/usr/share/audacity/nyquist/sal.lsp is in audacity-data 2.0.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 | ;;; **********************************************************************
;;; Copyright (C) 2006 Rick Taube
;;; This program is free software; you can redistribute it and/or
;;; modify it under the terms of the Lisp Lesser Gnu Public License.
;;; See http://www.cliki.net/LLGPL for the text of this agreement.
;;; **********************************************************************
;;; $Revision: 1.2 $
;;; $Date: 2009-03-05 17:42:25 $
;; DATA STRUCTURES AND ALGORITHMS (for sal.lsp and parse.lsp)
;;
;; TOKENIZE converts source language (a string) into a list of tokens
;; each token is represented as follows:
;; (:TOKEN <type> <string> <start> <info> <lisp>)
;; where <type> is one of:
;; :id -- an identifier
;; :lp -- left paren
;; :rp -- right paren
;; :+, etc. -- operators
;; :int -- an integer
;; :float -- a float
;; :print, etc. -- a reserved word
;; <string> is the source string for the token
;; <start> is the column of the string
;; <info> and <lisp> are ??
;; Tokenize uses a list of reserved words extracted from terminals in
;; the grammar. Each reserved word has an associated token type, but
;; all other identifiers are simply of type :ID.
;;
;; *** WHY REWRITE THE ORIGINAL PARSER? ***
;; Originally, the code interpreted a grammar using a recursive pattern
;; matcher, but XLISP does not have a huge stack and there were
;; stack overflow problems because even relatively small expressions
;; went through a very deep nesting of productions. E.g.
;; "print note(between(30,odds(.5, 60, 90)))" 0 t nil))" was at recursion
;; level 46 when the stack overflowed. The stack depth is 2000 or 4000,
;; but all locals and parameters get pushed here, so since PARSE is the
;; recursive function and it has lots of parameters and locals, it appears
;; to use 80 elements in the stack per call.
;; *** END ***
;;
;; The grammar for the recursive descent parser:
;; note: [ <x> ] means optional <x>, <x>* means 0 or more of <x>
;;
;; <number> = <int> | <float>
;; <atom> = <int> | <float> | <id> | <bool>
;; <list> = { <elt>* }
;; <elt> = <atom> | <list> | <string>
;; <aref> = <id> <lb> <pargs> <rb>
;; <ifexpr> = ? "(" <sexpr> , <sexpr> [ , <sexpr> ] ")"
;; <funcall> = <id> <funargs>
;; <funargs> = "(" [ <args> ] ")"
;; <args> = <arg> [ , <arg> ]*
;; <arg> = <sexpr> | <key> <sexpr>
;; <op> = + | - | "*" | / | % | ^ | = | != |
;; "<" | ">" | "<=" | ">=" | ~= | ! | & | "|"
;; <mexpr> = <term> [ <op> <term> ]*
;; <term> = <-> <term> | <!> <term> | "(" <mexpr> ")" |
;; <ifexpr> | <funcall> | <aref> | <atom> | <list> | <string>
;; <sexpr> = <mexpr> | <object> | class
;; <top> = <command> | <block> | <conditional> | <assignment> | <loop> | <exec>
;; <exec> = exec <sexpr>
;; <command> = <define-cmd> | <file-cmd> | <output>
;; <define-cmd> = define <declaration>
;; <declaration> = <vardecl> | <fundecl>
;; <vardecl> = variable <bindings>
;; <bindings> = <bind> [ , <bind> ]*
;; <bind> = <id> [ <=> <sexpr> ]
;; <fundecl> = <function> <id> "(" [ <parms> ] ")" <statement>
;; <parms> = <parm> [ , <parm> ]*
;; this is new: key: expression for keyword parameter
;; <parm> = <id> | <key> [ <sexpr> ]
;; <statement> = <block> | <conditional> | <assignment> |
;; <output-stmt> <loop-stmt> <return-from> | <exec>
;; <block> = begin [ with <bindings> [ <statement> ]* end
;; <conditional> = if <sexpr> then [ <statement> ] [ else <statement> ] |
;; when <sexpr> <statement> | unless <sexpr> <statement>
;; <assignment> = set <assign> [ , <assign> ]*
;; <assign> = ( <aref> | <id> ) <assigner> <sexpr>
;; <assigner> = = | += | *= | &= | @= | ^= | "<=" | ">="
;; <file-cmd> = <load-cmd> | chdir <pathref> |
;; system <pathref> | play <sexpr>
;; (note: system was removed)
;; <load-cmd> = load <pathref> [ , <key> <sexpr> ]*
;; <pathref> = <string> | <id>
;; <output-stmt> = print <sexpr> [ , <sexpr> ]* |
;; output <sexpr>
;; <loop-stmt> = loop [ with <bindings> ] [ <stepping> ]*
;; [ <termination> ]* [ <statement> ]+
;; [ finally <statement> ] end
;; <stepping> = repeat <sexpr> |
;; for <id> = <sexpr> [ then <sexpr> ] |
;; for <id> in <sexpr> |
;; for <id> over <sexpr> [ by <sexpr> ] |
;; for <id> [ from <sexpr> ]
;; [ ( below | to | above | downto ) <sexpr> ]
;; [ by <sexpr> ] |
;; <termination> = while <sexpr> | until <sexpr>
;; <return-from> = return <sexpr>
;(in-package cm)
; (progn (cd "/Lisp/sal/") (load "parse.lisp") (load "sal.lisp"))
(setfn defconstant setf)
(setfn defparameter setf)
(setfn defmethod defun)
(setfn defvar setf)
(setfn values list)
(if (not (boundp '*sal-secondary-prompt*))
(setf *sal-secondary-prompt* t))
(if (not (boundp '*sal-xlispbreak*))
(setf *sal-xlispbreak* nil))
(defun sal-trace-enter (fn &optional argvals argnames)
(push (list fn *sal-line* argvals argnames) *sal-call-stack*))
(defun sal-trace-exit ()
(setf *sal-line* (second (car *sal-call-stack*)))
(pop *sal-call-stack*))
;; SAL-RETURN-FROM is generated by Sal compiler and
;; performs a return as well as a sal-trace-exit()
;;
(defmacro sal-return-from (fn val)
`(prog ((sal:return-value ,val))
(setf *sal-line* (second (car *sal-call-stack*)))
(pop *sal-call-stack*)
(return-from ,fn sal:return-value)))
(setf *sal-traceback* t)
(defun sal-traceback (&optional (file t)
&aux comma name names line)
(format file "Call traceback:~%")
(setf line *sal-line*)
(dolist (frame *sal-call-stack*)
(setf comma "")
(format file " ~A" (car frame))
(cond ((symbolp (car frame))
(format file "(")
(setf names (cadddr frame))
(dolist (arg (caddr frame))
(setf name (car names))
(format file "~A~% ~A = ~A" comma name arg)
(setf names (cdr names))
(setf comma ","))
(format file ") at line ~A~%" line)
(setf line (second frame)))
(t
(format file "~%")))))
'(defmacro defgrammer (sym rules &rest args)
`(defparameter ,sym
(make-grammer :rules ',rules ,@args)))
'(defun make-grammer (&key rules literals)
(let ((g (list 'a-grammer rules literals)))
(grammer-initialize g)
g))
'(defmethod grammer-initialize (obj)
(let (xlist)
;; each literal is (:name "name")
(cond ((grammer-literals obj)
(dolist (x (grammer-literals obj))
(cond ((consp x)
(push x xlist))
(t
(push (list (string->keyword (string-upcase (string x)))
(string-downcase (string x)))
xlist)))))
(t
(dolist (x (grammer-rules obj))
(cond ((terminal-rule? x)
(push (list (car x)
(string-downcase (subseq (string (car x)) 1)))
xlist))))))
(set-grammer-literals obj (reverse xlist))))
'(setfn grammer-rules cadr)
'(setfn grammer-literals caddr)
'(defun set-grammer-literals (obj val)
(setf (car (cddr obj)) val))
'(defun is-grammer (obj) (and (consp obj) (eq (car obj) 'a-grammer)))
(defun string->keyword (str)
(intern (strcat ":" (string-upcase str))))
(defun terminal-rule? (rule)
(or (null (cdr rule)) (not (cadr rule))))
(load "sal-parse.lsp" :verbose nil)
(defparameter *sal-print-list* t)
(defun sal-printer (x &key (stream *standard-output*) (add-space t))
(let ((*print-case* ':downcase))
(cond ((and (consp x) *sal-print-list*)
(write-char #\{ stream)
(do ((items x (cdr items)))
((null items))
(sal-printer (car items) :stream stream
:add-space (cdr items))
(cond ((cdr items)
(cond ((not (consp (cdr items)))
(princ "<list not well-formed> " stream)
(sal-printer (cdr items) :stream stream :add-space nil)
(setf items nil))))))
(write-char #\} stream))
((not x) (princ "#f" stream) )
((eq x t) (princ "#t" stream))
(t (princ x stream)))
(if add-space (write-char #\space stream))))
(defparameter *sal-printer* #'sal-printer)
(defun sal-message (string &rest args)
(format t "~&; ")
(apply #'format t string args))
(defun sal-print (&rest args)
(terpri)
(mapc *sal-printer* args)
(values))
(defmacro keyword (sym)
`(str-to-keyword (symbol-name ',sym)))
(defun plus (&rest nums)
(apply #'+ nums))
(defun minus (num &rest nums)
(apply #'- num nums))
(defun times (&rest nums)
(apply #'* nums))
(defun divide (num &rest nums)
(apply #'/ num nums))
;; implementation of infix "!=" operator
(defun not-eql (x y)
(not (eql x y)))
; dir "*.*
; chdir
; load "rts.sys"
(defun sal-chdir ( dir)
(cd (expand-path-name dir))
(sal-message "Directory: ~A" (pwd))
(values))
;;; sigh, not all lisps support ~/ directory components.
(defun expand-path-name (path &optional absolute?)
(let ((dir (pathname-directory path)))
(flet ((curdir ()
(truename
(make-pathname :directory
(pathname-directory
*default-pathname-defaults*)))))
(cond ((null dir)
(if (equal path "~")
(namestring (user-homedir-pathname))
(if absolute?
(namestring (merge-pathnames path (curdir)))
(namestring path))))
((eql (car dir) ':absolute)
(namestring path))
(t
(let* ((tok (second dir))
(len (length tok)))
(if (char= (char tok 0) #\~)
(let ((uhd (pathname-directory (user-homedir-pathname))))
(if (= len 1)
(namestring
(make-pathname :directory (append uhd (cddr dir))
:defaults path))
(namestring
(make-pathname :directory
(append (butlast uhd)
(list (subseq tok 1))
(cddr dir))
:defaults path))))
(if absolute?
(namestring (merge-pathnames path (curdir)))
(namestring path)))))))))
(defun sal-load (filename &key (verbose t) print)
(progv '(*sal-input-file-name*) (list filename)
(prog (file extended-name)
;; first try to load exact name
(cond ((setf file (open filename))
(close file) ;; found it: close it and load it
(return (generic-loader filename verbose print))))
;; try to load name with ".sal" or ".lsp"
(cond ((string-search "." filename) ; already has extension
nil) ; don't try to add another extension
((setf file (open (strcat filename ".sal")))
(close file)
(return (sal-loader (strcat filename ".sal")
:verbose verbose :print print)))
((setf file (open (strcat filename ".lsp")))
(close file)
(return (lisp-loader filename :verbose verbose :print print))))
;; search for file as is or with ".lsp" on path
(setf fullpath (find-in-xlisp-path filename))
(cond ((and (not fullpath) ; search for file.sal on path
(not (string-search "." filename))) ; no extension yet
(setf fullpath (find-in-xlisp-path (strcat filename ".sal")))))
(cond ((null fullpath)
(format t "sal-load: could not find ~A~%" filename))
(t
(return (generic-loader filename verbose print)))))))
;; GENERIC-LOADER -- load a sal or lsp file based on extension
;;
;; assumes that file exists, and if no .sal extension, type is Lisp
;;
(defun generic-loader (fullpath verbose print)
(cond ((has-extension fullpath ".sal")
(sal-loader fullpath :verbose verbose :print print))
(t
(lisp-loader fullpath :verbose verbose :print print))))
#|
(defun sal-load (filename &key (verbose t) print)
(progv '(*sal-input-file-name*) (list filename)
(let (file extended-name)
(cond ((has-extension filename ".sal")
(sal-loader filename :verbose verbose :print print))
((has-extension filename ".lsp")
(lisp-load filename :verbose verbose :print print))
;; see if we can just open the exact filename and load it
((setf file (open filename))
(close file)
(lisp-load filename :verbose verbose :print print))
;; if not, then try loading file.sal and file.lsp
((setf file (open (setf *sal-input-file-name*
(strcat filename ".sal"))))
(close file)
(sal-loader *sal-input-file-name* :verbose verbose :print print))
((setf file (open (setf *sal-input-file-name*
(strcat filename ".lsp"))))
(close file)
(lisp-load *sal-input-file-name* :verbose verbose :print print))
(t
(format t "sal-load: could not find ~A~%" filename))))))
|#
(defun lisp-loader (filename &key (verbose t) print)
(if (load filename :verbose verbose :print print)
nil ; be quiet if things work ok
(format t "error loading lisp file ~A~%" filename)))
(defun has-extension (filename ext)
(let ((loc (string-search ext filename
:start (max 0 (- (length filename)
(length ext))))))
(not (null loc)))) ; coerce to t or nil
(defmacro sal-at (s x) (list 'at x s))
(defmacro sal-at-abs (s x) (list 'at-abs x s))
(defmacro sal-stretch (s x) (list 'stretch x s))
(defmacro sal-stretch-abs (s x) (list 'stretch-abs x s))
;; splice every pair of lines
(defun strcat-pairs (lines)
(let (rslt)
(while lines
(push (strcat (car lines) (cadr lines)) rslt)
(setf lines (cddr lines)))
(reverse rslt)))
(defun strcat-list (lines)
;; like (apply 'strcat lines), but does not use a lot of stack
;; When there are too many lines, XLISP will overflow the stack
;; because args go on the stack.
(let (r)
(while (> (setf len (length lines)) 1)
(if (oddp len) (setf lines (cons "" lines)))
(setf lines (strcat-pairs lines)))
; if an empty list, return "", else list has one string: return it
(if (null lines) "" (car lines))))
(defun sal-loader (filename &key verbose print)
(let ((input "") (file (open filename)) line lines)
(cond (file
(push filename *loadingfiles*)
(while (setf line (read-line file))
(push line lines)
(push "\n" lines))
(close file)
(setf input (strcat-list (reverse lines)))
(sal-trace-enter (strcat "Loading " filename))
(sal-compile input t t filename)
(pop *loadingfiles*)
(sal-trace-exit))
(t
(format t "error loading SAL file ~A~%" filename)))))
; SYSTEM command is not implemented
;(defun sal-system (sys &rest pairs)
; (apply #'use-system sys pairs))
(defun load-sal-file (file)
(with-open-file (f file :direction :input)
(let ((input (make-array '(512) :element-type 'character
:fill-pointer 0 :adjustable t)))
(loop with flag
for char = (read-char f nil ':eof)
until (or flag (eql char ':eof))
do
(when (char= char #\;)
(loop do (setq char (read-char f nil :eof))
until (or (eql char :eof)
(char= char #\newline))))
(unless (eql char ':eof)
(vector-push-extend char input)))
(sal input :pattern :command-sequence))))
(defmacro sal-play (snd)
(if (stringp snd) `(play-file ,snd)
`(play ,snd)))
(if (not (boundp '*sal-compiler-debug*))
(setf *sal-compiler-debug* nil))
(defmacro sal-simrep (variable iterations body)
`(simrep (,variable ,iterations) ,body))
(defmacro sal-seqrep (variable iterations body)
`(seqrep (,variable ,iterations) ,body))
;; function called in sal programs to exit the sal read-compile-run-print loop
(defun sal-exit () (setf *sal-exit* t))
;; read-eval-print loop for sal commands
(defun sal ()
(progv '(*breakenable* *tracenable* *sal-exit*)
(list *sal-xlispbreak* *sal-xlispbreak* nil)
(let (input line)
(setf *sal-call-stack* nil)
(read-line) ; read the newline after the one the user
; typed to invoke this fn
(princ "Entering SAL mode ...\n");
(while (not *sal-exit*)
(princ "\nSAL> ")
(sal-trace-enter "SAL top-level command interpreter")
;; get input terminated by two returns
(setf input "")
(while (> (length (setf line (read-line))) 0)
(if *sal-secondary-prompt* (princ " ... "))
(setf input (strcat input "\n" line)))
;; input may have an extra return, remaining from previous read
;; if so, trim it because it affects line count in error messages
(if (and (> (length input) 0) (char= (char input 0) #\newline))
(setf input (subseq input 1)))
(sal-compile input t nil "<console>")
(sal-trace-exit))
(princ "Returning to Lisp ...\n")
t ; return value
)))
(defun sal-error-output (stack)
(if *sal-traceback* (sal-traceback))
(setf *sal-call-stack* stack)) ;; clear the stack
;; when true, top-level return statement is legal and compiled into MAIN
(setf *audacity-top-level-return-flag* nil)
;; SAL-COMPILE-AUDACITY -- special treatment of RETURN
;;
;; This works like SAL-COMPILE, but if there is a top-level
;; return statement (not normally legal), it is compiled into
;; a function named MAIN. This is a shorthand for Audacity plug-ins
;;
(defun sal-compile-audacity (input eval-flag multiple-statements filename)
(progv '(*audacity-top-level-return-flag*) '(t)
(sal-compile input eval-flag multiple-statements filename)))
;; SAL-COMPILE -- translate string or token list to lisp and eval
;;
;; input is either a string or a token list
;; eval-flag tells whether to evaluate the program or return the lisp
;; multiple-statements tells whether the input can contain multiple
;; top-level units (e.g. from a file) or just one (from command line)
;; returns:
;; if eval-flag, then nothing is returned
;; otherwise, returns nil if an error is encountered
;; otherwise, returns a list (PROGN p1 p2 p3 ...) where pn are lisp
;; expressions
;;
(defun sal-compile (input eval-flag multiple-statements filename)
;; save some globals because eval could call back recursively
(progv '(*sal-tokens* *sal-input* *sal-input-text*) '(nil nil nil)
(let (output remainder rslt stack)
(setf stack *sal-call-stack*)
;; if first input char is "(", then eval as a lisp expression:
;(display "sal-compile" input)(setf *sal-compiler-debug* t)
(cond ((input-starts-with-open-paren input)
;(print "input is lisp expression")
(errset
(print (eval (read (make-string-input-stream input)))) t))
(t ;; compile SAL expression(s):
(loop
(setf output (sal-parse nil nil input multiple-statements
filename))
(cond ((first output) ; successful parse
(setf remainder *sal-tokens*)
(setf output (second output))
(when *sal-compiler-debug*
(terpri)
(pprint output))
(cond (eval-flag ;; evaluate the compiled code
(cond ((null (errset (eval output) t))
(sal-error-output stack)
(return)))) ;; stop on error
(t
(push output rslt)))
;(display "sal-compile after eval"
; remainder *sal-tokens*)
;; if there are statements left over, maybe compile again
(cond ((and multiple-statements remainder)
;; move remainder to input and iterate
(setf input remainder))
;; see if we've compiled everything
((and (not eval-flag) (not remainder))
(return (cons 'progn (reverse rslt))))
;; if eval but no more input, return
((not remainder)
(return))))
(t ; error encountered
(return)))))))))
;; SAL just evaluates lisp expression if it starts with open-paren,
;; but sometimes reader reads previous newline(s), so here we
;; trim off initial newlines and check if first non-newline is open-paren
(defun input-starts-with-open-paren (input)
(let ((i 0))
(while (and (stringp input)
(> (length input) i)
(eq (char input i) #\newline))
(incf i))
(and (stringp input)
(> (length input) i)
(eq (char input i) #\())))
|