/usr/share/audacity/nyquist/xm.lsp is in audacity-data 2.0.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 | ;; X-Music, inspired by Commmon Music
#|
PATTERN SEMANTICS
Patterns are objects that are generally accessed by calling
(next pattern). Each call returns the next item in an
infinite sequence generated by the pattern. Items are
organized into periods. You can access all (remaining)
items in the current period using (next pattern t).
Patterns mark the end-of-period with +eop+, a distinguished
atom. The +eop+ markers are filtered out by the next function
but returned by the :next method.
Pattern items may be patterns. This is called a nested
pattern. When patterns are nested, you return a period
from the innermost pattern, i.e. traversal is depth-first.
This means when you are using something like random, you
have to remember the last thing returned and keep getting
the next element from that thing until you see +eop+;
then you move on. It's a bit more complicated because
a pattern advances when its immediate child pattern
finishes a cycle, but +eop+ is only returned from the
"leaf" patterns.
With nested patterns, i.e. patterns with items that
are patterns, the implementation requires that
*all* items must be patterns. The application does
*not* have to make every item a pattern, so the
implementation "cleans up" the item list: Any item
that is not a pattern is be replaced with a cycle
pattern whose list contains just the one item.
EXPLICIT PATTERN LENGTH
Pattern length may be given explicitly by a number or
a pattern that generates numbers. Generally this is
specified as the optional :for keyword parameter when
the pattern is created. If the explicit pattern
length is a number, this will be the period length,
overriding all implicit lengths. If the pattern length
is itself a pattern, the pattern is evaluated every
period to determine the length of the next period,
overriding any implicit length.
IMPLEMENTATION
There are 3 ways to determine lengths:
1) The length is implicit. The length can be
computed (at some point) and turned into an
explicit length.
2) The length is explicit. This overrides the
implicit length. The explicit length is stored as
a counter that tells how many more items to generate
in the current period.
3) The length can be generated by a pattern.
The pattern is evaluated to generate an explicit
length.
So ultimately, we just need a mechanism to handle
explicit lengths. This is incorporated into the
pattern-class. The pattern-class sends :start-period
before calling :advance when the first item in a
period is about to be generated. Also, :next returns
+eop+ automatically at the end of a period.
Because evaluation is "depth first," i.e. we
advance to the next top-level item only after a period
is generated from a lower-level pattern, every pattern
has a "current" field that holds the current item. the
"have-current" field is a flag to tell when the "current"
field is valid. It is initialized to nil.
To generate an element, you need to follow the nested
patterns all the way to the leaf pattern for every
generated item. This is perhaps less efficient than
storing the current leaf pattern at the top level, but
patterns can be shared, i.e. a pattern can be a
sub-pattern of multiple patterns, so current position
in the tree structure of patterns can change at
any time.
The evaluation of nested patterns is depth-first
and the next shallower level advances when its current
child pattern completes a cycle. To facilitate this
step, the :advance method, which advances a pattern
and computes "current", returns +eonp+, which is a
marker that a nested pattern has completed a cycle.
The :next method generates the next item or +eop+ from
a pattern. The algorithm in psuedo-code is roughly this:
next(p)
while true:
if not have-current
pattern-advance()
have-current = true
if is-nested and current = eop:
have-current = false
return eonp
if is-nested:
rslt = next(current)
if rslt == eonp
have-current = false
elif rslt == eop and not current.is-nested
have-current = false
return rslt
else
return rslt
else
have-current = nil
return current
pattern-advance
// length-pattern is either a pattern or a constant
if null(count) and length-pattern:
count = next(length-pattern)
start-period() // subclass-specific computation
if null(count)
error
if count == 0
current = eop
count = nil
else
advance() // subclass-specific computation
count--
SUBCLASS RESPONSIBILITIES
Note that :advance is the method to override in the
various subclasses of pattern-class. The :advance()
method computes the next element in the infinite
sequence of items and puts the item in the "current"
field.
The :start-period method is called before calling
advance to get the first item of a new period.
Finally, set the is-nested flag if there are nested patterns,
and make all items of any nested pattern be patterns (no
mix of patterns and non-patterns is allowed; use
(MAKE-CYCLE (LIST item))
to convert a non-pattern to a pattern).
|#
(setf SCORE-EPSILON 0.000001)
(setf pattern-class
(send class :new '(current have-current is-nested name count
length-pattern trace)))
(defun patternp (x)
(and (objectp x) (send x :isa pattern-class)))
(setf +eop+ '+eop+)
(setf +eonp+ '+eonp+) ;; end of nested period, this indicates you
;; should advance yourself and call back to get the next element
(defun check-for-list (lis name)
(if (not (listp lis))
(error (format nil "~A, requires a list of elements" name))))
(defun check-for-list-or-pattern (lis name)
(if (not (or (listp lis) (patternp lis)))
(error (format nil "~A, requires a list of elements or a pattern" name))))
(defun list-has-pattern (lis)
(dolist (e lis)
(if (patternp e) (return t))))
(defun is-homogeneous (lis)
(let (type)
(dolist (elem lis t)
(cond ((null type)
(setf type (if (patternp elem) 'pattern 'atom)))
((and (eq type 'pattern)
(not (patternp elem)))
(return nil))
((and (eq type 'atom)
(patternp elem))
(return nil))))))
(defun make-homogeneous (lis)
(cond ((is-homogeneous lis) lis)
(t
(mapcar #'(lambda (item)
(if (patternp item) item
(make-cycle (list item)
;; help debugging by naming the new pattern
;; probably, the name could be item, but
;; here we coerce item to a string to avoid
;; surprises in code that assumes string names.
:name (format nil "~A" item))))
lis))))
(send pattern-class :answer :next '()
'(;(display ":next" name is-nested)
(loop
(cond ((not have-current)
(send self :pattern-advance)
(setf have-current t)
(cond (trace
(format t "pattern ~A advanced to ~A~%"
(if name name "<no-name>")
(if (patternp current)
(if (send current :name)
(send current :name)
"<a-pattern>")
current))))
(cond ((and is-nested (eq current +eop+))
;(display ":next returning eonp" name)
(setf have-current nil)
(return +eonp+)))))
(cond (is-nested
(let ((rslt (send current :next)))
(cond ((eq rslt +eonp+)
(setf have-current nil))
;; advance next-to-leaf level at end of leaf's period
((and (eq rslt +eop+) (not (send current :is-nested)))
(setf have-current nil)
;; return +eof+ because it's the end of leaf's period
(return rslt))
(t
(return rslt)))))
(t
(setf have-current nil)
(return current))))))
;; :PATTERN-ADVANCE -- advance to the next item in a pattern
;;
;; this code is used by every class. class-specific behavior
;; is implemented by :advance, which this method calls
;;
(send pattern-class :answer :pattern-advance '()
'(;(display "enter :pattern-advance" self name count current is-nested)
(cond ((null count)
;(display "in :pattern-advance" name count length-pattern)
(if length-pattern
(setf count (next length-pattern)))
;; if count is still null, :start-period must set count
(send self :start-period)))
(cond ((null count)
(error
(format nil
"~A, pattern-class :pattern-advance has null count" name))))
(cond ((zerop count)
(setf current +eop+)
(setf count nil))
(t
(send self :advance)
(decf count)))
;(display "exit :pattern-advance" name count current)
))
(send pattern-class :answer :is-nested '() '(is-nested))
(send pattern-class :answer :name '() '(name))
(send pattern-class :answer :set-current '(c)
'((setf current c)
(let ((value
(if (patternp current)
(send current :name)
current)))
;(display ":set-current" name value)
)))
;; next -- get the next element in a pattern
;;
;; any non-pattern value is simply returned
;;
(defun next (pattern &optional period-flag)
;(display "next" pattern period-flag (patternp pattern))
(cond ((and period-flag (patternp pattern))
(let (rslt elem)
(while (not (eq (setf elem (send pattern :next)) +eop+))
;(display "next t" (send pattern :name) elem)
(if (not (eq elem +eonp+))
(push elem rslt)))
(reverse rslt)))
(period-flag
(display "next" pattern)
(error (format nil "~A, next expected a pattern"
(send pattern :name))))
((patternp pattern)
;(display "next" (send pattern :name) pattern)
(let (rslt)
(dotimes (i 10000 (error
(format nil
"~A, just retrieved 10000 empty periods -- is there a bug?"
(send pattern :name))))
(if (not (member (setf rslt (send pattern :next))
'(+eop+ +eonp+)))
(return rslt)))))
(t ;; pattern not a pattern, so just return it:
;(display "next" pattern)
pattern)))
;; ---- LENGTH Class ----
(setf length-class
(send class :new '(pattern length-pattern) '() pattern-class))
(send length-class :answer :isnew '(p l nm tr)
'((setf pattern p length-pattern l name nm trace tr)))
;; note that count is used as a flag as well as a counter.
;; If count is nil, then the pattern-length has not been
;; determined. Count is nil intitially and again at the
;; end of each period. Otherwise, count is an integer
;; used to count down the number of items remaining in
;; the period.
(send length-class :answer :start-period '()
'((setf count (next length-pattern))))
(send length-class :answer :advance '()
'((send self :set-current (next pattern))))
(defun make-length (pattern length-pattern &key (name "length") trace)
(send length-class :new pattern length-pattern name trace))
;; ---- CYCLE Class ---------
(setf cycle-class (send class :new
'(lis cursor lis-pattern)
'() pattern-class))
(send cycle-class :answer :isnew '(l for nm tr)
'((cond ((patternp l)
(setf lis-pattern l))
((listp l)
(send self :set-list l))
(t
(error (format nil "~A, expected list" nm) l)))
(setf length-pattern for name nm trace tr)))
(send cycle-class :answer :set-list '(l)
'((setf lis l)
(check-for-list lis "cycle-class :set-list")
(setf is-nested (list-has-pattern lis))
(setf lis (make-homogeneous lis))))
(send cycle-class :answer :start-period '()
'(;(display "cycle-class :start-period" lis-pattern lis count length-pattern)
(cond (lis-pattern
(send self :set-list (next lis-pattern t))
(setf cursor lis)))
(if (null count)
(setf count (length lis)))))
(send cycle-class :answer :advance '()
'((cond ((and (null cursor) lis)
(setf cursor lis))
((null cursor)
(error (format nil "~A, :advance - no items" name))))
(send self :set-current (car cursor))
(pop cursor)))
(defun make-cycle (lis &key for (name "cycle") trace)
(check-for-list-or-pattern lis "make-cycle")
(send cycle-class :new lis for name trace))
;; ---- LINE class ----
(setf line-class (send class :new '(lis cursor lis-pattern)
'() pattern-class))
(send line-class :answer :isnew '(l for nm tr)
'((cond ((patternp l)
(setf lis-pattern l))
((listp l)
(send self :set-list l))
(t
(error (format nil "~A, expected list" nm) l)))
(setf length-pattern for name nm trace tr)))
(send line-class :answer :set-list '(l)
'((setf lis l)
(check-for-list lis "line-class :set-list")
(setf is-nested (list-has-pattern lis))
(setf lis (make-homogeneous l))
(setf cursor lis)))
(send line-class :answer :start-period '()
'((cond (lis-pattern
(send self :set-list (next lis-pattern t))
(setf cursor lis)))
(if (null count)
(setf count (length lis)))))
(send line-class :answer :advance '()
'((cond ((null cursor)
(error (format nil "~A, :advance - no items" name))))
(send self :set-current (car cursor))
(if (cdr cursor) (pop cursor))))
(defun make-line (lis &key for (name "line") trace)
(check-for-list-or-pattern lis "make-line")
(send line-class :new lis for name trace))
;; ---- RANDOM class -----
(setf random-class (send class :new
'(lis lis-pattern len previous repeats mincnt maxcnt)
'() pattern-class))
;; the structure is (value weight weight-pattern max min)
(setfn rand-item-value car)
(defun set-rand-item-value (item value) (setf (car item) value))
(setfn rand-item-weight cadr)
(defun set-rand-item-weight (item weight) (setf (car (cdr item)) weight))
(setfn rand-item-weight-pattern caddr)
(setfn rand-item-max cadddr)
(defun rand-item-min (lis) (car (cddddr lis)))
(defun select-random (len lis previous repeats mincnt maxcnt)
(let (sum items r)
(cond ((zerop len)
(break "random-class has no list to choose from")
nil)
(t
(setf sum 0)
(dolist (item lis)
(setf sum (+ sum (rand-item-weight item))))
(setf items lis)
(setf r (rrandom))
(setf sum (* sum r))
(setf rbd-count-all (incf rbd-count-all))
(loop
(setf sum (- sum (rand-item-weight (car items))))
(if (<= sum 0) (return (car items)))
(setf rbd-count-two (incf rbd-count-two))
(setf items (cdr items)))))))
(defun random-convert-spec (item)
;; convert (value :weight wp :min min :max max) to (value nil wp max min)
(let (value (wp 1) mincnt maxcnt lis)
(setf value (car item))
(setf lis (cdr item))
(while lis
(cond ((eq (car lis) :weight)
(setf wp (cadr lis)))
((eq (car lis) :min)
(setf mincnt (cadr lis)))
((eq (car lis) :max)
(setf maxcnt (cadr lis)))
(t
(error "(make-random) item syntax error" item)))
(setf lis (cddr lis)))
(list value nil wp maxcnt mincnt)))
(defun random-atom-to-list (a)
(if (atom a)
(list a nil 1 nil nil)
(random-convert-spec a)))
(send random-class :answer :isnew '(l for nm tr)
;; there are two things we have to normalize:
;; (1) make all items lists
;; (2) if any item is a pattern, make all items patterns
'((cond ((patternp l)
(setf lis-pattern l))
((listp l)
(send self :set-list l))
(t
(error (format nil "~A, expected list") l)))
(setf rbd-count-all 0 rbd-count-two 0)
(setf length-pattern for name nm trace tr)))
(send random-class :answer :set-list '(l)
'((check-for-list l "random-class :set-list")
(setf lis (mapcar #'random-atom-to-list l))
(dolist (item lis)
(if (patternp (rand-item-value item))
(setf is-nested t)))
(if is-nested
(mapcar #'(lambda (item)
(if (not (patternp (rand-item-value item)))
(set-rand-item-value item
(make-cycle (list (rand-item-value item))))))
lis))
;(display "random is-new" lis)
(setf repeats 0)
(setf len (length lis))))
(send random-class :answer :start-period '()
'(;(display "random-class :start-period" count len lis lis-pattern)
(cond (lis-pattern
(send self :set-list (next lis-pattern t))))
(if (null count)
(setf count len))
(dolist (item lis)
(set-rand-item-weight item (next (rand-item-weight-pattern item))))))
(send random-class :answer :advance '()
'((let (selection (iterations 0))
;(display "random-class :advance" mincnt repeats)
(cond ((and mincnt (< repeats mincnt))
(setf selection previous)
(incf repeats))
(t
(setf selection
(select-random len lis previous repeats mincnt maxcnt))))
(loop ; make sure selection is ok, otherwise try again
(cond ((and (eq selection previous)
maxcnt
(>= repeats maxcnt)) ; hit maximum limit, try again
(setf selection
(select-random len lis previous repeats mincnt maxcnt))
(incf iterations)
(cond ((> iterations 10000)
(error
(format nil
"~A, unable to pick next item after 10000 tries"
name)
lis))))
(t (return)))) ; break from loop, we found a selection
; otherwise, we are ok
(if (not (eq selection previous))
(setf repeats 1)
(incf repeats))
(setf mincnt (rand-item-min selection))
(setf maxcnt (rand-item-max selection))
(setf previous selection)
;(display "new selection" repeats mincnt maxcnt selection)
(send self :set-current (rand-item-value selection)))))
(defun make-random (lis &key for (name "random") trace)
(check-for-list-or-pattern lis "make-random")
(send random-class :new lis for name trace))
;; ---- PALINDROME class -----
#| Palindrome includes elide, which is either t, nil, :first, or :last.
The pattern length is the "natural" length of the pattern, which goes
forward and backward through the list. Thus, if the list is of length N,
the palindrome length depends on elide as follows:
elide length
nil 2N
t 2N - 2
:first 2N - 1
:last 2N - 1
If elide is a pattern, and if length is not specified, then length should
be computed based on elide.
|#
(setf palindrome-class (send class :new
'(lis revlis lis-pattern
direction elide-pattern
elide cursor)
'() pattern-class))
(send palindrome-class :answer :set-list '(l)
'((setf lis l)
(check-for-list lis "palindrome-class :start-period")
(setf is-nested (list-has-pattern lis))
(setf lis (make-homogeneous l))
(setf revlis (reverse lis)
direction t
cursor lis)))
(send palindrome-class :answer :isnew '(l e for nm tr)
'((cond ((patternp l)
(setf lis-pattern l))
((listp l)
(send self :set-list l))
(t
(error (format nil "~A, expected list" nm) l)))
(setf elide-pattern e length-pattern for name nm trace tr)))
(send palindrome-class :answer :start-period '()
'((cond (lis-pattern
(send self :set-list (next lis-pattern t))
(setf cursor lis)))
(setf elide (next elide-pattern))
(if (and elide (null lis))
(error (format nil "~A, cannot elide if list is empty" name)))
(if (null count)
(setf count (- (* 2 (length lis))
(if (member elide '(:first :last))
1
(if elide 2 0)))))))
(send palindrome-class :answer :next-item '()
'((send self :set-current (car cursor))
(pop cursor)
(cond ((and cursor (not (cdr cursor))
(or (and direction (member elide '(:last t)))
(and (not direction) (member elide '(:first t)))))
(pop cursor)))))
(send palindrome-class :answer :advance '()
'(
(cond (cursor
(send self :next-item))
(direction ;; we're going forward
(setf direction nil) ;; now going backward
(setf cursor revlis)
(send self :next-item))
(t ;; direction is reverse
(setf direction t)
(setf cursor lis)
(send self :next-item)))))
(defun make-palindrome (lis &key elide for (name "palindrome") trace)
(check-for-list-or-pattern lis "make-palindrome")
(send palindrome-class :new lis elide for name trace))
;; ================= HEAP CLASS ======================
;; to handle the :max keyword, which tells the object to avoid
;; repeating the last element of the previous period:
;;
;; maxcnt = 1 means "avoid the repetition"
;; check-repeat signals we are at the beginning of the period and must check
;; prev holds the previous value (initially nil)
;; after each item is generated, check-repeat is cleared. It is
;; recalculated when a new period is started.
(setf heap-class (send class :new '(lis used maxcnt prev check-repeat
lis-pattern len)
'() pattern-class))
(send heap-class :answer :isnew '(l for mx nm tr)
'((cond ((patternp l)
(setf lis-pattern l))
((listp l)
; make a copy of l to avoid side effects
(send self :set-list (append l nil)))
(t
(error (format nil "~A, expected list" nm) l)))
(setf length-pattern for maxcnt mx name nm trace tr)))
(send heap-class :answer :set-list '(l)
'((setf lis l)
(check-for-list lis "heap-class :set-list")
(setf is-nested (list-has-pattern lis))
(setf lis (make-homogeneous lis))
(setf len (length lis))))
(send heap-class :answer :start-period '()
'(;(display "heap-class :start-period" lis-pattern count lis)
(cond (lis-pattern
(send self :set-list (next lis-pattern t))))
; start of period -- may need to avoid repeating previous item
(if (= maxcnt 1) (setf check-repeat t))
(if (null count)
(setf count len))))
(defun delete-first (elem lis)
(cond ((null lis) nil)
((eq elem (car lis))
(cdr lis))
(t
(cons (car lis) (delete-first elem (cdr lis))))))
;; NO-DISTINCT-ELEM -- check if any element of list is not val
;;
(defun no-distinct-elem (lis val)
(not
(dolist (elem lis)
(if (not (equal elem val))
;; there is a distinct element, return t from dolist
(return t)))))
;; if no distinct element, dolist returns nil, but this is negated
;; by the NOT so the function will return t
(send heap-class :answer :advance '()
'((cond ((null lis)
(setf lis used)
(setf used nil)))
(let (n elem)
(cond ((and check-repeat (no-distinct-elem lis prev))
(error (format nil "~A, cannot avoid repetition, but :max is 1"
name))))
(loop
(setf n (random (length lis)))
(setf elem (nth n lis))
(if (or (not check-repeat) (not (equal prev elem)))
(return))) ;; loop until suitable element is chosen
(setf lis (delete-first elem lis))
(push elem used)
(setf check-repeat nil)
(setf prev elem)
(send self :set-current elem))))
(defun make-heap (lis &key for (max 2) (name "heap") trace)
(send heap-class :new lis for max name trace))
;;================== COPIER CLASS ====================
(setf copier-class (send class :new '(sub-pattern repeat repeat-pattern
merge merge-pattern period cursor)
'() pattern-class))
(send copier-class :answer :isnew '(p r m for nm tr)
'((setf sub-pattern p repeat-pattern r merge-pattern m)
(setf length-pattern for name nm trace tr)))
#| copier-class makes copies of periods from sub-pattern
If merge is true, the copies are merged into one big period.
If merge is false, then repeat separate periods are returned.
If repeat is negative, then -repeat periods of sub-pattern
are skipped.
merge and repeat are computed from merge-pattern and
repeat-pattern initially and after making repeat copies
To repeat individual items, set the :for keyword parameter of
the sub-pattern to 1.
|#
(send copier-class :answer :start-period '()
'((cond ((null count)
(cond ((or (null repeat) (zerop repeat))
(send self :really-start-period))
(t
(setf count (length period))))))))
(send copier-class :answer :really-start-period '()
'(;(display "copier-class :really-start-period" count)
(setf merge (next merge-pattern))
(setf repeat (next repeat-pattern))
(while (minusp repeat)
(dotimes (i (- repeat))
(setf period (next sub-pattern t)))
(setf repeat (next repeat-pattern))
(setf merge (next merge-pattern)))
(setf period (next sub-pattern t))
(setf cursor nil)
(if (null count)
(setf count (* (if merge repeat 1)
(length period))))))
(send copier-class :answer :advance '()
'((let ((loop-count 0))
(loop
;(display "copier loop" repeat cursor period)
(cond (cursor
(send self :set-current (car cursor))
(pop cursor)
(return))
((plusp repeat)
(decf repeat)
(setf cursor period))
((> loop-count 10000)
(error (format nil
"~A, copier-class :advance encountered 10000 empty periods"
name)))
(t
(send self :really-start-period)))
(incf loop-count)))))
(defun make-copier (sub-pattern &key for (repeat 1) merge (name "copier") trace)
(send copier-class :new sub-pattern repeat merge for name trace))
;; ================= ACCUMULATE-CLASS ===================
(setf accumulate-class (send class :new '(sub-pattern period cursor sum mini maxi)
'() pattern-class))
(send accumulate-class :answer :isnew '(p for nm tr mn mx)
'((setf sub-pattern p length-pattern for name nm trace tr sum 0 mini mn maxi mx)
; (display "accumulate isnew" self nm)
))
#|
accumulate-class creates sums of numbers from another pattern
The output periods are the same as the input periods (by default).
|#
(send accumulate-class :answer :start-period '()
'((cond ((null count)
(send self :really-start-period)))))
(send accumulate-class :answer :really-start-period '()
'((setf period (next sub-pattern t))
(setf cursor period)
;(display "accumulate-class :really-start-period" period cursor count)
(if (null count)
(setf count (length period)))))
(send accumulate-class :answer :advance '()
'((let ((loop-count 0) (minimum (next mini)) (maximum (next maxi)))
(loop
(cond (cursor
(setf sum (+ sum (car cursor)))
(cond ((and (numberp minimum) (< sum minimum))
(setf sum minimum)))
(cond ((and (numberp maximum) (> sum maximum))
(setf sum maximum)))
(send self :set-current sum)
(pop cursor)
(return))
((> loop-count 10000)
(error (format nil
"~A, :advance encountered 10000 empty periods" name)))
(t
(send self :really-start-period)))
(incf loop-count)))))
(defun make-accumulate (sub-pattern &key for min max (name "accumulate") trace)
(send accumulate-class :new sub-pattern for name trace min max))
;;================== ACCUMULATION CLASS ===================
;; for each item, generate all items up to and including the item, e.g.
;; (a b c) -> (a a b a b c)
(setf accumulation-class (send class :new '(lis lis-pattern outer inner len)
'() pattern-class))
(send accumulation-class :answer :isnew '(l for nm tr)
'((cond ((patternp l)
(setf lis-pattern l))
((listp l)
(send self :set-list l))
(t
(error (format nil "~A, expected list" nm) l)))
(setf length-pattern for name nm trace tr)))
(send accumulation-class :answer :set-list '(l)
'((setf lis l)
(check-for-list lis "heap-class :set-list")
(setf lis (make-homogeneous lis))
(setf inner lis)
(setf outer lis)
(setf len (length lis))))
(send accumulation-class :answer :start-period '()
'((cond (lis-pattern
(send self :set-list (next lis-pattern t))))
; start of period, length = (n^2 + n) / 2
(if (null count) (setf count (/ (+ (* len len) len) 2)))))
(send accumulation-class :answer :advance '()
;; inner traverses lis from first to outer
;; outer traverses lis
'((let ((elem (car inner)))
(cond ((eq inner outer)
(setf outer (rest outer))
(setf outer (if outer outer lis))
(setf inner lis))
(t
(setf inner (rest inner))))
(send self :set-current elem))))
(defun make-accumulation (lis &key for (name "accumulation") trace)
(send accumulation-class :new lis for name trace))
;;================== SUM CLASS =================
(setf sum-class (send class :new '(x y period cursor fn) '() pattern-class))
(send sum-class :answer :isnew '(xx yy for nm tr)
'((setf x xx y yy length-pattern for name nm trace tr fn #'+)))
#|
sum-class creates pair-wise sums of numbers from 2 streams.
The output periods are the same as the input periods of the first
pattern argument (by default).
|#
(send sum-class :answer :start-period '()
'((cond ((null count)
(send self :really-start-period)))))
(send sum-class :answer :really-start-period '()
'((setf period (next x t))
(setf cursor period)
(if (null count)
(setf count (length period)))))
(send sum-class :answer :advance '()
'((let ((loop-count 0) rslt)
(loop
(cond (cursor
(setf rslt (funcall fn (car cursor) (next y)))
(send self :set-current rslt)
(pop cursor)
(return))
((> loop-count 10000)
(error (format nil
"~A, :advance encountered 10000 empty periods" name)))
(t
(send self :really-start-period)))
(incf loop-count)))))
(defun make-sum (x y &key for (name "sum") trace)
(send sum-class :new x y for name trace))
;;================== PRODUCT CLASS =================
(setf product-class (send class :new '() '() sum-class))
(send product-class :answer :isnew '(xx yy for nm tr)
'((setf x xx y yy length-pattern for name nm trace tr fn #'*)))
(defun make-product (x y &key for (name "product") trace)
(send product-class :new x y for name trace))
;;================== EVAL CLASS =================
(setf eval-class (send class :new '(expr expr-pattern)
'() pattern-class))
(send eval-class :answer :isnew '(e for nm tr)
'((cond ((patternp e)
(setf expr-pattern e))
(t
(setf expr e)))
(setf length-pattern for name nm trace tr)))
(send eval-class :answer :start-period '()
'(;(display "cycle-class :start-period" lis-pattern lis count length-pattern)
(cond (expr-pattern
(setf expr (next expr-pattern))))))
(send eval-class :answer :advance '()
'((send self :set-current (eval expr))))
(defun make-eval (expr &key (for 1) (name "eval") trace)
(send eval-class :new expr for name trace))
;;================== MARKOV CLASS ====================
(setf markov-class (send class :new
'(rules order state produces pattern len)
'() pattern-class))
(defun is-produces-homogeneous (produces)
(let (type elem)
(setf *rslt* nil)
(loop
(cond ((or (null produces) (eq produces :eval) (null (cadr produces)))
(return t)))
(setf elem (cadr produces))
(cond ((null type)
(setf type (if (patternp elem) 'pattern 'atom))
;(display "is-produces-homogeneous" type)
(setf *rslt* (eq type 'pattern))
;(display "is-produces-homogeneous" *rslt*)
)
((and (eq type 'pattern) (not (patternp elem)))
(return nil))
((and (eq type 'atom)
(patternp elem))
(return nil)))
(setf produces (cddr produces)))))
(defun make-produces-homogeneous (produces)
(let (result item)
(loop
(if (null produces) (return nil))
(push (car produces) result)
(setf produces (cdr produces))
(setf item (car produces))
(setf produces (cdr produces))
(if (not (patternp item))
(setf item (make-cycle (list item))))
(push item result))
(reverse result)))
(send markov-class :answer :isnew '(r o s p for nm tr)
;; input parameters are rules, order, state, produces, for, name, trace
'((setf order o state s produces p length-pattern for name nm trace tr)
(setf len (length r))
;; input r looks like this:
;; ((prev1 prev2 -> next1 next2 (next3 weight) ... ) ...)
;; transition table will look like a list of these:
;; ((prev1 prev2 ... prevn) (next1 weight weight-pattern) ...)
(dolist (rule r)
(let ((targets (cdr (nthcdr order rule)))
entry pattern)
;; build entry in reverse order
(dolist (target targets)
(push (if (atom target)
(list target 1 1)
(list (first target)
(next (second target))
(second target)))
entry))
; (display "isnew" entry rule targets order (nthcdr order rule))
(dotimes (i order)
(push (nth i rule) pattern))
(push (cons (reverse pattern) entry) rules)))
(setf rules (reverse rules)) ;; keep rules in original order
(setf *rslt* nil) ;; in case produces is nil
(cond ((and produces (not (is-produces-homogeneous produces)))
(setf produces (make-produces-homogeneous produces))))
;(display "markov-class :isnew" *rslt*)
(setf is-nested *rslt*) ;; returned by is-produces-homogeneous
;(display "markov-class :isnew" is-nested)
))
(defun markov-match (state pattern)
(dolist (p pattern t) ;; return true if no mismatch
;; compare element-by-element
(cond ((eq p '*)) ; anything matches '*
((eql p (car state)))
(t (return nil))) ; a mismatch: return false
(setf state (cdr state))))
(defun markov-sum-of-weights (rule)
;(display "sum-of-weights" rule)
(let ((sum 0.0))
(dolist (target (cdr rule))
;(display "markov-sum-of-weights" target)
(setf sum (+ sum (second target))))
sum))
(defun markov-pick-target (sum rule)
(let ((total 0.0)
;; want to choose a value in the interval [0, sum)
;; but real-random is not open on the right, so fudge
;; the range by a small amount:
(r (real-random 0.0 (- sum SCORE-EPSILON))))
(dolist (target (cdr rule))
(setf total (+ total (second target)))
(cond ((> total r) (return (car target)))))))
(defun markov-update-weights (rule)
(dolist (target (cdr rule))
(setf (car (cdr target)) (next (caddr target)))))
(defun markov-map-target (target produces)
(while (and produces (not (eq target (car produces))))
(setf produces (cddr produces)))
(cadr produces))
(send markov-class :answer :find-rule '()
'((let (rslt)
;(display "find-rule" rules)
(dolist (rule rules)
;(display "find-rule" state rule)
(cond ((markov-match state (car rule))
(setf rslt rule)
(return rslt))))
(cond ((null rslt)
(display "Error, no matching rule found" state rules)
(error (format nil "~A, (markov-class)" name))))
rslt)))
(send markov-class :answer :start-period '()
'((if (null count)
(setf count len))))
(defun markov-general-rule-p (rule)
(let ((pre (car rule)))
(cond ((< (length pre) 2) nil) ;; 1st-order mm
(t
;; return false if any member not *
;; return t if all members are *
(dolist (s pre t)
(if (eq s '*) t (return nil)))))))
(defun markov-find-state-leading-to (target rules)
(let (candidates)
(dolist (rule rules)
(let ((targets (cdr rule)))
(dolist (targ targets)
(cond ((eql (car targ) target)
(push (car rule) candidates))))))
(cond (candidates ;; found at least one
(nth (random (length candidates)) candidates))
(t
nil))))
(send markov-class :answer :advance '()
'((let (rule sum target rslt new-state)
;(display "markov" pattern rules)
(setf rule (send self :find-rule))
;(display "advance 1" rule)
(markov-update-weights rule)
;(display "advance 2" rule)
(setf sum (markov-sum-of-weights rule))
;; the target can be a pattern, so apply NEXT to it
(setf target (next (markov-pick-target sum rule)))
;; if the matching rule is multiple *'s, then this
;; is a higher-order Markov model, and we may now
;; wander around in parts of the state space that
;; never appeared in the training data. To avoid this
;; we violate the strict interpretation of the rules
;; and pick a random state sequence from the rule set
;; that might have let to the current state. We jam
;; this state sequence into state so that when we
;; append target, we'll have a history that might
;; have a corresponding rule next time.
(cond ((markov-general-rule-p rule)
(setf new-state (markov-find-state-leading-to target rules))
(cond (new-state
;(display "state replacement" new-state target)
(setf state new-state)))))
(setf state (append (cdr state) (list target)))
;(display "markov next" rule sum target state)
;; target is the symbol for the current state. We can
;; return target (default), the value of target, or a
;; mapped value:
(cond ((eq produces :eval)
(setf target (eval target)))
((and produces (listp produces))
;(display "markov-produce" target produces)
(setf target (markov-map-target target produces))))
(if (not (eq is-nested (patternp target)))
(error (format nil
"~A :is-nested keyword (~A) not consistent with result (~A)"
name is-nested target)))
(send self :set-current target))))
(defun make-markov (rules &key produces past for (name "markov") trace)
;; check to make sure past and rules are consistent
(let ((order (length past)))
(dolist (rule rules)
(dotimes (i order)
(if (eq (car rule) '->)
(error (format nil "~A, a rule does not match the length of :past"
name)))
(pop rule))
(if (eq (car rule) '->) nil
(error (format nil "~A, a rule does not match the length of :past"
name)))))
(cond ((null for)
(setf for (length rules))))
(send markov-class :new rules (length past) past produces for name trace))
(defun markov-rule-match (rule state)
(cond ((null state) t)
((eql (car rule) (car state))
(markov-rule-match (cdr rule) (cdr state)))
(t nil)))
(defun markov-find-rule (rules state)
(dolist (rule rules)
;(display "find-rule" rule)
(cond ((markov-rule-match rule state)
(return rule)))))
;; ------- functions below are for MARKOV-CREATE-RULES --------
;; MARKOV-FIND-CHOICE -- given a next state, find it in rule
;;
;; use state to get the order of the Markov model, e.g. how
;; many previous states to skip in the rule, (add 1 for '->).
;; then use assoc to do a quick search
;;
;; example:
;; (markov-find-choice '(a b -> (c 1) (d 2)) '(a b) 'd)
;; returns (d 2) from the rule
;;
(defun markov-find-choice (rule state next)
(assoc next (nthcdr (1+ (length state)) rule)))
(defun markov-update-rule (rule state next)
(let ((choice (markov-find-choice rule state next)))
(cond (choice
(setf (car (cdr choice)) (1+ (cadr choice))))
(t
(nconc rule (list (list next 1)))))
rule))
(defun markov-update-rules (rules state next)
(let ((rule (markov-find-rule rules state)))
(cond (rule
(markov-update-rule rule state next))
(t
(setf rules
(nconc rules
(list (append state
(cons '-> (list
(list next 1)))))))))
rules))
;; MARKOV-UPDATE-HISTOGRAM -- keep a list of symbols and counts
;;
;; This histogram will become the right-hand part of a rule, so
;; the format is ((symbol count) (symbol count) ...)
;;
(defun markov-update-histogram (histogram next)
(let ((pair (assoc next histogram)))
(cond (pair
(setf (car (cdr pair)) (1+ (cadr pair))))
(t
(setf histogram (cons (list next 1) histogram))))
histogram))
(defun markov-create-rules (sequence order &optional generalize)
(let ((seqlen (length sequence)) state rules next histogram rule)
(cond ((<= seqlen order)
(error "markov-create-rules: sequence must be longer than order"))
((< order 1)
(error "markov-create-rules: order must be 1 or greater")))
; build initial state sequence
(dotimes (i order)
(setf state (nconc state (list (car sequence))))
(setf sequence (cdr sequence)))
; for each symbol, either update a rule or add a rule
(while sequence
(setf next (car sequence))
(setf sequence (cdr sequence))
(setf rules (markov-update-rules rules state next))
(setf histogram (markov-update-histogram histogram next))
; shift next state onto current state list
(setf state (nconc (cdr state) (list next))))
; generalize?
(cond (generalize
(setf rule (cons '-> histogram))
(dotimes (i order)
(setf rule (cons '* rule)))
(setf rules (nconc rules (list rule)))))
rules))
;; ----- WINDOW Class ---------
(setf window-class (send class :new
'(pattern skip-pattern lis cursor)
'() pattern-class))
(send window-class :answer :isnew '(p for sk nm tr)
'((setf pattern p length-pattern for skip-pattern sk name nm trace tr)))
(send window-class :answer :start-period '()
'((if (null count) (error (format nil "~A, :start-period -- count is null"
name)))
(cond ((null lis) ;; first time
(dotimes (i count)
(push (next pattern) lis))
(setf lis (reverse lis)))
(t
(let ((skip (next skip-pattern)))
(dotimes (i skip)
(if lis (pop lis) (next pattern))))
(setf lis (reverse lis))
(let ((len (length lis)))
(while (< len count)
(incf len)
(push (next pattern) lis))
(while (> len count)
(decf len)
(pop lis))
(setf lis (reverse lis)))))
(setf cursor lis)))
(send window-class :answer :advance '()
'((send self :set-current (car cursor))
(pop cursor)))
(defun make-window (pattern length-pattern skip-pattern
&key (name "window") trace)
(send window-class :new pattern length-pattern skip-pattern name trace))
;; SCORE-SORTED -- test if score is sorted
;;
(defun score-sorted (score)
(let ((result t))
(while (cdr score)
(cond ((event-before (cadr score) (car score))
(setf result nil)
(return nil)))
(setf score (cdr score)))
result))
(defmacro score-gen (&rest args)
(let (key val tim dur (name ''note) ioi trace save
score-len score-dur others pre post
next-expr (score-begin 0) score-end)
(while (and args (cdr args))
(setf key (car args))
(setf val (cadr args))
(setf args (cddr args))
(case key
(:time (setf tim val))
(:dur (setf dur val))
(:name (setf name val))
(:ioi (setf ioi val))
(:trace (setf trace val))
(:save (setf save val))
(:pre (setf pre val))
(:post (setf post val))
(:score-len (setf score-len val))
(:score-dur (setf score-dur val))
(:begin (setf score-begin val))
(:end (setf score-end val))
(t (setf others (cons key (cons val others))))))
;; make sure at least one of score-len, score-dur is present
(cond ((and (null score-len) (null score-dur))
(error
"score-gen needs either :score-len or :score-dur to limit length")))
;; compute expression for dur
(cond ((null dur)
(setf dur 'sg:ioi)))
;; compute expression for ioi
(cond ((null ioi)
(setf ioi 1)))
;; compute expression for next start time
(setf next-expr '(+ sg:start sg:ioi))
; (display "score-gen" others)
`(let (sg:seq (sg:start ,score-begin) sg:ioi
(sg:score-len ,score-len) (sg:score-dur ,score-dur)
(sg:count 0) (sg:save ,save)
(sg:begin ,score-begin) (sg:end ,score-end))
;; make sure at least one of score-len, score-dur is present
(loop
(cond ((or (and sg:score-len (<= sg:score-len sg:count))
(and sg:score-dur (<= (+ sg:begin sg:score-dur) sg:start)))
(return)))
,pre
,(cond (tim (list 'setf 'sg:start tim)))
(setf sg:ioi ,ioi)
(setf sg:dur ,dur)
(push (list sg:start sg:dur (list ,name ,@others))
sg:seq)
,post
(cond (,trace
(format t "get-seq trace at ~A stretch ~A: ~A~%"
sg:start sg:dur (car sg:seq))))
(incf sg:count)
(setf sg:start ,next-expr))
(setf sg:seq (reverse sg:seq))
;; avoid sorting a sorted list -- XLisp's quicksort can overflow the
;; stack if the list is sorted because (apparently) the pivot points
;; are not random.
(cond ((not (score-sorted sg:seq))
(setf sg:seq (bigsort sg:seq #'event-before))))
(cond ((and sg:seq (null sg:end))
(setf sg:end (event-end (car (last sg:seq)))))
((null sg:end)
(setf sg:end 0)))
(push (list 0 0 (list 'SCORE-BEGIN-END ,score-begin sg:end)) sg:seq)
(cond (sg:save (set sg:save sg:seq)))
sg:seq)))
;; ============== score manipulation ===========
(defun event-before (a b)
(< (car a) (car b)))
;; EVENT-END -- get the ending time of a score event
;;
(defun event-end (e) (+ (car e) (cadr e)))
;; EVENT-TIME -- time of an event
;;
(setfn event-time car)
;; EVENT-DUR -- duration of an event
;;
(setfn event-dur cadr)
;; EVENT-SET-TIME -- new event with new time
;;
(defun event-set-time (event time)
(cons time (cdr event)))
;; EVENT-SET-DUR -- new event with new dur
;;
(defun event-set-dur (event dur)
(list (event-time event)
dur
(event-expression event)))
;; EVENT-SET-EXPRESSION -- new event with new expression
;;
(defun event-set-expression (event expression)
(list (event-time event)
(event-dur event)
expression))
;; EXPR-HAS-ATTR -- test if expression has attribute
;;
(defun expr-has-attr (expression attr)
(member attr expression))
;; EXPR-GET-ATTR -- get value of attribute from expression
;;
(defun expr-get-attr (expression attr &optional default)
(let ((m (member attr expression)))
(if m (cadr m) default)))
;; EXPR-SET-ATTR -- set value of an attribute in expression
;; (returns new expression)
(defun expr-set-attr (expr attr value)
(cons (car expr) (expr-parameters-set-attr (cdr expr) attr value)))
(defun expr-parameters-set-attr (lis attr value)
(cond ((null lis) (list attr value))
((eq (car lis) attr) (cons attr (cons value (cddr lis))))
(t (cons (car lis)
(cons (cadr lis)
(expr-parameters-set-attr (cddr lis) attr value))))))
;; EXPR-REMOVE-ATTR -- expression without attribute value pair
(defun expr-remove-attr (event attr)
(cons (car expr) (expr-parameters-remove-attr (cdr expr) attr)))
(defun expr-parameters-remove-attr (lis attr)
(cond ((null lis) nil)
((eq (car lis) attr) (cddr lis))
(t (cons (car lis)
(cons (cadr lis)
(expr-parameters-remove-attr (cddr lis) attr))))))
;; EVENT-GET-ATTR -- get value of attribute from event
;;
(defun event-get-attr (note attr &optional default)
(expr-get-attr (event-expression note) attr default))
;; EVENT-SET-ATTR -- new event with attribute = value
(defun event-set-attr (event attr value)
(event-set-expression
event
(expr-set-attr (event-expression event) attr value)))
;; EVENT-REMOVE-ATTR -- new event without atttribute value pair
(defun event-remove-attr (event attr)
(event-set-expression
event
(event-remove-attr (event-expression event) attr)))
;; SCORE-GET-BEGIN -- get the begin time of a score
;;
(defun score-get-begin (score)
(setf score (score-must-have-begin-end score))
(cadr (event-expression (car score))))
;; SCORE-SET-BEGIN -- set the begin time of a score
;;
(defun score-set-begin (score time)
(setf score (score-must-have-begin-end score))
(cons (list 0 0 (list 'score-begin-end time
(caddr (event-expression (car score)))))
(cdr score)))
;; SCORE-GET-END -- get the end time of a score
;;
(defun score-get-end (score)
(setf score (score-must-have-begin-end score))
(caddr (event-expression (car score))))
;; SCORE-SET-END -- set the end time of a score
;;
(defun score-set-end (score time)
(setf score (score-must-have-begin-end score))
(cons (list 0 0 (list 'score-begin-end
(cadr (event-expression (car score))) time))
(cdr score)))
;; FIND-FIRST-NOTE -- use keywords to find index of first selected note
;;
(defun find-first-note (score from-index from-time)
(let ((s (cdr score)))
;; offset by one because we removed element 0
(setf from-index (if from-index (max 0 (- from-index 1)) 0))
(setf from-time (if from-time
(- from-time SCORE-EPSILON)
(- SCORE-EPSILON)))
(if s (setf s (nthcdr from-index s)))
(while (and s (>= from-time (event-time (car s))))
(setf s (cdr s))
(incf from-index))
(1+ from-index)))
;; EVENT-BEFORE -- useful function for sorting scores
;;
(defun event-before (a b)
(< (car a) (car b)))
;; bigsort -- a sort routine that avoids recursion in order
;; to sort large lists without overflowing the evaluation stack
;;
;; Does not modify input list. Does not minimize cons-ing.
;;
;; Algorithm: first accumulate sorted sub-sequences into lists
;; Then merge pairs iteratively until only one big list remains
;;
(defun bigsort (lis cmp) ; sort lis using cmp function
;; if (funcall cmp a b) then a and b are in order
(prog (rslt sub pairs)
;; first, convert to sorted sublists stored on rslt
;; accumulate sublists in sub
get-next-sub
(if (null lis) (go done-1))
(setf sub (list (car lis)))
(setf lis (cdr lis))
fill-sub
;; invariant: sub is non-empty, in reverse order
(cond ((and lis (funcall cmp (car sub) (car lis)))
(setf sub (cons (car lis) sub))
(setf lis (cdr lis))
(go fill-sub)))
(setf sub (reverse sub)) ;; put sub in correct order
(setf rslt (cons sub rslt)) ;; build rslt in reverse order
(go get-next-sub)
done-1
;; invariant: rslt is list of sorted sublists
(if (cdr rslt) nil (go done-2))
;; invariant: rslt has at least one list
(setf pairs rslt)
(setf rslt nil)
merge-pairs ;; merge a pair and save on rslt
(if (car pairs) nil (go end-of-pass)) ;; loop until all pairs merged
;; invariant: pairs has at least one list
(setf list1 (car pairs)) ;; list1 is non-empty
(setf list2 (cadr pairs)) ;; list2 could be empty
(setf pairs (cddr pairs))
(cond (list2
(setf rslt (cons (list-merge list1 list2 cmp) rslt)))
(t
(setf rslt (cons list1 rslt))))
(go merge-pairs)
end-of-pass
(go done-1)
done-2
;; invariant: rslt has one sorted list!
(return (car rslt))))
(defun list-merge (list1 list2 cmp)
(prog (rslt)
merge-loop
(cond ((and list1 list2)
(cond ((funcall cmp (car list1) (car list2))
(setf rslt (cons (car list1) rslt))
(setf list1 (cdr list1)))
(t
(setf rslt (cons (car list2) rslt))
(setf list2 (cdr list2)))))
(list1
(return (nconc (reverse rslt) list1)))
(t
(return (nconc (reverse rslt) list2))))
(go merge-loop)))
;; SCORE-SORT -- sort a score into time order
;;
(defun score-sort (score &optional (copy-flag t))
(setf score (score-must-have-begin-end score))
(let ((begin-end (car score)))
(setf score (cdr score))
(if copy-flag (setf score (append score nil)))
(cons begin-end (bigsort score #'event-before))))
;; PUSH-SORT -- insert an event in (reverse) sorted order
;;
;; Note: Score should NOT have a score-begin-end expression
;;
(defun push-sort (event score)
(let (insert-after)
(cond ((null score) (list event))
((event-before (car score) event)
(cons event score))
(t
(setf insert-after score)
(while (and (cdr insert-after)
(event-before event (cadr insert-after)))
(setf insert-after (cdr insert-after)))
(setf (cdr insert-after) (cons event (cdr insert-after)))
score))))
(setf FOREVER 3600000000.0) ; 1 million hours
;; FIND-LAST-NOTE -- use keywords to find index beyond last selected note
;;
;; note that the :to-index keyword is the index of the last note (numbered
;; from zero), whereas this function returns the index of the last note
;; plus one, i.e. selected notes have an index *less than* this one
;;
(defun find-last-note (score to-index to-time)
;; skip past score-begin-end event
(let ((s (cdr score))
(n 1))
(setf to-index (if to-index (1+ to-index) (length score)))
(setf to-time (if to-time (- to-time SCORE-EPSILON) FOREVER))
(while (and s (< n to-index) (< (event-time (car s)) to-time))
(setf s (cdr s))
(incf n))
n))
;; SCORE-MUST-HAVE-BEGIN-END -- add score-begin-end event if necessary
;;
(defun score-must-have-begin-end (score)
(cond ((null score)
(list (list 0 0 (list 'SCORE-BEGIN-END 0 0))))
((eq (car (event-expression (car score))) 'SCORE-BEGIN-END)
score)
(t (cons (list 0 0 (list 'SCORE-BEGIN-END (event-time (car score))
(event-end (car (last score)))))
score))))
;; SCORE-SHIFT -- add offset to times of score events
;;
(defun score-shift (score offset &key from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((i 1)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
(end (caddr (event-expression (car score))))
result)
(dolist (event (cdr score))
(cond ((and (<= start i) (< i stop))
(setf event (event-set-time
event (+ (event-time event) offset)))
(setf end (max end (event-end event)))))
(setf result (push-sort event result))
(incf i))
(cons (list 0 0 (list 'SCORE-BEGIN-END
(cadr (event-expression (car score)))
end))
(reverse result))))
;; TIME-STRETCH -- map a timestamp according to stretch factor
;;
(defun time-stretch (time stretch start-time stop-time)
(cond ((< time start-time) time)
((< time stop-time)
(+ start-time (* stretch (- time start-time))))
(t ; beyond stop-time
(+ (- time stop-time) ; how much beyond stop-time
start-time
(* stretch (- stop-time start-time))))))
;; EVENT-STRETCH -- apply time warp to an event
(defun event-stretch (event stretch dur-flag time-flag start-time stop-time)
(let* ((new-time (event-time event))
(new-dur (event-dur event))
(end-time (+ new-time new-dur)))
(cond (time-flag
(setf new-time (time-stretch new-time stretch
start-time stop-time))))
(cond ((and time-flag dur-flag)
;; both time and dur are stretched, so map the end time just
;; like the start time, then subtract to get new duration
(setf end-time (time-stretch end-time stretch
start-time stop-time))
(setf new-dur (- end-time new-time)))
((and dur-flag (>= new-time start-time) (< new-time stop-time))
;; stretch only duration, not time. If note starts in range
;; scale to get the new duration.
(setf new-dur (* stretch new-dur))))
(list new-time new-dur (event-expression event))))
;; SCORE-STRETCH -- stretch a region of the score
;;
(defun score-stretch (score factor &key (dur t) (time t)
from-index to-index (from-time 0) (to-time FOREVER))
(setf score (score-must-have-begin-end score))
(let ((begin-end (event-expression (car score)))
(i 1))
(if from-index
(setf from-time (max from-time
(event-time (nth from-index score)))))
(if to-index
(setf to-time (min to-time
(event-end (nth to-index score)))))
; stretch from start-time to stop-time
(cons (list 0 0 (list 'SCORE-BEGIN-END
(time-stretch (cadr begin-end) factor
from-time to-time)
(time-stretch (caddr begin-end) factor
from-time to-time)))
(mapcar #'(lambda (event)
(event-stretch event factor dur time
from-time to-time))
(cdr score)))))
(defun params-transpose (params keyword amount)
(cond ((null params) nil)
((and (eq keyword (car params))
(numberp (cadr params)))
(cons (car params)
(cons (+ amount (cadr params))
(cddr params))))
(t (cons (car params)
(cons (cadr params)
(params-transpose (cddr params) keyword amount))))))
(defun score-transpose (score keyword amount &key
from-index to-index from-time to-time)
(score-apply score
#'(lambda (time dur expression)
(list time dur
(cons (car expression)
(params-transpose (cdr expression)
keyword amount))))
:from-index from-index :to-index to-index
:from-time from-time :to-time to-time))
(defun params-scale (params keyword amount)
(cond ((null params) nil)
((and (eq keyword (car params))
(numberp (cadr params)))
(cons (car params)
(cons (* amount (cadr params))
(cddr params))))
(t (cons (car params)
(cons (cadr params)
(params-scale (cddr params) keyword amount))))))
(defun score-scale (score keyword amount &key
from-index to-index from-time to-time)
(score-apply score
#'(lambda (time dur expression)
(list time dur
(cons (car expression)
(params-scale (cdr expression)
keyword amount))))
:from-index from-index :to-index to-index
:from-time from-time :to-time to-time))
(defun score-sustain (score factor &key
from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((i 0)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
result)
(dolist (event score)
(cond ((and (<= start i) (< i stop))
(setf event (event-set-dur
event (* (event-dur event) factor)))))
(push event result)
(incf i))
(reverse result)))
(defun map-voice (expression replacement-list)
(let ((mapping (assoc (car expression) replacement-list)))
(cond (mapping (cons (second mapping)
(cdr expression)))
(t expression))))
(defun score-voice (score replacement-list &key
from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((i 0)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
result)
(dolist (event score)
(cond ((and (<= start i) (< i stop))
(setf event (event-set-expression
event (map-voice (event-expression event)
replacement-list)))))
(push event result)
(incf i))
(reverse result)))
(defun score-merge (&rest scores)
;; scores is a list of scores
(cond ((null scores) nil)
(t
(score-merge-1 (car scores) (cdr scores)))))
;; SCORE-MERGE-1 -- merge list of scores into score
;;
(defun score-merge-1 (score scores)
;; scores is a list of scores to merge
(cond ((null scores) score)
(t (score-merge-1 (score-merge-2 score (car scores))
(cdr scores)))))
;; SCORE-MERGE-2 -- merge 2 scores
;;
(defun score-merge-2 (score addin)
;(display "score-merge-2 before" score addin)
(setf score (score-must-have-begin-end score))
(setf addin (score-must-have-begin-end addin))
;(display "score-merge-2" score addin)
(let (start1 start2 end1 end2)
(setf start1 (score-get-begin score))
(setf start2 (score-get-begin addin))
(setf end1 (score-get-end score))
(setf end2 (score-get-end addin))
;; note: score-sort is destructive, but append copies score
;; and score-shift copies addin
(score-sort
(cons (list 0 0 (list 'SCORE-BEGIN-END (min start1 start2)
(max end1 end2)))
(append (cdr score) (cdr addin) nil)))))
;; SCORE-APPEND -- append scores together in sequence
;;
(defun score-append (&rest scores)
;; scores is a list of scores
(cond ((null scores) nil)
(t
(score-append-1 (car scores) (cdr scores)))))
;; SCORE-APPEND-1 -- append list of scores into score
;;
(defun score-append-1 (score scores)
;; scores is a list of scores to append
(cond ((null scores) score)
(t (score-append-1 (score-append-2 score (car scores))
(cdr scores)))))
;; SCORE-APPEND-2 -- append 2 scores
;;
(defun score-append-2 (score addin)
;(display "score-append-2" score addin)
(setf score (score-must-have-begin-end score))
(setf addin (score-must-have-begin-end addin))
(let (end1 start2 begin-end1 begin-end2)
(setf start1 (score-get-begin score))
(setf end1 (score-get-end score))
(setf start2 (score-get-begin addin))
(setf end2 (score-get-end addin))
(setf begin-end1 (event-expression (car score)))
(setf begin-end2 (event-expression (car addin)))
(setf addin (score-shift addin (- end1 start2)))
;; note: score-sort is destructive, but append copies score
;; and score-shift copies addin
(score-sort
(cons (list 0 0 (list 'SCORE-BEGIN-END start1 (+ end1 (- end2 start2))))
(append (cdr score) (cdr addin) nil)))))
(defun score-select (score predicate &key
from-index to-index from-time to-time reject)
(setf score (score-must-have-begin-end score))
(let ((begin-end (car score))
(i 1)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
result)
;; selected if start <= i AND i < stop AND predicate(...)
;; choose if not reject and selected or reject and not selected
;; so in other words choose if reject != selected. Use NULL to
;; coerce into boolean values and then use NOT EQ to compare
(dolist (event (cdr score))
(cond ((not (eq (null reject)
(null (and (<= start i) (< i stop)
(or (eq predicate t)
(funcall predicate
(event-time event)
(event-dur event)
(event-expression event)))))))
(push event result)))
(incf i))
(cons begin-end (reverse result))))
;; SCORE-FILTER-LENGTH -- remove notes beyond cutoff time
;;
(defun score-filter-length (score cutoff)
(let (result)
(dolist (event score)
(cond ((<= (event-end event) cutoff)
(push event result))))
(reverse result)))
;; SCORE-REPEAT -- make n copies of score in sequence
;;
(defun score-repeat (score n)
(let (result)
(dotimes (i n)
(setf result (score-append result score)))
result))
;; SCORE-STRETCH-TO-LENGTH -- stretch score to have given length
;;
(defun score-stretch-to-length (score length)
(let ((begin-time (score-get-begin score))
(end-time (score-get-end score))
duration stretch)
(setf duration (- end-time begin-time))
(cond ((< 0 duration)
(setf stretch (/ length (- end-time begin-time)))
(score-stretch score stretch))
(t score))))
(defun score-filter-overlap (score)
(setf score (score-must-have-begin-end score))
(prog (event end-time filtered-score
(begin-end (car score)))
(setf score (cdr score))
(cond ((null score) (return (list begin-end))))
loop
;; get event from score
(setf event (car score))
;; add a note to filtered-score
(push event filtered-score)
;; save the end-time of this event: start + duration
(setf end-time (+ (car event) (cadr event)))
;; now skip everything until end-time in score
loop2
(pop score) ;; move to next event in score
(cond ((null score)
(return (cons begin-end (reverse filtered-score)))))
(setf event (car score)) ;; examine next event
(setf start-time (car event))
;(display "overlap" start-time (- end-time SCORE-EPSILON))
(cond ((< start-time (- end-time SCORE-EPSILON))
;(display "toss" event start-time end-time)
(go loop2)))
(go loop)))
(defun score-print (score)
(format t "(")
(dolist (event score)
(format t "~S~%" event))
(format t ")~%"))
(defun score-play (score)
(play (timed-seq score)))
(defun score-adjacent-events (score function &key
from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((begin-end (car score))
(a nil)
(b (second score))
(c-list (cddr score))
r newscore
(i 1)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time)))
(dolist (event (cdr score))
(setf r b)
(cond ((and (<= start i) (< i stop))
(setf r (funcall function a b (car c-list)))))
(cond (r
(push r newscore)
(setf a r)))
(setf b (car c-list))
(setf c-list (cdr c-list))
(incf i))
(score-sort (cons begin-end newscore))))
(defun score-apply (score fn &key
from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((begin-end (car score))
(i 1)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
result)
(dolist (event (cdr score))
(push
(cond ((and (<= start i) (< i stop))
(funcall fn (event-time event)
(event-dur event) (event-expression event)))
(t event))
result)
(incf i))
(score-sort (cons begin-end result))))
(defun score-indexof (score fn &key
from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((i 1)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
result)
(dolist (event (cdr score))
(cond ((and (<= start i) (< i stop)
(funcall fn (event-time event)
(event-dur event)
(event-expression event)))
(setf result i)
(return)))
(incf i))
result))
(defun score-last-indexof (score fn &key
from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((i 1)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
result)
(dolist (event (cdr score))
(cond ((and (<= start i) (< i stop)
(funcall fn (event-time event)
(event-dur event)
(event-expression event)))
(setf result i)))
(incf i))
result))
;; SCORE-RANDOMIZE-START -- alter start times with offset
;; keywords: jitter, offset, feel factor
;;
(defun score-randomize-start (score amt &key
from-index to-index from-time to-time)
(score-apply score
(lambda (time dur expr)
(setf time (+ (real-random (- amt) amt) time))
(setf time (max 0.0 time))
(list time dur expr))))
;; SCORE-READ-SMF -- read a standard MIDI file to a score
;;
(defun score-read-smf (filename)
(let ((seq (seq-create))
(file (open-binary filename)))
(cond (file
(seq-read-smf seq file)
(close file)
(score-from-seq seq))
(t nil))))
;; SET-PROGRAM-TO -- a helper function to set a list value
(defun set-program-to (lis index value default)
;; if length or lis <= index, extend the lis with default
(while (<= (length lis) index)
(setf lis (nconc lis (list default))))
;; set the nth element
(setf (nth index lis) value)
;; return the list
lis)
(defun score-from-seq (seq)
(prog (event tag score programs)
(seq-reset seq)
loop
(setf event (seq-get seq))
(setf tag (seq-tag event))
(cond ((= tag seq-done-tag)
(go exit))
((= tag seq-prgm-tag)
(let ((chan (seq-channel event))
(when (seq-time event))
(program (seq-program event)))
(setf programs (set-program-to programs chan program 0))
(push (list (* when 0.001) 1
(list 'NOTE :pitch nil :program program))
score)))
((= tag seq-note-tag)
(let ((chan (seq-channel event))
(pitch (seq-pitch event))
(vel (seq-velocity event))
(when (seq-time event))
(dur (seq-duration event)))
(push (list (* when 0.001) (* dur 0.001)
(list 'NOTE :chan (1- chan) :pitch pitch :vel vel))
score))))
(seq-next seq)
(go loop)
exit
(setf *rslt* programs) ;; extra return value
(return (score-sort score))))
(defun score-write-smf (score filename &optional programs)
(let ((file (open-binary filename :direction :output))
(seq (seq-create))
(chan 1))
(cond (file
(dolist (program programs)
;; 6 = SEQ_PROGRAM
(seq-insert-ctrl seq 0 0 6 chan program)
;(display "insert ctrl" seq 0 0 6 chan program)
(incf chan))
(dolist (event (cdr (score-must-have-begin-end score)))
(let ((time (event-time event))
(dur (event-dur event))
(chan (event-get-attr event :chan 0))
(pitch (event-get-attr event :pitch))
(program (event-get-attr event :program))
(vel (event-get-attr event :vel 100)))
(cond (program
;(display "score-write-smf program" chan program)
(seq-insert-ctrl seq (round (* time 1000))
0 6 (1+ chan)
(round program))))
(cond ((consp pitch)
(dolist (p pitch)
(seq-insert-note seq (round (* time 1000))
0 (1+ chan) (round p)
(round (* dur 1000)) (round vel))))
(pitch
(seq-insert-note seq (round (* time 1000))
0 (1+ chan) (round pitch)
(round (* dur 1000)) (round vel))))))
(seq-write-smf seq file)
(close file)))))
;; make a default note function for scores
;;
(defun note (&key (pitch 60) (vel 100))
;; load the piano if it is not loaded already
(if (not (boundp '*piano-srate*))
(abs-env (load "pianosyn")))
(piano-note-2 pitch vel))
;;================================================================
;; WORKSPACE functions have moved to envelopes.lsp
;; DESCRIBE -- add a description to a global variable
;;
(defun describe (symbol &optional description)
(add-to-workspace symbol)
(cond (description
(putprop symbol description 'description))
(t
(get symbol 'description))))
;; INTERPOLATE -- linear interpolation function
;;
;; compute y given x by interpolating between points (x1, y1) and (x2, y2)
(defun interpolate (x x1 y1 x2 y2)
(cond ((= x1 x2) x1)
(t (+ y1 (* (- x x1) (/ (- y2 y1) (- x2 (float x1))))))))
;; INTERSECTION -- set intersection
;;
;; compute the intersection of two lists
(defun intersection (a b)
(let (result)
(dolist (elem a)
(if (member elem b) (push elem result)))
result))
;; UNION -- set union
;;
;; compute the union of two lists
(defun union (a b)
(let (result)
(dolist (elem a)
(if (not (member elem result)) (push elem result)))
(dolist (elem b)
(if (not (member elem result)) (push elem result)))
result))
;; SET-DIFFERENCE -- set difference
;;
;; compute the set difference between two sets
(defun set-difference (a b)
(remove-if (lambda (elem) (member elem b)) a))
;; SUBSETP -- test is list is subset
;;
;; test if a is subset of b
(defun subsetp (a b)
(let ((result t))
(dolist (elem a)
(cond ((not (member elem b))
(setf result nil)
(return nil))))
result))
;; functions to support score editing in jNyqIDE
(if (not (boundp '*default-score-file*))
(setf *default-score-file* "score.dat"))
;; SCORE-EDIT -- save a score for editing by jNyqIDE
;;
;; file goes to a data file to be read by jNyqIDE
;; Note that the parameter is a global variable name, not a score,
;; but you do not quote the global variable name, e.g. call
;; (score-edit my-score)
;;
(defmacro score-edit (score-name)
`(score-edit-symbol (quote ,score-name)))
(defun score-edit-symbol (score-name)
(prog ((f (open *default-score-file* :direction :output))
score expr)
(cond ((symbolp score-name)
(setf score (eval score-name)))
(t
(error "score-edit expects a symbol naming the score to edit")))
(cond ((null f)
(format t "score-edit: error in output file ~A!~%" *default-score-file*)
(return nil)))
(format t "score-edit: writing ~A ...~%" *default-score-file*)
(format f "~A~%" score-name) ; put name on first line
(dolist (event score) ;cdr scor
(format f "~A " (event-time event)) ; print start time
(format f "~A " (event-dur event)) ; print duration
(setf expr (event-expression event))
; print the pitch and the rest of the attributes
(format f "~A " (expr-get-attr expr :pitch))
(format f "~A~%" (expr-parameters-remove-attr expr :pitch)))
(close f)
(format t "score-edit: wrote ~A events~%" (length score))))
;; Read in a data file stored in the score-edit format and save
;; it to the global variable it came from
(defun score-restore ()
(prog ((inf (open *default-score-file*))
name start dur pitch expr score)
(cond ((null inf)
(format t "score-restore: could not open ~A~%" *default-score-file*)
(return nil)))
(setf name (read inf)) ;; score name
(loop
(setf start (read inf))
(cond ((null start) (return)))
(setf dur (read inf))
(setf pitch (read inf))
(setf expr (read inf))
(cond (pitch
(setf expr (expr-set-attr expr :pitch pitch)))))
(close inf)
(setf (symbol-value name) score)))
|