/usr/share/pyshared/gnome_sudoku/sudoku.py is in gnome-sudoku 1:3.4.2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 | # -*- coding: utf-8 -*-
import random
import math
import re
from gettext import gettext as _
import defaults
GROUP_SIZE = 9
TYPE_ROW = 0
TYPE_COLUMN = 1
TYPE_BOX = 2
digit_set = range(1, GROUP_SIZE + 1)
sets = [digit_set] * 9
def is_set (row):
if len(row) == len(set(row)):
return True
def is_sudoku (rows):
# check rows
for r in rows:
if not is_set(r):
return False
for i in range(len(rows[0])):
rw = [r[i] for r in rows]
if not is_set(rw):
return False
# check boxes
width = int(math.sqrt(len(rows)))
# there should be 3x3 boxes, or 4x4 if we got funky, etc.
# boxes will be indices
box_coordinates = [[n * width,
(n + 1) * width] for n in range(width)]
for x in box_coordinates:
for y in box_coordinates:
box = []
for xrow in [rows[ri] for ri in range(*y)]:
for i in range(*x):
box.append(xrow[i])
if not is_set(box):
return False
return True
class UnsolvablePuzzle (TypeError):
pass
class ConflictError (ValueError):
def __init__ (self, conflict_type, coordinates, value):
self.args = conflict_type, coordinates, value
self.type = conflict_type
self.coordinates = coordinates
self.x = coordinates[0]
self.y = coordinates[1]
self.value = value
class AlreadySetError (ValueError):
pass
class ParallelDict (dict):
"""A handy new sort of dictionary for tracking conflicts.
pd = ParallelDict()
pd[1] = [2, 3, 4] # 1 is linked with 2, 3 and 4
pd -> {1:[2, 3, 4], 2:[1], 3:[1], 4:[1]}
pd[2] = [1, 3, 4] # 2 is linked with 3 and 4 as well as 1
pd -> {1: [2, 3, 4], 2:[3, 4], 3:[1, 2], 4:[1, 2]}
Now for the cool part...
del pd[1]
pd -> {2: [2, 3], 3:[2], 4:[2]}
Pretty neat, no?
"""
def __init__ (self, *args):
dict.__init__(self, *args)
def __setitem__ (self, k, v):
dict.__setitem__(self, k, set(v))
for i in v:
if i == k:
continue
if self.has_key(i):
self[i].add(k)
else:
dict.__setitem__(self, i, set([k]))
def __delitem__ (self, k):
v = self[k]
dict.__delitem__(self, k)
for i in v:
if i == k:
continue
if self.has_key(i):
# Make sure we have a reference to i. If we don't
# something has gone wrong... but according to bug
# 385937 this has gone wrong at least once, so we'd
# better check for it.
if k in self[i]:
self[i].remove(k)
if not self[i]:
# If k was the last value in the list of values
# for i, then we delete i from our dictionary
dict.__delitem__(self, i)
class SudokuGrid(object):
def __init__ (self, grid = False, verbose = False, group_size = 9):
self.grid = []
self.cols = []
self.rows = []
self.boxes = []
self.conflicts = ParallelDict()
self.group_size = int(group_size)
self.verbose = False
self.gen_set = set(range(1, self.group_size + 1))
for n in range(self.group_size):
self.cols.append(set())
self.rows.append(set())
self.boxes.append(set())
self.grid.append([0] * self.group_size)
self.box_by_coords = {}
self.box_coords = {}
self.calculate_box_coords() # sets box_coords and box_by_coords
self.row_coords = {}
for n, row in enumerate([[(x, y) for x in range(self.group_size)] for y in range(self.group_size)]):
self.row_coords[n] = row
self.col_coords = {}
for n, col in enumerate([[(x, y) for y in range(self.group_size)] for x in range(self.group_size)]):
self.col_coords[n] = col
if grid:
if isinstance(grid, basestring):
g = re.split("\s+", grid)
side = int(math.sqrt(len(g)))
grid = []
for row in range(side):
start = row * int(side)
grid.append([int(i) for i in g[start:start + side]])
self.populate_from_grid(grid)
self.verbose = verbose
def calculate_box_coords (self):
width = int(math.sqrt(self.group_size))
box_coordinates = [[n * width,
(n + 1) * width] for n in range(width)]
box_num = 0
for xx in box_coordinates:
for yy in box_coordinates:
self.box_coords[box_num] = []
for x in range(*xx):
for y in range(*yy):
self.box_by_coords[(x, y)] = box_num
self.box_coords[box_num].append((x, y))
box_num += 1
def add (self, x, y, val, force = False):
if not val:
pass
if self._get_(x, y):
if force:
try:
self.remove(x, y)
except:
print 'Strange: problem with add(', x, y, val, force, ')'
import traceback
traceback.print_exc()
else:
#FIXME: This is called when the fill button
#is clicked multiple times, which causes this exception:
#raise AlreadySetError
return
# Always store the value in the underlying grid
self._set_(x, y, val)
# But don't add it to the solution hints(rows/cols/boxes) if there is
# a conflict
if val in self.rows[y]:
raise ConflictError(TYPE_ROW, (x, y), val)
if val in self.cols[x]:
raise ConflictError(TYPE_COLUMN, (x, y), val)
box = self.box_by_coords[(x, y)]
if val in self.boxes[box]:
raise ConflictError(TYPE_BOX, (x, y), val)
# do the actual adding
self.rows[y].add(val)
self.cols[x].add(val)
self.boxes[box].add(val)
def remove (self, x, y):
val = self._get_(x, y)
self.rows[y].discard(val)
self.cols[x].discard(val)
self.boxes[self.box_by_coords[(x, y)]].discard(val)
self._set_(x, y, 0)
def _get_ (self, x, y):
return self.grid[y][x]
def _set_ (self, x, y, val):
self.grid[y][x] = val
def possible_values (self, x, y):
return self.gen_set - self.rows[y] - self.cols[x] - self.boxes[self.box_by_coords[(x, y)]]
def pretty_print (self):
print 'SUDOKU'
for r in self.grid:
for i in r:
print i,
print
print
def populate_from_grid (self, grid):
for y, row in enumerate(grid):
for x, cell in enumerate(row):
if cell:
try:
self.add(x, y, cell)
except ConflictError:
pass
def __repr__ (self):
s = "<Grid\n "
grid = []
for r in self.grid:
grid.append(" ".join([str(i) for i in r]))
s += "\n ".join(grid)
return s
def calculate_open_squares (self):
possibilities = {}
for x in range(self.group_size):
for y in range(self.group_size):
if not self._get_(x, y):
possibilities[(x, y)] = self.possible_values(x, y)
return possibilities
def to_string (self):
"""Output our grid as a string."""
return " ".join([" ".join([str(x) for x in row]) for row in self.grid])
def is_valid_puzzle (p):
"""Check puzzle for basic validity.
This does not check for solvability or ensure a unique
solution -- it merely checks well-formedness. This should
provide some protection again file corruption, etc. (i.e. if
we use this function to check puzzles before handing them out
to the rest of the app, we'll prevent tracebacks related to
corrupted puzzles).
"""
try:
p = p.replace(' ', '')
assert(len(p.replace(' ', '')) == 81)
[int(c) for c in p.replace(' ', '')]
except:
#import traceback; traceback.print_exc()
return False
else:
return True
def sudoku_grid_from_string (s):
"""Given an 81 character string, return a grid."""
s = s.replace(' ', '')
assert(len(s)<=GROUP_SIZE ** 2)
grid = []
i = 0
for x in range(GROUP_SIZE):
row = []
for y in range(GROUP_SIZE):
if len(s) <= i:
n = 0
else:
n = s[i]
try:
n = int(n)
except:
n = n or 0
if n in digit_set:
row.append(n)
else:
row.append(0)
i += 1
grid.append(row)
return SudokuGrid(grid)
class SudokuSolver (SudokuGrid):
"""A SudokuGrid that can solve itself."""
def __init__ (self, grid = False, verbose = False, group_size = 9):
self.current_guess = None
self.initialized = False
SudokuGrid.__init__(self, grid, verbose = verbose, group_size = group_size)
self.virgin = SudokuGrid(grid)
self.guesses = GuessList()
self.breadcrumbs = BreadcrumbTrail()
self.backtraces = 0
self.initialized = True
self.solved = False
self.solving = False
self.trail = []
def auto_fill_for_xy (self, x, y):
"""Fill the square x,y if possible."""
possible = self.gen_set - self.rows[y] - self.cols[x] - self.boxes[self.box_by_coords[(x, y)]]
if len(possible) == 1:
val = possible.pop()
self.add(x, y, val)
return ((x, y), val)
if len(possible) == 0:
return -1
# check our column...
for coord_set, filled_set in [(self.col_coords[x], self.cols[x]),
(self.row_coords[y], self.rows[y]),
(self.box_coords[self.box_by_coords[(x, y)]],
self.boxes[self.box_by_coords[(x, y)]])
]:
needed_set = self.gen_set - filled_set
for coord in coord_set:
if self._get_(*coord):
continue
elif (x, y) != coord:
needed_set = needed_set - self.possible_values(*coord)
if needed_set and len(needed_set) == 1:
val = needed_set.pop()
if val in possible:
self.add(x, y, val)
return ((x, y), val)
else:
return -1
if len(needed_set)>1:
return -1
def auto_fill (self):
changed = []
try:
changed = self.fill_must_fills()
except UnsolvablePuzzle:
return changed
try:
changed.extend(self.fill_deterministically())
finally:
return changed
def fill_must_fills (self):
changed = []
for label, coord_dic, filled_dic in [('Column', self.col_coords, self.cols),
('Row', self.row_coords, self.rows),
('Box', self.box_coords, self.boxes)]:
for n, coord_set in coord_dic.items():
skip_set = False
for coord in coord_set:
if self.conflicts.has_key(coord):
skip_set = True
break
if skip_set:
continue
needs = dict([(n, False) for n in range(1, self.group_size + 1)])
for coord in coord_set:
val = self._get_(*coord)
if val:
# We already have this value set...
if needs.has_key(val):
del needs[val]
else:
# Otherwise, register ourselves as possible
# for each number we could be
for v in self.possible_values(*coord):
# if we don't yet have a possible number, plug ourselves in
if needs.has_key(v):
if not needs[v]:
needs[v] = coord
else:
del needs[v]
for n, coords in needs.items():
if not coords:
raise UnsolvablePuzzle('Missing a %s in %s' % (n, label))
else:
try:
self.add(coords[0], coords[1], n)
changed.append((coords, n))
except AlreadySetError:
raise UnsolvablePuzzle(
"%s,%s must be two values at once!" % (coords)
)
return changed
def fill_deterministically (self):
poss = self.calculate_open_squares().items()
one_choice = filter(lambda x: len(x[1]) == 1, poss)
retval = []
for coords, choices in one_choice:
if self.verbose:
print 'Deterministically adding ', coords, choices
val = choices.pop()
self.add(coords[0], coords[1], val)
retval.append([(coords[0], coords[1]), val])
if self.verbose:
print 'deterministically returning ', retval
return retval
def solve (self):
if self.solving:
return
self.solving = True
self.auto_fill()
while not self.guess_least_open_square():
pass
if self.verbose:
print 'Solved!\n', self
self.solving = False
self.solved = True
def solution_finder (self):
self.auto_fill()
while not self.guess_least_open_square():
pass
self.solved = True
yield tuple([tuple(r) for r in self.grid[0:]])
while self.breadcrumbs:
self.unwrap_guess(self.breadcrumbs[-1])
try:
while not self.guess_least_open_square():
pass
except UnsolvablePuzzle:
break
else:
yield tuple([tuple(r) for r in self.grid[0:]])
yield None
def has_unique_solution (self):
sf = self.solution_finder()
sf.next()
if sf.next():
return False
else:
return True
def guess_least_open_square (self):
# get open squares and check them
poss = self.calculate_open_squares().items()
# if there are no open squares, we're done!
if not poss:
if self.verbose:
print 'Solved!'
return True
# otherwise, find the possibility with the least possibilities
poss.sort(lambda a, b: len(a[1]) > len(b[1]) and 1 or len(a[1]) < len(b[1]) and -1 or \
a[0] > b[0] and 1 or a[1] < b[1] and -1 or 0)
least = poss[0]
# remove anything we've already guessed
possible_values = least[1] - self.guesses.guesses_for_coord(*least[0])
if not possible_values:
if self.breadcrumbs:
self.backtraces += 1
self.unwrap_guess(self.breadcrumbs[-1])
return self.guess_least_open_square()
else:
raise UnsolvablePuzzle("Unsolvable %s.\n \
Out of guesses for %s. Already guessed\n \
%s (other guesses are %s)" % (self,
least[0],
self.guesses.guesses_for_coord(*least[0]),
self.guesses))
guess = random.choice(list(possible_values))
# Create guess object
guess_obj = Guess(least[0][0], least[0][1], guess)
if self.breadcrumbs:
self.breadcrumbs[-1].children.append(guess_obj)
self.current_guess = None #reset (we're tracked via guess.get_child())
self.add(least[0][0], least[0][1], guess)
self.current_guess = guess_obj # (All deterministic additions
# get added to our
# consequences)
self.guesses.append(guess_obj)
self.trail.append(('+', guess_obj))
self.breadcrumbs.append(guess_obj)
try:
self.auto_fill()
except NotImplementedError:
self.trail.append('Problem filling coordinates after guess')
self.unwrap_guess(guess_obj)
return self.guess_least_open_square()
if set([]) in self.calculate_open_squares().values():
self.trail.append('Guess leaves us with impossible squares.')
self.unwrap_guess(guess_obj)
return self.guess_least_open_square()
def unwrap_guess (self, guess):
self.trail.append(('-', guess))
if self._get_(guess.x, guess.y):
self.remove(guess.x, guess.y)
for consequence in guess.consequences.keys():
if self._get_(*consequence):
self.remove(*consequence)
for child in guess.children:
self.unwrap_guess(child)
if child in self.guesses:
self.guesses.remove(child)
if guess in self.breadcrumbs:
self.breadcrumbs.remove(guess)
def pad (self, n, pad_to):
n = str(n)
padding = int(pad_to) - len(n)
second_half = padding / 2
first_half = second_half + padding % 2
return " " * first_half + n + " " * second_half
def add (self, x, y, val, *args, **kwargs):
if self.current_guess:
self.current_guess.add_consequence(x, y, val)
SudokuGrid.add(self, x, y, val, *args, **kwargs)
class InteractiveSudoku (SudokuSolver):
"""A subclass of SudokuSolver that provides some convenience
functions for helping along a human.who is in the midst of
solving."""
def __init__ (self, grid = False, verbose = False, group_size = 9):
SudokuSolver.__init__(self, grid, verbose, group_size)
self.cleared_conflicts = []
def to_string (self):
return self.virgin.to_string() + '\n' + SudokuSolver.to_string(self)
def find_impossible_implications (self, x, y):
"""Return a set of impossibilities implied by the users actions."""
row_cells = self.row_coords[y]
col_cells = self.col_coords[x]
box = self.box_by_coords[(x, y)]
box_cells = self.box_coords[box]
broken = set()
for coord_set in [row_cells, col_cells, box_cells]:
# just work on the open squares
coord_set = filter(lambda coords: not self._get_(*coords), coord_set)
for coords in coord_set:
if not self.possible_values(*coords):
broken.add(coords)
return broken
def check_for_completeness (self):
for r in self.rows:
if len(r) != self.group_size:
return False
for c in self.cols:
if len(c) != self.group_size:
return False
return True
def is_changed (self):
return (self.grid != self.virgin.grid)
def add (self, x, y, val, force = False):
'''Add a value to the grid.
The main feature of this method is conflict resolution. When conflicts
are found they are stored in the conflicts ParallelDict. A cell that
is in conflict is stored in the underlying grid(SudokuGrid.grid), but
it has all of its solution hints cleared(SudokuGrid.rows/cols/boxes).
Care must be taken so that solution hints from the original
grid(SudokuSolver.virgin) are not cleared.
'''
# First just add it to SudokuGrid
no_exception = True
try:
super(InteractiveSudoku, self).add(x, y, val, force)
except ConflictError:
no_exception = False
# Find any cells that conflict with the new value for this cell
coords = set([])
coords.update(self.row_coords[y])
coords.update(self.col_coords[x])
coords.update(self.box_coords[self.box_by_coords[(x, y)]])
coords.discard((x, y))
conflicting_coordinates = []
for xx, yy in coords:
if self._get_(xx, yy) == val:
conflicting_coordinates.append((xx, yy))
# Store the conflicts for access
if conflicting_coordinates:
self.conflicts[(x, y)] = conflicting_coordinates
# Resume when there are no conflicts
else:
return
# But when we do have conflicts, the values from cols/rows/boxes need
# to be removed so the hinting doesn't consider them. We must be
# chaste with the virgin though.
try:
if no_exception and not self.virgin._get_(x, y):
self.rows[y].discard(val)
self.cols[x].discard(val)
self.boxes[self.box_by_coords[(x, y)]].discard(val)
for xx, yy in conflicting_coordinates:
if self.virgin._get_(xx, yy):
continue
if not val in self.virgin.rows[yy]:
self.rows[yy].discard(val)
if not val in self.virgin.cols[xx]:
self.cols[xx].discard(val)
if not val in self.virgin.box_coords[self.box_by_coords[(xx, yy)]]:
self.boxes[self.box_by_coords[(xx, yy)]].discard(val)
# This class can be used before the virgin is created. Pass through
# for the initialization phase
except AttributeError:
pass
def remove (self, x, y):
'''Remove a value from the grid.
The main feature of this method is conflict resolution. All
conflicting cells are checked to see if they are actually
conflict-free. A list of conflict-free cells are stored in
InteractiveSudoku.cleared_conflicts. The cleared_conflicts list is
cleared for each meaningful call to remove(), so it must be processed
before another remove() call.
All solution hints(SudokuGrid.rows/cols/boxes) are reinstated for
conflict-free cells.
'''
# Grab the value that we're clearing. Skip out if its nothing
val = self._get_(x, y)
if not val:
return
# Pop the conflicts resolved by this removal
self.cleared_conflicts = []
errors_removed = []
if self.conflicts.has_key((x, y)):
errors_removed = self.conflicts[(x, y)]
del self.conflicts[(x, y)]
# If there are no conflicts for this cell then just remove it in from
# the grid
else :
super(InteractiveSudoku, self).remove(x, y)
return
# Grid clearance flags
if val in self.rows[y]:
clear_row = True
else:
clear_row = False
if val in self.cols[x]:
clear_col = True
else:
clear_col = False
if val in self.boxes[self.box_by_coords[(x, y)]]:
clear_box = True
else:
clear_box = False
# Scroll through the conflicts
for coord in errors_removed:
# If it is not an error by some other pairing, append it to a list
# of conflicts that were actually cleared by this removal.
if not self.conflicts.has_key(coord):
self.cleared_conflicts.append(coord)
# When a conflict remains, we need to correct the rows, cols, and
# boxes arrays properly
else:
if clear_row and coord in self.row_coords[y]:
clear_row = False
if clear_col and coord in self.col_coords[x]:
clear_col = False
if clear_box and coord in self.box_coords[self.box_by_coords[(x, y)]]:
clear_box = False
# Clear the rows, cols, and boxes if we need to.
if clear_row:
self.rows[y].remove(val)
if clear_col:
self.cols[x].remove(val)
if clear_box:
self.boxes[self.box_by_coords[(x, y)]].remove(val)
# Clear the cell
self._set_(x, y, 0)
# Scroll through the cleared conflicts and commit them to ensure they
# are represented in the grid properly. It is possible for add() to do
# subsequent remove()s, so hold onto the cleared conflict list for the
# caller.
hold_conflicts = self.cleared_conflicts
for xx, yy in self.cleared_conflicts:
self.add(xx, yy, val, True)
self.cleared_conflicts = hold_conflicts
class DifficultyRating:
very_hard_range = (0.75, 10)
hard_range = (0.6, 0.75)
medium_range = (0.45, 0.6)
easy_range = (-10, 0.45)
categories = {'very hard':very_hard_range,
'hard':hard_range,
'medium':medium_range,
'easy':easy_range}
ordered_categories = ['easy', 'medium', 'hard', 'very hard']
def __init__ (self,
fill_must_fillables,
elimination_fillables,
guesses,
backtraces,
squares_filled):
self.fill_must_fillables = fill_must_fillables
self.elimination_fillables = elimination_fillables
self.guesses = guesses
self.backtraces = backtraces
self.squares_filled = squares_filled
if self.fill_must_fillables:
self.instant_fill_fillable = float(len(self.fill_must_fillables[0]))
else:
self.instant_fill_fillable = 0.0
if self.elimination_fillables:
self.instant_elimination_fillable = float(len(self.elimination_fillables[0]))
else:
self.instant_elimination_fillable = 0.0
self.proportion_instant_elimination_fillable = self.instant_elimination_fillable / self.squares_filled
# some more numbers that may be crazy...
self.proportion_instant_fill_fillable = self.instant_fill_fillable / self.squares_filled
self.elimination_ease = add_with_diminishing_importance(
self.count_values(self.elimination_fillables)
)
self.fillable_ease = add_with_diminishing_importance(
self.count_values(self.fill_must_fillables)
)
self.value = self.calculate()
def count_values (self, dct):
kk = dct.keys()
kk.sort()
return [len(dct[k]) for k in kk]
def calculate (self):
return 1 - float(self.fillable_ease) / self.squares_filled \
- float(self.elimination_ease) / self.squares_filled \
+ len(self.guesses) / self.squares_filled \
+ self.backtraces / self.squares_filled
def __repr__ (self):
return '<DifficultyRating %s>' % self.value
def pretty_print (self):
for name, stat in [('Number of moves instantly fillable by elimination',
self.instant_elimination_fillable),
('Percentage of moves instantly fillable by elimination',
self.proportion_instant_elimination_fillable * 100),
('Number of moves instantly fillable by filling',
self.instant_fill_fillable),
('Percentage of moves instantly fillable by filling',
self.proportion_instant_fill_fillable * 100),
('Number of guesses made',
len(self.guesses)),
('Number of backtraces', self.backtraces),
('Ease by filling', self.fillable_ease),
('Ease by elimination', self.elimination_ease),
('Calculated difficulty', self.value)
]:
print name, ': ', stat
def value_category (self):
"""Get category string, without i18n or capitalization
For use in categorizing category.
"""
if self.value > self.very_hard_range[0]:
return 'very hard'
elif self.value > self.hard_range[0]:
return 'hard'
elif self.value > self.medium_range[0]:
return 'medium'
else:
return 'easy'
def get_difficulty_category (diff_float):
for category, range in DifficultyRating.categories.items():
if range[0] <= diff_float < range[1]:
return category
class SudokuRater (SudokuSolver):
def __init__ (self, grid = False, verbose = False, group_size = 9):
self.initialized = False
self.guessing = False
self.fake_add = False
self.fake_additions = []
self.filled = set([])
self.fill_must_fillables = {}
self.elimination_fillables = {}
self.tier = 0
SudokuSolver.__init__(self, grid, verbose, group_size)
def add (self, *args, **kwargs):
if not self.fake_add:
if self.initialized and not self.guessing:
self.scan_fillables()
for delayed_args in self.add_me_queue:
coords = (delayed_args[0], delayed_args[1])
if not self._get_(*coords):
SudokuSolver.add(self, *delayed_args)
if not self._get_(args[0], args[1]):
SudokuSolver.add(self, *args)
self.tier += 1
else:
SudokuSolver.add(self, *args, **kwargs)
else:
self.fake_additions.append(args)
def scan_fillables (self):
self.fake_add = True
# this will now tell us how many squares at current
# difficulty could be filled at this moment.
self.fake_additions = []
try:
self.fill_must_fills()
except:
pass
self.fill_must_fillables[self.tier] = set(self.fake_additions[:]) - self.filled
self.add_me_queue = self.fake_additions[:]
self.fake_additions = []
try:
self.fill_deterministically()
except:
pass
self.elimination_fillables[self.tier] = set(self.fake_additions[:]) - self.filled
self.filled = self.filled | self.fill_must_fillables[self.tier] | self.elimination_fillables[self.tier]
self.add_me_queue.extend(self.fake_additions[:])
self.fake_add = False
def guess_least_open_square (self):
self.guessing = True
return SudokuSolver.guess_least_open_square(self)
def difficulty (self):
if not self.solved:
self.solve()
self.clues = 0
# Add up the number of our initial clues through some nifty mapping calls
map(lambda r: map(lambda i: setattr(self, 'clues', self.clues.__add__(i and 1 or 0)),
r),
self.virgin.grid)
self.numbers_added = self.group_size ** 2 - self.clues
rating = DifficultyRating(self.fill_must_fillables,
self.elimination_fillables,
self.guesses,
self.backtraces,
self.numbers_added)
return rating
class GuessList (list):
def __init__ (self, *guesses):
list.__init__(self, *guesses)
def guesses_for_coord (self, x, y):
return set([guess.val for guess in filter(lambda guess: guess.x == x and guess.y == y, self)])
def remove_children (self, guess):
removed = []
for g in guess.children:
if g in self:
removed.append(g)
self.remove(g)
return removed
def remove_guesses_for_coord (self, x, y):
nuking = False
nuked = []
for i in range(len(self) - 1):
g = self[i - len(nuked)]
if g.x == x and g.y == y:
nuking = True
if nuking:
self.remove(g)
nuked += [g]
return nuked
class BreadcrumbTrail (GuessList):
def append (self, guess):
# Raise an error if we add something to ourselves twice
if self.guesses_for_coord(guess.x, guess.y):
raise ValueError("We already have crumbs on %s, %s" % (guess.x, guess.y))
else:
list.append(self, guess)
class Guess:
def __init__ (self, x, y, val):
self.x = x
self.y = y
self.children = []
self.val = val
self.consequences = {}
def add_consequence (self, x, y, val):
self.consequences[(x, y)] = val
def __repr__ (self):
s = "<Guess (%s, %s)=%s" % (self.x, self.y, self.val)
if self.consequences:
s += " implies: "
s += ", ".join(["%s->%s" % (k, v) for k, v in self.consequences.items()])
s += ">"
return s
def add_with_diminishing_importance (lst, diminish_by = lambda x: x + 1):
sum = 0
for i, n in enumerate(lst):
sum += float(n) / diminish_by(i)
return sum
|