ((-3*$c2a+4.0)*$f+4.0)*$c2a*$f/16]
set d $x
set x [expr (($e*$cy*$c+$cz)*$sy*$c+$y)*$sa]
set x [expr (1-$c)*$x*$f+$lo2-$lo1]
}
set faz [expr atan2($tu1,$tu2)]
set baz [expr atan2($cu1*$sx,$baz*$cx-$su1*$cu2)+3.14159265358979323846]
set x [expr sqrt((1.0/$r/$r-1)*$c2a+1)+1] ; set x [expr ($x-2.0)/$x]
set c [expr 1-$x] ; set c [expr ($x*$x/4.0+1)/$c]
set d [expr (0.375*$x*$x-1)*$x]
set x [expr $e*$cy]
set s [expr 1-$e-$e]
set s [expr (((($sy*$sy*4-3)*$s*$cz*$d/6.0-$x)*$d/4.0+$cz)*$sy*$d+$y) \
*$c*$a*$r*1e-3]
return $s
}
proc ComputeBear {p1 p2 datum} {
# bearing from positions $p1 and $p2 with same datum
# formulae from "inverse" program (see above)
set lad1 [lindex $p1 0] ; set lod1 [lindex $p1 1]
set lad2 [lindex $p2 0] ; set lod2 [lindex $p2 1]
if { $lad1==$lad2 && $lod1==$lod2 } { return 0 }
set la1 [expr $lad1*0.01745329251994329576]
set lo1 [expr $lod1*0.01745329251994329576]
set la2 [expr $lad2*0.01745329251994329576]
set lo2 [expr $lod2*0.01745329251994329576]
if { [expr abs(cos($la1))]<1.e-20 || [expr abs(cos($la2))]<1.e-20 } {
# use Law of Cosines for Spherical Trigonometry
# bearing
set da [expr $la2-$la1] ; set do [expr $lo2-$lo1]
if { [expr abs($da)] < 1e-20 } {
if { [expr abs($do)] < 1e-20 } {
set b 0
} elseif { $do < 0 } {
set b 270
} else { set b 90 }
} elseif { [expr abs($do)] < 1e-20 } {
if { $da < 0 } {
set b 180
} else { set b 0 }
} else {
set b [expr round(atan2(sin($do), \
tan($la2)*cos($la1)-sin($la1)*cos($do)) \
*57.29577951308232087684)]
if { $b < 0 } {
if { $do < 0 } { incr b 360 } else { incr b 180 }
} elseif { $do < 0 } { incr b 180 }
}
return $b
}
set dt [EllipsdData $datum]
set a [lindex $dt 0] ; set f [lindex $dt 1]
set eps 5e-12
set r [expr 1-$f]
set tu1 [expr $r*tan($la1)] ; set tu2 [expr $r*tan($la2)]
set cu1 [expr 1.0/sqrt($tu1*$tu1+1.0)]
set su1 [expr $cu1*$tu1]
set cu2 [expr 1.0/sqrt($tu2*$tu2+1.0)]
set s [expr $cu1*$cu2]
set baz [expr $s*$tu2] ; set faz [expr $baz*$tu1]
set x [expr $lo2-$lo1] ; set d [expr $x+1]
while { abs($d-$x) > $eps } {
set sx [expr sin($x)] ; set cx [expr cos($x)]
set tu1 [expr $cu2*$sx] ; set tu2 [expr $baz-$su1*$cu2*$cx]
set sy [expr sqrt($tu1*$tu1+$tu2*$tu2)]
set cy [expr $s*$cx+$faz] ; set y [expr atan2($sy,$cy)]
set sa [expr $s*$sx/$sy] ; set c2a [expr -$sa*$sa+1.0]
set cz [expr $faz+$faz]
if { $cz > 0 } { set cz [expr -$cz/$c2a+$cy] }
set e [expr $cz*$cz*2-1.0]
set c [expr ((-3*$c2a+4.0)*$f+4.0)*$c2a*$f/16]
set d $x
set x [expr (($e*$cy*$c+$cz)*$sy*$c+$y)*$sa]
set x [expr (1-$c)*$x*$f+$lo2-$lo1]
}
set faz [expr atan2($tu1,$tu2)]
set b [expr round($faz*57.29577951308232087684)]
if { $b < 0 } { incr b 360 }
return $b
}
proc ComputeDistBear {p1 p2 datum} {
# distance between and bearing from positions $p1 and $p2 with same datum
# formulae from "inverse" program (see above)
set lad1 [lindex $p1 0] ; set lod1 [lindex $p1 1]
set lad2 [lindex $p2 0] ; set lod2 [lindex $p2 1]
if { $lad1==$lad2 && $lod1==$lod2 } { return "0 0" }
set la1 [expr $lad1*0.01745329251994329576]
set lo1 [expr $lod1*0.01745329251994329576]
set la2 [expr $lad2*0.01745329251994329576]
set lo2 [expr $lod2*0.01745329251994329576]
set dt [EllipsdData $datum]
set a [lindex $dt 0] ; set f [lindex $dt 1]
if { [expr abs(cos($la1))]<1.e-20 || [expr abs(cos($la2))]<1.e-20 } {
# use Law of Cosines for Spherical Trigonometry
# bearing
set da [expr $la2-$la1] ; set do [expr $lo2-$lo1]
if { [expr abs($da)] < 1e-20 } {
if { [expr abs($do)] < 1e-20 } {
set b 0
} elseif { $do < 0 } {
set b 270
} else { set b 90 }
} elseif { [expr abs($do)] < 1e-20 } {
if { $da < 0 } {
set b 180
} else { set b 0 }
} else {
set b [expr round(atan2(sin($do), \
tan($la2)*cos($la1)-sin($la1)*cos($do)) \
*57.29577951308232087684)]
if { $b < 0 } {
if { $do < 0 } { incr b 360 } else { incr b 180 }
} elseif { $do < 0 } { incr b 180 }
}
return [list [expr 1e-3*$a*acos(cos($lo1-$lo2)*cos($la1)*cos($la2)+ \
sin($la1)*sin($la2))] $b]
}
set eps 5e-12
set r [expr 1-$f]
set tu1 [expr $r*tan($la1)] ; set tu2 [expr $r*tan($la2)]
set cu1 [expr 1.0/sqrt($tu1*$tu1+1.0)]
set su1 [expr $cu1*$tu1]
set cu2 [expr 1.0/sqrt($tu2*$tu2+1.0)]
set s [expr $cu1*$cu2]
set baz [expr $s*$tu2] ; set faz [expr $baz*$tu1]
set x [expr $lo2-$lo1] ; set d [expr $x+1]
while { abs($d-$x) > $eps } {
set sx [expr sin($x)] ; set cx [expr cos($x)]
set tu1 [expr $cu2*$sx] ; set tu2 [expr $baz-$su1*$cu2*$cx]
set sy [expr sqrt($tu1*$tu1+$tu2*$tu2)]
set cy [expr $s*$cx+$faz] ; set y [expr atan2($sy,$cy)]
set sa [expr $s*$sx/$sy] ; set c2a [expr -$sa*$sa+1.0]
set cz [expr $faz+$faz]
if { $cz > 0 } { set cz [expr -$cz/$c2a+$cy] }
set e [expr $cz*$cz*2-1.0]
set c [expr ((-3*$c2a+4.0)*$f+4.0)*$c2a*$f/16]
set d $x
set x [expr (($e*$cy*$c+$cz)*$sy*$c+$y)*$sa]
set x [expr (1-$c)*$x*$f+$lo2-$lo1]
}
set faz [expr atan2($tu1,$tu2)]
set baz [expr atan2($cu1*$sx,$baz*$cx-$su1*$cu2)+3.14159265358979323846]
set x [expr sqrt((1.0/$r/$r-1)*$c2a+1)+1] ; set x [expr ($x-2.0)/$x]
set c [expr 1-$x] ; set c [expr ($x*$x/4.0+1)/$c]
set d [expr (0.375*$x*$x-1)*$x]
set x [expr $e*$cy]
set s [expr 1-$e-$e]
set s [expr (((($sy*$sy*4-3)*$s*$cz*$d/6.0-$x)*$d/4.0+$cz)*$sy*$d+$y) \
*$c*$a*$r*1e-3]
set b [expr round($faz*57.29577951308232087684)]
if { $b < 0 } { incr b 360 }
return [list $s $b]
}
proc ComputeDistFD {p1 p2} {
# compute distance between positions $p1 and $p2 assuming datum
# parameters where set by calling SetDatumData
global DatumA DatumF
# formulae from "inverse" program (see above)
set lad1 [lindex $p1 0] ; set lod1 [lindex $p1 1]
set lad2 [lindex $p2 0] ; set lod2 [lindex $p2 1]
if { $lad1==$lad2 && $lod1==$lod2 } { return 0 }
set la1 [expr $lad1*0.01745329251994329576]
set lo1 [expr $lod1*0.01745329251994329576]
set la2 [expr $lad2*0.01745329251994329576]
set lo2 [expr $lod2*0.01745329251994329576]
if { [expr abs(cos($la1))]<1.e-20 || [expr abs(cos($la2))]<1.e-20 } {
# use Law of Cosines for Spherical Trigonometry
set x [expr cos($lo1-$lo2)*cos($la1)*cos($la2)+sin($la1)*sin($la2)]
if { $x >= 1 } { return 0 }
return [expr 1e-3*$DatumA*acos($x)]
}
set eps 5e-12
set r [expr 1-$DatumF]
set tu1 [expr $r*tan($la1)] ; set tu2 [expr $r*tan($la2)]
set cu1 [expr 1.0/sqrt($tu1*$tu1+1.0)]
set su1 [expr $cu1*$tu1]
set cu2 [expr 1.0/sqrt($tu2*$tu2+1.0)]
set s [expr $cu1*$cu2]
set baz [expr $s*$tu2] ; set faz [expr $baz*$tu1]
set x [expr $lo2-$lo1] ; set d [expr $x+1]
while { abs($d-$x) > $eps } {
set sx [expr sin($x)] ; set cx [expr cos($x)]
set tu1 [expr $cu2*$sx] ; set tu2 [expr $baz-$su1*$cu2*$cx]
set sy [expr sqrt($tu1*$tu1+$tu2*$tu2)]
set cy [expr $s*$cx+$faz] ; set y [expr atan2($sy,$cy)]
set sa [expr $s*$sx/$sy] ; set c2a [expr -$sa*$sa+1.0]
set cz [expr $faz+$faz]
if { $cz > 0 } { set cz [expr -$cz/$c2a+$cy] }
set e [expr $cz*$cz*2-1.0]
set c [expr ((-3*$c2a+4.0)*$DatumF+4.0)*$c2a*$DatumF/16]
set d $x
set x [expr (($e*$cy*$c+$cz)*$sy*$c+$y)*$sa]
set x [expr (1-$c)*$x*$DatumF+$lo2-$lo1]
}
set faz [expr atan2($tu1,$tu2)]
set baz [expr atan2($cu1*$sx,$baz*$cx-$su1*$cu2)+3.14159265358979323846]
set x [expr sqrt((1.0/$r/$r-1)*$c2a+1)+1] ; set x [expr ($x-2.0)/$x]
set c [expr 1-$x] ; set c [expr ($x*$x/4.0+1)/$c]
set d [expr (0.375*$x*$x-1)*$x]
set x [expr $e*$cy]
set s [expr 1-$e-$e]
set s [expr (((($sy*$sy*4-3)*$s*$cz*$d/6.0-$x)*$d/4.0+$cz)*$sy*$d+$y) \
*$c*$DatumA*$r*1e-3]
return $s
}
proc ComputeDistBearFD {p1 p2} {
# compute distance between and bearing from positions $p1 and $p2
# assuming datum parameters where set by calling SetDatumData
global DatumA DatumF
# formulae from "inverse" program (see above)
set lad1 [lindex $p1 0] ; set lod1 [lindex $p1 1]
set lad2 [lindex $p2 0] ; set lod2 [lindex $p2 1]
if { $lad1==$lad2 && $lod1==$lod2 } { return "0 0" }
set la1 [expr $lad1*0.01745329251994329576]
set lo1 [expr $lod1*0.01745329251994329576]
set la2 [expr $lad2*0.01745329251994329576]
set lo2 [expr $lod2*0.01745329251994329576]
if { [expr abs(cos($la1))]<1.e-20 || [expr abs(cos($la2))]<1.e-20 } {
# use Law of Cosines for Spherical Trigonometry
# bearing
set da [expr $la2-$la1] ; set do [expr $lo2-$lo1]
if { [expr abs($da)] < 1e-20 } {
if { [expr abs($do)] < 1e-20 } {
set b 0
} elseif { $do < 0 } {
set b 270
} else { set b 90 }
} elseif { [expr abs($do)] < 1e-20 } {
if { $da < 0 } {
set b 180
} else { set b 0 }
} else {
set b [expr round(atan2(sin($do), \
tan($la2)*cos($la1)-sin($la1)*cos($do)) \
*57.29577951308232087684)]
if { $b < 0 } {
if { $do < 0 } { incr b 360 } else { incr b 180 }
} elseif { $do < 0 } { incr b 180 }
}
return [list [expr 1e-3*$DatumA*acos(cos($lo1-$lo2)*cos($la1)* \
cos($la2)+sin($la1)*sin($la2))] $b]
}
set eps 5e-12
set r [expr 1-$DatumF]
set tu1 [expr $r*tan($la1)] ; set tu2 [expr $r*tan($la2)]
set cu1 [expr 1.0/sqrt($tu1*$tu1+1.0)]
set su1 [expr $cu1*$tu1]
set cu2 [expr 1.0/sqrt($tu2*$tu2+1.0)]
set s [expr $cu1*$cu2]
set baz [expr $s*$tu2] ; set faz [expr $baz*$tu1]
set x [expr $lo2-$lo1] ; set d [expr $x+1]
while { abs($d-$x) > $eps } {
set sx [expr sin($x)] ; set cx [expr cos($x)]
set tu1 [expr $cu2*$sx] ; set tu2 [expr $baz-$su1*$cu2*$cx]
set sy [expr sqrt($tu1*$tu1+$tu2*$tu2)]
set cy [expr $s*$cx+$faz] ; set y [expr atan2($sy,$cy)]
set sa [expr $s*$sx/$sy] ; set c2a [expr -$sa*$sa+1.0]
set cz [expr $faz+$faz]
if { $cz > 0 } { set cz [expr -$cz/$c2a+$cy] }
set e [expr $cz*$cz*2-1.0]
set c [expr ((-3*$c2a+4.0)*$DatumF+4.0)*$c2a*$DatumF/16]
set d $x
set x [expr (($e*$cy*$c+$cz)*$sy*$c+$y)*$sa]
set x [expr (1-$c)*$x*$DatumF+$lo2-$lo1]
}
set faz [expr atan2($tu1,$tu2)]
set baz [expr atan2($cu1*$sx,$baz*$cx-$su1*$cu2)+3.14159265358979323846]
set x [expr sqrt((1.0/$r/$r-1)*$c2a+1)+1] ; set x [expr ($x-2.0)/$x]
set c [expr 1-$x] ; set c [expr ($x*$x/4.0+1)/$c]
set d [expr (0.375*$x*$x-1)*$x]
set x [expr $e*$cy]
set s [expr 1-$e-$e]
set s [expr (((($sy*$sy*4-3)*$s*$cz*$d/6.0-$x)*$d/4.0+$cz)*$sy*$d+$y) \
*$c*$DatumA*$r*1e-3]
set b [expr round($faz*57.29577951308232087684)]
if { $b < 0 } { incr b 360 }
return [list $s $b]
}
|