/usr/lib/swi-prolog/library/MANUAL is in swi-prolog-nox 7.2.3+dfsg-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904 | VU University Amsterdam University of Amsterdam
~ De1Boelelaan01081a,81 HV Amsterdam KruislaanV419,A1098Amsterdam
The Netherlands The Netherlands
SWI-Prolog 7.2
Reference Manual
_U_p_d_a_t_e_d _f_o_r _v_e_r_s_i_o_n _7_._2_._3_, _A_u_g_u_s_t _2_0_1_5
_J_a_n _W_i_e_l_e_m_a_k_e_r
J.Wielemaker@vu.nl
http://www.swi-prolog.org
SWI-Prolog is a comprehensive and portable implementation of
the Prolog programming language. SWI-Prolog aims to be a
robust and scalable implementation supporting a wide range of
applications. In particular, it ships with a wide range of
interface libraries, providing interfaces to other languages,
databases, graphics and networking. It provides extensive
support for managing HTML/SGML/XML and RDF documents. The
system is particularly suited for server applications due to
robust support for multithreading and HTTP server libraries.
SWI-Prolog is designed in the `Edinburgh tradition'. In
addition to the ISO Prolog standard it is largely compatible
to Quintus, SICStus and YAP Prolog. SWI-Prolog provides a
compatibility framework developed in cooperation with YAP and
instantiated for YAP, SICStus and IF/Prolog.
SWI-Prolog aims at providing a good development environment,
including extensive editor support, graphical source-level
debugger, autoloading and `make' facility and much more.
SWI-Prolog editor and the PDT plugin for Eclipse provide
alternative environments.
This document gives an overview of the features, system limits
and built-in predicates.
~
This work is licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/3.0/
or send a letter to Creative Commons, 444 Castro Street, Suite
900, Mountain View, California, 94041, USA.
CChhaapptteerr 11.. IINNTTRROODDUUCCTTIIOONN
This document is a _r_e_f_e_r_e_n_c_e _m_a_n_u_a_l. That means that it documents
the system, but it does not explain the basics of the Prolog
language and it leaves many details of the syntax, semantics and
built-in primitives undefined where SWI-Prolog follows the standards.
This manual is intended for people that are familiar with Prolog.
For those not familiar with Prolog, we recommend to start with a
Prolog textbook such as [Bratko, 1986], [Sterling & Shapiro, 1986] or
[Clocksin & Melish, 1987]. For more advanced Prolog usage we recommend
[O'Keefe, 1990].
11..11 PPoossiittiioonniinngg SSWWII--PPrroolloogg
Most implementations of the Prolog language are designed to serve a
limited set of use cases. SWI-Prolog is no exception to this rule.
SWI-Prolog positions itself primarily as a Prolog environment for
`programming in the large' and use cases where it plays a central role
in an application, i.e., where it acts as `glue' between components.
At the same time, SWI-Prolog aims at providing a productive rapid
prototyping environment. Its orientation towards programming in the
large is backed up by scalability, compiler speed, program structuring
(modules), support for multithreading to accommodate servers, Unicode
and interfaces to a large number of document formats, protocols and
programming languages. Prototyping is facilitated by good development
tools, both for command line usage as for usage with graphical
development tools. Demand loading of predicates from the library and
a `make' facility avoids the _r_e_q_u_i_r_e_m_e_n_t for using declarations and
reduces typing.
SWI-Prolog is traditionally strong in education because it is free and
portable, but also because of its compatibility with textbooks and its
easy-to-use environment.
Note that these positions do not imply that the system cannot be used
with other scenarios. SWI-Prolog is used as an embedded language where
it serves as a small rule subsystem in a large application. It is also
used as a deductive database. In some cases this is the right choice
because SWI-Prolog has features that are required in the application,
such as threading or Unicode support. In general though, for example,
GNU-Prolog is more suited for embedding because it is small and can
compile to native code, XSB is better for deductive databases because
it provides advanced resolution techniques (tabling), and ECLiPSe is
better at constraint handling.
The syntax and set of built-in predicates is based on the ISO
standard [Hodgson, 1998]. Most extensions follow the `Edinburgh
tradition' (DEC10 Prolog and C-Prolog) and Quintus Prolog [Qui, 1997].
The infrastructure for constraint programming is based on hProlog
[Demoen, 2002]. Some libraries are copied from the YAP system.
Together with YAP we developed a portability framework (see
section 14). This framework has been filled for SICStus Prolog, YAP,
IF/Prolog and Ciao. SWI-Prolog version 7 introduces various extensions
to the Prolog language (see section 5). The _s_t_r_i_n_g data type and its
supporting set of built-in predicates is compatibility with ECLiPSe.
11..22 SSttaattuuss aanndd rreelleeaasseess
This manual describes version 7.2 of SWI-Prolog. SWI-Prolog is widely
considered to be a robust and scalable implementation of the Prolog
language. It is widely used in education and research. In addition,
it is in use for 247* mission critical commercial server processes.
The site http://www.swi-prolog.org is hosted using the SWI-Prolog HTTP
server infrastructure. It receives approximately 2.3 million hits
and serves approximately 300 Gbytes on manual data and downloads each
month. SWI-Prolog applications range from student assignments to
commercial applications that count more than one million lines of
Prolog code.
SWI-Prolog has two development tracks. _S_t_a_b_l_e releases have an even
_m_i_n_o_r version number (e.g., 6.2.1) and are released as a branch from
the development version when the development version is considered
stable and there is sufficient new functionality to justify a stable
release. Stable releases often get a few patch updates to deal with
installation issues or major flaws. A new _D_e_v_e_l_o_p_m_e_n_t version is
typically released every couple of weeks as a snapshot of the public
git repository. `Extra editions' of the development version may
be released after problems that severely hindered the user in their
progress have been fixed.
Known bugs that are not likely to be fixed soon are described as
footnotes in this manual.
11..33 SShhoouulldd II bbee uussiinngg SSWWII--PPrroolloogg??
There are a number of reasons why it might be better to choose a
commercial, or another free, Prolog system:
o _S_W_I_-_P_r_o_l_o_g _c_o_m_e_s _w_i_t_h _n_o _w_a_r_r_a_n_t_i_e_s
Although the developers or the community often provide a
work-around or a fix for a bug, there is no place you can go to for
guaranteed support. However, the full source archive is available
and can be used to compile and debug SWI-Prolog using free tools on
all major platforms. Users requiring more support should ensure
access to knowledgeable developers.
o _P_e_r_f_o_r_m_a_n_c_e _i_s _y_o_u_r _f_i_r_s_t _c_o_n_c_e_r_n
Various free and commercial systems have better performance. But,
`standard' Prolog benchmarks disregard many factors that are often
critical to the performance of large applications. SWI-Prolog is
not good at fast calling of simple predicates and if-then-else
selection based on simple built-in tests, but it is fast with
dynamic code, meta-calling and predicates that contain large
numbers of clauses. Many of SWI-Prolog's built-in predicates are
written in C and have excellent performance.
o _Y_o_u _n_e_e_d _f_e_a_t_u_r_e_s _n_o_t _o_f_f_e_r_e_d _b_y _S_W_I_-_P_r_o_l_o_g
Although SWI-Prolog has many features, it also lacks some
important features. The most well known is probably _t_a_b_l_i_n_g
[Freire _e_t _a_l_., 1997]. If you require additional features and you
have resources, be it financial or expertise, please contact the
developers.
On the other hand, SWI-Prolog offers some facilities that are widely
appreciated by users:
o _N_i_c_e _e_n_v_i_r_o_n_m_e_n_t
SWI-Prolog provides a good command line environment, including `Do
What I Mean', autocompletion, history and a tracer that operates on
single key strokes. The system automatically recompiles modified
parts of the source code using the make/0 command. The system can
be instructed to open an arbitrary editor on the right file and
line based on its source database. It ships with various graphical
tools and can be combined with the SWI-Prolog editor, PDT (Eclipse
plugin for Prolog) or GNU-Emacs.
o _F_a_s_t _c_o_m_p_i_l_e_r
Even very large applications can be loaded in seconds on most
machines. If this is not enough, there is the Quick Load Format.
See qcompile/1 and qsave_program/2.
o _T_r_a_n_s_p_a_r_e_n_t _c_o_m_p_i_l_e_d _c_o_d_e
SWI-Prolog compiled code can be treated just as interpreted code:
you can list it, trace it, etc. This implies you do not have to
decide beforehand whether a module should be loaded for debugging
or not, and the performance of debugged code is close to that of
normal operation.
o _S_o_u_r_c_e _l_e_v_e_l _d_e_b_u_g_g_e_r
The source level debugger provides a good overview of your
current location in the search tree, variable bindings, your
source code and open choice points. Choice point inspection
provides meaningful insight to both novices and experienced users.
Avoiding unintended choice points often provides a huge increase in
performance and a huge saving in memory usage.
o _P_r_o_f_i_l_i_n_g
SWI-Prolog offers an execution profiler with either textual output
or graphical output. Finding and improving hotspots in a Prolog
program may result in huge speedups.
o _F_l_e_x_i_b_i_l_i_t_y
SWI-Prolog can easily be integrated with C, supporting non-
determinism in Prolog calling C as well as C calling Prolog (see
section 10). It can also be _e_m_b_e_d_d_e_d in external programs (see
section 10.5). System predicates can be redefined locally to
provide compatibility with other Prolog systems.
o _T_h_r_e_a_d_s
Robust support for multiple threads may improve performance and is
a key enabling factor for deploying Prolog in server applications.
o _I_n_t_e_r_f_a_c_e_s
SWI-Prolog ships with many extension packages that provide
robust interfaces to processes, encryption, TCP/IP, TIPC, ODBC,
SGML/XML/HTML, RDF, HTTP, graphics and much more.
11..44 SSuuppppoorrtt tthhee SSWWII--PPrroolloogg pprroojjeecctt
You can support the SWI-Prolog project in several ways. Academics
are invited to cite one of the publications on SWI-Prolog. Users
can help by identifying and/or fixing problems with the code or
its documentation.. Users can contribute new features or, more
lightweight, contribute packs. Commercial users may consider
contacting the developers to sponsor the development of new features
or seek for opportunities to cooperate with the developers or other
commercial users.
11..55 IImmpplleemmeennttaattiioonn hhiissttoorryy
SWI-Prolog started back in 1986 with the requirement for a Prolog that
could handle recursive interaction with the C-language: Prolog calling
C and C calling Prolog recursively. In those days Prolog systems were
not very aware of their environment and we needed such a system to
support interactive applications. Since then, SWI-Prolog's development
has been guided by requests from the user community, especially
focussing on (in arbitrary order) interaction with the environment,
scalability, (I/O) performance, standard compliance, teaching and the
program development environment.
SWI-Prolog is based on a simple Prolog virtual machine called
ZIP [Bowen _e_t _a_l_., 1983, Neumerkel, 1993] which defines only 7
instructions. Prolog can easily be compiled into this language,
and the abstract machine code is easily decompiled back into Prolog.
As it is also possible to wire a standard 4-port debugger in the
virtual machine, there is no need for a distinction between compiled
and interpreted code. Besides simplifying the design of the Prolog
system itself, this approach has advantages for program development:
the compiler is simple and fast, the user does not have to decide
in advance whether debugging is required, and the system only runs
slightly slower in debug mode compared to normal execution. The price
we have to pay is some performance degradation (taking out the debugger
from the VM interpreter improves performance by about 20%) and somewhat
additional memory usage to help the decompiler and debugger.
SWI-Prolog extends the minimal set of instructions described in
[Bowen _e_t _a_l_., 1983] to improve performance. While extending this
set, care has been taken to maintain the advantages of decompilation
and tracing of compiled code. The extensions include specialised
instructions for unification, predicate invocation, some frequently
used built-in predicates, arithmetic, and control (;/2, |/2), if-then
(->/2) and negation-by-failure (\+/1).
11..66 AAcckknnoowwlleeddggeemmeennttss
Some small parts of the Prolog code of SWI-Prolog are modified versions
of the corresponding Edinburgh C-Prolog code: grammar rule compilation
and writef/2. Also some of the C-code originates from C-Prolog:
finding the path of the currently running executable and some of the
code underlying absolute_file_name/2. Ideas on programming style and
techniques originate from C-Prolog and Richard O'Keefe's _t_h_i_e_f editor.
An important source of inspiration are the programming techniques
introduced by Anjo Anjewierden in PCE version 1 and 2.
Our special thanks go to those who had the fate of using the early
versions of this system, suggested extensions or reported bugs. Among
them are Anjo Anjewierden, Huub Knops, Bob Wielinga, Wouter Jansweijer,
Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.
Martin Jansche (jansche@novell1.gs.uni-heidelberg.de) has been so kind
to reorganise the sources for version 2.1.3 of this manual. Horst von
Brand has been so kind to fix many typos in the 2.7.14 manual. Thanks!
Randy Sharp fixed many issues in the 6.0.x version of the manual.
Bart Demoen and Tom Schrijvers have helped me adding coroutining,
constraints, global variables and support for cyclic terms to the
kernel. Tom Schrijvers has provided a first clp(fd) constraint solver,
the CHR compiler and some of the coroutining predicates. Markus Triska
contributed the current clp(fd) implementation.
Paul Singleton has integrated Fred Dushin's Java-calls-Prolog side with
his Prolog-calls-Java side into the current bidirectional JPL interface
package.
Richard O'Keefe is gratefully acknowledged for his efforts to educate
beginners as well as valuable comments on proposed new developments.
Scientific Software and Systems Limited, www.sss.co.nz has sponsored
the development of the SSL library, unbounded integer and rational
number arithmetic and many enhancements to the memory management of the
system.
Leslie de Koninck has made clp(QR) available to SWI-Prolog.
Jeff Rosenwald contributed the TIPC networking library and Google's
protocol buffer handling.
Paulo Moura's great experience in maintaining Logtalk for many
Prolog systems including SWI-Prolog has helped in many places fixing
compatibility issues. He also worked on the MacOS port and fixed many
typos in the 5.6.9 release of the documentation.
CChhaapptteerr 22.. OOVVEERRVVIIEEWW
22..11 GGeettttiinngg ssttaarrtteedd qquuiicckkllyy
22..11..11 SSttaarrttiinngg SSWWII--PPrroolloogg
22..11..11..11 SSttaarrttiinngg SSWWII--PPrroolloogg oonn UUnniixx
By default, SWI-Prolog is installed as `swipl'. The command line
arguments of SWI-Prolog itself and its utility programs are documented
using standard Unix man pages. SWI-Prolog is normally operated as an
interactive application simply by starting the program:
________________________________________________________________________| |
|machine% swipl |
|Welcome to SWI-Prolog ... |
|... |
| |
|1|?-___________________________________________________________________ | |
After starting Prolog, one normally loads a program into it using
consult/1, which may be abbreviated by putting the name of the program
file between square brackets. The following goal loads the file
likes.pl containing clauses for the predicates likes/2:
________________________________________________________________________| |
|?- [likes]. |
|% likes compiled, 0.00 sec, 17 clauses |
|true. |
| |
|?-|____________________________________________________________________ | |
After this point, Unix and Windows users unite, so if you are using
Unix please continue at section 2.1.2.
22..11..11..22 SSttaarrttiinngg SSWWII--PPrroolloogg oonn WWiinnddoowwss
After SWI-Prolog has been installed on a Windows system, the following
important new things are available to the user:
o A folder (called _d_i_r_e_c_t_o_r_y in the remainder of this document)
called swipl containing the executables, libraries, etc., of the
system. No files are installed outside this directory.
o A program swipl-win.exe, providing a window for interaction with
Prolog. The program swipl.exe is a version of SWI-Prolog that runs
in a console window.
o The file extension .pl is associated with the program swipl-
win.exe. Opening a .pl file will cause swipl-win.exe to start,
change directory to the directory in which the file to open
resides, and load this file.
The normal way to start the likes.pl file mentioned in section 2.1.1.1
is by simply double-clicking this file in the Windows explorer.
22..11..22 EExxeeccuuttiinngg aa qquueerryy
After loading a program, one can ask Prolog queries about the program.
The query below asks Prolog what food `sam' likes. The system responds
with X = <_v_a_l_u_e> if it can prove the goal for a certain _X. The user can
type the semi-colon (;) or spacebar if (s)he wants another solution.
Use the return key if you do not want to see the more answers. Prolog
completes the output with a full stop (.) if the user uses the return
key or Prolog _k_n_o_w_s there are no more answers. If Prolog cannot find
(more) answers, it writes ffaallssee.. Finally, Prolog answers using an
error message to indicate the query or program contains an error.
________________________________________________________________________| |
|?- likes(sam, X). |
|X = dahl ; |
|X = tandoori ; |
|... |
|X = chips. |
| |
|?-|____________________________________________________________________ | |
Note that the answer written by Prolog is a valid Prolog program
that, when executed, produces the same set of answers as the original
program.
22..22 TThhee uusseerr''ss iinniittiiaalliissaattiioonn ffiillee
After the system initialisation, the system consults (see consult/1)
the user's startup file. The basename of this file follows conventions
of the operating system. On MS-Windows, it is the file swipl.ini
and on Unix systems .swiplrc. The file is searched using the
file_search_path/2 clauses for user_profile. The table below shows the
default value for this search path. The phrase <_a_p_p_d_a_t_a> refers to the
Windows CSIDL name for the folder. The actual name depends on the
Windows language. English versions typically use ApplicationData. See
also win_folder/2
__________________________________
|____________|UUnniixx__||WWiinnddoowwss__________________________ ||
||_hhoommee_||~____|<_a_p_p_d_a_t_a>/SWI-Prolog_|
After the first startup file is found it is loaded and Prolog stops
looking for further startup files. The name of the startup file can be
changed with the `-f file' option. If _F_i_l_e denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same
conventions as for the default startup file. Finally, if _f_i_l_e is none,
no file is loaded.
The installation provides a file customize/dotswiplrc with (commented)
commands that are often used to customize the behaviour of Prolog, such
as interfacing to the editor, color selection or history parameters.
Many of the development tools provide menu entries for editing the
startup file and starting a fresh startup file from the system
skeleton.
See also the -s (script) and -F (system-wide initialisation) in
section 2.4 and section 2.3.
22..33 IInniittiiaalliissaattiioonn ffiilleess aanndd ggooaallss
Using command line arguments (see section 2.4), SWI-Prolog can be
forced to load files and execute queries for initialisation purposes
or non-interactive operation. The most commonly used options are
-f file or -s file to make Prolog load a file, -g goal to define an
initialisation goal and -t goal to define the _t_o_p_-_l_e_v_e_l _g_o_a_l. The
following is a typical example for starting an application directly
from the command line.
________________________________________________________________________| |
|machine%|swipl_-s_load.pl_-g_go_-t_halt________________________________ | |
It tells SWI-Prolog to load load.pl, start the application using
the _e_n_t_r_y _p_o_i_n_t go/0 and ---instead of entering the interactive top
level--- exit after completing go/0. The -q may be used to suppress
all informational messages.
In MS-Windows, the same can be achieved using a short-cut with
appropriately defined command line arguments. A typically seen
alternative is to write a file run.pl with content as illustrated
below. Double-clicking run.pl will start the application.
________________________________________________________________________| |
|:- [load]. % load program |
|:- go. % run it |
|:-|halt.________________________%_and_exit_____________________________ | |
Section 2.10.2.1 discusses further scripting options, and chapter 11
discusses the generation of runtime executables. Runtime executables
are a means to deliver executables that do not require the Prolog
system.
22..44 CCoommmmaanndd lliinnee ooppttiioonnss
SWI-Prolog can be executed in one of the following modes:
swipl --help
swipl --version
swipl --arch
swipl --dump-runtime-variables
These options must appear as only option. They cause Prolog to
print an informational message and exit. See section 2.4.1.
swipl [[_o_p_t_i_o_n ......]] _s_c_r_i_p_t_-_f_i_l_e [[_a_r_g ......]]
These arguments are passed on Unix systems if file that starts with
#!/path/to/executable [_o_p_t_i_o_n ...] is executed. Arguments after
the script file are made available in the Prolog flag argv.
swipl [[_o_p_t_i_o_n ......]] _p_r_o_l_o_g_-_f_i_l_e ...... [[[[--]] _a_r_g ......]]
This is the normal way to start Prolog. The options are described
in section 2.4.2, section 2.4.3 and section 2.4.4. The Prolog flag
argc provides access to _a_r_g ... If the _o_p_t_i_o_n_s are followed by
one or more Prolog file names (i.e., names with extension .pl,
.prolog or (on Windows) the user preferred extension registered
during installation), these files are loaded. The first file
is registered in the Prolog flag associated_file. In addition,
pl-win[.exe] switches to the directory in which this primary source
file is located using working_directory/2.
swipl --oo _o_u_t_p_u_t --cc _p_r_o_l_o_g_-_f_i_l_e ......
The -c option is used to compile a set of Prolog files into an
executable. See section 2.4.5.
swipl --oo _o_u_t_p_u_t --bb _b_o_o_t_f_i_l_e _p_r_o_l_o_g_-_f_i_l_e ......
Bootstrap compilation. See section 2.4.6.
22..44..11 IInnffoorrmmaattiioonnaall ccoommmmaanndd lliinnee ooppttiioonnss
--arch
When given as the only option, it prints the architecture
identifier (see Prolog flag arch) and exits. See also
-dump-runtime-variables. Also available as -arch.
--dump-runtime-variables _[_=_f_o_r_m_a_t_]
When given as the only option, it prints a sequence of variable
settings that can be used in shell scripts to deal with
Prolog parameters. This feature is also used by swipl-ld (see
section 10.5). Below is a typical example of using this feature.
____________________________________________________________________| |
| eval `swipl --dump-runtime-variables` |
||cc_-I$PLBASE/include_-L$PLBASE/lib/$PLARCH_...____________________ ||
The option can be followed by =sh to dump in POSIX shell format
(default) or =cmd to dump in MS-Windows cmd.exe compatible format.
--help
When given as the only option, it summarises the most important
options. Also available as -h and -help.
--version
When given as the only option, it summarises the version and the
architecture identifier. Also available as -v.
22..44..22 CCoommmmaanndd lliinnee ooppttiioonnss ffoorr rruunnnniinngg PPrroolloogg
--home=DIR
Use DIR as home directory. See section 10.6 for details.
--quiet
Set the Prolog flag verbose to silent, suppressing informational
and banner messages. Also available as -q.
--nodebug
Disable debugging. See the current_prolog_flag/2 flag
generate_debug_info for details.
--nosignals
Inhibit any signal handling by Prolog, a property that is sometimes
desirable for embedded applications. This option sets the flag
signals to false. See section 10.4.21.1 for details.
--pldoc _[_=_p_o_r_t_]
Start the PlDoc documentation system on a free network port and
launch the user's browser on http://localhost:<_p_o_r_t>. If _p_o_r_t is
specified, the server is started at the given port and the browser
is _n_o_t launched.
-tty
Unix only. Switches controlling the terminal for allowing
single-character commands to the tracer and get_single_char/1. By
default, manipulating the terminal is enabled unless the system
detects it is not connected to a terminal or it is running as a
GNU-Emacs inferior process. See also tty_control.
--win_app
This option is available only in swipl-win.exe and is used
for the start-menu item. If causes plwin to start in the
folder ...\My Documents\Prolog or local equivalent thereof (see
win_folder/2). The Prolog subdirectory is created if it does not
exist.
-O
Optimised compilation. See current_prolog_flag/2flag optimise for
details.
-s _f_i_l_e
Use _f_i_l_e as a script file. The script file is loaded after the
initialisation file specified with the -f file option. Unlike
-f file, using -s does not stop Prolog from loading the personal
initialisation file.
-f _f_i_l_e
Use _f_i_l_e as initialisation file instead of the default .swiplrc
(Unix) or swipl.ini (Windows). `-f none' stops SWI-Prolog from
searching for a startup file. This option can be used as an
alternative to -s file that stops Prolog from loading the personal
initialisation file. See also section 2.2.
-F _s_c_r_i_p_t
Select a startup script from the SWI-Prolog home directory. The
script file is named <_s_c_r_i_p_t>.rc. The default _s_c_r_i_p_t name is
deduced from the executable, taking the leading alphanumerical
characters (letters, digits and underscore) from the program name.
-F none stops looking for a script. Intended for simple management
of slightly different versions. One could, for example, write
a script iso.rc and then select ISO compatibility mode using
pl -F iso or make a link from iso-pl to pl.
-x _b_o_o_t_f_i_l_e
Boot from _b_o_o_t_f_i_l_e instead of the system's default boot file. A
boot file is a file resulting from a Prolog compilation using the
-b or -c option or a program saved using qsave_program/[1,2].
-p _a_l_i_a_s_=_p_a_t_h_1_[_:_p_a_t_h_2 _._._._]
Define a path alias for file_search_path. _a_l_i_a_s is the name
of the alias, and argpath1 ... is a list of values for the
alias. On Windows the list separator is ;. On other systems
it is :. A value is either a term of the form alias(value) or
pathname. The computed aliases are added to file_search_path/2
using asserta/1, so they precede predefined values for the alias.
See file_search_path/2 for details on using this file location
mechanism.
--traditional
This flag disables the most important extensions of SWI-Prolog
version 7 (see section 5) that introduce incompatibilities. In
particular, lists will be represented in the traditional way,
double quoted text is represented by a list of character codes
and the functional notation on maps is not supported. Maps as
a syntactic entity and the predicates that act on them remain
supported if this flag is present.
--
Stops scanning for more arguments, so you can pass arguments for
your application after this one. See current_prolog_flag/2 using
the flag argv for obtaining the command line arguments.
22..44..33 CCoonnttrroolllliinngg tthhee ssttaacckk ssiizzeess
The default limit for the Prolog stacks is 128 MB on 32-bit and 256 MB
on 64-bit hardware. The 128 MB limit on 32-bit systems is the highest
possible value and the command line options can thus only be used to
lower the limit. On 64-bit systems, the limit can both be reduced
and enlarged. See section 2.19. Below are two examples, the first
reducing the local stack limit to catch unbounded recursion quickly and
the second using a big (32 GB) global limit, which is only possible on
64-bit hardware. Note that setting the limit using the command line
only sets a _s_o_f_t limit. Stack parameters can be changed (both reduced
and enlarged) at any time using the predicate set_prolog_stack/2.
________________________________________________________________________| |
|$ swipl -L8m |
|$|swipl_-G32g__________________________________________________________ | |
-G_s_i_z_e_[_k_m_g_]
Limit for the global stack (sometimes also called _t_e_r_m _s_t_a_c_k or
_h_e_a_p). This is where compound terms and large numbers live.
-L_s_i_z_e_[_k_m_g_]
Limit for the local stack (sometimes also called _e_n_v_i_r_o_n_m_e_n_t
_s_t_a_c_k). This is where environments and choice points live.
-T_s_i_z_e_[_k_m_g_]
Limit for the trail stack. This is where we keep track of
assignments, so we can rollback on backtracking or exceptions.
22..44..44 RRuunnnniinngg ggooaallss ffrroomm tthhee ccoommmmaanndd lliinnee
-g _g_o_a_l
_G_o_a_l is executed just before entering the top level. Default is a
predicate which prints the welcome message. The welcome message
can be suppressed with --quiet, but also with -g true. _g_o_a_l can be
a complex term. In this case quotes are normally needed to protect
it from being expanded by the shell. A safe way to run a goal
non-interactively is here:
____________________________________________________________________| |
||%_swipl_<options>_-g_go,halt_-t_'halt(1)'_________________________ ||
-t _g_o_a_l
Use _g_o_a_l as interactive top level instead of the default goal
prolog/0. _g_o_a_l can be a complex term. If the top-level goal
succeeds SWI-Prolog exits with status 0. If it fails the exit
status is 1. If the top level raises an exception, this is printed
as an uncaught error and the top level is restarted. This flag
also determines the goal started by break/0 and abort/0. If you
want to stop the user from entering interactive mode, start the
application with `-g goal' and give `halt' as top level.
22..44..55 CCoommppiillaattiioonn ooppttiioonnss
-c _f_i_l_e _._._.
Compile files into an `intermediate code file'. See section 2.10.
-o _o_u_t_p_u_t
Used in combination with -c or -b to determine output file for
compilation.
22..44..66 MMaaiinntteennaannccee ooppttiioonnss
The following options are for system maintenance. They are given for
reference only.
-b _i_n_i_t_f_i_l_e _._._.-c _f_i_l_e _._._.
Boot compilation. _i_n_i_t_f_i_l_e _._._. are compiled by the C-written
bootstrap compiler, _f_i_l_e _._._. by the normal Prolog compiler.
System maintenance only.
-d _t_o_k_e_n_1_,_t_o_k_e_n_2_,_._._.
Print debug messages for DEBUG statements tagged with one of the
indicated tokens. Only has effect if the system is compiled with
the -DO_DEBUG flag. System maintenance only.
22..55 GGNNUU EEmmaaccss IInntteerrffaaccee
Unfortunately the default Prolog mode of GNU-Emacs is not very good.
There are several alternatives though:
o http://turing.ubishops.ca/home/bruda/emacs-prolog/
o http://www.logic.at/prolog/ediprolog/ediprolog.html
o http://www.logic.at/prolog/pceprolog/pceprolog.html
o http://www.logic.at/prolog/etrace/etrace.html
22..66 OOnnlliinnee HHeellpp
SWI-Prolog provides an online help system that covers this manual.
If the XPCE graphics system is available, online help opens a
graphical window. Otherwise the documentation is shown in the
Prolog console. The help system is controlled by the predicates
below. Note that this help system only covers the core SWI-Prolog
manual. The website provides an integrated manual that covers the core
system as well as all standard extension packages. It is possible
to install the SWI-Prolog website locally by cloning the website
repository git://www.swi-prolog.org/home/pl/git/plweb.git and following
the instructions in the README file.
hheellpp
Equivalent to help(help/1).
hheellpp((_+_W_h_a_t))
Show specified part of the manual. _W_h_a_t is one of:
<_N_a_m_e>/<_A_r_i_t_y> Give help on specified predicate
<_N_a_m_e> Give help on named predicate with any
arity or C interface function with that
name
<_S_e_c_t_i_o_n> Display specified section. Section
numbers are dash-separated numbers: 2-3
refers to section 2.3 of the manual.
Section numbers are obtained using
apropos/1.
Examples:
?- help(assert). Give help on predicate assert
?- help(3-4). Display section 3.4 of the manual
?- help('PL_retry'). Give help on interface function
PL_retry()
See also apropos/1 and the SWI-Prolog home page at http://www.swi-
prolog.org, which provides a FAQ, an HTML version of the manual for
online browsing, and HTML and PDF versions for downloading.
aapprrooppooss((_+_P_a_t_t_e_r_n))
Display all predicates, functions and sections that have _P_a_t_t_e_r_n in
their name or summary description. Lowercase letters in _P_a_t_t_e_r_n
also match a corresponding uppercase letter. Example:
?- apropos(file). Display predicates, functions
and sections that have `file'
(or `File', etc.) in their
summary description.
eexxppllaaiinn((_+_T_o_E_x_p_l_a_i_n))
Give an explanation on the given `object'. The argument may be any
Prolog data object. If the argument is an atom, a term of the
form _N_a_m_e_/_A_r_i_t_y or a term of the form _M_o_d_u_l_e_:_N_a_m_e_/_A_r_i_t_y, explain/1
describes the predicate as well as possible references to it. See
also gxref/0.
eexxppllaaiinn((_+_T_o_E_x_p_l_a_i_n_, _-_E_x_p_l_a_n_a_t_i_o_n))
Unify _E_x_p_l_a_n_a_t_i_o_n with an explanation for _T_o_E_x_p_l_a_i_n. Backtracking
yields further explanations.
22..77 CCoommmmaanndd lliinnee hhiissttoorryy
SWI-Prolog offers a query substitution mechanism similar to what is
seen in Unix shells. The availability of this feature is controlled by
set_prolog_flag/2, using the history Prolog flag. By default, history
is available if the Prolog flag readline is false. To enable this
feature, remembering the last 50 commands, put the following into your
startup file (see section 2.2):
________________________________________________________________________| |
|:-|set_prolog_flag(history,_50)._______________________________________ | |
The history system allows the user to compose new queries from those
typed before and remembered by the system. The available history
commands are shown in table 2.1. History expansion is not done if
these sequences appear in quoted atoms or strings.
______________________________________________
| !!. |Repeat last query |
| !nr. |Repeat query numbered <_n_r> |
| !str. |Repeat last query starting with <_s_t_r> |
| h. |Show history of commands |
|_!h.___|Show_this_list_______________________ |
Table 2.1: History commands
22..88 RReeuussee ooff ttoopp--lleevveell bbiinnddiinnggss
Bindings resulting from the successful execution of a top-level goal
are asserted in a database _i_f _t_h_e_y _a_r_e _n_o_t _t_o_o _l_a_r_g_e. These values may
be reused in further top-level queries as $Var. If the same variable
name is used in a subsequent query the system associates the variable
with the latest binding. Example:
________________________________________________________________________| |
|1 ?- maplist(plus(1), "hello", X). |
|X = [105,102,109,109,112]. |
| |
|2 ?- format('~s~n', [$X]). |
|ifmmp |
|true. |
| |
|3|?-___________________________________________________________________ | |
Figure 2.1: Reusing top-level bindings
Note that variables may be set by executing =/2:
________________________________________________________________________| |
|6 ?- X = statistics. |
|X = statistics. |
| |
|7 ?- $X. |
|28.00 seconds cpu time for 183,128 inferences |
|4,016 atoms, 1,904 functors, 2,042 predicates, 52 modules |
|55,915 byte codes; 11,239 external references |
| |
| Limit Allocated In use |
|Heap : 624,820 Bytes |
|Local stack : 2,048,000 8,192 404 Bytes |
|Global stack : 4,096,000 16,384 968 Bytes |
|Trail stack : 4,096,000 8,192 432 Bytes |
|true.|_________________________________________________________________ | |
22..99 OOvveerrvviieeww ooff tthhee DDeebbuuggggeerr
SWI-Prolog has a 6-port tracer, extending the standard 4-port tracer
[Byrd, 1980, Clocksin & Melish, 1987] with two additional ports. The
optional _u_n_i_f_y port allows the user to inspect the result after
unification of the head. The _e_x_c_e_p_t_i_o_n port shows exceptions raised by
throw/1 or one of the built-in predicates. See section 4.10.
The standard ports are called call, exit, redo, fail and unify. The
tracer is started by the trace/0 command, when a spy point is reached
and the system is in debugging mode (see spy/1 and debug/0), or when an
exception is raised that is not caught.
The interactive top-level goal trace/0 means ``trace the next query''.
The tracer shows the port, displaying the port name, the current depth
of the recursion and the goal. The goal is printed using the Prolog
predicate write_term/2. The style is defined by the Prolog flag
debugger_write_options and can be modified using this flag or using the
w, p and d commands of the tracer.
________________________________________________________________________| |
|min_numlist([H|T], Min) :- |
| min_numlist(T, H, Min). |
| |
|min_numlist([], Min, Min). |
|min_numlist([H|T], Min0, Min) :- |
| Min1 is min(H, Min0), |
||_______min_numlist(T,_Min1,_Min)._____________________________________ ||
________________________________________________________________________| |
|1 ?- visible(+all), leash(-exit). |
|true. |
| |
|2 ?- trace, min_numlist([3, 2], X). |
| Call: (7) min_numlist([3, 2], _G0) ? creep |
| Unify: (7) min_numlist([3, 2], _G0) |
| Call: (8) min_numlist([2], 3, _G0) ? creep |
| Unify: (8) min_numlist([2], 3, _G0) |
|^ Call: (9) _G54 is min(2, 3) ? creep |
|^ Exit: (9) 2 is min(2, 3) |
| Call: (9) min_numlist([], 2, _G0) ? creep |
| Unify: (9) min_numlist([], 2, 2) |
| Exit: (9) min_numlist([], 2, 2) |
| Exit: (8) min_numlist([2], 3, 2) |
| Exit: (7) min_numlist([3, 2], 2) |
|X|=_2._________________________________________________________________ | |
Figure 2.2: Example trace of the program above showing all ports.
The lines marked ^ indicate calls to _t_r_a_n_s_p_a_r_e_n_t predicates. See
section 6.
On _l_e_a_s_h_e_d _p_o_r_t_s (set with the predicate leash/1, default are call,
exit, redo and fail) the user is prompted for an action. All actions
are single-character commands which are executed wwiitthhoouutt waiting for a
return, unless the command line option -tty is active. Tracer options:
+ ((SSppyy))
Set a spy point (see spy/1) on the current predicate.
- ((NNoo ssppyy))
Remove the spy point (see nospy/1) from the current predicate.
/ ((FFiinndd))
Search for a port. After the `/', the user can enter a line to
specify the port to search for. This line consists of a set of
letters indicating the port type, followed by an optional term,
that should unify with the goal run by the port. If no term is
specified it is taken as a variable, searching for any port of the
specified type. If an atom is given, any goal whose functor has a
name equal to that atom matches. Examples:
/f Search for any fail port
/fe solve Search for a fail or exit port of
any goal with name solve
/c solve(a, _) Search for a call to solve/2 whose
first argument is a variable or the
atom a
/a member(_, _) Search for any port on member/2.
This is equivalent to setting a spy
point on member/2.
. ((RReeppeeaatt ffiinndd))
Repeat the last find command (see `/').
A ((AAlltteerrnnaattiivveess))
Show all goals that have alternatives.
C ((CCoonntteexxtt))
Toggle `Show Context'. If on, the context module of the goal is
displayed between square brackets (see section 6). Default is off.
L ((LLiissttiinngg))
List the current predicate with listing/1.
a ((AAbboorrtt))
Abort Prolog execution (see abort/0).
b ((BBrreeaakk))
Enter a Prolog break environment (see break/0).
c ((CCrreeeepp))
Continue execution, stop at next port. (Also return, space).
d ((DDiissppllaayy))
Set the max_depth(_D_e_p_t_h) option of debugger_write_options, limiting
the depth to which terms are printed. See also the w and p
options.
e ((EExxiitt))
Terminate Prolog (see halt/0).
f ((FFaaiill))
Force failure of the current goal.
g ((GGooaallss))
Show the list of parent goals (the execution stack). Note that due
to tail recursion optimization a number of parent goals might not
exist any more.
h ((HHeellpp))
Show available options (also `?').
i ((IIggnnoorree))
Ignore the current goal, pretending it succeeded.
l ((LLeeaapp))
Continue execution, stop at next spy point.
n ((NNoo ddeebbuugg))
Continue execution in `no debug' mode.
p ((PPrriinntt))
Set the Prolog flag debugger_write_options to [quoted(true), por-
tray(true), max_depth(10), priority(699)]. This is the default.
r ((RReettrryy))
Undo all actions (except for database and I/O actions) back to the
call port of the current goal and resume execution at the call
port.
s ((SSkkiipp))
Continue execution, stop at the next port of tthhiiss goal (thus
skipping all calls to children of this goal).
u ((UUpp))
Continue execution, stop at the next port of tthhee ppaarreenntt goal (thus
skipping this goal and all calls to children of this goal). This
option is useful to stop tracing a failure driven loop.
w ((WWrriittee))
Set the Prolog flag debugger_write_options to [quoted(true), at-
tributes(write), priority(699)], bypassing portray/1, etc.
The ideal 4-port model [Byrd, 1980] as described in many Prolog books
[Clocksin & Melish, 1987] is not visible in many Prolog implementations
because code optimisation removes part of the choice and exit
points. Backtrack points are not shown if either the goal succeeded
deterministically or its alternatives were removed using the cut. When
running in debug mode (debug/0) choice points are only destroyed when
removed by the cut. In debug mode, last call optimisation is switched
off.
Reference information to all predicates available for manipulating the
debugger is in section 4.37.
22..1100 CCoommppiillaattiioonn
22..1100..11 DDuurriinngg pprrooggrraamm ddeevveellooppmmeenntt
During program development, programs are normally loaded using the
list abbreviation (?- [load].). It is common practice to organise a
project as a collection of source files and a _l_o_a_d _f_i_l_e, a Prolog file
containing only use_module/[1,2] or ensure_loaded/1 directives, possibly
with a definition of the _e_n_t_r_y _p_o_i_n_t of the program, the predicate that
is normally used to start the program. This file is often called
load.pl. If the entry point is called _g_o, a typical session starts as:
________________________________________________________________________| |
|% swipl |
|<banner> |
| |
|1 ?- [load]. |
|<compilation messages> |
|true. |
| |
|2 ?- go. |
|<program|interaction>__________________________________________________ | |
When using Windows, the user may open load.pl from the Windows
explorer, which will cause swipl-win.exe to be started in the directory
holding load.pl. Prolog loads load.pl before entering the top level.
If Prolog is started from an interactive shell, one may choose the type
swipl -s load.pl.
22..1100..22 FFoorr rruunnnniinngg tthhee rreessuulltt
There are various options if you want to make your program ready for
real usage. The best choice depends on whether the program is to be
used only on machines holding the SWI-Prolog development system, the
size of the program, and the operating system (Unix vs. Windows).
22..1100..22..11 UUssiinngg PPrroollooggSSccrriipptt
A Prolog source file can be used directly as a Unix program using the
Unix #! magic start. The same mechanism is useful for specifying
additional parameters for running a Prolog file on Windows. The Unix
#! magic is allowed because if the first letter of a Prolog file is #,
the first line is treated as a comment. To create a Prolog script, use
one of the two alternatives below as first line. The first can be used
to bind a script to a specific Prolog installation, while the latter
uses the default prolog installed in $PATH.
________________________________________________________________________| |
|\verb$#!/path/to/swipl$ |
|\verb$#!/usr/bin/env|swipl$____________________________________________ | |
The interpretation of arguments to the executable in the _H_a_s_h_B_a_n_g line
differs between Unix-derived systems. For portability, the #! must
be followed immediately with an absolute path to the executable and
should have none or one argument. Neither the executable path, nor the
argument shall use quotes or spaces. When started this way, the Prolog
flag argv contains the command line arguments that follow the script
invocation. Below is a simple script doing expression evaluation:
________________________________________________________________________| |
|#!/usr/bin/env swipl |
| |
|:- initialization main. |
| |
|eval :- |
| current_prolog_flag(argv, Argv), |
| concat_atom(Argv, ' ', SingleArg), |
| term_to_atom(Term, SingleArg), |
| Val is Term, |
| format('~w~n', [Val]). |
| |
|main :- |
| catch(eval, E, (print_message(error, E), fail)), |
| halt. |
|main :- |
||_______halt(1)._______________________________________________________ ||
And here are two example runs:
________________________________________________________________________| |
|% ./eval 1+2 |
|3 |
|% ./eval foo |
|ERROR: is/2: Arithmetic: `foo/0' is not a function |
|%|_____________________________________________________________________ | |
The Windows version simply ignores the #! line.
22..1100..22..22 CCrreeaattiinngg aa sshheellll ssccrriipptt
With the introduction of _P_r_o_l_o_g_S_c_r_i_p_t (see section 2.10.2.1), using
shell scripts as explained in this section has become redundant for
most applications.
Especially on Unix systems and not-too-large applications, writing a
shell script that simply loads your application and calls the entry
point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.
________________________________________________________________________| |
|#!/bin/sh |
| |
|base=<absolute-path-to-source> |
|PL=swipl |
| |
|exec|$PL_-q_-f_"$base/load"_--_________________________________________ | |
________________________________________________________________________| |
|:- initialization go. |
| |
|go :- |
| current_prolog_flag(argv, Arguments), |
| go(Arguments). |
| |
|go(Args) :- |
||_______...____________________________________________________________ ||
On Windows systems, similar behaviour can be achieved by creating a
shortcut to Prolog, passing the proper options or writing a .bat file.
22..1100..22..33 CCrreeaattiinngg aa ssaavveedd ssttaattee
For larger programs, as well as for programs that are required to
run on systems that do not have the SWI-Prolog development system
installed, creating a saved state is the best solution. A saved
state is created using qsave_program/[1,2] or the -c command line
option. A saved state is a file containing machine-independent
intermediate code in a format dedicated for fast loading. Optionally,
the emulator may be integrated in the saved state, creating a single
file, but machine-dependent, executable. This process is described in
chapter 11.
22..1100..22..44 CCoommppiillaattiioonn uussiinngg tthhee --cc ccoommmmaanndd lliinnee ooppttiioonn
This mechanism loads a series of Prolog source files and then creates a
saved state as qsave_program/2 does. The command syntax is:
________________________________________________________________________| |
|%|swipl_[option_...]_[-o_output]_-c_file.pl_...________________________ | |
The _o_p_t_i_o_n_s argument are options to qsave_program/2 written in the
format below. The option names and their values are described with
qsave_program/2.
--_o_p_t_i_o_n_-_n_a_m_e=_o_p_t_i_o_n_-_v_a_l_u_e
For example, to create a stand-alone executable that starts by
executing main/0 and for which the source is loaded through load.pl,
use the command
________________________________________________________________________| |
|%|swipl_--goal=main_--stand_alone=true_-o_myprog_-c_load.pl____________ | |
This performs exactly the same as executing
________________________________________________________________________| |
|% swipl |
|<banner> |
| |
|?- [load]. |
|?- qsave_program(myprog, |
| [ goal(main), |
| stand_alone(true) |
| ]). |
|?-|halt._______________________________________________________________ | |
22..1111 EEnnvviirroonnmmeenntt CCoonnttrrooll ((PPrroolloogg ffllaaggss))
The predicates current_prolog_flag/2 and set_prolog_flag/2 allow the
user to examine and modify the execution environment. It provides
access to whether optional features are available on this version,
operating system, foreign code environment, command line arguments,
version, as well as runtime flags to control the runtime behaviour
of certain predicates to achieve compatibility with other Prolog
environments.
ccuurrrreenntt__pprroolloogg__ffllaagg((_?_K_e_y_, _-_V_a_l_u_e)) _[_I_S_O_]
The predicate current_prolog_flag/2defines an interface to instal-
lation features: options compiled in, version, home, etc. With
both arguments unbound, it will generate all defined Prolog flags.
With `Key' instantiated, it unifies the value of the Prolog flag.
Flag values are typed. Flags marked as bool can have the values
true or false. Some Prolog flags are not defined in all versions,
which is normally indicated in the documentation below as _`_`_i_f
_p_r_e_s_e_n_t _a_n_d _t_r_u_e_'_'. A boolean Prolog flag is true iff the Prolog
flag is present aanndd the _V_a_l_u_e is the atom true. Tests for such
flags should be written as below:
____________________________________________________________________| |
| ( current_prolog_flag(windows, true) |
| -> <Do MS-Windows things> |
| ; <Do normal things> |
||________)_________________________________________________________ ||
Some Prolog flags are scoped to a source file. This implies
that if they are set using a directive inside a file, the flag
value encountered when loading of the file started is restored when
loading of the file is completed. Currently, the following flags
are scoped to the source file: generate_debug_info and optimise.
A new thread (see section 9) _c_o_p_i_e_s all flags from the thread that
created the new thread (its _p_a_r_e_n_t). As a consequence, modifying a
flag inside a thread does not affect other threads.
aacccceessss__lleevveell _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This flag defines a normal `user' view (user, default) or
a `system' view. In system view all system code is fully
accessible as if it was normal user code. In user view,
certain operations are not permitted and some details are kept
invisible. We leave the exact consequences undefined, but,
for example, system code can be traced using system access and
system predicates can be redefined.
aaddddrreessss__bbiittss _(_i_n_t_e_g_e_r_)
Address size of the hosting machine. Typically 32 or 64.
Except for the maximum stack limit, this has few implications
to the user. See also the Prolog flag arch.
aaggcc__mmaarrggiinn _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
If this amount of atoms possible garbage atoms exist perform
atom garbage collection at the first opportunity. Initial
value is 10,000. May be changed. A value of 0 (zero)
disables atom garbage collection. See also PL_register_atom().
aappppllee _(_b_o_o_l_)
If present and true, the operating system is MacOSX. Defined
if the C compiler used to compile this version of SWI-Prolog
defines __APPLE__. Note that the unix is also defined for
MacOSX.
aallllooww__ddoott__iinn__aattoomm _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), dots may be embedded into atoms
that are not quoted and start with a letter. The embedded
dot _m_u_s_t be followed by an identifier continuation character
(i.e., letter, digit or underscore). The dot is allowed
in identifiers in many languages, which can make this a
useful flag for defining DSLs. Note that this conflicts with
cascading functional notation. For example, Post.meta.author
is read as .(Post, 'meta.author' if this flag is set to true.
aallllooww__vvaarriiaabbllee__nnaammee__aass__ffuunnccttoorr _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default is false), Functor(arg) is read as if it
were written 'Functor'(arg). Some applications use the Prolog
read/1 predicate for reading an application-defined script
language. In these cases, it is often difficult to explain
to non-Prolog users of the application that constants and
functions can only start with a lowercase letter. Variables
can be turned into atoms starting with an uppercase atom by
calling read_term/2 using the option variable_names and binding
the variables to their name. Using this feature, F(x) can be
turned into valid syntax for such script languages. Suggested
by Robert van Engelen. SWI-Prolog specific.
aarrggvv _(_l_i_s_t_, _c_h_a_n_g_e_a_b_l_e_)
List is a list of atoms representing the application command
line arguments. Application command line arguments are
those that have _n_o_t been processed by Prolog during its
initialization. Note that Prolog's argument processing stops
at -- or the first non-option argument. See also os_argv.
aarrcchh _(_a_t_o_m_)
Identifier for the hardware and operating system SWI-Prolog
is running on. Used to select foreign files for the right
architecture. See also section 10.2.3 and file_search_path/2.
aassssoocciiaatteedd__ffiillee _(_a_t_o_m_)
Set if Prolog was started with a prolog file as argument.
Used by e.g., edit/0 to edit the initial file.
aauuttoollooaadd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default) autoloading of library functions is enabled.
bbaacckk__qquuootteess _(_c_o_d_e_s_,_c_h_a_r_s_,_s_t_r_i_n_g_,_s_y_m_b_o_l___c_h_a_r_, _c_h_a_n_g_e_a_b_l_e_)
Defines the term-representation for back-quoted material. The
default is codes. If --traditional is given, the default
is symbol_char, which allows using ` in operators composed of
symbols.. See also section 5.2.
bboouunnddeedd _(_b_o_o_l_)
ISO Prolog flag. If true, integer representation is bound
by min_integer and max_integer. If false integers can be
arbitrarily large and the min_integer and max_integer are not
present. See section 4.26.2.1.
bbrreeaakk__lleevveell _(_i_n_t_e_g_e_r_)
Current break-level. The initial top level (started with -t)
has value 0. See break/0. This flag is absent from threads
that are not running a top-level loop.
cc__cccc _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Name of the C compiler used to compile SWI-Prolog. Normally
either gcc or cc. See section 10.5.
cc__ccffllaaggss _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
CFLAGS used to compile SWI-Prolog. See section 10.5.
cc__llddffllaaggss _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
LDFLAGS used to link SWI-Prolog. See section 10.5.
cc__lliibbss _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Libraries needed to link executables that embed SWI-Prolog.
Typically -lswipl if the SWI-Prolog kernel is a shared (DLL).
If the SWI-Prolog kernel is in a static library, this flag
also contains the dependencies.
cc__lliibbppllssoo _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Libraries needed to link extensions (shared object, DLL) to
SWI-Prolog. Typically empty on ELF systems and -lswipl on
COFF-based systems. See section 10.5.
cchhaarr__ccoonnvveerrssiioonn _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Determines whether character conversion takes place while
reading terms. See also char_conversion/2.
cchhaarraacctteerr__eessccaappeess _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default), read/1 interprets \ escape sequences in
quoted atoms and strings. May be changed. This flag is local
to the module in which it is changed.
ccoolloonn__sseettss__ccaalllliinngg__ccoonntteexxtt _(_b_o_o_l_)
Using the construct <_m_o_d_u_l_e>:<_g_o_a_l> sets the _c_a_l_l_i_n_g _c_o_n_t_e_x_t for
executing <_g_o_a_l>. This flag is defined by ISO/IEC 13211-2
(Prolog modules standard). See section 6.
ccoolloorr__tteerrmm _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
This flag is managed by library ansi_term, which is loaded at
startup if the two conditions below are both true. Note that
this implies that setting this flag to false from the system
or personal initialization file (see section 2.2 disables
colored output. The predicate message_property/2 can be used
to control the actual color scheme depending in the message
type passed to print_message/2.
o stream_property(current_output, tty(true))
o \+ current_prolog_flag(color_term, false)
ccoommppiillee__mmeettaa__aarrgguummeennttss _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Experimental flag that controls compilation of arguments
passed to meta-calls marked `0' or `^' (see meta_predicate/1).
Supported values are:
ffaallssee
(default). Meta-arguments are passed verbatim.
ccoonnttrrooll
Compile meta-arguments that contain control structures
((A,B), (A;B), (A->B;C), etc.). If not compiled at
compile time, such arguments are compiled to a temporary
clause before execution. Using this option enhances
performance of processing complex meta-goals that are
known at compile time.
ttrruuee
Also compile references to normal user predicates. This
harms performance (a little), but enhances the power of
poor-mens consistency check used by make/0 and implemented
by list_undefined/0.
aallwwaayyss
Always create an intermediate clause, even for system
predicates. This prepares for replacing the normal
head of the generated predicate with a special reference
(similar to database references as used by, e.g.,
assert/2) that provides direct access to the executable
code, thus avoiding runtime lookup of predicates for
meta-calling.
ccoommppiilleedd__aatt _(_a_t_o_m_)
Describes when the system has been compiled. Only available
if the C compiler used to compile SWI-Prolog provides the
__DATE__and __TIME__macros.
ccoonnssoollee__mmeennuu _(_b_o_o_l_)
Set to true in swipl-win.exe to indicate that the console
supports menus. See also section 4.33.3.
ccppuu__ccoouunntt _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
Number of physical CPUs or cores in the system. The flag is
marked read-write both to allow pretending the system has more
or less processors. See also thread_setconcurrency/2 and the
library thread. This flag is not available on systems where
we do not know how to get the number of CPUs. This flag is
not included in a saved state (see qsave_program/1).
ddddee _(_b_o_o_l_)
Set to true if this instance of Prolog supports DDE as
described in section 4.41.
ddeebbuugg _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Switch debugging mode on/off. If debug mode is activated
the system traps encountered spy points (see spy/1) and trace
points (see trace/1). In addition, last-call optimisation
is disabled and the system is more conservative in destroying
choice points to simplify debugging.
Disabling these optimisations can cause the system to run out
of memory on programs that behave correctly if debug mode is
off.
ddeebbuugg__oonn__eerrrroorr _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, start the tracer after an error is detected.
Otherwise just continue execution. The goal that raised the
error will normally fail. See also fileerrors/2 and the
Prolog flag report_error. May be changed. Default is true,
except for the runtime version.
ddeebbuuggggeerr__wwrriittee__ooppttiioonnss _(_t_e_r_m_, _c_h_a_n_g_e_a_b_l_e_)
This argument is given as option-list to write_term/2 for
printing goals by the debugger. Modified by the `w', `p' and
`<N> d' commands of the debugger. Default is [quoted(true),
portray(true), max_depth(10), attributes(portray)].
ddeebbuuggggeerr__sshhooww__ccoonntteexxtt _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, show the context module while printing a stack-frame
in the tracer. Normally controlled using the `C' option of
the tracer.
ddiiaalleecctt _(_a_t_o_m_)
Fixed to swi. The code below is a reliable and portable way
to detect SWI-Prolog.
_______________________________________________________________| |
|is_dialect(swi) :- |
||_______catch(current_prolog_flag(dialect,_swi),__,_fail).____ ||
ddoouubbllee__qquuootteess _(_c_o_d_e_s_,_c_h_a_r_s_,_a_t_o_m_,_s_t_r_i_n_g_, _c_h_a_n_g_e_a_b_l_e_)
This flag determines how double quoted strings are read by
Prolog and is ---like character_escapes and back_quotes---
maintained for each module. The default is string, which
produces a string as described in section 5.2. If
--traditional is given, the default is codes, which produces
a list of character codes, integers that represent a Unicode
code-point. The value chars produces a list of one-character
atoms and the value atom makes double quotes the same as
single quotes, creating a atom. See also section 5.
eeddiittoorr _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Determines the editor used by edit/1. See section 4.5 for
details on selecting the editor used.
eemmaaccss__iinnffeerriioorr__pprroocceessss _(_b_o_o_l_)
If true, SWI-Prolog is running as an _i_n_f_e_r_i_o_r _p_r_o_c_e_s_s of
(GNU/X-)Emacs. SWI-Prolog assumes this is the case if the
environment variable EMACS is t and INFERIOR is yes.
eennccooddiinngg _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Default encoding used for opening files in text mode. The
initial value is deduced from the environment. See
section 2.18.1 for details.
eexxeeccuuttaabbllee _(_a_t_o_m_)
Pathname of the running executable. Used by qsave_program/2 as
default emulator.
eexxiitt__ssttaattuuss _(_i_n_t_e_g_e_r_)
Set by halt/1 to its argument, making the exit status
available to hooks registered with at_halt/1.
ffiillee__nnaammee__vvaarriiaabblleess _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), expand $_v_a_r_n_a_m_e and ~ in ar-
guments of built-in predicates that accept a file name
(open/3, exists_file/1, access_file/2, etc.). The predicate
expand_file_name/2 can be used to expand environment variables
and wildcard patterns. This Prolog flag is intended for
backward compatibility with older versions of SWI-Prolog.
ggcc _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default), the garbage collector is active. If false,
neither garbage collection, nor stack shifts will take place,
even not on explicit request. May be changed.
ggeenneerraattee__ddeebbuugg__iinnffoo _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default) generate code that can be debugged using
trace/0, spy/1, etc. Can be set to false using the -nodebug.
This flag is scoped within a source file. Many of the
libraries have :- set_prolog_flag(generate_debug_info, false)
to hide their details from a normal trace.
ggmmpp__vveerrssiioonn _(_i_n_t_e_g_e_r_)
If Prolog is linked with GMP, this flag gives the major
version of the GMP library used. See also section 10.4.8.
gguuii _(_b_o_o_l_)
Set to true if XPCE is around and can be used for graphics.
hhiissttoorryy _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
If _i_n_t_e_g_e_r >0, support Unix csh(1)-like history as described
in section 2.7. Otherwise, only support reusing commands
through the command line editor. The default is to set this
Prolog flag to 0 if a command line editor is provided (see
Prolog flag readline) and 15 otherwise.
hhoommee _(_a_t_o_m_)
SWI-Prolog's notion of the home directory. SWI-Prolog
uses its home directory to find its startup file as
<_h_o_m_e>/boot32.prc(32-bit machines) or <_h_o_m_e>/boot64.prc (64-bit
machines) and to find its library as <_h_o_m_e>/library.
hhwwnndd _(_i_n_t_e_g_e_r_)
In swipl-win.exe, this refers to the MS-Windows window handle
of the console window.
iinntteeggeerr__rroouunnddiinngg__ffuunnccttiioonn _(_d_o_w_n_,_t_o_w_a_r_d___z_e_r_o_)
ISO Prolog flag describing rounding by // and rem arithmetic
functions. Value depends on the C compiler used.
iissoo _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Include some weird ISO compatibility that is incompatible with
normal SWI-Prolog behaviour. Currently it has the following
effect:
o The //2 (float division) _a_l_w_a_y_s returns a float, even if
applied to integers that can be divided.
o In the standard order of terms (see section 4.7.1), all
floats are before all integers.
o atom_length/2 yields a type error if the first argument is
a number.
o clause/[2,3] raises a permission error when accessing
static predicates.
o abolish/[1,2] raises a permission error when accessing
static predicates.
o Syntax is closer to the ISO standard:
{{ Unquoted commas and bars appearing as atoms are not
allowed. Instead of f(,,a) now write f(',',a).
Unquoted commas can only be used to separate
arguments in functional notation and list notation,
and as a conjunction operator. Unquoted bars
can only appear within lists to separate head and
tail, like [Head|Tail], and as infix operator for
alternation in grammar rules, like a --> b | c.
{{ Within functional notation and list notation terms
must have priority below 1000. That means that
rules and control constructs appearing as arguments
need bracketing. A term like [a :- b, c]. must
now be disambiguated to mean [(a :- b), c]. or
[(a :- b, c)].
{{ Operators appearing as operands must be bracketed.
Instead of X == -, true. write X == (-), true.
Currently, this is not entirely enforced.
{{ Backslash-escaped newlines are interpreted according
to the ISO standard. See section 2.15.2.1.
llaarrggee__ffiilleess _(_b_o_o_l_)
If present and true, SWI-Prolog has been compiled with _l_a_r_g_e
_f_i_l_e _s_u_p_p_o_r_t (LFS) and is capable of accessing files larger
than 2GB on 32-bit hardware. Large file support is default on
installations built using configure that support it and may be
switched off using the configure option --disable-largefile.
llaasstt__ccaallll__ooppttiimmiissaattiioonn _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Determines whether or not last-call optimisation is enabled.
Normally the value of this flag is the negation of the
debug flag. As programs may run out of stack if last-call
optimisation is omitted, it is sometimes necessary to enable
it during debugging.
mmaaxx__aarriittyy _(_u_n_b_o_u_n_d_e_d_)
ISO Prolog flag describing there is no maximum arity to
compound terms.
mmaaxx__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Maximum integer value if integers are _b_o_u_n_d_e_d. See also the
flag bounded and section 4.26.2.1.
mmaaxx__ttaaggggeedd__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Maximum integer value represented as a `tagged' value. Tagged
integers require one word storage. Larger integers are
represented as `indirect data' and require significantly more
space.
mmiinn__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Minimum integer value if integers are _b_o_u_n_d_e_d. See also the
flag bounded and section 4.26.2.1.
mmiinn__ttaaggggeedd__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Start of the tagged-integer value range.
ooccccuurrss__cchheecckk _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This flag controls unification that creates an infinite
tree (also called _c_y_c_l_i_c _t_e_r_m) and can have three values.
Using false (default), unification succeeds, creating an
infinite tree. Using true, unification behaves as
unify_with_occurs_check/2, failing silently. Using error, an
attempt to create a cyclic term results in an occurs_check
exception. The latter is intended for debugging unintentional
creations of cyclic terms. Note that this flag is a global
flag modifying fundamental behaviour of Prolog. Changing the
flag from its default may cause libraries to stop functioning
properly.
ooppeenn__sshhaarreedd__oobbjjeecctt _(_b_o_o_l_)
If true, open_shared_object/2 and friends are implemented,
providing access to shared libraries (.so files) or dynamic
link libraries (.DLL files).
ooppttiimmiissee _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, compile in optimised mode. The initial value is true
if Prolog was started with the -O command line option. The
optimise flag is scoped to a source file.
Currently optimised compilation implies compilation of
arithmetic, and deletion of redundant true/0 that may result
from expand_goal/2.
Later versions might imply various other optimisations such as
integrating small predicates into their callers, eliminating
constant expressions and other predictable constructs. Source
code optimisation is never applied to predicates that are
declared dynamic (see dynamic/1).
ooss__aarrggvv _(_l_i_s_t_, _c_h_a_n_g_e_a_b_l_e_)
List is a list of atoms representing the command line
arguments used to invoke SWI-Prolog. Please note that aallll
arguments are included in the list returned. See argv to get
the application options.
ppiidd _(_i_n_t_)
Process identifier of the running Prolog process. Existence
of this flag is implementation-defined.
ppiippee _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, open(pipe(command), mode, Stream), etc. are sup-
ported. Can be changed to disable the use of pipes in
applications testing this feature. Not recommended.
pprriinntt__wwrriittee__ooppttiioonnss _(_t_e_r_m_, _c_h_a_n_g_e_a_b_l_e_)
Specifies the options for write_term/2 used by print/1 and
print/2.
pprroommpptt__aalltteerrnnaattiivveess__oonn _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Determines prompting for alternatives in the Prolog top level.
Default is determinism, which implies the system prompts
for alternatives if the goal succeeded while leaving choice
points. Many classical Prolog systems behave as groundness:
they prompt for alternatives if and only if the query contains
variables.
qqccoommppiillee _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This option provides the default for the qcompile(_+_A_t_o_m)
option of load_files/2.
rreeaaddlliinnee _(_b_o_o_l_)
If true, SWI-Prolog is linked with the readline library. This
is done by default if you have this library installed on
your system. It is also true for the Win32 swipl-win.exe
version of SWI-Prolog, which realises a subset of the readline
functionality.
rreessoouurrccee__ddaattaabbaassee _(_a_t_o_m_)
Set to the absolute filename of the attached state. Typically
this is the file boot32.prc, the file specified with -x or the
running executable. See also resource/3.
rreeppoorrtt__eerrrroorr _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, print error messages; otherwise suppress them. May
be changed. See also the debug_on_errorProlog flag. Default
is true, except for the runtime version.
rruunnttiimmee _(_b_o_o_l_)
If present and true, SWI-Prolog is compiled with -DO_RUNTIME,
disabling various useful development features (currently the
tracer and profiler).
ssaannddbbooxxeedd__llooaadd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), load_files/2 calls hooks to allow
library(sandbox) to verify the safety of directives.
ssaavveedd__pprrooggrraamm _(_b_o_o_l_)
If present and true, Prolog has been started from a state
saved with qsave_program/[1,2].
sshhaarreedd__oobbjjeecctt__eexxtteennssiioonn _(_a_t_o_m_)
Extension used by the operating system for shared objects.
.so for most Unix systems and .dll for Windows. Used for
locating files using the file_type executable. See also
absolute_file_name/3.
sshhaarreedd__oobbjjeecctt__sseeaarrcchh__ppaatthh _(_a_t_o_m_)
Name of the environment variable used by the system to search
for shared objects.
ssiiggnnaallss _(_b_o_o_l_)
Determine whether Prolog is handling signals (software in-
terrupts). This flag is false if the hosting OS does not
support signal handling or the command line option -nosignals
is active. See section 10.4.21.1 for details.
ssttrreeaamm__ttyyppee__cchheecckk _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Defines whether and how strictly the system validates that
byte I/O should not be applied to text streams and text I/O
should not be applied to binary streams. Values are false (no
checking), true (full checking) and loose. Using checking
mode loose (default), the system accepts byte I/O from text
stream that use ISO Latin-1 encoding and accepts writing text
to binary streams.
ssyysstteemm__tthhrreeaadd__iidd _(_i_n_t_)
Available in multithreaded version (see section 9) where
the operating system provides system-wide integer thread
identifiers. The integer is the thread identifier used
by the operating system for the calling thread. See also
thread_self/1.
ttiimmeezzoonnee _(_i_n_t_e_g_e_r_)
Offset in seconds west of GMT of the current time zone. Set
at initialization time from the timezone variable associated
with the POSIX tzset() function. See also convert_time/2.
ttoopplleevveell__pprriinntt__aannoonn _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, top-level variables starting with an underscore (_)
are printed normally. If false they are hidden. This may be
used to hide bindings in complex queries from the top level.
ttoopplleevveell__pprriinntt__ffaaccttoorriizzeedd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false) show the internal sharing of subterms
in the answer substitution. The example below reveals
internal sharing of leaf nodes in _r_e_d_-_b_l_a_c_k _t_r_e_e_s as
implemented by the rbtrees predicate rb_new/1:
_______________________________________________________________| |
|?- set_prolog_flag(toplevel_print_factorized, true). |
|?- rb_new(X). |
|X = t(_S1, _S1), % where |
||____S1_=_black('',__G387,__G388,_'').________________________ ||
If this flag is false, the % where notation is still used to
indicate cycles as illustrated below. This example also shows
that the implementation reveals the internal cycle length, and
_n_o_t the minimal cycle length. Cycles of different length are
indistinguishable in Prolog (as illustrated by S == R).
_______________________________________________________________| |
|?- S = s(S), R = s(s(R)), S == R. |
|S = s(S), |
|R|=_s(s(R)).__________________________________________________ | |
aannsswweerr__wwrriittee__ooppttiioonnss _(_t_e_r_m_, _c_h_a_n_g_e_a_b_l_e_)
This argument is given as option-list to write_term/2 for
printing results of queries. Default is [quoted(true),
portray(true), max_depth(10), attributes(portray)].
ttoopplleevveell__pprroommpptt _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Define the prompt that is used by the interactive top level.
The following ~ (tilde) sequences are replaced:
_____________________________________________________________________~m_T_y_p_e _i_n module if not user (see module/1)
~l _B_r_e_a_k _l_e_v_e_l if not 0 (see break/0)
~d _D_e_b_u_g_g_i_n_g _s_t_a_t_e if not normal execution (see debug/0, trace/0)
_~!___H_i_s_t_o_r_y__e_v_e_n_t_if_history_is_enabled_(see_flag_history)__________
ttoopplleevveell__vvaarr__ssiizzee _(_i_n_t_, _c_h_a_n_g_e_a_b_l_e_)
Maximum size counted in literals of a term returned as a
binding for a variable in a top-level query that is saved for
re-use using the $ variable reference. See section 2.8.
ttrraaccee__ggcc _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), garbage collections and stack-shifts
will be reported on the terminal. May be changed. Values are
reported in bytes as G+T, where G is the global stack value
and T the trail stack value. `Gained' describes the number
of bytes reclaimed. `used' the number of bytes on the stack
after GC and `free' the number of bytes allocated, but not in
use. Below is an example output.
_______________________________________________________________| |
|% GC: gained 236,416+163,424 in 0.00 sec; |
||_____used_13,448+5,808;_free_72,568+47,440___________________ ||
ttrraaddiittiioonnaall _(_b_o_o_l_)
Available in SWI-Prolog version 7. If true, `traditional'
mode has been selected using --traditional. See also
section 5.
ttttyy__ccoonnttrrooll _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Determines whether the terminal is switched to raw mode for
get_single_char/1, which also reads the user actions for the
trace. May be set. See also the +/-tty command line option.
uunniixx _(_b_o_o_l_)
If present and true, the operating system is some version
of Unix. Defined if the C compiler used to compile this
version of SWI-Prolog either defines __unix__ or unix. On
other systems this flag is not available. See also apple and
windows.
uunnkknnoowwnn _(_f_a_i_l_,_w_a_r_n_i_n_g_,_e_r_r_o_r_, _c_h_a_n_g_e_a_b_l_e_)
Determines the behaviour if an undefined procedure is en-
countered. If fail, the predicate fails silently. If
warn, a warning is printed, and execution continues as if
the predicate was not defined, and if error (default), an
existence_error exception is raised. This flag is local to
each module and inherited from the module's _i_m_p_o_r_t_-_m_o_d_u_l_e.
Using default setup, this implies that normal modules inherit
the flag from user, which in turn inherit the value error
from system. The user may change the flag for module user
to change the default for all application modules or for
a specific module. It is strongly advised to keep the
error default and use dynamic/1 and/or multifile/1 to specify
possible non-existence of a predicate.
uunnllooaadd__ffoorreeiiggnn__lliibbrraarriieess _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), unload all loaded foreign libraries.
Default is false because modern OSes reclaim the resources
anyway and unloading the foreign code may cause registered
hooks to point to no longer existing data or code.
uusseerr__ffllaaggss _(_A_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Define the behaviour of set_prolog_flag/2 if the flag is
not known. Values are silent, warning and error. The
first two create the flag on-the-fly, where warning prints
a message. The value error is consistent with ISO: it
raises an existence error and does not create the flag. See
also create_prolog_flag/3. The default is silent, but future
versions may change that. Developers are encouraged to use
another value and ensure proper use of create_prolog_flag/3 to
create flags for their library.
vveerrbboossee _(_A_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This flag is used by print_message/2. If its value is silent,
messages of type informational and banner are suppressed. The
-q switches the value from the initial normal to silent.
vveerrbboossee__aauuttoollooaadd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true the normal consult message will be printed if a
library is autoloaded. By default this message is suppressed.
Intended to be used for debugging purposes.
vveerrbboossee__llooaadd _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Determines messages printed for loading (compiling) Prolog
files. Current values are full (print a message at the
start and end of each file loaded), normal (print a message
at the end of each file loaded), brief (print a message at
end of loading the toplevel file), and silent (no messages
are printed, default). The value of this flag is normally
controlled by the option silent(_B_o_o_l) provided by load_files/2.
vveerrbboossee__ffiillee__sseeaarrcchh _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), print messages indicating the
progress of absolute_file_name/[2,3] in locating files.
Intended for debugging complicated file-search paths. See
also file_search_path/2.
vveerrssiioonn _(_i_n_t_e_g_e_r_)
The version identifier is an integer with value:
10000_*Major+ 100_*Minor+_P_a_t_c_h
Note that in releases up to 2.7.10 this Prolog flag
yielded an atom holding the three numbers separated by dots.
The current representation is much easier for implementing
version-conditional statements.
vveerrssiioonn__ddaattaa _(_s_w_i_(_M_a_j_o_r_, _M_i_n_o_r_, _P_a_t_c_h_, _E_x_t_r_a_)_)
Part of the dialect compatibility layer; see also the Prolog
flag dialect and section 14. _E_x_t_r_a provides platform-specific
version information. Currently it is simply unified to [].
vveerrssiioonn__ggiitt _(_a_t_o_m_)
Available if created from a git repository. See git-describe
for details.
wwaarrnn__oovveerrrriiddee__iimmpplliicciitt__iimmppoorrtt _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default), a warning is printed if an implicitly
imported predicate is clobbered by a local definition. See
use_module/1 for details.
wwiinnddoowwss _(_b_o_o_l_)
If present and true, the operating system is an implementation
of Microsoft Windows (NT/2000/XP, etc.). This flag is only
available on MS-Windows based versions.
wwrriittee__aattttrriibbuutteess _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Defines how write/1 and friends write attributed variables.
The option values are described with the attributes option of
write_term/3. Default is ignore.
wwrriittee__hheellpp__wwiitthh__oovveerrssttrriikkee _(_b_o_o_l_)
Internal flag used by help/1 when writing to a terminal. If
present and true it prints bold and underlined text using
_o_v_e_r_s_t_r_i_k_e.
xxppccee _(_b_o_o_l_)
Available and set to true if the XPCE graphics system is
loaded.
xxppccee__vveerrssiioonn _(_a_t_o_m_)
Available and set to the version of the loaded XPCE system.
sseett__pprroolloogg__ffllaagg((_:_K_e_y_, _+_V_a_l_u_e)) _[_I_S_O_]
Define a new Prolog flag or change its value. _K_e_y is an atom.
If the flag is a system-defined flag that is not marked _c_h_a_n_g_e_a_b_l_e
above, an attempt to modify the flag yields a permission_error.
If the provided _V_a_l_u_e does not match the type of the flag, a
type_error is raised.
Some flags (e.g., unknown) are maintained on a per-module basis.
The addressed module is determined by the _K_e_y argument.
In addition to ISO, SWI-Prolog allows for user-defined Prolog
flags. The type of the flag is determined from the initial value
and cannot be changed afterwards. Defined types are boolean (if
the initial value is one of false, true, on or off), atom if the
initial value is any other atom, integer if the value is an integer
that can be expressed as a 64-bit signed value. Any other initial
value results in an untyped flag that can represent any valid
Prolog term.
The behaviour when _K_e_y denotes a non-existent key depends on the
Prolog flag user_flags. The default is to define them silently.
New code is encouraged to use create_prolog_flag/3 for portability.
ccrreeaattee__pprroolloogg__ffllaagg((_+_K_e_y_, _+_V_a_l_u_e_, _+_O_p_t_i_o_n_s)) _[_Y_A_P_]
Create a new Prolog flag. The ISO standard does not foresee
creation of new flags, but many libraries introduce new flags.
_O_p_t_i_o_n_s is a list of the options below. See also user_flags.
aacccceessss((_+_A_c_c_e_s_s))
Define access rights for the flag. Values are read_write and
read_only. The default is read_write.
ttyyppee((_+_A_t_o_m))
Define a type restriction. Possible values are boolean, atom,
integer, float and term. The default is determined from
the initial value. Note that term restricts the term to be
ground.
kkeeeepp((_+_B_o_o_l_e_a_n))
If true, to not modify the flag if it already exists. Other-
wise (default), this predicate behaves as set_prolog_flag/2 if
the flag already exists.
22..1122 AAnn oovveerrvviieeww ooff hhooookk pprreeddiiccaatteess
SWI-Prolog provides a large number of hooks, mainly to control handling
messages, debugging, startup, shut-down, macro-expansion, etc. Below
is a summary of all defined hooks with an indication of their
portability.
o _p_o_r_t_r_a_y_/_1
Hook into write_term/3 to alter the way terms are printed (ISO).
o _m_e_s_s_a_g_e___h_o_o_k_/_3
Hook into print_message/2 to alter the way system messages are
printed (Quintus/SICStus).
o _m_e_s_s_a_g_e___p_r_o_p_e_r_t_y_/_2
Hook into print_message/2 that defines prefix, output stream,
color, etc.
o _l_i_b_r_a_r_y___d_i_r_e_c_t_o_r_y_/_1
Hook into absolute_file_name/3 to define new library directories
(most Prolog systems).
o _f_i_l_e___s_e_a_r_c_h___p_a_t_h_/_2
Hook into absolute_file_name/3 to define new search paths
(Quintus/SICStus).
o _t_e_r_m___e_x_p_a_n_s_i_o_n_/_2
Hook into load_files/2 to modify read terms before they are
compiled (macro-processing) (most Prolog systems).
o _g_o_a_l___e_x_p_a_n_s_i_o_n_/_2
Same as term_expansion/2 for individual goals (SICStus).
o _p_r_o_l_o_g___l_o_a_d___f_i_l_e_/_2
Hook into load_files/2 to load other data formats for Prolog
sources from `non-file' resources. The load_files/2 predicate is
the ancestor of consult/1, use_module/1, etc.
o _p_r_o_l_o_g___e_d_i_t_:_l_o_c_a_t_e_/_3
Hook into edit/1 to locate objects (SWI).
o _p_r_o_l_o_g___e_d_i_t_:_e_d_i_t___s_o_u_r_c_e_/_1
Hook into edit/1 to call an internal editor (SWI).
o _p_r_o_l_o_g___e_d_i_t_:_e_d_i_t___c_o_m_m_a_n_d_/_2
Hook into edit/1 to define the external editor to use (SWI).
o _p_r_o_l_o_g___l_i_s_t___g_o_a_l_/_1
Hook into the tracer to list the code associated to a particular
goal (SWI).
o _p_r_o_l_o_g___t_r_a_c_e___i_n_t_e_r_c_e_p_t_i_o_n_/_4
Hook into the tracer to handle trace events (SWI).
o _p_r_o_l_o_g_:_d_e_b_u_g___c_o_n_t_r_o_l___h_o_o_k_/_1
Hook in spy/1, nospy/1, nospyall/0 and debugging/0 to extend these
control predicates to higher-level libraries.
o _p_r_o_l_o_g_:_h_e_l_p___h_o_o_k_/_1
Hook in help/0, help/1 and apropos/1 to extend the help system.
o _r_e_s_o_u_r_c_e_/_3
Define a new resource (not really a hook, but similar) (SWI).
o _e_x_c_e_p_t_i_o_n_/_3
Old attempt to a generic hook mechanism. Handles undefined
predicates (SWI).
o _a_t_t_r___u_n_i_f_y___h_o_o_k_/_2
Unification hook for attributed variables. Can be defined in any
module. See section 7.1 for details.
22..1133 AAuuttoommaattiicc llooaaddiinngg ooff lliibbrraarriieess
If ---at runtime--- an undefined predicate is trapped, the system will
first try to import the predicate from the module's default module (see
section 6.9. If this fails the _a_u_t_o _l_o_a_d_e_r is activated. On first
activation an index to all library files in all library directories
is loaded in core (see library_directory/1, file_search_path/2 and
reload_library_index/0). If the undefined predicate can be located in
one of the libraries, that library file is automatically loaded and the
call to the (previously undefined) predicate is restarted. By default
this mechanism loads the file silently. The current_prolog_flag/2 key
verbose_autoload is provided to get verbose loading. The Prolog flag
autoload can be used to enable/disable the autoload system.
Autoloading only handles (library) source files that use the module
mechanism described in chapter 6. The files are loaded with
use_module/2 and only the trapped undefined predicate is imported into
the module where the undefined predicate was called. Each library
directory must hold a file INDEX.pl that contains an index to all
library files in the directory. This file consists of lines of the
following format:
________________________________________________________________________| |
|index(Name,|Arity,_Module,_File).______________________________________ | |
The predicate make/0 updates the autoload index. It searches for
all library directories (see library_directory/1 and file_search_path/2)
holding the file MKINDEX.pl or INDEX.pl. If the current user can write
or create the file INDEX.pl and it does not exist or is older than the
directory or one of its files, the index for this directory is updated.
If the file MKINDEX.pl exists, updating is achieved by loading this
file, normally containing a directive calling make_library_index/2.
Otherwise make_library_index/1is called, creating an index for all *.pl
files containing a module.
Below is an example creating an indexed library directory.
________________________________________________________________________| |
|% mkdir ~/lib/prolog |
|% cd ~/lib/prolog |
|%|swipl_-g_true_-t_'make_library_index(.)'_____________________________ | |
If there is more than one library file containing the desired
predicate, the following search schema is followed:
1. If there is a library file that defines the module in which the
undefined predicate is trapped, this file is used.
2. Otherwise library files are considered in the order they appear
in the library_directory/1 predicate and within the directory
alphabetically.
aauuttoollooaadd__ppaatthh((_+_D_i_r_A_l_i_a_s))
Add _D_i_r_A_l_i_a_s to the libraries that are used by the autoloader.
This extends the search path autoload and reloads the library
index. For example:
____________________________________________________________________| |
||:-_autoload_path(library(http)).__________________________________ ||
If this call appears as a directive, it is term-expanded
into a clause for user:file_search_path/2 and a directive calling
reload_library_index/0. This keeps source information and allows
for removing this directive.
mmaakkee__lliibbrraarryy__iinnddeexx((_+_D_i_r_e_c_t_o_r_y))
Create an index for this directory. The index is written to the
file 'INDEX.pl' in the specified directory. Fails with a warning
if the directory does not exist or is write protected.
mmaakkee__lliibbrraarryy__iinnddeexx((_+_D_i_r_e_c_t_o_r_y_, _+_L_i_s_t_O_f_P_a_t_t_e_r_n_s))
Normally used in MKINDEX.pl, this predicate creates INDEX.pl for
_D_i_r_e_c_t_o_r_y, indexing all files that match one of the file patterns
in _L_i_s_t_O_f_P_a_t_t_e_r_n_s.
Sometimes library packages consist of one public load file and a
number of files used by this load file, exporting predicates that
should not be used directly by the end user. Such a library can be
placed in a sub-directory of the library and the files containing
public functionality can be added to the index of the library.
As an example we give the XPCE library's MKINDEX.pl, including
the public functionality of trace/browse.pl to the autoloadable
predicates for the XPCE package.
____________________________________________________________________| |
| :- make_library_index('.', |
| [ '*.pl', |
| 'trace/browse.pl' |
||______________________])._________________________________________ ||
rreellooaadd__lliibbrraarryy__iinnddeexx
Force reloading the index after modifying the set of library
directories by changing the rules for library_directory/1,
file_search_path/2, adding or deleting INDEX.pl files. This
predicate does _n_o_t update the INDEX.pl files. Check
make_library_index/[1,2] and make/0 for updating the index files.
Normally, the index is reloaded automatically if a predicate cannot
be found in the index and the set of library directories has
changed. Using reload_library_index/0 is necessary if directories
are removed or the order of the library directories is changed.
When creating an executable using either qsave_program/2 or the -c
command line options, it is necessarry to load all predicates that
would normally be autoloaded explicitly. This is discussed in
section 11. See autoload/0.
22..1144 GGaarrbbaaggee CCoolllleeccttiioonn
SWI-Prolog provides garbage collection, last-call optimization and atom
garbage collection. These features are controlled using Prolog flags
(see current_prolog_flag/2).
22..1155 TThhee SSWWII--PPrroolloogg ssyynnttaaxx
SWI-Prolog syntax is close to ISO-Prolog standard syntax, which is
based on the Edinburgh Prolog syntax. A formal description can be
found in the ISO standard document. For an informal introduction we
refer to Prolog text books (see section 1) and online tutorials. In
addition to the differences from the ISO standard documented here,
SWI-Prolog offers several extensions, some of which also extend the
syntax. See section 5 for more information.
22..1155..11 IISSOO SSyynnttaaxx SSuuppppoorrtt
This section lists various extensions w.r.t. the ISO Prolog syntax.
22..1155..11..11 PPrroocceessssoorr CChhaarraacctteerr SSeett
The processor character set specifies the class of each character used
for parsing Prolog source text. Character classification is fixed to
Unicode. See also section 2.18.
22..1155..22 NNeesstteedd ccoommmmeennttss
SWI-Prolog allows for nesting /* ...*/ comments. Where the ISO
standard accepts /* .../* ...*/ as a comment, SWI-Prolog will search
for a terminating */. This is useful if some code with /* ...*/
comment statements in it should be commented out. This modification
also avoids unintended commenting in the example below, where the
closing */ of the first comment has been forgotten.
________________________________________________________________________| |
|/* comment |
| |
|code |
| |
|/* second comment */ |
| |
|code |
||______________________________________________________________________ ||
22..1155..22..11 CChhaarraacctteerr EEssccaappee SSyynnttaaxx
Within quoted atoms (using single quotes: '<atom>') special characters
are represented using escape sequences. An escape sequence is led
in by the backslash (\) character. The list of escape sequences
is compatible with the ISO standard but contains some extensions, and
the interpretation of numerically specified characters is slightly more
flexible to improve compatibility. Undefined escape characters raise a
syntax_error exception.
\a
Alert character. Normally the ASCII character 7 (beep).
\b
Backspace character.
\c
No output. All input characters up to but not including the
first non-layout character are skipped. This allows for the
specification of pretty-looking long lines. Not supported by ISO.
Example:
____________________________________________________________________| |
| format('This is a long line that looks better if it was \c |
||_______split_across_multiple_physical_lines_in_the_input')________ ||
\<NEWLINE>
When in ISO mode (see the Prolog flag iso), only skip this
sequence. In native mode, white space that follows the newline
is skipped as well and a warning is printed, indicating that this
construct is deprecated and advising to use \c. We advise using
\c or putting the layout _b_e_f_o_r_e the \, as shown below. Using
\c is supported by various other Prolog implementations and will
remain supported by SWI-Prolog. The style shown below is the most
compatible solution.
____________________________________________________________________| |
| format('This is a long line that looks better if it was \ |
||split_across_multiple_physical_lines_in_the_input')_______________ ||
instead of
____________________________________________________________________| |
| format('This is a long line that looks better if it was\ |
||_split_across_multiple_physical_lines_in_the_input')______________ ||
\e
Escape character (ASCII 27). Not ISO, but widely supported.
\f
Form-feed character.
\n
Next-line character.
\r
Carriage-return only (i.e., go back to the start of the line).
\s
Space character. Intended to allow writing 0'\s to get the
character code of the space character. Not ISO.
\t
Horizontal tab character.
\v
Vertical tab character (ASCII 11).
\xXX..\
Hexadecimal specification of a character. The closing \ is
obligatory according to the ISO standard, but optional in
SWI-Prolog to enhance compatibility with the older Edinburgh
standard. The code \xa\3 emits the character 10 (hexadecimal `a')
followed by `3'. Characters specified this way are interpreted as
Unicode characters. See also \u.
\uXXXX
Unicode character specification where the character is specified
using _e_x_a_c_t_l_y 4 hexadecimal digits. This is an extension to the
ISO standard, fixing two problems. First, where \x defines a
numeric character code, it doesn't specify the character set in
which the character should be interpreted. Second, it is not
needed to use the idiosyncratic closing \ ISO Prolog syntax.
\UXXXXXXXX
Same as \uXXXX, but using 8 digits to cover the whole Unicode set.
\40
Octal character specification. The rules and remarks for
hexadecimal specifications apply to octal specifications as well.
\\
Escapes the backslash itself. Thus, '\\' is an atom consisting of
a single \.
\'
Single quote. Note that '\'' and '''' both describe the atom with
a single ', i.e., '\'' == '''' is true.
\"
Double quote.
\`
Back quote.
Character escaping is only available if
current_prolog_flag(character_escapes, true) is active (default). See
current_prolog_flag/2. Character escapes conflict with writef/2 in
two ways: \40 is interpreted as decimal 40 by writef/2, but as
octal 40 (decimal 32) by read. Also, the writef/2 sequence \l is
illegal. It is advised to use the more widely supported format/[2,3]
predicate instead. If you insist upon using writef/2, either switch
character_escapes to false, or use double \\, as in writef('\\l').
22..1155..22..22 SSyynnttaaxx ffoorr nnoonn--ddeecciimmaall nnuummbbeerrss
SWI-Prolog implements both Edinburgh and ISO representations for
non-decimal numbers. According to Edinburgh syntax, such numbers are
written as <_r_a_d_i_x>'<number>, where <_r_a_d_i_x> is a number between 2 and 36.
ISO defines binary, octal and hexadecimal numbers using 0[bxo]<_n_u_m_b_e_r>.
For example: A is 0b100 \/ 0xf00 is a valid expression. Such numbers
are always unsigned.
22..1155..22..33 UUssiinngg ddiiggiitt ggrroouuppss iinn llaarrggee iinntteeggeerrss
SWI-Prolog supports splitting long integers into _d_i_g_i_t _g_r_o_u_p_s.
Digit groups can be separated with the sequence <_u_n_d_e_r_s_c_o_r_e>,
<_o_p_t_i_o_n_a_l _w_h_i_t_e _s_p_a_c_e>. If the <_r_a_d_i_x> is 10 or lower, they may also
be separated with exactly one space. The following all express the
integer 1 million:
________________________________________________________________________| |
|1_000_000 |
|1 000 000 |
|1_000_/*more*/000|_____________________________________________________ | |
Integers can be printed using this notation with format/2, using the ~I
format specifier. For example:
________________________________________________________________________| |
|?- format('~I', [1000000]). |
|1_000_000|_____________________________________________________________ | |
The current syntax has been proposed by Ulrich Neumerkel on the
SWI-Prolog mailinglist.
22..1155..22..44 UUnniiccooddee PPrroolloogg ssoouurrccee
The ISO standard specifies the Prolog syntax in ASCII characters. As
SWI-Prolog supports Unicode in source files we must extend the syntax.
This section describes the implication for the source files, while
writing international source files is described in section 3.1.3.
The SWI-Prolog Unicode character classification is based on version
6.0.0 of the Unicode standard. Please note that char_type/2 and
friends, intended to be used with all text except Prolog source code,
is based on the C library locale-based classification routines.
o _Q_u_o_t_e_d _a_t_o_m_s _a_n_d _s_t_r_i_n_g_s
Any character of any script can be used in quoted atoms and
strings. The escape sequences \uXXXX and \UXXXXXXXX (see
section 2.15.2.1) were introduced to specify Unicode code points in
ASCII files.
o _A_t_o_m_s _a_n_d _V_a_r_i_a_b_l_e_s
We handle them in one item as they are closely related. The
Unicode standard defines a syntax for identifiers in computer
languages. In this syntax identifiers start with ID_Start followed
by a sequence of ID_Continue codes. Such sequences are handled as
a single token in SWI-Prolog. The token is a _v_a_r_i_a_b_l_e iff it
starts with an uppercase character or an underscore (_). Otherwise
it is an atom. Note that many languages do not have the notion
of character case. In such languages variables _m_u_s_t be written as
_name.
o _W_h_i_t_e _s_p_a_c_e
All characters marked as separators (Z*) in the Unicode tables are
handled as layout characters.
o _C_o_n_t_r_o_l _a_n_d _u_n_a_s_s_i_g_n_e_d _c_h_a_r_a_c_t_e_r_s
Control and unassigned (C*) characters produce a syntax error if
encountered outside quoted atoms/strings and outside comments.
o _O_t_h_e_r _c_h_a_r_a_c_t_e_r_s
The first 128 characters follow the ISO Prolog standard. Unicode
symbol and punctuation characters (general category S* and P*) act
as glueing symbol characters (i.e., just like ==: an unquoted
sequence of symbol characters are combined into an atom).
Other characters (this is mainly No: _a _n_u_m_e_r_i_c _c_h_a_r_a_c_t_e_r _o_f _o_t_h_e_r
_t_y_p_e) are currently handled as `solo'.
22..1155..22..55 SSiinngglleettoonn vvaarriiaabbllee cchheecckkiinngg
A _s_i_n_g_l_e_t_o_n _v_a_r_i_a_b_l_e is a variable that appears only one time in a
clause. It can always be replaced by _, the _a_n_o_n_y_m_o_u_s variable. In
some cases, however, people prefer to give the variable a name. As
mistyping a variable is a common mistake, Prolog systems generally give
a warning (controlled by style_check/1) if a variable is used only
once. The system can be informed that a variable is meant to appear
once by _s_t_a_r_t_i_n_g it with an underscore, e.g., _Name. Please note that
any variable, except plain _, shares with variables of the same name.
The term t(_X, _X) is equivalent to t(X, X), which is _d_i_f_f_e_r_e_n_t from
t(_, _).
As Unicode requires variables to start with an underscore in many
languages, this schema needs to be extended. First we define the two
classes of named variables.
o _N_a_m_e_d _s_i_n_g_l_e_t_o_n _v_a_r_i_a_b_l_e_s
Named singletons start with a double underscore (__) or a single
underscore followed by an uppercase letter, e.g., __var or _Var.
o _N_o_r_m_a_l _v_a_r_i_a_b_l_e_s
All other variables are `normal' variables. Note this makes _var a
normal variable.
Any normal variable appearing exactly once in the clause _a_n_d any named
singleton variables appearing more than once are reported. Below are
some examples with warnings in the right column. Singleton messages
can be suppressed using the style_check/1 directive.
___________________________________________________________________________
| test(_). | |
| test(_a). |Singleton variables: [_a] |
| test(_12). |Singleton variables: [_12] |
| test(A). |Singleton variables: [A] |
| test(_A). | |
| test(__a). | |
| test(_, _). | |
| test(_a, _a). | |
| test(__a, __a).S|ingleton-marked variables appearing more than once: [__a] |
| test(_A, _A). |Singleton-marked variables appearing more than once: [_A] |
|_test(A,_A).__|__________________________________________________________|_
SSeemmaannttiicc ssiinngglleettoonnss
Starting with version 6.5.1, SWI-Prolog has _s_y_n_t_a_c_t_i_c _s_i_n_g_l_e_t_o_n_s and
_s_e_m_a_n_t_i_c _s_i_n_g_l_e_t_o_n_s. The first are checked by read_clause/3 (and
read_term/3 using the option singletons(_w_a_r_n_i_n_g)). The latter are
generated by the compiler for variables that appear alone in a _b_r_a_n_c_h.
For example, in the code below the variable _X is not a _s_y_n_t_a_c_t_i_c
singleton, but the variable _X does not communicate any bindings and
replacing _X with _does not change the semantics.
________________________________________________________________________| |
|test :- |
| ( test_1(X) |
| ; test_2(X) |
||_______)._____________________________________________________________ ||
22..1166 RRaattiioonnaall ttrreeeess ((ccyycclliicc tteerrmmss))
SWI-Prolog supports rational trees, also known as cyclic terms.
`Supports' is so defined that most relevant built-in predicates
terminate when faced with rational trees. Almost all SWI-Prolog's
built-in term manipulation predicates process terms in a time that is
linear to the amount of memory used to represent the term on the stack.
The following set of predicates safely handles rational trees: =../2,
==/2, =@=/2, =/2, @</2 , @=</2, @>=/2, @>/2, \==/2, \=@=/2, \=/2,
acyclic_term/1, bagof/3, compare/3, copy_term/2, cyclic_term/1, dif/2,
duplicate_term/2, findall/3, ground/1, term_hash/2, numbervars/3,
numbervars/4, recorda/3, recordz/3, setof/3, subsumes_term/2,
term_variables/2, throw/1, unify_with_occurs_check/2, unifiable/3,
when/2, write/1 (and related predicates) .
In addition, some built-ins recognise rational trees and raise an
appropriate exception. Arithmetic evaluation belongs to this group.
The compiler (asserta/1, etc.) also raises an exception. Future
versions may support rational trees. Predicates that could provide
meaningful processing of rational trees raise a representation_error.
Predicates for which rational trees have no meaningful interpretation
raise a type_error. For example:
________________________________________________________________________| |
|1 ?- A = f(A), asserta(a(A)). |
|ERROR: asserta/1: Cannot represent due to `cyclic_term' |
|2 ?- A = 1+A, B is A. |
|ERROR: is/2: Type error: `expression' expected, found |
||____________`@(S_1,[S_1=1+S_1])'_(cyclic_term)________________________ ||
22..1177 JJuusstt--iinn--ttiimmee ccllaauussee iinnddeexxiinngg
SWI-Prolog provides `just-in-time' indexing over multiple arguments.
`Just-in-time' means that clause indexes are not built by the compiler
(or asserta/1 for dynamic predicates), but on the first call to such
a predicate where an index might help (i.e., a call where at least
one argument is instantiated). This section describes the rules used
by the indexing logic. Note that this logic is not `set in stone'.
The indexing capabilities of the system will change. Although this
inevitably leads to some regressing on some particular use cases, we
strive to avoid significant slowdowns.
The list below describes the clause selection process for various
predicates and calls. The alternatives are considered in the order
they are presented.
o _S_p_e_c_i_a_l _p_u_r_p_o_s_e _c_o_d_e
Currently two special cases are recognised by the compiler: static
code with exactly one clause and static code with two clauses, one
where the first argument is the empty list ([]) and one where the
first argument is a non-empty list ([_|_]).
o _L_i_n_e_a_r _s_c_a_n _o_n _f_i_r_s_t _a_r_g_u_m_e_n_t
The principal clause list maintains a _k_e_y for the first argument.
An indexing key is either a constant or a functor (name/arity
reference). Calls with an instantiated first argument and less
than 10 clauses perform a linear scan for a possible matching
clause using this index key.
o _H_a_s_h _l_o_o_k_u_p
If none of the above applies, the system considers the available
hash tables for which the corresponding argument is instantiated.
If a table is found with acceptable characteristics, it is used.
Otherwise, there are two cases. First, if no hash table is
available for the instantiated arguments, it assesses the clauses
for all instantiated arguments and selects the best candidate for
creating a hash table. Arguments that cannot be indexed are
flagged to avoid repeated scanning. Second, if there is a hash
table for an indexed argument but it has poor characteristics, the
system scans other instantiated arguments to see whether it can
create a better hash table. The system maintains a bit vector on
each table in which it marks arguments that are less suitable than
the argument to which the table belongs.
Clauses that have a variable at an otherwise indexable argument
must be linked into all hash buckets. Currently, predicates that
have more than 10% such clauses for a specific argument are not
considered for indexing on that argument.
Disregarding variables, the suitability of an argument for hashing
is expressed as the number of unique indexable values divided by
the standard deviation of the number of duplicate values for each
value plus one.
The indexes of dynamic predicates are deleted if the number of
clauses is doubled since its creation or reduced below 1/4th.
The JIT approach will recreate a suitable index on the next
call. Indexes of running predicates cannot be deleted. They
are added to a `removed index list' associated to the predicate.
Dynamic predicates maintain a counter for the number of goals
running the predicate (a predicate can `run' multiple times due to
recursion, open choice points, and multiple threads) and destroy
removed indexes if this count drops to zero. Outdated indexes of
static predicates (e.g., due to reconsult or enlarging multifile
predicates) are reclaimed by garbage_collect_clauses/0.
22..1177..11 FFuuttuurree ddiirreeccttiioonnss
o The current indexing system is largely prepared for secondary
indexes. This implies that if there are many clauses that match
a given key, the system could (JIT) create a secondary index.
This secondary index could exploit another argument or, if the key
denotes a functor, an argument inside the compound term.
o The `special cases' can be extended. This is notably attractive
for static predicates with a relatively small number of clauses
where a hash lookup is too costly.
22..1177..22 IInnddeexxiinngg aanndd ppoorrttaabbiilliittyy
The base-line functionality of Prolog implementations provides indexing
on constants and functor (name/arity) on the first argument. This must
be your assumption if wide portability of your program is important.
This can typically be achieved by exploiting term_hash/2 or term_hash/4
and/or maintaining multiple copies of a predicate with reordered
arguments and wrappers that update all implementations (assert/retract)
and selects the appropriate implementation (query).
YAP provides full JIT indexing, including indexing arguments of
compound terms. YAP's indexing has been the inspiration for enhancing
SWI-Prolog's indexing capabilities.
22..1188 WWiiddee cchhaarraacctteerr ssuuppppoorrtt
SWI-Prolog supports _w_i_d_e _c_h_a_r_a_c_t_e_r_s, characters with character codes
above 255 that cannot be represented in a single _b_y_t_e. _U_n_i_v_e_r_s_a_l
_C_h_a_r_a_c_t_e_r _S_e_t (UCS) is the ISO/IEC 10646 standard that specifies a
unique 31-bit unsigned integer for any character in any language. It
is a superset of 16-bit Unicode, which in turn is a superset of
ISO 8859-1 (ISO Latin-1), a superset of US-ASCII. UCS can handle
strings holding characters from multiple languages, and character
classification (uppercase, lowercase, digit, etc.) and operations such
as case conversion are unambiguously defined.
For this reason SWI-Prolog has two representations for atoms and string
objects (see section 5.2). If the text fits in ISO Latin-1, it is
represented as an array of 8-bit characters. Otherwise the text is
represented as an array of 32-bit numbers. This representational issue
is completely transparent to the Prolog user. Users of the foreign
language interface as described in chapter 10 sometimes need to be
aware of these issues though.
Character coding comes into view when characters of strings need to be
read from or written to file or when they have to be communicated to
other software components using the foreign language interface. In
this section we only deal with I/O through streams, which includes file
I/O as well as I/O through network sockets.
22..1188..11 WWiiddee cchhaarraacctteerr eennccooddiinnggss oonn ssttrreeaammss
Although characters are uniquely coded using the UCS standard
internally, streams and files are byte (8-bit) oriented and there are
a variety of ways to represent the larger UCS codes in an 8-bit octet
stream. The most popular one, especially in the context of the web,
is UTF-8. Bytes 0 ... 127 represent simply the corresponding US-ASCII
character, while bytes 128 ... 255 are used for multi-byte encoding of
characters placed higher in the UCS space. Especially on MS-Windows
the 16-bit Unicode standard, represented by pairs of bytes, is also
popular.
Prolog I/O streams have a property called _e_n_c_o_d_i_n_g which specifies the
used encoding that influences get_code/2 and put_code/2 as well as all
the other text I/O predicates.
The default encoding for files is derived from the Prolog flag
encoding, which is initialised from the environment. If the
environment variable LANG ends in "UTF-8", this encoding is assumed.
Otherwise the default is text and the translation is left to
the wide-character functions of the C library. The encoding can
be specified explicitly in load_files/2 for loading Prolog source
with an alternative encoding, open/4 when opening files or using
set_stream/2 on any open stream. For Prolog source files we also
provide the encoding/1 directive that can be used to switch between
encodings that are compatible with US-ASCII (ascii, iso_latin_1, utf8
and many locales). See also section 3.1.3 for writing Prolog
files with non-US-ASCII characters and section 2.15.2.4 for syntax
issues. For additional information and Unicode resources, please visit
http://www.unicode.org/.
SWI-Prolog currently defines and supports the following encodings:
oocctteett
Default encoding for binary streams. This causes the stream to be
read and written fully untranslated.
aasscciiii
7-bit encoding in 8-bit bytes. Equivalent to iso_latin_1, but
generates errors and warnings on encountering values above 127.
iissoo__llaattiinn__11
8-bit encoding supporting many Western languages. This causes the
stream to be read and written fully untranslated.
tteexxtt
C library default locale encoding for text files. Files are read
and written using the C library functions mbrtowc() and wcrtomb().
This may be the same as one of the other locales, notably it may be
the same as iso_latin_1 for Western languages and utf8 in a UTF-8
context.
uuttff88
Multi-byte encoding of full UCS, compatible with ascii. See above.
uunniiccooddee__bbee
Unicode _B_i_g _E_n_d_i_a_n. Reads input in pairs of bytes, most
significant byte first. Can only represent 16-bit characters.
uunniiccooddee__llee
Unicode _L_i_t_t_l_e _E_n_d_i_a_n. Reads input in pairs of bytes, least
significant byte first. Can only represent 16-bit characters.
Note that not all encodings can represent all characters. This implies
that writing text to a stream may cause errors because the stream
cannot represent these characters. The behaviour of a stream on these
errors can be controlled using set_stream/2. Initially the terminal
stream writes the characters using Prolog escape sequences while other
streams generate an I/O exception.
22..1188..11..11 BBOOMM:: BByyttee OOrrddeerr MMaarrkk
From section 2.18.1, you may have got the impression that text files
are complicated. This section deals with a related topic, making
life often easier for the user, but providing another worry to the
programmer. BBOOMM or _B_y_t_e _O_r_d_e_r _M_a_r_k_e_r is a technique for identifying
Unicode text files as well as the encoding they use. Such files start
with the Unicode character 0xFEFF, a non-breaking, zero-width space
character. This is a pretty unique sequence that is not likely to be
the start of a non-Unicode file and uniquely distinguishes the various
Unicode file formats. As it is a zero-width blank, it even doesn't
produce any output. This solves all problems, or ...
Some formats start off as US-ASCII and may contain some encoding mark
to switch to UTF-8, such as the encoding="UTF-8" in an XML header.
Such formats often explicitly forbid the use of a UTF-8 BOM. In other
cases there is additional information revealing the encoding, making
the use of a BOM redundant or even illegal.
The BOM is handled by SWI-Prolog open/4 predicate. By default, text
files are probed for the BOM when opened for reading. If a BOM is
found, the encoding is set accordingly and the property bom(_t_r_u_e) is
available through stream_property/2. When opening a file for writing,
writing a BOM can be requested using the option bom(_t_r_u_e) with open/4.
22..1199 SSyysstteemm lliimmiittss
22..1199..11 LLiimmiittss oonn mmeemmoorryy aarreeaass
SWI-Prolog has a number of memory areas which are only enlarged to a
certain limit. The internal data representation limits the local,
global and trail stack to 128 MB on 32-bit processors, or more
generally to 2 to the power bits-per-pointer - 5 bytes. Considering
that almost all modern hardware can deal with this amount of memory
with ease, the default limits are set to their maximum on 32-bit
hardware. The representation limits can easily exceed physical memory
on 64-bit hardware. The default limits on 64-bit hardware are double
that of 32-bit hardware, which allows for storing the same amount of
(Prolog) data.
The limits can be changed from the command line as well as at runtime
using set_prolog_stack/2. The table below shows these areas. The first
column gives the option name to modify the size of the area. The
option character is immediately followed by a number and optionally by
a k or m. With k or no unit indicator, the value is interpreted
in Kbytes (1024 bytes); with m, the value is interpreted in Mbytes
(10241* 024 bytes).
The PrologScript facility described in section 2.10.2.1 provides a
mechanism for specifying options with the load file. On Windows the
default stack sizes are controlled using the Windows registry on the
key HKEY_CURRENT_USER\Software\SWI\Prolog using the names localSize,
globalSize and trailSize. The value is a DWORD expressing the default
stack size in Kbytes. A GUI for modifying these values is provided
using the XPCE package. To use this, start the XPCE manual tools using
manpce/0, after which you find _P_r_e_f_e_r_e_n_c_e_s in the _F_i_l_e menu.
Considering portability, applications that need to modify the default
limits are advised to do so using set_prolog_stack/2.
_________________________________________________________
|_Option_|Default_|Area_name____|Description____________|_||-L||128Mlloocc||aallTssttaacckkhe||||local|stack|is used
| | to store the execu- | | ||
| | tion environments of | | ||
| | procedure invocations. | | ||
| | The space for an en- | | ||
| | vironment is reclaimed | | ||
| | when it fails, exits | | ||
| | without leaving choice | | ||
| | points, the alterna- | | ||
| | tives are cut off with | | ||
| | | | ||
| | the !/0 predicate or | | ||
| | no choice points have | | ||
| | been created since the | | ||
| | invocation and the last | | ||
| | subclause is started | | ||
| | (last call optimisa- | | ||
|| || | ||tion). || | ||
| -G |128M |gglloobbaall ssttaacckk ||Theusglobaled stacktois store| terms
| | | ||created during Prolog's |
| | | ||execution. Terms on |
| | | || |
| | | ||this stack will be re- |
| | | ||claimed by backtracking |
| | | ||to a point before the |
| | | ||term was created or |
| | | ||by garbage collection |
| | | ||(provided the term is |
|| || || ||no||longer referenced). ||
| -T |128M |ttrraaiill ssttaacckk ||Theusetraild stackto isstore| as-
| | | ||signments during execu- |
| | | || |
| | | ||tion. Entries on this |
| | | ||stack remain alive un- |
| | | ||til backtracking before |
| | | ||the point of creation |
| | | ||or the garbage collec- |
| | | ||tor determines they are |
|________|_______|_____________||no_longer_needed._______|_
Table 2.2: Memory areas
22..1199..11..11 TThhee hheeaapp
With the heap, we refer to the memory area used by malloc() and
friends. SWI-Prolog uses the area to store atoms, functors, predicates
and their clauses, records and other dynamic data. No limits are
imposed on the addresses returned by malloc() and friends.
22..1199..22 OOtthheerr LLiimmiittss
CCllaauusseess The only limit on clauses is their arity (the number of
arguments to the head), which is limited to 1024. Raising this
limit is easy and relatively cheap; removing it is harder.
AAttoommss aanndd SSttrriinnggss SWI-Prolog has no limits on the sizes of atoms and
strings. read/1 and its derivatives, however, normally limit
the number of newlines in an atom or string to 6 to improve
error detection and recovery. This can be switched off with
style_check/1.
The number of atoms is limited to 16777216 (16M) on 32-bit
machines. On 64-bit machines this is virtually unlimited. See
also section 10.4.2.1.
MMeemmoorryy aarreeaass On 32-bit hardware, SWI-Prolog data is packed in a 32-bit
word, which contains both type and value information. The size
of the various memory areas is limited to 128 MB for each of the
areas, except for the program heap, which is not limited. On
64-bit hardware there are no meaningful limits.
NNeessttiinngg ooff tteerrmmss Most built-in predicates that process Prolog terms
create an explicitly managed stack and perform optimization for
processing the last argument of a term. This implies they can
process deeply nested terms at constant and low usage of the C
stack, and the system raises a resource error if no more stack
can be allocated. Currently only read/1 and write/1 (and all
variations thereof) still use the C stack and may cause the system
to crash in an uncontrolled way (i.e., not mapped to a Prolog
exception that can be caught).
IInntteeggeerrss On most systems SWI-Prolog is compiled with support for
unbounded integers by means of the GNU GMP library. In practice
this means that integers are bound by the global stack size. Too
large integers cause a resource_error. On systems that lack GMP,
integers are 64-bit on 32- as well as 64-bit machines.
Integers up to the value of the max_tagged_integerProlog flag are
represented more efficiently on the stack. For integers that
appear in clauses, the value (below max_tagged_integeror not) has
little impact on the size of the clause.
FFllooaattiinngg ppooiinntt nnuummbbeerrss Floating point numbers are represented as
C-native double precision floats, 64-bit IEEE on most machines.
22..1199..33 RReesseerrvveedd NNaammeess
The boot compiler (see -b option) does not support the module system.
As large parts of the system are written in Prolog itself we need some
way to avoid name clashes with the user's predicates, database keys,
etc. Like Edinburgh C-Prolog [Pereira, 1986] all predicates, database
keys, etc., that should be hidden from the user start with a dollar ($)
sign.
22..2200 SSWWII--PPrroolloogg aanndd 6644--bbiitt mmaacchhiinneess
Most of today's 64-bit platforms are capable of running both 32-bit
and 64-bit applications. This asks for some clarifications on the
advantages and drawbacks of 64-bit addressing for (SWI-)Prolog.
22..2200..11 SSuuppppoorrtteedd ppllaattffoorrmmss
SWI-Prolog can be compiled for a 32- or 64-bit address space on any
system with a suitable C compiler. Pointer arithmetic is based on the
type (u)intptr_t from stdint.h, with suitable emulation on MS-Windows.
22..2200..22 CCoommppaarriinngg 3322-- aanndd 6644--bbiittss PPrroolloogg
Most of Prolog's memory usage consists of pointers. This indicates the
primary drawback: Prolog memory usage almost doubles when using the
64-bit addressing model. Using more memory means copying more data
between CPU and main memory, slowing down the system.
What then are the advantages? First of all, SWI-Prolog's addressing
of the Prolog stacks does not cover the whole address space due to
the use of _t_y_p_e _t_a_g _b_i_t_s and _g_a_r_b_a_g_e _c_o_l_l_e_c_t_i_o_n _f_l_a_g_s. On 32-bit
hardware the stacks are limited to 128 MB each. This tends to be too
low for demanding applications on modern hardware. On 64-bit hardware
the limit is 232 times higher, exceeding the addressing capabilities of
today's CPUs and operating systems. This implies Prolog can be started
with stack sizes that use the full capabilities of your hardware.
Multi-threaded applications profit much more because every thread has
its own set of stacks. The Prolog stacks start small and are
dynamically expanded (see section 2.19.1). The C stack is also
dynamically expanded, but the maximum size is _r_e_s_e_r_v_e_d when a thread
is started. Using 100 threads at the maximum default C stack of 8Mb
(Linux) costs 800Mb virtual memory!
The implications of theoretical performance loss due to increased
memory bandwidth implied by exchanging wider pointers depend on the
design of the hardware. We only have data for the popular IA32 vs.
AMD64 architectures. Here, it appears that the loss is compensated for
by an instruction set that has been optimized for modern programming.
In particular, the AMD64 has more registers and the relative addressing
capabilities have been improved. Where we see a 10% performance
degradation when placing the SWI-Prolog kernel in a Unix shared object,
we cannot find a measurable difference on AMD64.
22..2200..33 CChhoooossiinngg bbeettwweeeenn 3322-- aanndd 6644--bbiitt PPrroolloogg
For those cases where we can choose between 32 and 64 bits, either
because the hardware and OS support both or because we can still choose
the hardware and OS, we give guidelines for this decision.
First of all, if SWI-Prolog needs to be linked against 32- or 64-bit
native libraries, there is no choice as it is not possible to link
32- and 64-bit code into a single executable. Only if all required
libraries are available in both sizes and there is no clear reason to
use either do the different characteristics of Prolog become important.
Prolog applications that require more than the 128 MB stack limit
provided in 32-bit addressing mode must use the 64-bit edition. Note
however that the limits must be doubled to accommodate the same Prolog
application.
If the system is tight on physical memory, 32-bit Prolog has the clear
advantage of using only slightly more than half of the memory of 64-bit
Prolog. This argument applies as long as the application fits in the
_v_i_r_t_u_a_l _a_d_d_r_e_s_s _s_p_a_c_e of the machine. The virtual address space of
32-bit hardware is 4GB, but in many cases the operating system provides
less to user applications.
The only standard SWI-Prolog library adding significantly to this
calculation is the RDF database provided by the _s_e_m_w_e_b package. It
uses approximately 80 bytes per triple on 32-bit hardware and 150 bytes
on 64-bit hardware. Details depend on how many different resources and
literals appear in the dataset as well as desired additional literal
indexes.
Summarizing, if applications are small enough to fit comfortably in
virtual and physical memory, simply take the model used by most of
the applications on the OS. If applications require more than 128 MB
per stack, use the 64-bit edition. If applications approach the
size of physical memory, fit in the 128 MB stack limit and fit in
virtual memory, the 32-bit version has clear advantages. For demanding
applications on 64-bit hardware with more than about 6GB physical
memory the 64-bit model is the model of choice.
CChhaapptteerr 33.. IINNIITTIIAALLIISSIINNGG AANNDD MMAANNAAGGIINNGG AA PPRROOLLOOGG PPRROOJJEECCTT
Prolog text-books give you an overview of the Prolog language. The
manual tells you what predicates are provided in the system and what
they do. This chapter explains how to run a project. There is no
ultimate `right' way to do this. Over the years we developed some
practice in this area and SWI-Prolog's commands are there to support
this practice. This chapter describes the conventions and supporting
commands.
The first two sections (section 3.1 and section 3.2) only require plain
Prolog. The remainder discusses the use of the built-in graphical
tools that require the XPCE graphical library installed on your system.
33..11 TThhee pprroojjeecctt ssoouurrccee ffiilleess
Organisation of source files depends largely on the size of your
project. If you are doing exercises for a Prolog course you'll
normally use one file for each exercise. If you have a small project
you'll work with one directory holding a couple of files and some files
to link it all together. Even bigger projects will be organised in
sub-projects, each using its own directory.
33..11..11 FFiillee NNaammeess aanndd LLooccaattiioonnss
33..11..11..11 FFiillee NNaammee EExxtteennssiioonnss
The first consideration is what extension to use for the source
files. Tradition calls for .pl, but conflicts with Perl force the
use of another extension on systems where extensions have global
meaning, such as MS-Windows. On such systems .pro is the common
alternative. On MS-Windows, the alternative extension is stored
in the registry key HKEY_CURRENT_USER/Software/SWI/Prolog/fileExtension
or HKEY_LOCAL_MACHINE/Software/SWI/Prolog/fileExtension. All versions
of SWI-Prolog load files with the extension .pl as well as with
the registered alternative extension without explicitly specifying
the extension. For portability reasons we propose the following
convention:
IIff tthheerree iiss nnoo ccoonnfflliicctt because you do not use a conflicting
application or the system does not force a unique relation between
extension and application, use .pl.
WWiitthh aa ccoonnfflliicctt choose .pro and use this extension for the files you
want to load through your file manager. Use .pl for all other
files for maximal portability.
33..11..11..22 PPrroojjeecctt DDiirreeccttoorriieess
Large projects are generally composed of sub-projects, each using its
own directory or directory structure. If nobody else will ever touch
your files and you use only one computer, there is little to worry
about, but this is rarely the case with a large project.
To improve portability, SWI-Prolog uses the POSIX notation
for filenames, which uses the forward slash (/) to separate
directories. Just before reaching the file system, SWI-Prolog uses
prolog_to_os_filename/2to convert the filename to the conventions used
by the hosting operating system. It is _s_t_r_o_n_g_l_y advised to write
paths using the /, especially on systems using the \ for this purpose
(MS-Windows). Using \ violates the portability rules and requires you
to _d_o_u_b_l_e the \ due to the Prolog quoted-atom escape rules.
Portable code should use prolog_to_os_filename/2to convert computed
paths into system paths when constructing commands for shell/1 and
friends.
33..11..11..33 SSuubb--pprroojjeeccttss uussiinngg sseeaarrcchh ppaatthhss
Thanks to Quintus, Prolog adapted an extensible mechanism for searching
files using file_search_path/2. This mechanism allows for comfortable
and readable specifications.
Suppose you have extensive library packages on graph algorithms,
set operations and GUI primitives. These sub-projects are likely
candidates for re-use in future projects. A good choice is to create a
directory with sub-directories for each of these sub-projects.
Next, there are three options. One is to add the sub-projects to
the directory hierarchy of the current project. Another is to use a
completely dislocated directory. Third, the sub-project can be added
to the SWI-Prolog hierarchy. Using local installation, a typical
file_search_path/2is:
________________________________________________________________________| |
|:- prolog_load_context(directory, Dir), |
| asserta(user:file_search_path(myapp, Dir)). |
| |
|user:file_search_path(graph, myapp(graph)). |
|user:file_search_path(ui,|___myapp(ui))._______________________________ | |
When using sub-projects in the SWI-Prolog hierarchy, one should use
the path alias swi as basis. For a system-wide installation, use an
absolute path.
Extensive sub-projects with a small well-defined API should define a
load file with calls to use_module/1 to import the various library
components and export the API.
33..11..22 PPrroojjeecctt SSppeecciiaall FFiilleess
There are a number of tasks you typically carry out on your project,
such as loading it, creating a saved state, debugging it, etc. Good
practice on large projects is to define small files that hold the
commands to execute such a task, name this file after the task and give
it a file extension that makes starting easy (see section 3.1.1.1).
The task _l_o_a_d is generally central to these tasks. Here is a tentative
list:
o load.pl
Use this file to set up the environment (Prolog flags and file
search paths) and load the sources. Quite commonly this file also
provides convenient predicates to parse command line options and
start the application.
o run.pl
Use this file to start the application. Normally it loads load.pl
in silent-mode, and calls one of the starting predicates from
load.pl.
o save.pl
Use this file to create a saved state of the application by loading
load.pl and calling qsave_program/2 to generate a saved state with
the proper options.
o debug.pl
Loads the program for debugging. In addition to loading load.pl
this file defines rules for portray/1 to modify printing rules for
complex terms and customisation rules for the debugger and editing
environment. It may start some of these tools.
33..11..33 IInntteerrnnaattiioonnaall ssoouurrccee ffiilleess
As discussed in section 2.18, SWI-Prolog supports international
character handling. Its internal encoding is UNICODE. I/O streams
convert to/from this internal format. This section discusses the
options for source files not in US-ASCII.
SWI-Prolog can read files in any of the encodings described in
section 2.18. Two encodings are of particular interest. The text
encoding deals with the current _l_o_c_a_l_e, the default used by this
computer for representing text files. The encodings utf8, unicode_le
and unicode_be are _U_N_I_C_O_D_E encodings: they can represent---in the same
file---characters of virtually any known language. In addition, they
do so unambiguously.
If one wants to represent non US-ASCII text as Prolog terms in a source
file, there are several options:
o _U_s_e _e_s_c_a_p_e _s_e_q_u_e_n_c_e_s
This approach describes NON-ASCII as sequences of the form \_o_c_t_a_l\.
The numerical argument is interpreted as a UNICODE character. The
resulting Prolog file is strict 7-bit US-ASCII, but if there are
many NON-ASCII characters it becomes very unreadable.
o _U_s_e _l_o_c_a_l _c_o_n_v_e_n_t_i_o_n_s
Alternatively the file may be specified using local conventions,
such as the EUC encoding for Japanese text. The disadvantage is
portability. If the file is moved to another machine, this machine
must use the same _l_o_c_a_l_e or the file is unreadable. There is no
elegant way if files from multiple locales must be united in one
application using this technique. In other words, it is fine for
local projects in countries with uniform locale conventions.
o _U_s_i_n_g _U_T_F_-_8 _f_i_l_e_s
The best way to specify source files with many NON-ASCII characters
is definitely the use of UTF-8 encoding. Prolog can be notified of
this encoding in two ways, using a UTF-8 _B_O_M (see section 2.18.1.1)
or using the directive :- encoding(utf8). Many of today's text
editors, including PceEmacs, are capable of editing UTF-8 files.
Projects that were started using local conventions can be re-coded
using the Unix iconv tool or often using commands offered by the
editor.
33..22 UUssiinngg mmoodduulleess
Modules have been debated fiercely in the Prolog world. Despite all
counter-arguments we feel they are extremely useful because:
o _T_h_e_y _h_i_d_e _l_o_c_a_l _p_r_e_d_i_c_a_t_e_s
This is the reason they were invented in the first place. Hiding
provides two features. They allow for short predicate names
without worrying about conflicts. Given the flat name-space
introduced by modules, they still require meaningful module names
as well as meaningful names for exported predicates.
o _T_h_e_y _d_o_c_u_m_e_n_t _t_h_e _i_n_t_e_r_f_a_c_e
Possibly more important than avoiding name conflicts is their role
in documenting which part of the file is for public usage and
which is private. When editing a module you may assume you
can reorganise anything except the name and the semantics of the
exported predicates without worrying.
o _T_h_e_y _h_e_l_p _t_h_e _e_d_i_t_o_r
The PceEmacs built-in editor does on-the-fly cross-referencing of
the current module, colouring predicates based on their origin and
usage. Using modules, the editor can quickly find out what is
provided by the imported modules by reading just the first term.
This allows it to indicate in real-time which predicates are not
used or not defined.
Using modules is generally easy. Only if you write meta-predicates
(predicates reasoning about other predicates) that are exported from a
module is a good understanding required of the resolution of terms to
predicates inside a module. Here is a typical example from readutil.
________________________________________________________________________| |
|:- module(read_util, |
| [ read_line_to_codes/2, % +Fd, -Codes |
| read_line_to_codes/3, % +Fd, -Codes, ?Tail |
| read_stream_to_codes/2, % +Fd, -Codes |
| read_stream_to_codes/3, % +Fd, -Codes, ?Tail |
| read_file_to_codes/3, % +File, -Codes, +Options |
| read_file_to_terms/3 % +File, -Terms, +Options |
||_________]).__________________________________________________________ ||
33..33 TThhee tteesstt--eeddiitt--rreellooaadd ccyyccllee
SWI-Prolog does not enforce the use of a particular editor for
writing Prolog source code. Editors are complicated programs that
must be mastered in detail for real productive programming. If
you are familiar with a specific editor you should not be forced
to change. You may specify your favourite editor using the Prolog
flag editor, the environment variable EDITOR or by defining rules for
prolog_edit:edit_source/1 (see section 4.5).
The use of a built-in editor, which is selected by setting the Prolog
flag editor to pce_emacs, has advantages. The XPCE _e_d_i_t_o_r object,
around which the built-in PceEmacs is built, can be opened as a Prolog
stream allowing analysis of your source by the real Prolog system.
33..33..11 LLooccaattiinngg tthhiinnggss ttoo eeddiitt
The central predicate for editing something is edit/1, an extensible
front-end that searches for objects (files, predicates, modules, as
well as XPCE classes and methods) in the Prolog database. If multiple
matches are found it provides a choice. Together with the built-in
completion on atoms bound to the TAB key this provides a quick way to
edit objects:
________________________________________________________________________| |
|?- edit(country). |
|Please select item to edit: |
| |
| 1 chat:country/10 '/staff/jan/lib/prolog/chat/countr.pl':16 |
| 2 chat:country/1 '/staff/jan/lib/prolog/chat/world0.pl':72 |
| |
|Your|choice?___________________________________________________________ | |
33..33..22 EEddiittiinngg aanndd iinnccrreemmeennttaall ccoommppiillaattiioonn
One of the nice features of Prolog is that the code can be modified
while the program is running. Using pure Prolog you can trace a
program, find it is misbehaving, enter a _b_r_e_a_k _e_n_v_i_r_o_n_m_e_n_t, modify
the source code, reload it and finally do _r_e_t_r_y on the misbehaving
predicate and try again. This sequence is not uncommon for
long-running programs. For faster programs one will normally abort
after understanding the misbehaviour, edit the source, reload it and
try again.
One of the nice features of SWI-Prolog is the availability of make/0, a
simple predicate that checks all loaded source files to see which ones
you have modified. It then reloads these files, considering the module
from which the file was loaded originally. This greatly simplifies
the trace-edit-verify development cycle. For example, after the tracer
reveals there is something wrong with prove/3, you do:
________________________________________________________________________| |
|?-|edit(prove).________________________________________________________ | |
Now edit the source, possibly switching to other files and making
multiple changes. After finishing, invoke make/0, either through the
editor UI (Compile/Make (Control-C Control-M)) or on the top level, and
watch the files being reloaded.
________________________________________________________________________| |
|?- make. |
|%|show_compiled_into_photo_gallery_0.03_sec,_3,360_bytes_______________ | |
33..44 UUssiinngg tthhee PPcceeEEmmaaccss bbuuiilltt--iinn eeddiittoorr
33..44..11 AAccttiivvaattiinngg PPcceeEEmmaaccss
Initially edit/1 uses the editor specified in the EDITOR environment
variable. There are two ways to force it to use the built-in editor.
One is to set the Prolog flag editor to pce_emacs and the other is by
starting the editor explicitly using the emacs/[0,1] predicates.
33..44..22 BBlluuffffiinngg tthhrroouugghh PPcceeEEmmaaccss
PceEmacs closely mimics Richard Stallman's GNU-Emacs commands, adding
features from modern window-based editors to make it more acceptable
for beginners.
At the basis, PceEmacs maps keyboard sequences to methods defined on
the extended _e_d_i_t_o_r object. Some frequently used commands are, with
their key-binding, presented in the menu bar above each editor window.
A complete overview of the bindings for the current _m_o_d_e is provided
through Help/Show key bindings (Control-h Control-b).
33..44..22..11 EEddiitt mmooddeess
Modes are the heart of (Pce)Emacs. Modes define dedicated editing
support for a particular kind of (source) text. For our purpose we
want _P_r_o_l_o_g _m_o_d_e. There are various ways to make PceEmacs use Prolog
mode for a file.
o _U_s_i_n_g _t_h_e _p_r_o_p_e_r _e_x_t_e_n_s_i_o_n
If the file ends in .pl or the selected alternative (e.g. .pro)
extension, Prolog mode is selected.
o _U_s_i_n_g #!/path/to/.../swipl
If the file is a _P_r_o_l_o_g _S_c_r_i_p_t file, starting with the line
#!/path/to/swipl _o_p_t_i_o_n_s, Prolog mode is selected regardless of the
extension.
o _U_s_i_n_g -*- Prolog -*-
If the above sequence appears in the first line of the file (inside
a Prolog comment) Prolog mode is selected.
o _E_x_p_l_i_c_i_t _s_e_l_e_c_t_i_o_n
Finally, using File/Mode/Prolog you can switch to Prolog mode
explicitly.
33..44..22..22 FFrreeqquueennttllyy uusseedd eeddiittoorr ccoommmmaannddss
Below we list a few important commands and how to activate them.
o _C_u_t_/_C_o_p_y_/_P_a_s_t_e
These commands follow Unix/X11 traditions. You're best suited
with a three-button mouse. After selecting using the left-mouse
(double-click uses word-mode and triple line-mode), the selected
text is _a_u_t_o_m_a_t_i_c_a_l_l_y copied to the clipboard (X11 primary
selection on Unix). _C_u_t is achieved using the DEL key or by
typing something else at the location. _P_a_s_t_e is achieved using the
middle-mouse (or wheel) button. If you don't have a middle-mouse
button, pressing the left- and right-button at the same time is
interpreted as a middle-button click. If nothing helps, there is
the Edit/Paste menu entry. Text is pasted at the caret location.
o _U_n_d_o
Undo is bound to the GNU-Emacs Control-_ as well as the MS-Windows
Control-Z sequence.
o _A_b_o_r_t
Multi-key sequences can be aborted at any stage using Control-G.
o _F_i_n_d
Find (Search) is started using Control-S (forward) or Control-R
(backward). PceEmacs implements _i_n_c_r_e_m_e_n_t_a_l _s_e_a_r_c_h. This is
difficult to use for novices, but very powerful once you get the
clue. After one of the above start keys, the system indicates
search mode in the status line. As you are typing the search
string, the system searches for it, extending the search with every
character you type. It illustrates the current match using a green
background.
If the target cannot be found, PceEmacs warns you and no longer
extends the search string. During search, some characters have
special meaning. Typing anything but these characters commits the
search, re-starting normal edit mode. Special commands are:
Control-S
Search forwards for next.
Control-R
Search backwards for next.
Control-W
Extend search to next word boundary.
Control-G
Cancel search, go back to where it started.
ESC
Commit search, leaving caret at found location.
Backspace
Remove a character from the search string.
o _D_y_n_a_m_i_c _A_b_b_r_e_v_i_a_t_i_o_n
Also called _d_a_b_b_r_e_v, dynamic abbreviation is an important feature
of Emacs clones to support programming. After typing the first few
letters of an identifier, you may press Alt-/, causing PceEmacs to
search backwards for identifiers that start the same and use it
to complete the text you typed. A second Alt-/ searches further
backwards. If there are no hits before the caret, it starts
searching forwards. With some practice, this system allows for
entering code very fast with nice and readable identifiers (or
other difficult long words).
o _O_p_e_n _(_a _f_i_l_e_)
Is called File/Find file (Control-x Control-f). By default the
file is loaded into the current window. If you want to keep this
window, press Alt-s or click the little icon at the bottom left to
make the window _s_t_i_c_k_y.
o _S_p_l_i_t _v_i_e_w
Sometimes you want to look at two places in the same file. To do
this, use Control-x 2 to create a new window pointing to the same
file. Do not worry, you can edit as well as move around in both.
Control-x 1 kills all other windows running on the same file.
These are the most commonly used commands. In section 3.4.3 we discuss
specific support for dealing with Prolog source code.
33..44..33 PPrroolloogg MMooddee
In the previous section (section 3.4.2) we explained the basics
of PceEmacs. Here we continue with Prolog-specific functionality.
Possibly the most interesting is _S_y_n_t_a_x _h_i_g_h_l_i_g_h_t_i_n_g. Unlike most
editors where this is based on simple patterns, PceEmacs syntax
highlighting is achieved by Prolog itself actually reading and
interpreting the source as you type it. There are three moments at
which PceEmacs checks (part of) the syntax.
o _A_f_t_e_r _t_y_p_i_n_g _a .
After typing a . that is not preceded by a _s_y_m_b_o_l character, the
system assumes you completed a clause, tries to find the start of
this clause and verifies the syntax. If this process succeeds it
colours the elements of the clause according to the rules given
below. Colouring is done using information from the last full
check on this file. If it fails, the syntax error is displayed in
the status line and the clause is not coloured.
o _A_f_t_e_r _t_h_e _c_o_m_m_a_n_d Control-c Control-s
Acronym for CCheck SSyntax, it performs the same checks as above for
the clause surrounding the caret. On a syntax error, however, the
caret is moved to the expected location of the error.
o _A_f_t_e_r _p_a_u_s_i_n_g _f_o_r _t_w_o _s_e_c_o_n_d_s
After a short pause (2 seconds), PceEmacs opens the edit buffer
and reads it as a whole, creating an index of defined, called,
dynamic, imported and exported predicates. After completing this,
it re-reads the file and colours all clauses and calls with valid
syntax.
o _A_f_t_e_r _t_y_p_i_n_g Control-l Control-l
The Control-l command re-centers the window (scrolls the window to
make the caret the center of the window). Typing this command
twice starts the same process as above.
TThhee ccoolloouurr sscchheemmaa
itself is defined in emacs/prolog_colour. The colouring can be
extended and modified using multifile predicates. Please check this
source file for details. In general, underlined objects have a popup
(right-mouse button) associated with common commands such as viewing
the documentation or source. BBoolldd text is used to indicate the
definition of objects (typically predicates when using plain Prolog).
Other colours follow intuitive conventions. See table 3.4.3.
_____________________________________________________
|______________________Clauses_______________________|
| Blue bold |Head of an exported predicate |
| Red bold |Head of a predicate that is not called |
|_Black_bold_|Head_of_remaining_predicates___________|
|______________Calls_in_the_clause_body______________|
| Blue |Call to built-in or imported predicate |
| Red |Call to undefined predicate |
|_Purple_____|Call_to_dynamic_predicate______________|
|___________________Other_entities___________________|
| Dark green |Comment |
| Dark blue |Quoted atom or string |
|_Brown______|Variable_______________________________|
Table 3.1: Colour conventions
LLaayyoouutt ssuuppppoorrtt Layout is not `just nice', it is _e_s_s_e_n_t_i_a_l for writing
readable code. There is much debate on the proper layout of Prolog.
PceEmacs, being a rather small project, supports only one particular
style for layout. Below are examples of typical constructs.
________________________________________________________________________| |
|head(arg1, arg2). |
| |
|head(arg1, arg2) :- !. |
| |
|head(Arg1, arg2) :- !, |
| call1(Arg1). |
| |
|head(Arg1, arg2) :- |
| ( if(Arg1) |
| -> then |
| ; else |
| ). |
| |
|head(Arg1) :- |
| ( a |
| ; b |
| ). |
| |
|head :- |
| a(many, |
| long, |
| arguments(with, |
| many, |
| more), |
| and([ a, |
| long, |
| list, |
| with, |
| a, |
| | tail |
||_____________]))._____________________________________________________ ||
PceEmacs uses the same conventions as GNU-Emacs. The TAB key indents
the current line according to the syntax rules. Alt-q indents all
lines of the current clause. It provides support for head, calls
(indented 1 tab), if-then-else, disjunction and argument lists broken
across multiple lines as illustrated above.
33..44..33..11 FFiinnddiinngg yyoouurr wwaayy aarroouunndd
The command Alt-. extracts name and arity from the caret location and
jumps (after conformation or edit) to the definition of the predicate.
It does so based on the source-location database of loaded predicates
also used by edit/1. This makes locating predicates reliable if all
sources are loaded and up-to-date (see make/0).
In addition, references to files in use_module/[1,2], consult/1, etc.
are red if the file cannot be found and underlined blue if the file can
be loaded. A popup allows for opening the referenced file.
33..55 TThhee GGrraapphhiiccaall DDeebbuuggggeerr
SWI-Prolog offers two debuggers. One is the traditional text
console-based 4-port Prolog tracer and the other is a window-based
source level debugger. The window-based debugger requires XPCE
installed. It operates based on the prolog_trace_interception/4 hook
and other low-level functionality described in chapter 13.
Window-based tracing provides a much better overview due to the eminent
relation to your source code, a clear list of named variables and their
bindings as well as a graphical overview of the call and choice point
stack. There are some drawbacks though. Using a textual trace on the
console, one can scroll back and examine the past, while the graphical
debugger just presents a (much better) overview of the current state.
33..55..11 IInnvvookkiinngg tthhee wwiinnddooww--bbaasseedd ddeebbuuggggeerr
Whether the text-based or window-based debugger is used is controlled
using the predicates guitracer/0 and noguitracer/0. Entering debug
mode is controlled using the normal predicates for this: trace/0
and spy/1. In addition, PceEmacs prolog mode provides the command
Prolog/Break at (Control-c b) to insert a break-point at a specific
location in the source code.
The graphical tracer is particulary useful for debugging threads. The
tracer must be loaded from the main thread before it can be used from a
background thread.
gguuiittrraacceerr
This predicate installs the above-mentioned hooks that redirect
tracing to the window-based environment. No window appears.
The debugger window appears as actual tracing is started through
trace/0, by hitting a spy point defined by spy/1 or a break point
defined using the PceEmacs command Prolog/Break at (Control-c b).
nnoogguuiittrraacceerr
Disable the hooks installed by guitracer/0, reverting to normal
text console-based tracing.
ggttrraaccee
Utility defined as guitracer,trace.
ggddeebbuugg
Utility defined as guitracer,debug.
ggssppyy((_+_P_r_e_d_i_c_a_t_e))
Utility defined as guitracer,spy(Predicate).
33..66 TThhee PPrroolloogg NNaavviiggaattoorr
Another tool is the _P_r_o_l_o_g _N_a_v_i_g_a_t_o_r. This tool can be started
from PceEmacs using the command Browse/Prolog navigator, from the
GUI debugger or using the programmatic IDE interface described in
section 3.8.
33..77 CCrroossss--rreeffeerreenncceerr
A cross-referencer is a tool that examines the caller-callee relation
between predicates, and, using this information to explicate dependency
relations between source files, finds calls to non-existing predicates
and predicates for which no callers can be found. Cross-referencing
is useful during program development, reorganisation, clean-up, porting
and other program maintenance tasks. The dynamic nature of Prolog
makes the task non-trivial. Goals can be created dynamically using
call/1 after construction of a goal term. Abstract interpretation
can find some of these calls, but they can also come from external
communication, making it impossible to predict the callee. In
other words, the cross-referencer has only partial understanding of
the program, and its results are necessarily incomplete. Still, it
provides valuable information to the developer.
SWI-Prolog's cross-referencer is split into two parts. The standard
Prolog library prolog_xref is an extensible library for information
gathering described in section 12.25, and the XPCE library pce_xref
provides a graphical front-end for the cross-referencer described here.
We demonstrate the tool on CHAT80, a natural language question and
answer system by Fernando C.N. Pereira and David H.D. Warren.
ggxxrreeff
Run cross-referencer on all currently loaded files and present a
graphical overview of the result. As the predicate operates on
the currently loaded application it must be run after loading the
application.
The lleefftt wwiinnddooww (see figure ????) provides browsers for loaded files and
predicates. To avoid long file paths, the file hierarchy has three
main branches. The first is the current directory holding the sources.
The second is marked alias, and below it are the file-search-path
aliases (see file_search_path/2 and absolute_file_name/3). Here you
find files loaded from the system as well as modules of the program
loaded from other locations using the file search path. All loaded
files that fall outside these categories are below the last branch
called /. Files where the system found suspicious dependencies are
marked with an exclamation mark. This also holds for directories
holding such files. Clicking on a file opens a _F_i_l_e _i_n_f_o window in the
right pane.
The FFiillee iinnffoo window shows a file, its main properties, its undefined
and not-called predicates and its import and export relations to other
files in the project. Both predicates and files can be opened by
clicking on them. The number of callers in a file for a certain
predicate is indicated with a blue underlined number. A left-click
will open a list and allow editing the calling predicate.
The DDeeppeennddeenncciieess (see figure ????) window displays a graphical overview
of dependencies between files. Using the background menu a complete
graph of the project can be created. It is also possible to drag files
onto the graph window and use the menu on the nodes to incrementally
expand the graph. The underlined blue text indicates the number of
predicates used in the destination file. Left-clicking opens a menu to
open the definition or select one of the callers.
MMoodduullee aanndd nnoonn--mmoodduullee ffiilleess The cross-referencer threads module and
non-module project files differently. Module files have explicit
import and export relations and the tool shows the usage and
consistency of the relations. Using the Header menu command, the tool
creates a consistent import list for the module that can be included
in the file. The tool computes the dependency relations between the
non-module files. If the user wishes to convert the project into a
module-based one, the Header command generates an appropriate module
header and import list. Note that the cross-referencer may have missed
dependencies and does not deal with meta-predicates defined in one
module and called in another. Such problems must be resolved manually.
SSeettttiinnggss The following settings can be controlled from the settings
menu:
WWaarrnn aauuttoollooaadd
By default disabled. If enabled, modules that require predicates
to be autoloaded are flagged with a warning and the file info
window of a module shows the required autoload predicates.
WWaarrnn nnoott ccaalllleedd
If enabled (default), the file overview shows an alert icon for
files that have predicates that are not called.
33..88 AAcccceessssiinngg tthhee IIDDEE ffrroomm yyoouurr pprrooggrraamm
Over the years a collection of IDE components have been developed, each
with its own interface. In addition, some of these components require
each other, and loading IDE components must be on demand to avoid
the IDE being part of a saved state (see qsave_program/2). For this
reason, access to the IDE is concentrated on a single interface called
prolog_ide/1:
pprroolloogg__iiddee((_+_A_c_t_i_o_n))
This predicate ensures the IDE-enabling XPCE component is loaded,
creates the XPCE class _p_r_o_l_o_g___i_d_e and sends _A_c_t_i_o_n to its one and
only instance @prolog_ide. _A_c_t_i_o_n is one of the following:
ooppeenn__nnaavviiggaattoorr((_+_D_i_r_e_c_t_o_r_y))
Open the Prolog Navigator (see section 3.6) in the given
_D_i_r_e_c_t_o_r_y.
ooppeenn__ddeebbuugg__ssttaattuuss
Open a window to edit spy and trace points.
ooppeenn__qquueerryy__wwiinnddooww
Open a little window to run Prolog queries from a GUI
component.
tthhrreeaadd__mmoonniittoorr
Open a graphical window indicating existing threads and their
status.
ddeebbuugg__mmoonniittoorr
Open a graphical front-end for the debug library that provides
an overview of the topics and catches messages.
xxrreeff
Open a graphical front-end for the cross-referencer that
provides an overview of predicates and their callers.
33..99 SSuummmmaarryy ooff tthhee IIDDEE
The SWI-Prolog development environment consists of a number of
interrelated but not (yet) integrated tools. Here is a list of the
most important features and tips.
o _A_t_o_m _c_o_m_p_l_e_t_i_o_n
The console completes a partial atom on the TAB key and shows
alternatives on the command Alt-?.
o _U_s_e edit/1 _f_o_r _f_i_n_d_i_n_g _l_o_c_a_t_i_o_n_s
The command edit/1 takes the name of a file, module, predicate or
other entity registered through extensions and starts the user's
preferred editor at the right location.
o _S_e_l_e_c_t _e_d_i_t_o_r
External editors are selected using the EDITOR environment
variable, by setting the Prolog flag editor, or by defining the
hook prolog_edit:edit_source/1.
o _U_p_d_a_t_e _P_r_o_l_o_g _a_f_t_e_r _e_d_i_t_i_n_g
Using make/0, all files you have edited are re-loaded.
o _P_c_e_E_m_a_c_s
Offers syntax highlighting and checking based on real-time parsing
of the editor's buffer, layout support and navigation support.
o _U_s_i_n_g _t_h_e _g_r_a_p_h_i_c_a_l _d_e_b_u_g_g_e_r
The predicates guitracer/0 and noguitracer/0 switch between
traditional text-based and window-based debugging. The tracer is
activated using the trace/0, spy/1 or menu items from PceEmacs or
the Prolog Navigator.
o _T_h_e _P_r_o_l_o_g _N_a_v_i_g_a_t_o_r
Shows the file structure and structure inside the file. It allows
for loading files, editing, setting spy points, etc.
CChhaapptteerr 44.. BBUUIILLTT--IINN PPRREEDDIICCAATTEESS
44..11 NNoottaattiioonn ooff PPrreeddiiccaattee DDeessccrriippttiioonnss
We have tried to keep the predicate descriptions clear and concise.
First, the predicate name is printed in bold face, followed by the
arguments in italics. Arguments are preceded by a mode indicator.
There is no complete agreement on mode indicators in the Prolog
community. We use the following definitions:
_________________________________________________________++Argument must be ground, i.e., the argument may
not contain a variable anywhere.
+ Argument must be fully instantiated to a term
that satisfies the type. This is not necessarily
_g_r_o_u_n_d, e.g., the term [_] is a _l_i_s_t, although its
only member is unbound.
- Argument is an _o_u_t_p_u_t argument. Unless
specified otherwise, output arguments need not
to be unbound. For example, the goal
findall(X, Goal, [T]) is good style and equivalent
to findall(X, Goal, Xs), Xs = [T] Note that the
_d_e_t_e_r_m_i_n_i_s_m specification, e.g., ``det'' only
applies if this argument is unbound.
-- Argument must be unbound. Typically used by
predicates that create `something' and return a
handle to the created object, such as open/3 which
creates a _s_t_r_e_a_m.
? Argument must be bound to a _p_a_r_t_i_a_l _t_e_r_m
of the indicated type. Note that a
variable is a partial term for any type.
Think of the argument as either _i_n_p_u_t or
_o_u_t_p_u_t or _b_o_t_h input and output. For
example, in stream_property(S, reposition(Bool)),
the reposition part of the term is input and the
uninstantiated _B_o_o_l is output.
: Argument is a meta-argument. Implies +. See
chapter 6 for more information on module handling.
@ Argument is not further instantiated. Typically
used for type tests.
! Argument contains a mutable structure that may be
_____modified_using_setarg/3_or_nb_setarg/3._____________
Referring to a predicate in running text is done using a _p_r_e_d_i_c_a_t_e
_i_n_d_i_c_a_t_o_r. The canonical and most generic form of a predicate
indicator is a term <_m_o_d_u_l_e>:<_n_a_m_e>/<_a_r_i_t_y>. If the module is irrelevant
(built-in predicate) or can be inferred from the context it is
often omitted. Compliant to the ISO standard draft on DCG (see
section 4.12), SWI-Prolog also allows for [<_m_o_d_u_l_e>]:<_n_a_m_e>//<_a_r_i_t_y> to
refer to a grammar rule. For all non-negative arity, <_n_a_m_e>//<_a_r_i_t_y>
is the same as <_n_a_m_e>/<_a_r_i_t_y>+2, regardless of whether or not the
referenced predicate is defined or can be used as a grammar rule.
The //-notation can be used in all places that traditionally allow
for a predicate indicator, e.g., the module declaration, spy/1, and
dynamic/1.
44..22 CChhaarraacctteerr rreepprreesseennttaattiioonn
In traditional (Edinburgh) Prolog, characters are represented using
_c_h_a_r_a_c_t_e_r _c_o_d_e_s. Character codes are integer indices into a specific
character set. Traditionally the character set was 7-bit US-ASCII.
8-bit character sets have been allowed for a long time, providing
support for national character sets, of which iso-latin-1 (ISO 8859-1)
is applicable to many Western languages.
ISO Prolog introduces three types, two of which are used for characters
and one for accessing binary streams (see open/4). These types are:
o _c_o_d_e
A _c_h_a_r_a_c_t_e_r _c_o_d_e is an integer representing a single character.
As files may use multi-byte encoding for supporting different
character sets (utf-8 encoding for example), reading a code from a
text file is in general not the same as reading a byte.
o _c_h_a_r
Alternatively, characters may be represented as _o_n_e_-_c_h_a_r_a_c_t_e_r
_a_t_o_m_s. This is a natural representation, hiding encoding problems
from the programmer as well as providing much easier debugging.
o _b_y_t_e
Bytes are used for accessing binary streams.
In SWI-Prolog, character codes are _a_l_w_a_y_s the Unicode equivalent of
the encoding. That is, if get_code/1 reads from a stream encoded as
KOI8-R (used for the Cyrillic alphabet), it returns the corresponding
Unicode code points. Similarly, assembling or disassembling atoms
using atom_codes/2 interprets the codes as Unicode points. See
section 2.18.1 for details.
To ease the pain of the two character representations (code and char),
SWI-Prolog's built-in predicates dealing with character data work as
flexible as possible: they accept data in any of these formats as
long as the interpretation is unambiguous. In addition, for output
arguments that are instantiated, the character is extracted before
unification. This implies that the following two calls are identical,
both testing whether the next input character is an a.
________________________________________________________________________| |
|peek_code(Stream, a). |
|peek_code(Stream,|97)._________________________________________________ | |
The two character representations are handled by a large number of
built-in predicates, all of which are ISO-compatible. For converting
between code and character there is char_code/2. For breaking
atoms and numbers into characters there are atom_chars/2, atom_codes/2,
number_chars/2 and number_codes/2. For character I/O on streams there
are get_char/[1,2], get_code/[1,2], get_byte/[1,2], peek_char/[1,2],
peek_code/[1,2], peek_byte/[1,2], put_code/[1,2], put_char/[1,2] and
put_byte/[1,2]. The Prolog flag double_quotes controls how text between
double quotes is interpreted.
44..33 LLooaaddiinngg PPrroolloogg ssoouurrccee ffiilleess
This section deals with loading Prolog source files. A Prolog source
file is a plain text file containing a Prolog program or part thereof.
Prolog source files come in three flavours:
AA ttrraaddiittiioonnaall Prolog source file contains Prolog clauses and
directives, but no _m_o_d_u_l_e _d_e_c_l_a_r_a_t_i_o_n (see module/1). They are
normally loaded using consult/1 or ensure_loaded/1. Currently, a
non-module file can only be loaded into a single module.
AA mmoodduullee Prolog source file starts with a module declaration. The
subsequent Prolog code is loaded into the specified module, and
only the _e_x_p_o_r_t_e_d predicates are made available to the context
loading the module. Module files are normally loaded with
use_module/[1,2]. See chapter 6 for details.
AAnn iinncclluuddee Prolog source file is loaded using the include/1
directive, textually including Prolog text into another Prolog
source. A file may be included into multiple source files and is
typically used to share _d_e_c_l_a_r_a_t_i_o_n_s such as multifile or dynamic
between source files.
Prolog source files are located using absolute_file_name/3 with the
following options:
________________________________________________________________________| |
|locate_prolog_file(Spec, Path) :- |
| absolute_file_name(Spec, |
| [ file_type(prolog), |
| access(read) |
| ], |
||__________________________Path).______________________________________ ||
The file_type(_p_r_o_l_o_g) option is used to determine the extension of the
file using prolog_file_type/2. The default extension is .pl. _S_p_e_c
allows for the _p_a_t_h _a_l_i_a_s construct defined by absolute_file_name/3.
The most commonly used path alias is library(_L_i_b_r_a_r_y_F_i_l_e). The example
below loads the library file ordsets.pl (containing predicates for
manipulating ordered sets).
________________________________________________________________________| |
|:-|use_module(library(ordsets))._______________________________________ | |
SWI-Prolog recognises grammar rules (DCG) as defined in
[Clocksin & Melish, 1987]. The user may define additional com-
pilation of the source file by defining the dynamic multifile
predicates term_expansion/2, term_expansion/4, goal_expansion/2 and
goal_expansion/4. It is not allowed to use assert/1, retract/1
or any other database predicate in term_expansion/2 other than for
local computational purposes. Code that needs to create additional
clauses must use compile_aux_clauses/1. See library(apply_macros) for
an example.
A _d_i_r_e_c_t_i_v_e is an instruction to the compiler. Directives are used
to set (predicate) properties (see section 4.14), set flags (see
set_prolog_flag/2) and load files (this section). Directives are terms
of the form :- <_t_e_r_m>.. Here are some examples:
________________________________________________________________________| |
|:- use_module(library(lists)). |
|:- dynamic |
||_______store/2.________________%_Name,_Value__________________________ ||
The directive initialization/1 can be used to run arbitrary Prolog
goals. The specified goal is started _a_f_t_e_r loading the file in which
it appears has completed.
SWI-Prolog compiles code as it is read from the file, and directives
are executed as _g_o_a_l_s. This implies that directives may call any
predicate that has been defined before the point where the directive
appears. It also accepts ?- <_t_e_r_m>.as a synonym.
SWI-Prolog does not have a separate reconsult/1 predicate.
Reconsulting is implied automatically by the fact that a file is
consulted which is already loaded.
Advanced topics are handled in subsequent sections: mutually dependent
files (section 4.3.2.1), multithreaded loading (section 4.3.2.2) and
reloading running code (section 4.3.2.3).
The core of the family of loading predicates is load_files/2. The
predicates consult/1, ensure_loaded/1, use_module/1, use_module/2 and
reexport/1 pass the file argument directly to load_files/2 and pass
additional options as expressed in the table 4.1:
_______________________________________________________PPrreeddiiccaatteeiiffmmuusstt__bbee__mmoodduulleeiimmppoorrtt
______________________________________________________________________________________________________________consult/1truefalseall
ensure_loaded/1 not_loaded false all
use_module/1 not_loaded true all
use_module/2 not_loaded true specified
reexport/1 not_loaded true all
_reexport/2______not_loaded_______true______specified__
Table 4.1: Properties of the file-loading predicates. The _i_m_p_o_r_t
column specifies what is imported if the loaded file is a module file.
llooaadd__ffiilleess((_:_F_i_l_e_s))
Equivalent to load_files(_F_i_l_e_s_, _[_]). Same as consult/1, See
load_files/2 for supported options.
llooaadd__ffiilleess((_:_F_i_l_e_s_, _+_O_p_t_i_o_n_s))
The predicate load_files/2 is the parent of all the other loading
predicates except for include/1. It currently supports a subset
of the options of Quintus load_files/2. _F_i_l_e_s is either a single
source file or a list of source files. The specification for a
source file is handed to absolute_file_name/2. See this predicate
for the supported expansions. _O_p_t_i_o_n_s is a list of options using
the format _O_p_t_i_o_n_N_a_m_e(_O_p_t_i_o_n_V_a_l_u_e).
The following options are currently supported:
aauuttoollooaadd((_B_o_o_l))
If true (default false), indicate that this load is a _d_e_m_a_n_d
load. This implies that, depending on the setting of the
Prolog flag verbose_autoload, the load action is printed at
level informational or silent. See also print_message/2 and
current_prolog_flag/2.
ddeerriivveedd__ffrroomm((_F_i_l_e))
Indicate that the loaded file is derived from _F_i_l_e. Used by
make/0 to time-check and load the original file rather than
the derived file.
ddiiaalleecctt((_+_D_i_a_l_e_c_t))
Load _F_i_l_e_s with enhanced compatibility with the target Prolog
system identified by _D_i_a_l_e_c_t. See expects_dialect/1 and
section 14 for details.
eennccooddiinngg((_E_n_c_o_d_i_n_g))
Specify the way characters are encoded in the file. Default
is taken from the Prolog flag encoding. See section 2.18.1
for details.
eexxppaanndd((_B_o_o_l))
If true, run the filenames through expand_file_name/2 and load
the returned files. Default is false, except for consult/1
which is intended for interactive use. Flexible location of
files is defined by file_search_path/2.
ffoorrmmaatt((_+_F_o_r_m_a_t))
Used to specify the file format if data is loaded from a
stream using the stream(_S_t_r_e_a_m) option. Default is source,
loading Prolog source text. If qlf, load QLF data (see
qcompile/1).
iiff((_C_o_n_d_i_t_i_o_n))
Load the file only if the specified condition is satisfied.
The value true loads the file unconditionally, changed loads
the file if it was not loaded before or has been modified
since it was loaded the last time, and not_loaded loads the
file if it was not loaded before.
iimmppoorrttss((_I_m_p_o_r_t))
Specify what to import from the loaded module. The default
for use_module/1 is all. _I_m_p_o_r_t is passed from the second
argument of use_module/2. Traditionally it is a list of
predicate indicators to import. As part of the SWI-Prolog/YAP
integration, we also support _P_r_e_d as _N_a_m_e to import a
predicate under another name. Finally, _I_m_p_o_r_t can be the term
except(_E_x_c_e_p_t_i_o_n_s), where _E_x_c_e_p_t_i_o_n_s is a list of predicate
indicators that specify predicates that are _n_o_t imported or
_P_r_e_d as _N_a_m_e terms to denote renamed predicates. See also
reexport/2 and use_module/2.
If _I_m_p_o_r_t equals all, all operators are imported as well.
Otherwise, operators are _n_o_t imported. Operators can be
imported selectively by adding terms op(_P_r_i_,_A_s_s_o_c_,_N_a_m_e) to the
_I_m_p_o_r_t list. If such a term is encountered, all exported
operators that unify with this term are imported. Typically,
this construct will be used with all arguments unbound to
import all operators or with only _N_a_m_e bound to import a
particular operator.
mmooddiiffiieedd((_T_i_m_e_S_t_a_m_p))
Claim that the source was loaded at _T_i_m_e_S_t_a_m_p without checking
the source. This option is intended to be used together with
the stream(_I_n_p_u_t) option, for example after extracting the
time from an HTTP server or database.
mmoodduullee((_+_M_o_d_u_l_e))
Load the indicated file into the given module, overruling the
module name specified in the :- module(Name, ...) directive.
This currently serves two purposes: (1) allow loading two
module files that specify the same module into the same
process and force and (2): force loading source code in a
specific module, even if the code provides its own module
name. Experimental.
mmuusstt__bbee__mmoodduullee((_B_o_o_l))
If true, raise an error if the file is not a module file.
Used by use_module/[1,2].
qqccoommppiillee((_A_t_o_m))
How to deal with quick-load-file compilation by qcompile/1.
Values are:
nneevveerr
Default. Do not use qcompile unless called explicitly.
aauuttoo
Use qcompile for all writeable files. See comment below.
llaarrggee
Use qcompile if the file is `large'. Currently, files
larger than 100 Kbytes are considered large.
ppaarrtt
If this load_file/2 appears in a directive of a file that
is compiled into Quick Load Format using qcompile/1, the
contents of the argument files are included in the .qlf
file instead of the loading directive.
If this option is not present, it uses the value of the Prolog
flag qcompile as default.
rreeddeeffiinnee__mmoodduullee((_+_A_c_t_i_o_n))
Defines what to do if a file is loaded that provides a module
that is already loaded from another file. _A_c_t_i_o_n is one of
false (default), which prints an error and refuses to load the
file, or true, which uses unload_file/1 on the old file and
then proceeds loading the new file. Finally, there is ask,
which starts interaction with the user. ask is only provided
if the stream user_input is associated with a terminal.
rreeeexxppoorrtt((_B_o_o_l))
If true re-export the imported predicate. Used by reexport/1
and reexport/2.
rreeggiisstteerr((_B_o_o_l))
If false, do not register the load location and options. This
option is used by make/0 and load_hotfixes/1 to avoid polluting
the load-context database. See source_file_property/2.
ssaannddbbooxxeedd((_B_o_o_l))
Load the file in _s_a_n_d_b_o_x_e_d mode. This option controls the
flag sandboxed_load. The only meaningful value for _B_o_o_l is
true. Using false while the Prolog flag is set to true raises
a permission error.
ssccooppee__sseettttiinnggss((_B_o_o_l))
Scope style_check/1 and expects_dialect/1to the file and files
loaded from the file after the directive. Default is true.
The system and user initialization files (see -f and -F) are
loading with scope_settings(_f_a_l_s_e).
ssiilleenntt((_B_o_o_l))
If true, load the file without printing a message. The
specified value is the default for all files loaded as a
result of loading the specified files. This option writes the
Prolog flag verbose_load with the negation of _B_o_o_l.
ssttrreeaamm((_I_n_p_u_t))
This SWI-Prolog extension compiles the data from the stream
_I_n_p_u_t. If this option is used, _F_i_l_e_s must be a single atom
which is used to identify the source location of the loaded
clauses as well as to remove all clauses if the data is
reconsulted.
This option is added to allow compiling from non-file
locations such as databases, the web, the _u_s_e_r (see consult/1)
or other servers. It can be combined with format(_q_l_f) to load
QLF data from a stream.
The load_files/2 predicate can be hooked to load other data or
data from objects other than files. See prolog_load_file/2 for
a description and http/http_load for an example. All hooks for
load_files/2 are documented in section 13.8.
ccoonnssuulltt((_:_F_i_l_e))
Read _F_i_l_e as a Prolog source file. Calls to consult/1 may
be abbreviated by just typing a number of filenames in a list.
Examples:
?- consult(load). % consult load or load.pl
?- [library(lists)]. % load library lists
?- [user]. % Type program on the terminal
The predicate consult/1 is equivalent to load_files(File, []),
except for handling the special file user, which reads clauses from
the terminal. See also the stream(_I_n_p_u_t) option of load_files/2.
Abbreviation using ?- [file1,file2]. does _n_o_t work for the empty
list ([]). This facility is implemented by defining the list
as a predicate. Applications may only rely on using the list
abbreviation at the Prolog toplevel and in directives.
eennssuurree__llooaaddeedd((_:_F_i_l_e))
If the file is not already loaded, this is equivalent to consult/1.
Otherwise, if the file defines a module, import all public
predicates. Finally, if the file is already loaded, is not a
module file, and the context module is not the global user module,
ensure_loaded/1 will call consult/1.
With this semantics, we hope to get as close as possible to
the clear semantics without the presence of a module system.
Applications using modules should consider using use_module/[1,2].
Equivalent to load_files(Files, [if(not_loaded)]).
iinncclluuddee((_+_F_i_l_e)) _[_I_S_O_]
Textually include the content of _F_i_l_e in the file in which the
_d_i_r_e_c_t_i_v_e :- include(File). appears. The include construct is only
honoured if it appears as a directive in a source file. _T_e_x_t_u_a_l
include (similar to C/C++ #include) is obviously useful for sharing
declarations such as dynamic/1 or multifile/1 by including a file
with directives from multiple files that use these predicates.
Textual including files that contain clauses is less obvious.
Normally, in SWI-Prolog, clauses are _o_w_n_e_d by the file in which
they are defined. This information is used to _r_e_p_l_a_c_e the old
definition after the file has beeen modified and is reloaded
by, e.g., make/0. As we understand it, include/1 is intended
to include the same file multiple times. Including a file
holding clauses multiple times into the same module is rather
meaningless as it just duplicates the same clauses. Including a
file holding clauses in multiple modules does not suffer from this
problem, but leads to multiple equivalent _c_o_p_i_e_s of predicates.
Using use_module/1 can achieve the same result while _s_h_a_r_i_n_g the
predicates.
Despite these observations, various projects seem to be using
include/1 to load files holding clauses, typically loading them
only once. Such usage would allow replacement by, e.g., consult/1.
Unfortunately, the same project might use include/1 to share
directives. Another example of a limitation of mapping to
consult/1 is that if the clauses of a predicate are distributed
over two included files, discontiguous/1 is appropriate, while
if they are distributed over two consulted files, one must use
multifile/1.
To accommodate included files holding clauses, SWI-Prolog
distinguishes between the source location of a clause (in this
case the included file) and the _o_w_n_e_r of a clause (the file that
includes the file holding the clause). The source location is
used by, e.g., edit/1, the graphical tracer, etc., while the
owner is used to determine which clauses are removed if the file
is modified. Relevant information is found with the following
predicates:
o source_file/2 describes the owner relation.
o predicate_property/2 describes the source location (of the
first clause).
o clause_property/2 provides access to both source and ownership.
o source_file_property/2 can be used to query include relation-
ships between files.
rreeqquuiirree((_+_L_i_s_t_O_f_N_a_m_e_A_n_d_A_r_i_t_y))
Declare that this file/module requires the specified predicates
to be defined ``with their commonly accepted definition''. This
predicate originates from the Prolog portability layer for XPCE.
It is intended to provide a portable mechanism for specifying that
this module requires the specified predicates.
The implementation normally first verifies whether the predicate is
already defined. If not, it will search the libraries and load the
required library.
SWI-Prolog, having autoloading, does nnoott load the library. Instead
it creates a procedure header for the predicate if it does not
exist. This will flag the predicate as `undefined'. See also
check/0 and autoload/0.
eennccooddiinngg((_+_E_n_c_o_d_i_n_g))
This directive can appear anywhere in a source file to define how
characters are encoded in the remainder of the file. It can
be used in files that are encoded with a superset of US-ASCII,
currently UTF-8 and ISO Latin-1. See also section 2.18.1.
mmaakkee
Consult all source files that have been changed since they were
consulted. It checks _a_l_l loaded source files: files loaded into
a compiled state using pl -c ... and files loaded using consult/1
or one of its derivatives. The predicate make/0 is called
after edit/1, automatically reloading all modified files. If the
user uses an external editor (in a separate window), make/0 is
normally used to update the program after editing. In addition,
make/0 updates the autoload indices (see section 2.13) and runs
list_undefined/0 from the check library to report on undefined
predicates.
lliibbrraarryy__ddiirreeccttoorryy((_?_A_t_o_m))
Dynamic predicate used to specify library directories. Default
./lib, ~/lib/prolog and the system's library (in this order) are
defined. The user may add library directories using assertz/1,
asserta/1 or remove system defaults using retract/1. Deprecated.
New code should use file_search_path/2.
ffiillee__sseeaarrcchh__ppaatthh((_+_A_l_i_a_s_, _?_P_a_t_h))
Dynamic predicate used to specify `path aliases'. This feature is
best described using an example. Given the definition:
____________________________________________________________________| |
||file_search_path(demo,_'/usr/lib/prolog/demo').___________________ ||
the file specification demo(myfile) will be expanded to /usr/lib/
prolog/demo/myfile. The second argument of file_search_path/2 may
be another alias.
Below is the initial definition of the file search path. This
path implies swi(<_P_a_t_h>) and refers to a file in the SWI-Prolog
home directory. The alias foreign(<_P_a_t_h>) is intended for
storing shared libraries (.so or .DLL files). See also
use_foreign_library/1.
____________________________________________________________________| |
| user:file_search_path(library, X) :- |
| library_directory(X). |
| user:file_search_path(swi, Home) :- |
| current_prolog_flag(home, Home). |
| user:file_search_path(foreign, swi(ArchLib)) :- |
| current_prolog_flag(arch, Arch), |
| atom_concat('lib/', Arch, ArchLib). |
| user:file_search_path(foreign, swi(lib)). |
| user:file_search_path(path, Dir) :- |
| getenv('PATH', Path), |
| ( current_prolog_flag(windows, true) |
| -> atomic_list_concat(Dirs, (;), Path) |
| ; atomic_list_concat(Dirs, :, Path) |
| ), |
||________member(Dir,_Dirs).________________________________________ ||
The file_search_path/2expansion is used by all loading predicates
as well as by absolute_file_name/[2,3].
The Prolog flag verbose_file_search can be set to true to help
debugging Prolog's search for files.
eexxppaanndd__ffiillee__sseeaarrcchh__ppaatthh((_+_S_p_e_c_, _-_P_a_t_h)) _[_n_o_n_d_e_t_]
Unifies _P_a_t_h with all possible expansions of the filename specifi-
cation _S_p_e_c. See also absolute_file_name/3.
pprroolloogg__ffiillee__ttyyppee((_?_E_x_t_e_n_s_i_o_n_, _?_T_y_p_e))
This dynamic multifile predicate defined in module user determines
the extensions considered by file_search_path/2. _E_x_t_e_n_s_i_o_n is the
filename extension without the leading dot, and _T_y_p_e denotes the
type as used by the file_type(_T_y_p_e) option of file_search_path/2.
Here is the initial definition of prolog_file_type/2:
____________________________________________________________________| |
| user:prolog_file_type(pl, prolog). |
| user:prolog_file_type(Ext, prolog) :- |
| current_prolog_flag(associate, Ext), |
| Ext \== pl. |
| user:prolog_file_type(qlf, qlf). |
| user:prolog_file_type(Ext, executable) :- |
||________current_prolog_flag(shared_object_extension,_Ext).________ ||
Users can add extensions for Prolog source files to avoid conflicts
(for example with perl) as well as to be compatible with another
Prolog implementation. We suggest using .pro for avoiding
conflicts with perl. Overriding the system definitions can stop
the system from finding libraries.
ssoouurrccee__ffiillee((_?_F_i_l_e))
True if _F_i_l_e is a loaded Prolog source file. _F_i_l_e is the absolute
and canonical path to the source file.
ssoouurrccee__ffiillee((_:_P_r_e_d_, _?_F_i_l_e))
True if the predicate specified by _P_r_e_d is owned by file _F_i_l_e,
where _F_i_l_e is an absolute path name (see absolute_file_name/2).
Can be used with any instantiation pattern, but the database only
maintains the source file for each predicate. If _P_r_e_d is a
_m_u_l_t_i_f_i_l_e predicate this predicate succeeds for all files that
contribute clauses to _P_r_e_d. See also clause_property/2. Note
that the relation between files and predicates is more complicated
if include/1 is used. The predicate describes the _o_w_n_e_r of the
predicate. See include/1 for details.
ssoouurrccee__ffiillee__pprrooppeerrttyy((_?_F_i_l_e_, _?_P_r_o_p_e_r_t_y))
True when _P_r_o_p_e_r_t_y is a property of the loaded file _F_i_l_e. If
_F_i_l_e is non-var, it can be a file specification that is valid for
load_files/2. Defined properties are:
ddeerriivveedd__ffrroomm((_O_r_i_g_i_n_a_l_, _O_r_i_g_i_n_a_l_M_o_d_i_f_i_e_d))
_F_i_l_e was generated from the file _O_r_i_g_i_n_a_l, which was last
modified at time _O_r_i_g_i_n_a_l_M_o_d_i_f_i_e_d at the time it was loaded.
This property is available if _F_i_l_e was loaded using the
derived_from(_O_r_i_g_i_n_a_l) option to load_files/2.
iinncclluuddeess((_I_n_c_l_u_d_e_d_F_i_l_e_, _I_n_c_l_u_d_e_d_F_i_l_e_M_o_d_i_f_i_e_d))
_F_i_l_e used include/1 to include _I_n_c_l_u_d_e_d_F_i_l_e. The last
modified time of _I_n_c_l_u_d_e_d_F_i_l_e was _I_n_c_l_u_d_e_d_F_i_l_e_M_o_d_i_f_i_e_d at the
time it was included.
iinncclluuddeedd__iinn((_M_a_s_t_e_r_F_i_l_e_, _L_i_n_e))
_F_i_l_e was included into _M_a_s_t_e_r_F_i_l_e from line _L_i_n_e. This is the
inverse of the includes property.
llooaadd__ccoonntteexxtt((_M_o_d_u_l_e_, _L_o_c_a_t_i_o_n_, _O_p_t_i_o_n_s))
_M_o_d_u_l_e is the module into which the file was loaded. If _F_i_l_e
is a module, this is the module into which the exports are
imported. Otherwise it is the module into which the clauses
of the non-module file are loaded. _L_o_c_a_t_i_o_n describes the
file location from which the file was loaded. It is either
a term <_f_i_l_e>:<_l_i_n_e> or the atom user if the file was loaded
from the terminal or another unknown source. _O_p_t_i_o_n_s are the
options passed to load_files/2. Note that all predicates
to load files are mapped to load_files/2, using the option
argument to specify the exact behaviour.
mmooddiiffiieedd((_S_t_a_m_p))
File modification time when _F_i_l_e was loaded. This is used by
make/0 to find files whose modification time is different from
when it was loaded.
mmoodduullee((_M_o_d_u_l_e))
_F_i_l_e is a module file that declares the module _M_o_d_u_l_e.
uunnllooaadd__ffiillee((_+_F_i_l_e))
Remove all clauses loaded from _F_i_l_e. If _F_i_l_e loaded a module,
clear the module's export list and disassociate it from the file.
_F_i_l_e is a canonical filename or a file indicator that is valid for
load_files/2.
This predicate should be used with care. The multithreaded nature
of SWI-Prolog makes removing static code unsafe. Attempts to do
this should be reserved for development or situations where the
application can guarantee that none of the clauses associated to
_F_i_l_e are active.
pprroolloogg__llooaadd__ccoonntteexxtt((_?_K_e_y_, _?_V_a_l_u_e))
Obtain context information during compilation. This predicate
can be used from directives appearing in a source file to
get information about the file being loaded. See also
source_location/2 and if/1. The following keys are defined:
______________________________________________________________________
|__KKeeyy________________________||DDeessccrriippttiioonn________________________________________________________________________________||__
|| module |Module into which file is loaded |
| source |File being loaded. If the system is processing an|
| |included file, the value is the _m_a_i_n file. Returns|
| |the original Prolog file when loading a .qlf file. |
| file |Similar to source, but returns the file being|
| |included when called while an include file is being|
| |processed |
| stream |Stream identifier (see current_input/1) |
| directory |Directory in which source lives |
| dialect |Compatibility mode. See expects_dialect/1. |
| term_position |Start position of last term read. See|
| |also stream_property/2 (position property and|
| |stream_position_data/3. |
| variable_names |A list of `_N_a_m_e = _V_a_r' of the last term read. See|
| |read_term/2for details. |
| script |Boolean that indicates whether the file is loaded|
|________________|as_a_script_file_(see_-s)__________________________|_
The directory is commonly used to add rules to file_search_path/2,
setting up a search path for finding files with
absolute_file_name/3. For example:
____________________________________________________________________| |
| :- dynamic user:file_search_path/2. |
| :- multifile user:file_search_path/2. |
| |
| :- prolog_load_context(directory, Dir), |
| asserta(user:file_search_path(my_program_home, Dir)). |
| |
| ... |
| absolute_file_name(my_program_home('README.TXT'), ReadMe, |
| [ access(read) ]), |
||____...___________________________________________________________ ||
ssoouurrccee__llooccaattiioonn((_-_F_i_l_e_, _-_L_i_n_e))
If the last term has been read from a physical file (i.e., not from
the file user or a string), unify _F_i_l_e with an absolute path to the
file and _L_i_n_e with the line number in the file. New code should
use prolog_load_context/2.
aatt__hhaalltt((_:_G_o_a_l))
Register _G_o_a_l to be run from PL_cleanup(), which is called when
the system halts. The hooks are run in the reverse order
they were registered (FIFO). Success or failure executing a hook
is ignored. If the hook raises an exception this is printed
using print_message/2. An attempt to call halt/[0,1] from a hook
is ignored. Hooks may call cancel_halt/1, causing halt/0 and
PL_halt(_0) to print a message indicating that halting the system
has been cancelled.
ccaanncceell__hhaalltt((_+_R_e_a_s_o_n))
If this predicate is called from a hook registered with at_halt/1,
halting Prolog is cancelled and an informational message is printed
that includes _R_e_a_s_o_n. This is used by the development tools to
cancel halting the system if the editor has unsafed data and the
user decides to cancel.
::-- iinniittiiaalliizzaattiioonn((_:_G_o_a_l)) _[_I_S_O_]
Call _G_o_a_l _a_f_t_e_r loading the source file in which this directive
appears has been completed. In addition, _G_o_a_l is executed if a
saved state created using qsave_program/1 is restored.
The ISO standard only allows for using :- Term if _T_e_r_m is a
_d_i_r_e_c_t_i_v_e. This means that arbitrary goals can only be called from
a directive by means of the initialization/1 directive. SWI-Prolog
does not enforce this rule.
The initialization/1 directive must be used to do program
initialization in saved states (see qsave_program/1). A saved
state contains the predicates, Prolog flags and operators present
at the moment the state was created. Other resources (records,
foreign resources, etc.) must be recreated using initialization/1
directives or from the entry goal of the saved state.
Up to SWI-Prolog 5.7.11, _G_o_a_l was executed immediately rather than
after loading the program text in which the directive appears
as dictated by the ISO standard. In many cases the exact
moment of execution is irrelevant, but there are exceptions.
For example, load_foreign_library/1 must be executed immediately
to make the loaded foreign predicates available for exporting.
SWI-Prolog now provides the directive use_foreign_library/1 to
ensure immediate loading as well as loading after restoring
a saved state. If the system encounters a directive
:- initialization(load_foreign_library(...)), it will load the
foreign library immediately and issue a warning to update your
code. This behaviour can be extended by providing clauses for
the multifile hook predicate prolog:initialize_now(_T_e_r_m_, _A_d_v_i_c_e),
where _A_d_v_i_c_e is an atom that gives advice on how to resolve the
compatibility issue.
iinniittiiaalliizzaattiioonn((_:_G_o_a_l_, _+_W_h_e_n))
Similar to initialization/1, but allows for specifying when _G_o_a_l is
executed while loading the program text:
nnooww
Execute _G_o_a_l immediately.
aafftteerr__llooaadd
Execute _G_o_a_l after loading program text. This is the same as
initialization/1.
rreessttoorree
Do not execute _G_o_a_l while loading the program, but _o_n_l_y when
restoring a state.
ccoommppiilliinngg
True if the system is compiling source files with the -c option or
qcompile/1 into an intermediate code file. Can be used to perform
conditional code optimisations in term_expansion/2(see also the -O
option) or to omit execution of directives during compilation.
44..33..11 CCoonnddiittiioonnaall ccoommppiillaattiioonn aanndd pprrooggrraamm ttrraannssffoorrmmaattiioonn
ISO Prolog defines no way for program transformations such as
macro expansion or conditional compilation. Expansion through
term_expansion/2 and expand_term/2 can be seen as part of the de-facto
standard. This mechanism can do arbitrary translation between valid
Prolog terms read from the source file to Prolog terms handed to the
compiler. As term_expansion/2 can return a list, the transformation
does not need to be term-to-term.
Various Prolog dialects provide the analogous goal_expansion/2 and
expand_goal/2 that allow for translation of individual body terms,
freeing the user of the task to disassemble each clause.
tteerrmm__eexxppaannssiioonn((_+_T_e_r_m_1_, _-_T_e_r_m_2))
Dynamic and multifile predicate, normally not defined. When
defined by the user all terms read during consulting are given to
this predicate. If the predicate succeeds Prolog will assert _T_e_r_m_2
in the database rather than the read term (_T_e_r_m_1). _T_e_r_m_2 may be a
term of the form ?- Goal. or :- Goal. _G_o_a_l is then treated as a
directive. If _T_e_r_m_2 is a list, all terms of the list are stored
in the database or called (for directives). If _T_e_r_m_2 is of the
form below, the system will assert _C_l_a_u_s_e and record the indicated
source location with it:
'$source_location'(<_F_i_l_e>, <_L_i_n_e>):<_C_l_a_u_s_e>
When compiling a module (see chapter 6 and the directive module/2),
expand_term/2 will first try term_expansion/2 in the module being
compiled to allow for term expansion rules that are local to
a module. If there is no local definition, or the local
definition fails to translate the term, expand_term/2 will try
term_expansion/2 in module user. For compatibility with SICStus
and Quintus Prolog, this feature should not be used. See also
expand_term/2, goal_expansion/2 and expand_goal/2.
eexxppaanndd__tteerrmm((_+_T_e_r_m_1_, _-_T_e_r_m_2))
This predicate is normally called by the compiler on terms read
from the input to perform preprocessing. It consists of four
steps, where each step processes the output of the previous step.
1. Test conditional compilation directives and translate all
input to [] if we are in a `false branch' of the conditional
compilation. See section 4.3.1.2.
2. Call term_expansion/2. This predicate is first tried in the
module that is being compiled and then in the module user.
3. Call DCG expansion (dcg_translate_rule/2).
4. Call expand_goal/2 on each body term that appears in the output
of the previous steps.
ggooaall__eexxppaannssiioonn((_+_G_o_a_l_1_, _-_G_o_a_l_2))
Like term_expansion/2, goal_expansion/2 provides for macro ex-
pansion of Prolog source code. Between expand_term/2 and the
actual compilation, the body of clauses analysed and the goals are
handed to expand_goal/2, which uses the goal_expansion/2 hook to do
user-defined expansion.
The predicate goal_expansion/2 is first called in the module that
is being compiled, and then on the user module. If _G_o_a_l is of the
form _M_o_d_u_l_e:_G_o_a_l where _M_o_d_u_l_e is instantiated, goal_expansion/2 is
called on _G_o_a_l using rules from module _M_o_d_u_l_e followed by user.
Only goals appearing in the body of clauses when reading a
source file are expanded using this mechanism, and only if they
appear literally in the clause, or as an argument to a defined
meta-predicate that is annotated using `0' (see meta_predicate/1).
Other cases need a real predicate definition.
eexxppaanndd__ggooaall((_+_G_o_a_l_1_, _-_G_o_a_l_2))
This predicate is normally called by the compiler to perform
preprocessing using goal_expansion/2. The predicate computes a
fixed-point by applying transformations until there are no more
changes. If optimisation is enabled (see -O and optimise),
expand_goal/2 simplifies the result by removing unneeded calls to
true/0 and fail/0 as well as unreachable branches.
ccoommppiillee__aauuxx__ccllaauusseess((_+_C_l_a_u_s_e_s))
Compile clauses on behalf of goal_expansion/2. This predicate
compiles the argument clauses into static predicates, associating
the predicates with the current file but avoids changing the notion
of current predicate and therefore discontiguous warnings.
ddccgg__ttrraannssllaattee__rruullee((_+_I_n_, _-_O_u_t))
This predicate performs the translation of a term Head-->Body into
a normal Prolog clause. Normally this functionality should be
accessed using expand_term/2.
vvaarr__pprrooppeerrttyy((_+_V_a_r_, _?_P_r_o_p_e_r_t_y))
True when _P_r_o_p_e_r_t_y is a property of _V_a_r. These properties are
available during goal- and term-expansion. Defined properties are
below. Future versions are likely to provide more properties,
such as whether the variable is a singleton or whether the
variable is referenced in the remainder of the term. See also
goal_expansion/2.
ffrreesshh((_B_o_o_l))
Bool has the value _t_r_u_e if the variable is guaranteed to be
unbound at entry of the goal, otherwise its value is _f_a_l_s_e.
This implies that the variable first appears in this goal or
a previous appearance was in a negation (\+/1) or a different
branch of a disjunction.
nnaammee((_N_a_m_e))
True when variable appears with the given name in the source.
44..33..11..11 PPrrooggrraamm ttrraannssffoorrmmaattiioonn wwiitthh ssoouurrccee llaayyoouutt iinnffoo
This sections documents extended versions of the program transformation
predicates that also transform the source layout information. Extended
layout information is currently processed, but unused. Future versions
will use for the following enhancements:
o More precise locations of warnings and errors
o More reliable setting of breakpoints
o More reliable source layout information in the graphical debugger.
eexxppaanndd__ggooaall((_+_G_o_a_l_1_, _?_L_a_y_o_u_t_1_, _-_G_o_a_l_2_, _-_L_a_y_o_u_t_2))
ggooaall__eexxppaannssiioonn((_+_G_o_a_l_1_, _?_L_a_y_o_u_t_1_, _-_G_o_a_l_2_, _-_L_a_y_o_u_t_2))
eexxppaanndd__tteerrmm((_+_T_e_r_m_1_, _?_L_a_y_o_u_t_1_, _-_T_e_r_m_2_, _-_L_a_y_o_u_t_2))
tteerrmm__eexxppaannssiioonn((_+_T_e_r_m_1_, _?_L_a_y_o_u_t_1_, _-_T_e_r_m_2_, _-_L_a_y_o_u_t_2))
ddccgg__ttrraannssllaattee__rruullee((_+_I_n_, _?_L_a_y_o_u_t_I_n_, _-_O_u_t_, _-_L_a_y_o_u_t_O_u_t))
These versions are called _b_e_f_o_r_e their 2-argument counterparts.
The input layout term is either a variable (if no layout
information is available) or a term carrying detailed layout
information as returned by the subterm_positions of read_term/2.
44..33..11..22 CCoonnddiittiioonnaall ccoommppiillaattiioonn
Conditional compilation builds on the same principle as
term_expansion/2, goal_expansion/2 and the expansion of grammar
rules to compile sections of the source code conditionally. One of the
reasons for introducing conditional compilation is to simplify writing
portable code. See section 14 for more information. Here is a simple
example:
________________________________________________________________________| |
|:- if(\+source_exports(library(lists), suffix/2)). |
| |
|suffix(Suffix, List) :- |
| append(_, Suffix, List). |
| |
|:-|endif.______________________________________________________________ | |
Note that these directives can only appear as separate terms in the
input. Typical usage scenarios include:
o Load different libraries on different dialects.
o Define a predicate if it is missing as a system predicate.
o Realise totally different implementations for a particular part of
the code due to different capabilities.
o Realise different configuration options for your software.
::-- iiff((_:_G_o_a_l))
Compile subsequent code only if _G_o_a_l succeeds. For enhanced
portability, _G_o_a_l is processed by expand_goal/2 before execution.
If an error occurs, the error is printed and processing proceeds as
if _G_o_a_l has failed.
::-- eelliiff((_:_G_o_a_l))
Equivalent to :- else. :-if(Goal). ... :- endif. In a sequence as
below, the section below the first matching elif is processed. If
no test succeeds, the else branch is processed.
____________________________________________________________________| |
| :- if(test1). |
| section_1. |
| :- elif(test2). |
| section_2. |
| :- elif(test3). |
| section_3. |
| :- else. |
| section_else. |
||:-_endif._________________________________________________________ ||
::-- eellssee
Start `else' branch.
::-- eennddiiff
End of conditional compilation.
44..33..22 LLooaaddiinngg ffiilleess,, aaccttiivvee ccooddee aanndd tthhrreeaaddss
Traditionally, Prolog environments allow for reloading files holding
currently active code. In particular, the following sequence is a
valid use of the development environment:
o Trace a goal
o Find unexpected behaviour of a predicate
o Enter a _b_r_e_a_k using the bb command
o Fix the sources and reload them using make/0
o Exit the break, _r_e_t_r_y using the rr command
Goals running during the reload keep running on the old definition,
while new goals use the reloaded definition, which is why the _r_e_t_r_y
must be used _a_f_t_e_r the reload. This implies that clauses of predicates
that are active during the reload cannot be reclaimed. Normally a
small amount of dead clauses should not be an issue during development.
Such clauses can be reclaimed with garbage_collect_clauses/0.
ggaarrbbaaggee__ccoolllleecctt__ccllaauusseess
Clean up all _d_i_r_t_y predicates, where dirty predicates are defined
to be predicates that have both old and new definitions due to
reloading a source file while the predicate was active. Of
course, predicates that are active using garbage_collect_clauses/0
cannot be reclaimed and remain _d_i_r_t_y. Predicates are, like atoms,
shared resources and therefore all threads are suspended during the
execution of this predicate.
44..33..22..11 CCoommppiillaattiioonn ooff mmuuttuuaallllyy ddeeppeennddeenntt ccooddee
Large programs are generally split into multiple files. If file
A accesses predicates from file B which accesses predicates from
file A, we consider this a mutual or circular dependency. If
traditional load predicates (e.g., consult/1) are used to include file
B from A and A from B, loading either file results in a loop.
This is because consult/1 is mapped to load_files/2 using the option
if(true)(_.) Such programs are typically loaded using a _l_o_a_d _f_i_l_e
that consults all required (non-module) files. If modules are used,
the dependencies are made explicit using use_module/1 statements. The
use_module/1 predicate, however, maps to load_files/2 with the option
if(not_loaded)(_.) A use_module/1 on an already loaded file merely makes
the public predicates of the used module available.
Summarizing, mutual dependency of source files is fully supported
with no precautions when using modules. Modules can use each other
in an arbitrary dependency graph. When using consult/1, predicate
dependencies between loaded files can still be arbitrary, but the
consult relations between files must be a proper tree.
44..33..22..22 CCoommppiillaattiioonn wwiitthh mmuullttiippllee tthhrreeaaddss
This section discusses compiling files for the first time. For
reloading, see section 4.3.2.3.
In older versions, compilation was thread-safe due to a global _l_o_c_k in
load_files/2 and the code dealing with _a_u_t_o_l_o_a_d_i_n_g (see section 2.13).
Besides unnecessary stalling when multiple threads trap unrelated
undefined predicates, this easily leads to deadlocks, notably if
threads are started from an initialization/1 directive.
Starting with version 5.11.27, the autoloader is no longer locked and
multiple threads can compile files concurrently. This requires special
precautions only if multiple threads wish to load the same file at
the same time. Therefore, load_files/2 checks automatically whether
some other thread is already loading the file. If not, it starts
loading the file. If another thread is already loading the file, the
thread blocks until the other thread finishes loading the file. After
waiting, and if the file is a module file, it will make the public
predicates available.
Note that this schema does not prevent deadlocks under all situations.
Consider two mutually dependent (see section 4.3.2.1) module files A
and B, where thread 1 starts loading A and thread 2 starts loading B
at the same time. Both threads will deadlock when trying to load the
used module.
The current implementation does not detect such cases and the involved
threads will freeze. This problem can be avoided if a mutually
dependent collection of files is always loaded from the same start
file.
44..33..22..33 RReellooaaddiinngg rruunnnniinngg ccooddee
This section discusses _n_o_t _r_e_-loading of code. Initial loading of code
is discussed in section 4.3.2.2.
As of version 5.5.30, there is basic thread-safety for reloading source
files while other threads are executing code defined in these source
files. Reloading a file freezes all threads after marking the active
predicates originating from the file being reloaded. The threads are
resumed after the file has been loaded. In addition, after completing
loading the outermost file, the system runs garbage_collect_clauses/0.
What does that mean? Unfortunately it does _n_o_t mean we can `hot-swap'
modules. Consider the case where thread A is executing the recursive
predicate P. We `fix' P and reload. The already running goals for
P continue to run the old definition, but new recursive calls will
use the new definition! Many similar cases can be constructed with
dependent predicates.
It provides some basic security for reloading files in multithreaded
applications during development. In the above scenario the system does
not crash uncontrolled, but behaves like any broken program: it may
return the wrong bindings, wrong truth value or raise an exception.
Future versions may have an `update now' facility. Such a facility
can be implemented on top of the _l_o_g_i_c_a_l _u_p_d_a_t_e _v_i_e_w. It would allow
threads to do a controlled update between processing independent jobs.
44..33..33 QQuuiicckk llooaadd ffiilleess
SWI-Prolog supports compilation of individual or multiple Prolog source
files into `Quick Load Files'. A `Quick Load File' (.qlf file) stores
the contents of the file in a precompiled format.
These files load considerably faster than source files and are normally
more compact. They are machine-independent and may thus be loaded on
any implementation of SWI-Prolog. Note, however, that clauses are
stored as virtual machine instructions. Changes to the compiler will
generally make old compiled files unusable.
Quick Load Files are created using qcompile/1. They are loaded using
consult/1 or one of the other file-loading predicates described in
section 4.3. If consult/1 is given an explicit .pl file, it will load
the Prolog source. When given a .qlf file, it will load the file.
When no extension is specified, it will load the .qlf file when present
and the .pl file otherwise.
qqccoommppiillee((_:_F_i_l_e))
Takes a file specification as consult/1, etc., and, in addition to
the normal compilation, creates a _Q_u_i_c_k _L_o_a_d _F_i_l_e from _F_i_l_e. The
file extension of this file is .qlf. The basename of the Quick
Load File is the same as the input file.
If the file contains `:- consult(_+_F_i_l_e)', `:- [_+_F_i_l_e]' or
`:- load_files(_+_F_i_l_e, [qcompile(part), ...])' statements, the re-
ferred files are compiled into the same .qlf file. Other
directives will be stored in the .qlf file and executed in the same
fashion as when loading the .pl file.
For term_expansion/2, the same rules as described in section 2.10
apply.
Conditional execution or optimisation may test the predicate
compiling/0.
Source references (source_file/2) in the Quick Load File refer to
the Prolog source file from which the compiled code originates.
qqccoommppiillee((_:_F_i_l_e_, _+_O_p_t_i_o_n_s))
As qcompile/1, but processes additional options as defined by
load_files/2.
44..44 EEddiittoorr IInntteerrffaaccee
SWI-Prolog offers an extensible interface which allows the user to
edit objects of the program: predicates, modules, files, etc. The
editor interface is implemented by edit/1 and consists of three parts:
_l_o_c_a_t_i_n_g, _s_e_l_e_c_t_i_n_g and _s_t_a_r_t_i_n_g the editor. Any of these parts may be
customized. See section 4.4.1.
The built-in edit specifications for edit/1 (see prolog_edit:locate/3)
are described in the table below:
___________________________________________________________________
|__________________________________________FFuullllyy__ssppeecciiffiieedd__oobbjjeeccttss____________________________________________||
|| <_M_o_d_u_l_e>:<_N_a_m_e>/<_A_r_i_t_y>R|efers to a predicate |
| module(<_M_o_d_u_l_e>) |Refers to a module |
| file(<_P_a_t_h>) |Refers to a file |
|_source_file(<_P_a_t_h>)___R|efers_to_a_loaded_source_file___________|_
|__________________________________________AAmmbbiigguuoouuss__ssppeecciiffiiccaattiioonnss__________________________________________||
|| <_N_a_m_e>/<_A_r_i_t_y> R|efers to this predicate in any module |
| <_N_a_m_e> |Refers to (1) the named predicate in any|
| |module with any arity, (2) a (source)|
|_______________________|file,_or_(3)_a_module.___________________|_
eeddiitt((_+_S_p_e_c_i_f_i_c_a_t_i_o_n))
First, exploit prolog_edit:locate/3 to translate _S_p_e_c_i_f_i_c_a_t_i_o_n into
a list of _L_o_c_a_t_i_o_n_s. If there is more than one `hit', the
user is asked to select from the locations found. Finally,
prolog_edit:edit_source/1 is used to invoke the user's preferred
editor. Typically, edit/1 can be handed the name of a predicate,
module, basename of a file, XPCE class, XPCE method, etc.
eeddiitt
Edit the `default' file using edit/1. The default file is the file
loaded with the command line option -s or, in Windows, the file
loaded by double-clicking from the Windows shell.
44..44..11 CCuussttoommiizziinngg tthhee eeddiittoorr iinntteerrffaaccee
The predicates described in this section are _h_o_o_k_s that can be defined
to disambiguate specifications given to edit/1, find the related
source, and open an editor at the given source location.
pprroolloogg__eeddiitt::llooccaattee((_+_S_p_e_c_, _-_F_u_l_l_S_p_e_c_, _-_L_o_c_a_t_i_o_n))
Where _S_p_e_c is the specification provided through edit/1. This
multifile predicate is used to enumerate locations where an object
satisfying the given _S_p_e_c can be found. _F_u_l_l_S_p_e_c is unified with
the complete specification for the object. This distinction is
used to allow for ambiguous specifications. For example, if _S_p_e_c
is an atom, which appears as the basename of a loaded file and as
the name of a predicate, _F_u_l_l_S_p_e_c will be bound to file(_P_a_t_h) or
_N_a_m_e/_A_r_i_t_y.
_L_o_c_a_t_i_o_n is a list of attributes of the location. Normally, this
list will contain the term file(_F_i_l_e) and, if available, the term
line(_L_i_n_e).
pprroolloogg__eeddiitt::llooccaattee((_+_S_p_e_c_, _-_L_o_c_a_t_i_o_n))
Same as prolog_edit:locate/3, but only deals with fully specified
objects.
pprroolloogg__eeddiitt::eeddiitt__ssoouurrccee((_+_L_o_c_a_t_i_o_n))
Start editor on _L_o_c_a_t_i_o_n. See prolog_edit:locate/3 for the format
of a location term. This multifile predicate is normally not
defined. If it succeeds, edit/1 assumes the editor is started.
If it fails, edit/1 uses its internal defaults, which are defined
by the Prolog flag editor and/or the environment variable EDITOR.
The following rules apply. If the Prolog flag editor is of
the format $<_n_a_m_e>, the editor is determined by the environment
variable <_n_a_m_e>. Else, if this flag is pce_emacs or built_in _a_n_d
XPCE is loaded or can be loaded, the built-in Emacs clone is
used. Else, if the environment EDITOR is set, this editor is used.
Finally, vi is used as default on Unix systems and notepad on
Windows.
See the default user preferences file dotfiles/dotswiplrc for
examples.
pprroolloogg__eeddiitt::eeddiitt__ccoommmmaanndd((_+_E_d_i_t_o_r_, _-_C_o_m_m_a_n_d))
Determines how _E_d_i_t_o_r is to be invoked using shell/1. _E_d_i_t_o_r is
the determined editor (see edit_source/1), without the full path
specification, and without a possible (.exe) extension. _C_o_m_m_a_n_d
is an atom describing the command. The following %-sequences are
replaced in _C_o_m_m_a_n_d before the result is handed to shell/1:
________________________________________________
| %e |Replaced by the (OS) command name of the |
| |editor |
| %f |Replaced by the (OS) full path name of |
| |the file |
|_%d_|Replaced_by_the_line_number_______________|
If the editor can deal with starting at a specified line, two
clauses should be provided. The first pattern invokes the editor
with a line number, while the second is used if the line number is
unknown.
The default contains definitions for vi, emacs, emacsclient, vim,
notepad* and wordpad*. Starred editors do not provide starting at
a given line number.
Please contribute your specifications to bugs@swi-prolog.org.
pprroolloogg__eeddiitt::llooaadd
Normally an undefined multifile predicate. This predicate may
be defined to provide loading hooks for user extensions to the
edit module. For example, XPCE provides the code below to load
swi_edit, containing definitions to locate classes and methods as
well as to bind this package to the PceEmacs built-in editor.
____________________________________________________________________| |
| :- multifile prolog_edit:load/0. |
| |
| prolog_edit:load :- |
||________ensure_loaded(library(swi_edit))._________________________ ||
44..55 LLiisstt tthhee pprrooggrraamm,, pprreeddiiccaatteess oorr ccllaauusseess
lliissttiinngg((_:_P_r_e_d))
List predicates specified by _P_r_e_d. _P_r_e_d may be a predicate name
(atom), which lists all predicates with this name, regardless of
their arity. It can also be a predicate indicator (<_n_a_m_e>/<_a_r_i_t_y>
or <_n_a_m_e>//<_a_r_i_t_y>), possibly qualified with a module. For example:
?- listing(lists:member/2)..
A listing is produced by enumerating the clauses of the predicate
using clause/2 and printing each clause using portray_clause/1.
This implies that the variable names are generated (_A, _B, ...) and
the layout is defined by rules in portray_clause/1.
lliissttiinngg
List all predicates from the calling module using listing/1. For
example, ?- listing. lists clauses in the default user module and
?- lists:listing. lists the clauses in the module lists.
ppoorrttrraayy__ccllaauussee((_+_C_l_a_u_s_e))
Pretty print a clause. A clause should be specified as a term
`<_H_e_a_d> :- <_B_o_d_y>'. Facts are represented as `<_H_e_a_d> :- true' or
simply <_H_e_a_d>. Variables in the clause are written as A, B, ....
Singleton variables are written as _. See also portray_clause/2.
ppoorrttrraayy__ccllaauussee((_+_S_t_r_e_a_m_, _+_C_l_a_u_s_e))
Pretty print a clause to _S_t_r_e_a_m. See portray_clause/1 for details.
44..66 VVeerriiffyy TTyyppee ooff aa TTeerrmm
Type tests are semi-deterministic predicates that succeed if the
argument satisfies the requested type. Type-test predicates have no
error condition and do not instantiate their argument. See also
library error.
vvaarr((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m currently is a free variable.
nnoonnvvaarr((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m currently is not a free variable.
iinntteeggeerr((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to an integer.
ffllooaatt((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to a floating point number.
rraattiioonnaall((_@_T_e_r_m))
True if _T_e_r_m is bound to a rational number. Rational numbers
include integers.
rraattiioonnaall((_@_T_e_r_m_, _-_N_u_m_e_r_a_t_o_r_, _-_D_e_n_o_m_i_n_a_t_o_r))
True if _T_e_r_m is a rational number with given _N_u_m_e_r_a_t_o_r and
_D_e_n_o_m_i_n_a_t_o_r. The _N_u_m_e_r_a_t_o_r and _D_e_n_o_m_i_n_a_t_o_r are in canonical form,
which means _D_e_n_o_m_i_n_a_t_o_r is a positive integer and there are no
common divisors between _N_u_m_e_r_a_t_o_r and _D_e_n_o_m_i_n_a_t_o_r.
nnuummbbeerr((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to an integer or floating point number.
aattoomm((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to an atom.
bblloobb((_@_T_e_r_m_, _?_T_y_p_e))
True if _T_e_r_m is a _b_l_o_b of type _T_y_p_e. See section 10.4.7.
ssttrriinngg((_@_T_e_r_m))
True if _T_e_r_m is bound to a string. Note that string here refers
to the built-in atomic type string as described in section 5.2.
Starting with version 7, the syntax for a string object is text
between double quotes, such as "hello". See also the Prolog flag
double_quotes.
aattoommiicc((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound (i.e., not a variable) and is not compound.
Thus, atomic acts as if defined by:
____________________________________________________________________| |
| atomic(Term) :- |
| nonvar(Term), |
||________\+_compound(Term).________________________________________ ||
SWI-Prolog defines the following atomic datatypes: atom (atom/1),
string (string/1), integer (integer/1), floating point number
(float/1) and blob (blob/2). In addition, the symbol [] (empty
list) is atomic, but not an atom. See section 5.1.
ccoommppoouunndd((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to a compound term. See also functor/3
=../2, compound_name_arity/3 and compound_name_arguments/3.
ccaallllaabbllee((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to an atom or a compound term. This was
intended as a type-test for arguments to call/1 and call/2.. Note
that callable only tests the _s_u_r_f_a_c_e _t_e_r_m. Terms such as (22,true)
are considered callable, but cause call/1 to raise a type error.
Module-qualification of meta-argument (see meta_predicate/1) using
:/2 causes callable to succeed on any meta-argument. Consider the
program and query below:
____________________________________________________________________| |
| :- meta_predicate p(0). |
| |
| p(G) :- callable(G), call(G). |
| |
| ?- p(22). |
| ERROR: Type error: `callable' expected, found `22' |
| ERROR: In: |
||ERROR:____[6]_p(user:22)__________________________________________ ||
ggrroouunndd((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m holds no free variables.
ccyycclliicc__tteerrmm((_@_T_e_r_m))
True if _T_e_r_m contains cycles, i.e. is an infinite term. See also
acyclic_term/1 and section 2.16.
aaccyycclliicc__tteerrmm((_@_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m does not contain cycles, i.e. can be processed
recursively in finite time. See also cyclic_term/1 and
section 2.16.
44..77 CCoommppaarriissoonn aanndd UUnniiffiiccaattiioonn ooff TTeerrmmss
Although unification is mostly done implicitly while matching the head
of a predicate, it is also provided by the predicate =/2.
_?_T_e_r_m_1 = _?_T_e_r_m_2 _[_I_S_O_]
Unify _T_e_r_m_1 with _T_e_r_m_2. True if the unification succeeds. For
behaviour on cyclic terms see the Prolog flag occurs_check. It
acts as if defined by the following fact:
____________________________________________________________________| |
||=(Term,_Term).____________________________________________________ ||
_@_T_e_r_m_1 \= _@_T_e_r_m_2 _[_I_S_O_]
Equivalent to \+Term1 = Term2. See also dif/2.
44..77..11 SSttaannddaarrdd OOrrddeerr ooff TTeerrmmss
Comparison and unification of arbitrary terms. Terms are ordered in
the so-called ``standard order''. This order is defined as follows:
1. _V_a_r_i_a_b_l_e_s <_N_u_m_b_e_r_s <_S_t_r_i_n_g_s <_A_t_o_m_s <_C_o_m_p_o_u_n_d _T_e_r_m_s
2. Variables are sorted by address. Attaching attributes (see
section 7.1) does not affect the ordering.
3. _N_u_m_b_e_r_s are compared by value. Mixed integer/float are compared as
floats. If the comparison is equal, the float is considered the
smaller value. If the Prolog flag iso is defined, all floating
point numbers precede all integers.
4. _S_t_r_i_n_g_s are compared alphabetically.
5. _A_t_o_m_s are compared alphabetically.
6. _C_o_m_p_o_u_n_d terms are first checked on their arity, then on their
functor name (alphabetically) and finally recursively on their
arguments, leftmost argument first.
_@_T_e_r_m_1 == _@_T_e_r_m_2 _[_I_S_O_]
True if _T_e_r_m_1 is equivalent to _T_e_r_m_2. A variable is only identical
to a sharing variable.
_@_T_e_r_m_1 \== _@_T_e_r_m_2 _[_I_S_O_]
Equivalent to \+Term1 == Term2.
_@_T_e_r_m_1 @< _@_T_e_r_m_2 _[_I_S_O_]
True if _T_e_r_m_1 is before _T_e_r_m_2 in the standard order of terms.
_@_T_e_r_m_1 @=< _@_T_e_r_m_2 _[_I_S_O_]
True if both terms are equal (==/2) or _T_e_r_m_1 is before _T_e_r_m_2 in the
standard order of terms.
_@_T_e_r_m_1 @> _@_T_e_r_m_2 _[_I_S_O_]
True if _T_e_r_m_1 is after _T_e_r_m_2 in the standard order of terms.
_@_T_e_r_m_1 @>= _@_T_e_r_m_2 _[_I_S_O_]
True if both terms are equal (==/2) or _T_e_r_m_1 is after _T_e_r_m_2 in the
standard order of terms.
ccoommppaarree((_?_O_r_d_e_r_, _@_T_e_r_m_1_, _@_T_e_r_m_2)) _[_I_S_O_]
Determine or test the _O_r_d_e_r between two terms in the standard order
of terms. _O_r_d_e_r is one of <, > or =, with the obvious meaning.
44..77..22 SSppeecciiaall uunniiffiiccaattiioonn aanndd ccoommppaarriissoonn pprreeddiiccaatteess
This section describes special purpose variations on Prolog
unification. The predicate unify_with_occurs_check/2 provides sound
unification and is part of the ISO standard. The predicate
subsumes_term/2 defines `one-sided unification' and is part of the ISO
proposal established in Edinburgh (2010). Finally, unifiable/3 is a
`what-if' version of unification that is often used as a building block
in constraint reasoners.
uunniiffyy__wwiitthh__ooccccuurrss__cchheecckk((_+_T_e_r_m_1_, _+_T_e_r_m_2)) _[_I_S_O_]
As =/2, but using _s_o_u_n_d _u_n_i_f_i_c_a_t_i_o_n. That is, a variable only
unifies to a term if this term does not contain the variable
itself. To illustrate this, consider the two queries below.
____________________________________________________________________| |
| 1 ?- A = f(A). |
| A = f(A). |
| 2 ?- unify_with_occurs_check(A, f(A)). |
||false.____________________________________________________________ ||
The first statement creates a _c_y_c_l_i_c _t_e_r_m, also called a _r_a_t_i_o_n_a_l
_t_r_e_e. The second executes logically sound unification and thus
fails. Note that the behaviour of unification through =/2 as well
as implicit unification in the head can be changed using the Prolog
flag occurs_check.
The SWI-Prolog implementation of unify_with_occurs_check/2 is
cycle-safe and only guards against _c_r_e_a_t_i_n_g cycles, not against
cycles that may already be present in one of the arguments. This
is illustrated in the following two queries:
____________________________________________________________________| |
| ?- X = f(X), Y = X, unify_with_occurs_check(X, Y). |
| X = Y, Y = f(Y). |
| ?- X = f(X), Y = f(Y), unify_with_occurs_check(X, Y). |
||X_=_Y,_Y_=_f(Y).__________________________________________________ ||
Some other Prolog systems interpret unify_with_occurs_check/2 as
if defined by the clause below, causing failure on the above
two queries. Direct use of acyclic_term/1 is portable and more
appropriate for such applications.
____________________________________________________________________| |
||unify_with_occurs_check(X,X)_:-_acyclic_term(X).__________________ ||
_+_T_e_r_m_1 =@= _+_T_e_r_m_2
True if _T_e_r_m_1 is a _v_a_r_i_a_n_t of (or _s_t_r_u_c_t_u_r_a_l_l_y _e_q_u_i_v_a_l_e_n_t to)
_T_e_r_m_2. Testing for a variant is weaker than equivalence (==/2),
but stronger than unification (=/2). Two terms A and B are
variants iff there exists a renaming of the variables in A that
makes A equivalent (==) to B and vice versa. Examples:
1 a =@= A false
2 A =@= B true
3 x(A,A) =@= x(B,C) false
4 x(A,A) =@= x(B,B) true
5 x(A,A) =@= x(A,B) false
6 x(A,B) =@= x(C,D) true
7 x(A,B) =@= x(B,A) true
8 x(A,B) =@= x(C,A) true
A term is always a variant of a copy of itself. Term copying takes
place in, e.g., copy_term/2, findall/3 or proving a clause added
with asserta/1. In the pure Prolog world (i.e., without attributed
variables), =@=/2 behaves as if defined below. With attributed
variables, variant of the attributes is tested rather than trying
to satisfy the constraints.
____________________________________________________________________| |
| A =@= B :- |
| copy_term(A, Ac), |
| copy_term(B, Bc), |
| numbervars(Ac, 0, N), |
| numbervars(Bc, 0, N), |
||________Ac_==_Bc._________________________________________________ ||
The SWI-Prolog implementation is cycle-safe and can deal with
variables that are shared between the left and right argument. Its
performance is comparable to ==/2, both on success and (early)
failure.
This predicate is known by the name variant/2 in some other Prolog
systems. Be aware of possible differences in semantics if the
arguments contain attributed variables or share variables.
_+_T_e_r_m_1 \=@= _+_T_e_r_m_2
Equivalent to `\+Term1 =@= Term2'. See =@=/2 for details.
ssuubbssuummeess__tteerrmm((_@_G_e_n_e_r_i_c_, _@_S_p_e_c_i_f_i_c)) _[_I_S_O_]
True if _G_e_n_e_r_i_c can be made equivalent to _S_p_e_c_i_f_i_c by only binding
variables in _G_e_n_e_r_i_c. The current implementation performs the
unification and ensures that the variable set of _S_p_e_c_i_f_i_c is not
changed by the unification. On success, the bindings are undone.
This predicate respects constraints.
tteerrmm__ssuubbssuummeerr((_+_S_p_e_c_i_a_l_1_, _+_S_p_e_c_i_a_l_2_, _-_G_e_n_e_r_a_l))
_G_e_n_e_r_a_l is the most specific term that is a generalisation of
_S_p_e_c_i_a_l_1 and _S_p_e_c_i_a_l_2. The implementation can handle cyclic terms.
uunniiffiiaabbllee((_@_X_, _@_Y_, _-_U_n_i_f_i_e_r))
If _X and _Y can unify, unify _U_n_i_f_i_e_r with a list of _V_a_r = _V_a_l_u_e,
representing the bindings required to make _X and _Y equivalent.
This predicate can handle cyclic terms. Attributed variables are
handled as normal variables. Associated hooks are _n_o_t executed.
??==((_@_T_e_r_m_1_, _@_T_e_r_m_2))
Succeeds if the syntactic equality of _T_e_r_m_1 and _T_e_r_m_2 can be
decided safely, i.e. if the result of Term1 == Term2 will not
change due to further instantiation of either term. It behaves as
if defined by ?=(X,Y) :- \+ unifiable(X,Y,[_|_]).
44..88 CCoonnttrrooll PPrreeddiiccaatteess
The predicates of this section implement control structures. Normally
the constructs in this section, except for repeat/0, are translated by
the compiler. Please note that complex goals passed as arguments to
meta-predicates such as findall/3 below cause the goal to be compiled
to a temporary location before execution. It is faster to define a
sub-predicate (i.e. one_character_atoms/1 in the example below) and make
a call to this simple predicate.
________________________________________________________________________| |
|one_character_atoms(As) :- |
||_______findall(A,_(current_atom(A),_atom_length(A,_1)),_As).__________ ||
ffaaiill _[_I_S_O_]
Always fail. The predicate fail/0 is translated into a single
virtual machine instruction.
ffaallssee _[_I_S_O_]
Same as fail, but the name has a more declarative connotation.
ttrruuee _[_I_S_O_]
Always succeed. The predicate true/0 is translated into a single
virtual machine instruction.
rreeppeeaatt _[_I_S_O_]
Always succeed, provide an infinite number of choice points.
! _[_I_S_O_]
Cut. Discard all choice points created since entering the
predicate in which the cut appears. In other words, _c_o_m_m_i_t to the
clause in which the cut appears _a_n_d discard choice points that
have been created by goals to the left of the cut in the current
clause. Meta calling is opaque to the cut. This implies that
cuts that appear in a term that is subject to meta-calling (call/1)
only affect choice points created by the meta-called term. The
following control structures are transparent to the cut: ;/2, ->/2
and *->/2 . Cuts appearing in the _c_o_n_d_i_t_i_o_n part of ->/2 and *->/2
are opaque to the cut. The table below explains the scope of the
cut with examples. _P_r_u_n_e_s here means ``prunes X choice point
created by X''.
t0 :- (a, !, b). % prunes a/0 and t0/0
t1 :- (a, !, fail ; b). % prunes a/0 and t1/0
t2 :- (a -> b, ! ; c). % prunes b/0 and t2/0
t3 :- call((a, !, fail ; b)). % prunes a/0
t4 :- \+(a, !, fail). % prunes a/0
_:_G_o_a_l_1 , _:_G_o_a_l_2 _[_I_S_O_]
Conjunction. True if both `Goal1' and `Goal2' can be proved. It
is defined as follows (this definition does not lead to a loop as
the second comma is handled by the compiler):
____________________________________________________________________| |
||Goal1,_Goal2_:-_Goal1,_Goal2._____________________________________ ||
_:_G_o_a_l_1 ; _:_G_o_a_l_2 _[_I_S_O_]
The `or' predicate is defined as:
____________________________________________________________________| |
| Goal1 ; _Goal2 :- Goal1. |
||_Goal1_;_Goal2_:-_Goal2.__________________________________________ ||
_:_G_o_a_l_1 | _:_G_o_a_l_2
Equivalent to ;/2. Retained for compatibility only. New code
should use ;/2.
_:_C_o_n_d_i_t_i_o_n -> _:_A_c_t_i_o_n _[_I_S_O_]
If-then and If-Then-Else. The ->/2 construct commits to the
choices made at its left-hand side, destroying choice points
created inside the clause (by ;/2), or by goals called by this
clause. Unlike !/0, the choice point of the predicate as a whole
(due to multiple clauses) is nnoott destroyed. The combination ;/2
and ->/2 acts as if defined as:
____________________________________________________________________| |
| If -> Then; _Else :- If, !, Then. |
| If -> _Then; Else :- !, Else. |
||If_->_Then_:-_If,_!,_Then.________________________________________ ||
Please note that (If -> Then) acts as (If -> Then ; ffaaiill), making
the construct _f_a_i_l if the condition fails. This unusual semantics
is part of the ISO and all de-facto Prolog standards.
_:_C_o_n_d_i_t_i_o_n *-> _:_A_c_t_i_o_n _; _:_E_l_s_e
This construct implements the so-called `soft-cut'. The control
is defined as follows: If _C_o_n_d_i_t_i_o_n succeeds at least once, the
semantics is the same as (_C_o_n_d_i_t_i_o_n, _A_c_t_i_o_n). If _C_o_n_d_i_t_i_o_n does
not succeed, the semantics is that of (\+ _C_o_n_d_i_t_i_o_n, _E_l_s_e). In
other words, if _C_o_n_d_i_t_i_o_n succeeds at least once, simply behave as
the conjunction of _C_o_n_d_i_t_i_o_n and _A_c_t_i_o_n, otherwise execute _E_l_s_e.
The construct _A *-> _B, i.e. without an _E_l_s_e branch, is translated
as the normal conjunction _A, _B.
\+ _:_G_o_a_l _[_I_S_O_]
True if `Goal' cannot be proven (mnemonic: + refers to _p_r_o_v_a_b_l_e
and the backslash (\) is normally used to indicate negation in
Prolog).
44..99 MMeettaa--CCaallll PPrreeddiiccaatteess
Meta-call predicates are used to call terms constructed at run time.
The basic meta-call mechanism offered by SWI-Prolog is to use variables
as a subclause (which should of course be bound to a valid goal at
runtime). A meta-call is slower than a normal call as it involves
actually searching the database at runtime for the predicate, while for
normal calls this search is done at compile time.
ccaallll((_:_G_o_a_l)) _[_I_S_O_]
Invoke _G_o_a_l as a goal. Note that clauses may have variables as
subclauses, which is identical to call/1.
ccaallll((_:_G_o_a_l_, _+_E_x_t_r_a_A_r_g_1_, _._._.)) _[_I_S_O_]
Append _E_x_t_r_a_A_r_g_1_, _E_x_t_r_a_A_r_g_2_, _._._. to the argument list of _G_o_a_l
and call the result. For example, call(plus(1), 2, X) will call
plus(1, 2, X), binding _X to 3.
The call/[2..] construct is handled by the compiler. The
predicates call/[2-8] are defined as real (meta-)predicates
and are available to inspection through current_predicate/1,
predicate_property/2, etc. Higher arities are handled by the
compiler and runtime system, but the predicates are not accessible
for inspection.
aappppllyy((_:_G_o_a_l_, _+_L_i_s_t))
Append the members of _L_i_s_t to the arguments of _G_o_a_l and call
the resulting term. For example: apply(plus(1), [2, X]) calls
plus(1, 2, X). New code should use call/[2..] if the length of
_L_i_s_t is fixed.
nnoott((_:_G_o_a_l))
True if _G_o_a_l cannot be proven. Retained for compatibility only.
New code should use \+/1.
oonnccee((_:_G_o_a_l)) _[_I_S_O_]
Defined as:
____________________________________________________________________| |
| once(Goal) :- |
||________Goal,_!.__________________________________________________ ||
once/1 can in many cases be replaced with ->/2. The only
difference is how the cut behaves (see !/0). The following two
clauses are identical:
____________________________________________________________________| |
| 1) a :- once((b, c)), d. |
||2)_a_:-_b,_c_->_d.________________________________________________ ||
iiggnnoorree((_:_G_o_a_l))
Calls _G_o_a_l as once/1, but succeeds, regardless of whether _G_o_a_l
succeeded or not. Defined as:
____________________________________________________________________| |
| ignore(Goal) :- |
| Goal, !. |
||ignore(_).________________________________________________________ ||
ccaallll__wwiitthh__ddeepptthh__lliimmiitt((_:_G_o_a_l_, _+_L_i_m_i_t_, _-_R_e_s_u_l_t))
If _G_o_a_l can be proven without recursion deeper than _L_i_m_i_t levels,
call_with_depth_limit/3 succeeds, binding _R_e_s_u_l_t to the deepest
recursion level used during the proof. Otherwise, _R_e_s_u_l_t is
unified with depth_limit_exceeded if the limit was exceeded during
the proof, or the entire predicate fails if _G_o_a_l fails without
exceeding _L_i_m_i_t.
The depth limit is guarded by the internal machinery. This
may differ from the depth computed based on a theoretical model.
For example, true/0 is translated into an inline virtual machine
instruction. Also, repeat/0 is not implemented as below, but as a
non-deterministic foreign predicate.
____________________________________________________________________| |
| repeat. |
| repeat :- |
||________repeat.___________________________________________________ ||
As a result, call_with_depth_limit/3may still loop infinitely on
programs that should theoretically finish in finite time. This
problem can be cured by using Prolog equivalents to such built-in
predicates.
This predicate may be used for theorem provers to re-
alise techniques like _i_t_e_r_a_t_i_v_e _d_e_e_p_e_n_i_n_g. See also
call_with_inference_limit/3. It was implemented after discussion
with Steve Moyle smoyle@ermine.ox.ac.uk.
ccaallll__wwiitthh__iinnffeerreennccee__lliimmiitt((_:_G_o_a_l_, _+_L_i_m_i_t_, _-_R_e_s_u_l_t))
Equivalent to call(_G_o_a_l), but limits the number of inferences _f_o_r
_e_a_c_h _s_o_l_u_t_i_o_n _o_f _G_o_a_l.. Execution may terminate as follows:
o If _G_o_a_l does _n_o_t terminate before the inference limit is
exceeded, _G_o_a_l is aborted by injecting the exception infer-
ence_limit_exceeded into its execution. After termination of
_G_o_a_l, _R_e_s_u_l_t is unified with the atom inference_limit_exceeded.
_O_t_h_e_r_w_i_s_e,
o If _G_o_a_l fails, call_with_inference_limit/3fails.
o If _G_o_a_l succeeds _w_i_t_h_o_u_t _a _c_h_o_i_c_e _p_o_i_n_t, _R_e_s_u_l_t is unified
with !.
o If _G_o_a_l succeeds _w_i_t_h _a _c_h_o_i_c_e _p_o_i_n_t, _R_e_s_u_l_t is unified with
true.
o If _G_o_a_l throws an exception, call_with_inference_limit/3
re-throws the exception.
An inference is defined as a call or redo on a predicate. Please
note that some primitive built-in predicates are compiled to
virtual machine instructions for which inferences are not counted.
The execution of predicates defined in other languages (e.g., C,
C++) count as a single inference. This includes potentially
expensive built-in predicates such as sort/2.
Calls to this predicate may be nested. An inner call that sets
the limit below the current is honoured. An inner call that would
terminate after the current limit does not change the effective
limit. See also call_with_depth_limit/3 and call_with_time_limit/2.
sseettuupp__ccaallll__cclleeaannuupp((_:_S_e_t_u_p_, _:_G_o_a_l_, _:_C_l_e_a_n_u_p))
Calls (once(Setup), Goal). If _S_e_t_u_p succeeds, _C_l_e_a_n_u_p will
be called exactly once after _G_o_a_l is finished: either on
failure, deterministic success, commit, or an exception. The
execution of _S_e_t_u_p is protected from asynchronous interrupts like
call_with_time_limit/2 (package clib) or thread_signal/2. In most
uses, _S_e_t_u_p will perform temporary side-effects required by _G_o_a_l
that are finally undone by _C_l_e_a_n_u_p.
Success or failure of _C_l_e_a_n_u_p is ignored, and choice points it
created are destroyed (as once/1). If _C_l_e_a_n_u_p throws an exception,
this is executed as normal.
Typically, this predicate is used to cleanup permanent data storage
required to execute _G_o_a_l, close file descriptors, etc. The example
below provides a non-deterministic search for a term in a file,
closing the stream as needed.
____________________________________________________________________| |
| term_in_file(Term, File) :- |
| setup_call_cleanup(open(File, read, In), |
| term_in_stream(Term, In), |
| close(In) ). |
| |
| term_in_stream(Term, In) :- |
| repeat, |
| read(In, T), |
| ( T == end_of_file |
| -> !, fail |
| ; T = Term |
||________).________________________________________________________ ||
Note that it is impossible to implement this predicate in Prolog.
The closest approximation would be to read all terms into a list,
close the file and call member/2. Without setup_call_cleanup/3
there is no way to gain control if the choice point left by
repeat/0 is removed by a cut or an exception.
setup_call_cleanup/3 can also be used to test determinism of a
goal, providing a portable alternative to deterministic/1:
____________________________________________________________________| |
| ?- setup_call_cleanup(true,(X=1;X=2), Det=yes). |
| |
| X = 1 ; |
| |
| X = 2, |
||Det_=_yes_;_______________________________________________________ ||
This predicate is under consideration for inclusion into the ISO
standard. For compatibility with other Prolog implementations see
call_cleanup/2.
sseettuupp__ccaallll__ccaattcchheerr__cclleeaannuupp((_:_S_e_t_u_p_, _:_G_o_a_l_, _+_C_a_t_c_h_e_r_, _:_C_l_e_a_n_u_p))
Similar to setup_call_cleanup(_S_e_t_u_p_, _G_o_a_l_, _C_l_e_a_n_u_p) with additional
information on the reason for calling _C_l_e_a_n_u_p. Prior to calling
_C_l_e_a_n_u_p, _C_a_t_c_h_e_r unifies with the termination code (see below). If
this unification fails, _C_l_e_a_n_u_p is _n_o_t called.
eexxiitt
_G_o_a_l succeeded without leaving any choice points.
ffaaiill
_G_o_a_l failed.
!
_G_o_a_l succeeded with choice points and these are now discarded
by the execution of a cut (or other pruning of the search tree
such as if-then-else).
eexxcceeppttiioonn((_E_x_c_e_p_t_i_o_n))
_G_o_a_l raised the given _E_x_c_e_p_t_i_o_n.
eexxtteerrnnaall__eexxcceeppttiioonn((_E_x_c_e_p_t_i_o_n))
_G_o_a_l succeeded with choice points and these are now discarded
due to an exception. For example:
_______________________________________________________________| |
|?- setup_call_catcher_cleanup(true, (X=1;X=2), |
| Catcher, writeln(Catcher)), |
| throw(ball). |
|external_exception(ball) |
|ERROR:|Unhandled_exception:_Unknown_message:_ball_____________ | |
ccaallll__cclleeaannuupp((_:_G_o_a_l_, _:_C_l_e_a_n_u_p))
Same as setup_call_cleanup(_t_r_u_e_, _G_o_a_l_, _C_l_e_a_n_u_p). This is provided
for compatibility with a number of other Prolog implementations
only. Do not use call_cleanup/2 if you perform side-effects
prior to calling that will be undone by _C_l_e_a_n_u_p. Instead, use
setup_call_cleanup/3 with an appropriate first argument to perform
those side-effects.
ccaallll__cclleeaannuupp((_:_G_o_a_l_, _+_C_a_t_c_h_e_r_, _:_C_l_e_a_n_u_p))
Same as setup_call_catcher_cleanup(_t_r_u_e_, _G_o_a_l_, _C_a_t_c_h_e_r_, _C_l_e_a_n_u_p).
The same warning as for call_cleanup/2 applies.
44..1100 IISSOO ccoommpplliiaanntt EExxcceeppttiioonn hhaannddlliinngg
SWI-Prolog defines the predicates catch/3 and throw/1 for ISO compliant
raising and catching of exceptions. In the current implementation
(as of 4.0.6), most of the built-in predicates generate exceptions,
but some obscure predicates merely print a message, start the debugger
and fail, which was the normal behaviour before the introduction of
exceptions.
ccaattcchh((_:_G_o_a_l_, _+_C_a_t_c_h_e_r_, _:_R_e_c_o_v_e_r)) _[_I_S_O_]
Behaves as call/1 if no exception is raised when executing _G_o_a_l.
If an exception is raised using throw/1 while _G_o_a_l executes, and
the _G_o_a_l is the innermost goal for which _C_a_t_c_h_e_r unifies with the
argument of throw/1, all choice points generated by _G_o_a_l are cut,
the system backtracks to the start of catch/3 while preserving the
thrown exception term, and _R_e_c_o_v_e_r is called as in call/1.
The overhead of calling a goal through catch/3 is comparable to
call/1. Recovery from an exception is much slower, especially if
the exception term is large due to the copying thereof.
tthhrrooww((_+_E_x_c_e_p_t_i_o_n)) _[_I_S_O_]
Raise an exception. The system looks for the innermost catch/3
ancestor for which _E_x_c_e_p_t_i_o_n unifies with the _C_a_t_c_h_e_r argument of
the catch/3 call. See catch/3 for details.
ISO demands that throw/1 make a copy of _E_x_c_e_p_t_i_o_n, walk up the
stack to a catch/3 call, backtrack and try to unify the copy of
_E_x_c_e_p_t_i_o_n with _C_a_t_c_h_e_r. SWI-Prolog delays backtracking until it
actually finds a matching catch/3 goal. The advantage is that
we can start the debugger at the first possible location while
preserving the entire exception context if there is no matching
catch/3 goal. This approach can lead to different behaviour if
_G_o_a_l and _C_a_t_c_h_e_r of catch/3 call shared variables. We assume this
to be highly unlikely and could not think of a scenario where this
is useful.
In addition to explicit calls to throw/1, many built-in predicates
throw exceptions directly from C. If the _E_x_c_e_p_t_i_o_n term cannot be
copied due to lack of stack space, the following actions are tried
in order:
1. If the exception is of the form error(_F_o_r_m_a_l_, _I_m_p_l_e_m_e_n_-
_t_a_t_i_o_n_D_e_f_i_n_e_d), try to raise the exception without the
_I_m_p_l_e_m_e_n_t_a_t_i_o_n_D_e_f_i_n_e_d part.
2. Try to raise error(resource_error_(_s_t_a_c_k_)_, _g_l_o_b_a_l).
3. Abort (see abort/0).
If an exception is raised in a call-back from C (see chapter 10)
and not caught in the same call-back, PL_next_solution()fails and
the exception context can be retrieved using PL_exception().
44..1100..11 DDeebbuuggggiinngg aanndd eexxcceeppttiioonnss
Before the introduction of exceptions in SWI-Prolog a runtime error
was handled by printing an error message, after which the predicate
failed. If the Prolog flag debug_on_errorwas in effect (default), the
tracer was switched on. The combination of the error message and trace
information is generally sufficient to locate the error.
With exception handling, things are different. A programmer may wish
to trap an exception using catch/3 to avoid it reaching the user. If
the exception is not handled by user code, the interactive top level
will trap it to prevent termination.
If we do not take special precautions, the context information
associated with an unexpected exception (i.e., a programming error) is
lost. Therefore, if an exception is raised which is not caught using
catch/3 and the top level is running, the error will be printed, and
the system will enter trace mode.
If the system is in a non-interactive call-back from foreign code and
there is no catch/3 active in the current context, it cannot determine
whether or not the exception will be caught by the external routine
calling Prolog. It will then base its behaviour on the Prolog flag
debug_on_error:
o _c_u_r_r_e_n_t___p_r_o_l_o_g___f_l_a_g_(_d_e_b_u_g___o_n___e_r_r_o_r_, _f_a_l_s_e_)
The exception does not trap the debugger and is returned to the
foreign routine calling Prolog, where it can be accessed using
PL_exception(). This is the default.
o _c_u_r_r_e_n_t___p_r_o_l_o_g___f_l_a_g_(_d_e_b_u_g___o_n___e_r_r_o_r_, _t_r_u_e_)
If the exception is not caught by Prolog in the current context, it
will trap the tracer to help analyse the context of the error.
While looking for the context in which an exception takes place, it is
advised to switch on debug mode using the predicate debug/0. The hook
prolog_exception_hook/4 can be used to add more debugging facilities to
exceptions. An example is the library http/http_error, generating a
full stack trace on errors in the HTTP server library.
44..1100..22 TThhee eexxcceeppttiioonn tteerrmm
Built-in predicates generate exceptions using a term error(_F_o_r_m_a_l_,
_C_o_n_t_e_x_t). The first argument is the `formal' description of the
error, specifying the class and generic defined context information.
When applicable, the ISO error term definition is used. The second
part describes some additional context to help the programmer while
debugging. In its most generic form this is a term of the form
context(_N_a_m_e_/_A_r_i_t_y_, _M_e_s_s_a_g_e), where _N_a_m_e/_A_r_i_t_y describes the built-in
predicate that raised the error, and _M_e_s_s_a_g_e provides an additional
description of the error. Any part of this structure may be a variable
if no information was present.
44..1100..33 PPrriinnttiinngg mmeessssaaggeess
The predicate print_message/2 is used to print a message term in a
human-readable format. The other predicates from this section allow
the user to refine and extend the message system. A common usage of
print_message/2 is to print error messages from exceptions. The code
below prints errors encountered during the execution of _G_o_a_l, without
further propagating the exception and without starting the debugger.
________________________________________________________________________| |
| ..., |
| catch(Goal, E, |
| ( print_message(error, E), |
| fail |
| )), |
||_______...____________________________________________________________ ||
Another common use is to define message_hook/3 for printing messages
that are normally _s_i_l_e_n_t, suppressing messages, redirecting messages or
make something happen in addition to printing the message.
pprriinntt__mmeessssaaggee((_+_K_i_n_d_, _+_T_e_r_m))
The predicate print_message/2 is used by the system and libraries
to print messages. _K_i_n_d describes the nature of the message,
while _T_e_r_m is a Prolog term that describes the content. Printing
messages through this indirection instead of using format/3 to
the stream user_error allows displaying the message appropriate to
the application (terminal, logfile, graphics), acting on messages
based on their content instead of a string (see message_hook/3) and
creating language specific versions of the messages. See also
section 4.10.3.1. The following message kinds are known:
bbaannnneerr
The system banner message. Banner messages can be suppressed
by setting the Prolog flag verbose to silent.
ddeebbuugg((_T_o_p_i_c))
Message from library(debug). See debug/3.
eerrrroorr
The message indicates an erroneous situation. This kind
is used to print uncaught exceptions of type error(_F_o_r_m_a_l_,
_C_o_n_t_e_x_t). See section introduction (section 4.10.3).
hheellpp
User requested help message, for example after entering `h' or
`?' to a prompt.
iinnffoorrmmaattiioonn
Information that is requested by the user. An example is
statistics/0.
iinnffoorrmmaattiioonnaall
Typically messages of events are progres that are considered
useful to a developer. Such messages can be suppressed by
setting the Prolog flag verbose to silent.
ssiilleenntt
Message that is normally not printed. Applications may define
message_hook/3 to act upon such messages.
ttrraaccee
Messages from the (command line) tracer.
wwaarrnniinngg
The message indicates something dubious that is not considered
fatal. For example, discontiguous predicates (see
discontiguous/1).
The predicate print_message/2first translates the _T_e_r_m into a list
of `message lines' (see print_message_lines/3 for details). Next,
it calls the hook message_hook/3to allow the user to intercept the
message. If message_hook/3fails it prints the message unless _K_i_n_d
is silent.
The print_message/2 predicate and its rules are in the file
<_p_l_h_o_m_e>/boot/messages.pl, which may be inspected for more
information on the error messages and related error terms. If you
need to write messages from your own predicates, it is recommended
to reuse the existing message terms if applicable. If no existing
message term is applicable, invent a fairly unique term that
represents the event and define a rule for the multifile predicate
prolog:message//1. See section 4.10.3.1 for a deeper discussion
and examples.
See also message_to_string/2.
pprriinntt__mmeessssaaggee__lliinneess((_+_S_t_r_e_a_m_, _+_P_r_e_f_i_x_, _+_L_i_n_e_s))
Print a message (see print_message/2) that has been translated to a
list of message elements. The elements of this list are:
<_F_o_r_m_a_t>--<_A_r_g_s>
Where _F_o_r_m_a_t is an atom and _A_r_g_s is a list of format
arguments. Handed to format/3.
fflluusshh
If this appears as the last element, _S_t_r_e_a_m is flushed (see
flush_output/1) and no final newline is generated. This
is combined with a subsequent message that starts with
at_same_line to complete the line.
aatt__ssaammee__lliinnee
If this appears as first element, no prefix is printed for
the first line and the line position is not forced to 0 (see
format/1, ~N).
aannssii((_+_A_t_t_r_i_b_u_t_e_s_, _+_F_o_r_m_a_t_, _+_A_r_g_s))
This message may be intercepted by means of the hook pro-
log:message_line_element/2. The library ansi_term implements
this hook to achieve coloured output. If it is not
intercepted it invokes format(_S_t_r_e_a_m_, _F_o_r_m_a_t_, _A_r_g_s).
nnll
A new line is started. If the message is not complete, _P_r_e_f_i_x
is printed before the remainder of the message.
bbeeggiinn((_K_i_n_d_, _V_a_r))
eenndd((_V_a_r))
The entire message is headed by begin(_K_i_n_d_, _V_a_r) and ended by
end(_V_a_r). This feature is used by, e.g., library ansi_term to
colour entire messages.
<_F_o_r_m_a_t>
Handed to format/3 as format(_S_t_r_e_a_m_, _F_o_r_m_a_t_, _[_]). Deprecated
because it is ambiguous if _F_o_r_m_a_t collides with one of the
atomic commands.
See also print_message/2 and message_hook/3.
mmeessssaaggee__hhooookk((_+_T_e_r_m_, _+_K_i_n_d_, _+_L_i_n_e_s))
Hook predicate that may be defined in the module user to intercept
messages from print_message/2. _T_e_r_m and _K_i_n_d are the same as
passed to print_message/2. _L_i_n_e_s is a list of format statements as
described with print_message_lines/3. See also message_to_string/2.
This predicate must be defined dynamic and multifile to allow other
modules defining clauses for it too.
tthhrreeaadd__mmeessssaaggee__hhooookk((_+_T_e_r_m_, _+_K_i_n_d_, _+_L_i_n_e_s))
As message_hook/3, but this predicate is local to the calling
thread (see thread_local/1). This hook is called _b_e_f_o_r_e
message_hook/3. The `pre-hook' is indented to catch messages
they may be produced by calling some goal without affecting other
threads.
mmeessssaaggee__pprrooppeerrttyy((_+_K_i_n_d_, _?_P_r_o_p_e_r_t_y))
This hook can be used to define additional message kinds and the
way they are displayed. The following properties are defined:
ccoolloorr((_-_A_t_t_r_i_b_u_t_e_s))
Print message using ANSI terminal attributes. See
ansi_format/3 for details. Here is an example, printing help
messages in blue:
_______________________________________________________________| |
|:- multifile user:message_property/2. |
| |
|user:message_property(help,|color([fg(blue)]))._______________ | |
pprreeffiixx((_-_P_r_e_f_i_x))
Prefix printed before each line. This argument is handed to
format/3. The default is '~N'. For example, messages of kind
warning use '~NWarning: '.
llooccaattiioonn__pprreeffiixx((_+_L_o_c_a_t_i_o_n_, _-_F_i_r_s_t_P_r_e_f_i_x_, _-_C_o_n_t_i_n_u_e_P_r_e_f_i_x))
Used for printing messages that are related to a source loca-
tion. Currently, _L_o_c_a_t_i_o_n is a term _F_i_l_e:_L_i_n_e. _F_i_r_s_t_P_r_e_f_i_x
is the prefix for the first line and _-_C_o_n_t_i_n_u_e_P_r_e_f_i_x is the
prefix for continuation lines. For example, the default for
errors is
_______________________________________________________________| |
|location_prefix(File:Line, |
||_______________'~NERROR:_~w:~d:'-[File,Line],_'~N\t')).______ ||
ssttrreeaamm((_-_S_t_r_e_a_m))
Stream to which to print the message. Default is user_error.
wwaaiitt((_-_S_e_c_o_n_d_s))
Amount of time to wait after printing the message. Default is
not to wait.
pprroolloogg::mmeessssaaggee__lliinnee__eelleemmeenntt((_+_S_t_r_e_a_m_, _+_T_e_r_m))
This hook is called to print the individual elements of a message
from print_message_lines/3. This hook is used by e.g., library
ansi_term to colour messages on ANSI-capable terminals.
mmeessssaaggee__ttoo__ssttrriinngg((_+_T_e_r_m_, _-_S_t_r_i_n_g))
Translates a message term into a string object (see section 5.2).
vveerrssiioonn
Write the SWI-Prolog banner message as well as additional messages
registered using version/1. This is the default _i_n_i_t_i_a_l_i_z_a_t_i_o_n
_g_o_a_l which can be modified using -g.
vveerrssiioonn((_+_M_e_s_s_a_g_e))
Register additional messages to be printed by version/0. Each
registered message is handed to the message translation DCG and can
thus be defined using the hook prolog:message//1. If not defined,
it is simply printed.
44..1100..33..11 PPrriinnttiinngg ffrroomm lliibbrraarriieess
Libraries should _n_o_t use format/3 or other output predicates directly.
Libraries that print informational output directly to the console are
hard to use from code that depend on your textual output, such as a CGI
script. The predicates in section 4.10.3 define the API for dealing
with messages. The idea behind this is that a library that wants
to provide information about its status, progress, events or problems
calls print_message/2. The first argument is the _l_e_v_e_l. The supported
levels are described with print_message/2. Libraries typically use
informational and warning, while libraries should use exceptions for
errors (see throw/1, type_error/2, etc.).
The second argument is an arbitrary Prolog term that carries the
information of the message, but _n_o_t the precise text. The text
is defined by the grammar rule prolog:message//1. This distinction
is made to allow for translations and to allow hooks processing the
information in a different way (e.g., to translate progress messages
into a progress bar).
For example, suppose we have a library that must download data from
the Internet (e.g., based on http_open/3). The library wants to print
the progress after each downloaded file. The code below is a good
skeleton:
________________________________________________________________________| |
|download_urls(List) :- |
| length(List, Total), |
| forall(nth1(I, List, URL), |
| ( download_url(URL), |
| print_message(informational, |
||________________________________download_url(URL,_I,_Total))))._______ ||
The programmer can now specify the default textual output using the
rule below. Note that this rule may be in the same file or anywhere
else. Notably, the application may come with several rule sets for
different languages. This, and the user-hook example below are the
reason to represent the message as a compound term rather than a
string. This is similar to using message numbers in non-symbolic
languages. The documentation of print_message_lines/3 describes the
elements that may appear in the output list.
________________________________________________________________________| |
|:- multifile |
| prolog:message//1. |
| |
|prolog:message(download_url(URL, I, Total)) --> |
| { Perc is round(I*100/Total) }, |
||_______[_'Downloaded_~w;_~D_from_~D_(~d%)'-[URL,_I,_Total,_Perc]_].___ ||
A _u_s_e_r of the library may define rules for message_hook/3. The rule
below acts on the message content. Other applications can act on the
message level and, for example, popup a message box for warnings and
errors.
________________________________________________________________________| |
|:- multifile user:message_hook/3. |
| |
|message_hook(download_url(URL, I, Total), _Kind, _Lines) :- |
||_______<send_this_information_to_a_GUI_component>_____________________ ||
In addition, using the command line option -q, the user can disable all
_i_n_f_o_r_m_a_t_i_o_n_a_l messages.
44..1111 HHaannddlliinngg ssiiggnnaallss
As of version 3.1.0, SWI-Prolog is able to handle software
interrupts (signals) in Prolog as well as in foreign (C) code (see
section 10.4.13).
Signals are used to handle internal errors (execution of a non-existing
CPU instruction, arithmetic domain errors, illegal memory access,
resource overflow, etc.), as well as for dealing with asynchronous
interprocess communication.
Signals are defined by the POSIX standard and part of all Unix
machines. The MS-Windows Win32 provides a subset of the signal
handling routines, lacking the vital functionality to raise a signal in
another thread for achieving asynchronous interprocess (or interthread)
communication (Unix kill() function).
oonn__ssiiggnnaall((_+_S_i_g_n_a_l_, _-_O_l_d_, _:_N_e_w))
Determines the reaction on _S_i_g_n_a_l. _O_l_d is unified with the old
behaviour, while the behaviour is switched to _N_e_w. As with similar
environment control predicates, the current value is retrieved
using on_signal(Signal, Current, Current).
The action description is an atom denoting the name of the
predicate that will be called if _S_i_g_n_a_l arrives. on_signal/3 is a
meta-predicate, which implies that <_M_o_d_u_l_e>:<_N_a_m_e> refers to <_N_a_m_e>/1
in module <_M_o_d_u_l_e>. The handler is called with a single argument:
the name of the signal as an atom. The Prolog names for signals
are explained below.
Two predicate names have special meaning. throw implies Prolog
will map the signal onto a Prolog exception as described in
section 4.10. default resets the handler to the settings active
before SWI-Prolog manipulated the handler.
Signals bound to a foreign function through PL_signal() are
reported using the term $foreign_function(_A_d_d_r_e_s_s).
After receiving a signal mapped to throw, the exception raised has
the following structure:
error(signal(<SigName>, <SigNum>), <_C_o_n_t_e_x_t>)
The signal names are defined by the POSIX standard as symbols
of the form SIG<SIGNAME>. The Prolog name for a signal is the
lowercase version of <SIGNAME>. The predicate current_signal/3 may
be used to map between names and signals.
Initially, some signals are mapped to throw, while all other
signals are default. The following signals throw an exception:
fpe, alrm, xcpu, xfsz and vtalrm.
ccuurrrreenntt__ssiiggnnaall((_?_N_a_m_e_, _?_I_d_, _?_H_a_n_d_l_e_r))
Enumerate the currently defined signal handling. _N_a_m_e is the
signal name, _I_d is the numerical identifier and _H_a_n_d_l_e_r is the
currently defined handler (see on_signal/3).
44..1111..11 NNootteess oonn ssiiggnnaall hhaannddlliinngg
Before deciding to deal with signals in your application, please
consider the following:
o _P_o_r_t_a_b_i_l_i_t_y
On MS-Windows, the signal interface is severely limited. Different
Unix brands support different sets of signals, and the relation
between signal name and number may vary. Currently, the system
only supports signals numbered 1 to 32. Installing a signal
outside the limited set of supported signals in MS-Windows crashes
the application.
o _S_a_f_e_t_y
Immediately delivered signals (see below) are unsafe. This implies
that foreign functions called from a handler cannot safely use
the SWI-Prolog API and cannot use C longjmp(). Handlers defined
as throw are unsafe. Handlers defined to call a predicate are
safe. Note that the predicate can call throw/1, but the delivery
is delayed until Prolog is in a safe state.
The C-interface described in section 10.4.13 provides the option
PL_SIGSYNC to select either safe synchronous or unsafe asynchronous
delivery.
o _T_i_m_e _o_f _d_e_l_i_v_e_r_y
Using throw or a foreign handler, signals are delivered immediately
(as defined by the OS). When using a Prolog predicate, delivery is
delayed to a safe moment. Blocking system calls or foreign loops
may cause long delays. Foreign code can improve on that by calling
PL_handle_signals().
Signals are blocked when the garbage collector is active.
44..1122 DDCCGG GGrraammmmaarr rruulleess
Grammar rules form a comfortable interface to _d_i_f_f_e_r_e_n_c_e _l_i_s_t_s. They
are designed both to support writing parsers that build a parse tree
from a list of characters or tokens and for generating a flat list from
a term.
Grammar rules look like ordinary clauses using -->/2 for separating
the head and body rather than :-/2. Expanding grammar rules is done
by expand_term/2, which adds two additional arguments to each term for
representing the difference list.
The body of a grammar rule can contain three types of terms. A
callable term is interpreted as a reference to a grammar rule. Code
between {...} is interpreted as plain Prolog code, and finally,
a list is interpreted as a sequence of _l_i_t_e_r_a_l_s. The Prolog
control-constructs (\+/1, ->/2 , ;//2, ,/2 and !/0) can be used in
grammar rules.
We illustrate the behaviour by defining a rule set for parsing an
integer.
________________________________________________________________________| |
|integer(I) --> |
| digit(D0), |
| digits(D), |
| { number_codes(I, [D0|D]) |
| }. |
| |
|digits([D|T]) --> |
| digit(D), !, |
| digits(T). |
|digits([]) --> |
| []. |
| |
|digit(D) --> |
| [D], |
| { code_type(D, digit) |
||_______}._____________________________________________________________ ||
Grammar rule sets are called using the built-in predicates phrase/2 and
phrase/3:
pphhrraassee((_:_D_C_G_B_o_d_y_, _?_L_i_s_t))
Equivalent to phrase(_D_C_G_B_o_d_y, _I_n_p_u_t_L_i_s_t, []).
pphhrraassee((_:_D_C_G_B_o_d_y_, _?_L_i_s_t_, _?_R_e_s_t))
True when _D_C_G_B_o_d_y applies to the difference _L_i_s_t/_R_e_s_t. Although
_D_C_G_B_o_d_y is typically a _c_a_l_l_a_b_l_e term that denotes a grammar rule,
it can be any term that is valid as the body of a DCG rule.
The example below calls the rule set integer//1 defined in
section 4.12 and available from library(dcg/basics), binding _R_e_s_t
to the remainder of the input after matching the integer.
____________________________________________________________________| |
| ?- [library(dcg/basics)]. |
| ?- atom_codes('42 times', Codes), |
| phrase(integer(X), Codes, Rest). |
| X = 42 |
||Rest_=_[32,_116,_105,_109,_101,_115]______________________________ ||
The next example exploits a complete body. Given the following
definition of digit_weight//1, we can pose the query below.
____________________________________________________________________| |
| digit_weight(W) --> |
| [D], |
||________{_code_type(D,_digit(W))_}._______________________________ ||
____________________________________________________________________| |
| ?- atom_codes('Version 3.4', Codes), |
| phrase(("Version ", |
| digit_weight(Major),".",digit_weight(Minor)), |
| Codes). |
| Major = 3, |
||Minor_=_4.________________________________________________________ ||
The SWI-Prolog implementation of phrase/3 verifies that the _L_i_s_t
and _R_e_s_t arguments are unbound, bound to the empty list or a list
_c_o_n_s _c_e_l_l. Other values raise a type error. The predicate
call_dcg/3 is provided to use grammar rules with terms that are not
lists.
Note that the syntax for lists of codes changed in SWI-Prolog
version 7 (see section 5.2). If a DCG body is translated, both
"text" and `text` is a valid code-list literal in version 7. A
version 7 string ("text") is nnoott acceptable for the second and
third arguments of phrase/3. This is typically not a problem for
applications as the input of a DCG rarely appears in the source
code. For testing in the toplevel, one must use double quoted text
in versions prior to 7 and back quoted text in version 7 or later.
See also portray_text/1, which can be used to print lists of
character codes as a string to the top level and debugger
to facilitate debugging DCGs that process character codes.
The library apply_macros compiles phrase/3 if the argument is
sufficiently instantiated, eliminating the runtime overhead of
translating _D_C_G_B_o_d_y and meta-calling.
ccaallll__ddccgg((_:_D_C_G_B_o_d_y_, _?_S_t_a_t_e_0_, _?_S_t_a_t_e))
As phrase/3, but without type checking _S_t_a_t_e_0 and _S_t_a_t_e. This
allows for using DCG rules for threading an arbitrary state
variable. This predicate was introduced after type checking was
added to phrase/3.
A portable solution for threading state through a DCG can be
implemented by wrapping the state in a list and use the DCG
push-back facility. Subsequently, the following predicates may be
used to access and modify the state:
____________________________________________________________________| |
| state(S), [S] --> [S]. |
||state(S0,_S),_[S]_-->_[S0]._______________________________________ ||
As stated above, grammar rules are a general interface to difference
lists. To illustrate, we show a DCG-based implementation of reverse/2:
________________________________________________________________________| |
|reverse(List, Reversed) :- |
| phrase(reverse(List), Reversed). |
| |
|reverse([]) --> []. |
|reverse([H|T])|-->_reverse(T),_[H].____________________________________ | |
44..1133 DDaattaabbaassee
SWI-Prolog offers three different database mechanisms. The first one
is the common assert/retract mechanism for manipulating the clause
database. As facts and clauses asserted using assert/1 or one of
its derivatives become part of the program, these predicates compile
the term given to them. retract/1 and retractall/1 have to unify a
term and therefore have to decompile the program. For these reasons
the assert/retract mechanism is expensive. On the other hand, once
compiled, queries to the database are faster than querying the recorded
database discussed below. See also dynamic/1.
The second way of storing arbitrary terms in the database is using the
`recorded database'. In this database terms are associated with a _k_e_y.
A key can be an atom, small integer or term. In the last case only the
functor and arity determine the key. Each key has a chain of terms
associated with it. New terms can be added either at the head or at
the tail of this chain.
Following the Edinburgh tradition, SWI-Prolog provides database keys to
clauses and records in the recorded database. As of 5.9.10, these keys
are represented by non-textual atoms (`blobs', see section 10.4.7),
which makes accessing the database through references safe.
The third mechanism is a special-purpose one. It associates an integer
or atom with a key, which is an atom, integer or term. Each key can
only have one atom or integer associated with it.
aabboolliisshh((_:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r)) _[_I_S_O_]
Removes all clauses of a predicate with functor _F_u_n_c_t_o_r and arity
_A_r_i_t_y from the database. All predicate attributes (dynamic,
multifile, index, etc.) are reset to their defaults. Abolishing
an imported predicate only removes the import link; the predicate
will keep its old definition in its definition module.
According to the ISO standard, abolish/1 can only be applied to
dynamic procedures. This is odd, as for dealing with dynamic
procedures there is already retract/1 and retractall/1. The
abolish/1 predicate was introduced in DEC-10 Prolog precisely for
dealing with static procedures. In SWI-Prolog, abolish/1 works on
static procedures, unless the Prolog flag iso is set to true.
It is advised to use retractall/1 for erasing all clauses of a
dynamic predicate.
aabboolliisshh((_+_N_a_m_e_, _+_A_r_i_t_y))
Same as abolish(_N_a_m_e_/_A_r_i_t_y). The predicate abolish/2 conforms to
the Edinburgh standard, while abolish/1 is ISO compliant.
ccooppyy__pprreeddiiccaattee__ccllaauusseess((_:_F_r_o_m_, _:_T_o))
Copy all clauses of predicate _F_r_o_m to _T_o. The predicate _T_o must
be dynamic or undefined. If _T_o is undefined, it is created as
a dynamic predicate holding a copy of the clauses of _F_r_o_m. If
_T_o is a dynamic predicate, the clauses of _F_r_o_m are added (as in
assertz/1) to the clauses of _T_o. _T_o and _F_r_o_m must have the same
arity. Acts as if defined by the program below, but at a much
better performance by avoiding decompilation and compilation.
____________________________________________________________________| |
| copy_predicate_clauses(From, To) :- |
| head(From, MF:FromHead), |
| head(To, MT:ToHead), |
| FromHead =.. [_|Args], |
| ToHead =.. [_|Args], |
| forall(clause(MF:FromHead, Body), |
| assertz(MT:ToHead, Body)). |
| |
| head(From, M:Head) :- |
| strip_module(From, M, Name/Arity), |
||________functor(Head,_Name,_Arity)._______________________________ ||
rreeddeeffiinnee__ssyysstteemm__pprreeddiiccaattee((_+_H_e_a_d))
This directive may be used both in module user and in normal
modules to redefine any system predicate. If the system definition
is redefined in module user, the new definition is the default
definition for all sub-modules. Otherwise the redefinition is
local to the module. The system definition remains in the module
system.
Redefining system predicate facilitates the definition of
compatibility packages. Use in other contexts is discouraged.
rreettrraacctt((_+_T_e_r_m)) _[_I_S_O_]
When _T_e_r_m is an atom or a term it is unified with the first
unifying fact or clause in the database. The fact or clause is
removed from the database.
rreettrraaccttaallll((_+_H_e_a_d)) _[_I_S_O_]
All facts or clauses in the database for which the _h_e_a_d unifies
with _H_e_a_d are removed. If _H_e_a_d refers to a predicate that is not
defined, it is implicitly created as a dynamic predicate. See also
dynamic/1.
aasssseerrttaa((_+_T_e_r_m)) _[_I_S_O_]
Assert a fact or clause in the database. _T_e_r_m is asserted
as the first fact or clause of the corresponding predicate.
Equivalent to assert/1, but _T_e_r_m is asserted as first clause or
fact of the predicate. If the program space for the target
module is limited (see set_module/1), asserta/1 can raise a
resource_error(_p_r_o_g_r_a_m___s_p_a_c_e).
aasssseerrttzz((_+_T_e_r_m)) _[_I_S_O_]
Equivalent to asserta/1, but _T_e_r_m is asserted as the last clause or
fact of the predicate.
aasssseerrtt((_+_T_e_r_m))
Equivalent to assertz/1. Deprecated: new code should use
assertz/1.
aasssseerrttaa((_+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Asserts a clause as asserta/1 and unifies _R_e_f_e_r_e_n_c_e with a handle
to this clause. The handle can be used to access this specific
clause using clause/3 and erase/1.
aasssseerrttzz((_+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Equivalent to asserta/1, asserting the new clause as the last
clause of the predicate.
aasssseerrtt((_+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Equivalent to assertz/2. Deprecated: new code should use
assertz/2.
rreeccoorrddaa((_+_K_e_y_, _+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Assert _T_e_r_m in the recorded database under key _K_e_y. _K_e_y is a
small integer (range min_tagged_integer ...max_tagged_integer, atom
or compound term. If the key is a compound term, only the name and
arity define the key. _R_e_f_e_r_e_n_c_e is unified with an opaque handle
to the record (see erase/1).
rreeccoorrddaa((_+_K_e_y_, _+_T_e_r_m))
Equivalent to recorda(_K_e_y, _T_e_r_m, _).
rreeccoorrddzz((_+_K_e_y_, _+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Equivalent to recorda/3, but puts the _T_e_r_m at the tail of the terms
recorded under _K_e_y.
rreeccoorrddzz((_+_K_e_y_, _+_T_e_r_m))
Equivalent to recordz(_K_e_y, _T_e_r_m, _).
rreeccoorrddeedd((_?_K_e_y_, _?_V_a_l_u_e_, _?_R_e_f_e_r_e_n_c_e))
True if _V_a_l_u_e is recorded under _K_e_y and has the given database
_R_e_f_e_r_e_n_c_e. If _R_e_f_e_r_e_n_c_e is given, this predicate is semi-
deterministic. Otherwise, it must be considered non-deterministic.
If neither _R_e_f_e_r_e_n_c_e nor _K_e_y is given, the triples are generated as
in the code snippet below. See also current_key/1.
____________________________________________________________________| |
| current_key(Key), |
||________recorded(Key,_Value,_Reference)___________________________ ||
rreeccoorrddeedd((_+_K_e_y_, _-_V_a_l_u_e))
Equivalent to recorded(_K_e_y, _V_a_l_u_e, _).
eerraassee((_+_R_e_f_e_r_e_n_c_e))
Erase a record or clause from the database. _R_e_f_e_r_e_n_c_e is
a db-reference returned by recorda/3, recordz/3 or recorded/3,
clause/3, assert/2, asserta/2 or assertz/2. Fail silently if the
referenced object no longer exists.
iinnssttaannccee((_+_R_e_f_e_r_e_n_c_e_, _-_T_e_r_m))
Unify _T_e_r_m with the referenced clause or database record. Unit
clauses are represented as _H_e_a_d :- true.
ffllaagg((_+_K_e_y_, _-_O_l_d_, _+_N_e_w))
_K_e_y is an atom, integer or term. As with the recorded database, if
_K_e_y is a term, only the name and arity are used to locate the flag.
Unify _O_l_d with the old value associated with _K_e_y. If the key is
used for the first time _O_l_d is unified with the integer 0. Then
store the value of _N_e_w, which should be an integer, float, atom
or arithmetic expression, under _K_e_y. flag/3 is a fast mechanism
for storing simple facts in the database. The flag database is
shared between threads and updates are atomic, making it suitable
for generating unique integer counters.
44..1133..11 UUppddaattee vviieeww
Traditionally, Prolog systems used the _i_m_m_e_d_i_a_t_e _u_p_d_a_t_e _v_i_e_w: new
clauses became visible to predicates backtracking over dynamic
predicates immediately, and retracted clauses became invisible
immediately.
Starting with SWI-Prolog 3.3.0 we adhere to the _l_o_g_i_c_a_l _u_p_d_a_t_e _v_i_e_w,
where backtrackable predicates that enter the definition of a predicate
will not see any changes (either caused by assert/1 or retract/1) to
the predicate. This view is the ISO standard, the most commonly
used and the most `safe'. Logical updates are realised by keeping
reference counts on predicates and _g_e_n_e_r_a_t_i_o_n information on clauses.
Each change to the database causes an increment of the generation of
the database. Each goal is tagged with the generation in which it was
started. Each clause is flagged with the generation it was created
in as well as the generation it was erased from. Only clauses with
a `created' ...`erased' interval that encloses the generation of the
current goal are considered visible.
44..1133..22 IInnddeexxiinngg ddaattaabbaasseess
The indexing capabilities of SWI-Prolog are described in section 2.17.
Summarizing, SWI-Prolog creates indexes for any applicable argument,
but only on one argument, and does not index on arguments of compound
terms. The predicates below provide building blocks to circumvent the
limitations of the current indexing system.
Programs that aim at portability should consider using term_hash/2 and
term_hash/4 to design their database such that indexing on constant or
functor (name/arity reference) on the first argument is sufficient.
tteerrmm__hhaasshh((_+_T_e_r_m_, _-_H_a_s_h_K_e_y)) _[_d_e_t_]
If _T_e_r_m is a ground term (see ground/1), _H_a_s_h_K_e_y is unified with
a positive integer value that may be used as a hash key to the
value. If _T_e_r_m is not ground, the predicate leaves _H_a_s_h_K_e_y an
unbound variable. Hash keys are in the range 0:::16;777; 215, the
maximal integer that can be stored efficiently on both 32 and 64
bit platforms.
This predicate may be used to build hash tables as well as to
exploit argument indexing to find complex terms more quickly.
The hash key does not rely on temporary information like addresses
of atoms and may be assumed constant over different invocations
and versions of SWI-Prolog. Hashes differ between big and little
endian machines. The term_hash/2 predicate is cycle-safe.
tteerrmm__hhaasshh((_+_T_e_r_m_, _+_D_e_p_t_h_, _+_R_a_n_g_e_, _-_H_a_s_h_K_e_y)) _[_d_e_t_]
As term_hash/2, but only considers _T_e_r_m to the specified _D_e_p_t_h.
The top-level term has depth 1, its arguments have depth 2, etc.
That is, _D_e_p_t_h =0 hashes nothing; _D_e_p_t_h= 1 hashes atomic values
or the functor and arity of a compound term, not its arguments;
_D_e_p_t_h =2 also indexes the immediate arguments, etc.
_H_a_s_h_K_e_y is in the range [0:::_R_a_n_g_e-1]. _R_a_n_g_e must be in the range
[1:::2147483647]
vvaarriiaanntt__sshhaa11((_+_T_e_r_m_, _-_S_H_A_1)) _[_d_e_t_]
Compute a SHA1-hash from _T_e_r_m. The hash is represented as a
40-byte hexadecimal atom. Unlike term_hash/2 and friends, this
predicate produces a hash key for non-ground terms. The hash is
invariant over variable-renaming (see =@=/2) and constants over
different invocations of Prolog.
This predicate raises an exception when trying to compute the hash
on a cyclic term or attributed term. Attributed terms are not
handled because subsumes_chk/2 is not considered well defined for
attributed terms. Cyclic terms are not supported because this
would require establishing a canonical cycle. That is, given
A=[a_A] and B=[a,a_B], _A and _B should produce the same hash. This
is not (yet) implemented.
This hash was developed for lookup of solutions to a goal stored
in a table. By using a cryptographic hash, heuristic algorithms
can often ignore the possibility of hash collisions and thus avoid
storing the goal term itself as well as testing using =@=/2.
44..1144 DDeeccllaarriinngg pprreeddiiccaattee pprrooppeerrttiieess
This section describes directives which manipulate attributes of
predicate definitions. The functors dynamic/1, multifile/1,
discontiguous/1 and public/1 are operators of priority 1150 (see op/3),
which implies that the list of predicates they involve can just be a
comma-separated list:
________________________________________________________________________| |
|:- dynamic |
| foo/0, |
||_______baz/2._________________________________________________________ ||
In SWI-Prolog all these directives are just predicates. This implies
they can also be called by a program. Do not rely on this feature if
you want to maintain portability to other Prolog implementations.
ddyynnaammiicc _:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._. _[_I_S_O_]
Informs the interpreter that the definition of the predicate(s)
may change during execution (using assert/1 and/or retract/1). In
the multithreaded version, the clauses of dynamic predicates are
shared between the threads. The directive thread_local/1 provides
an alternative where each thread has its own clause list for the
predicate. Dynamic predicates can be turned into static ones using
compile_predicates/1.
ccoommppiillee__pprreeddiiccaatteess((_:_L_i_s_t_O_f_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_s))
Compile a list of specified dynamic predicates (see dynamic/1 and
assert/1) into normal static predicates. This call tells the
Prolog environment the definition will not change anymore and
further calls to assert/1 or retract/1 on the named predicates
raise a permission error. This predicate is designed to deal with
parts of the program that are generated at runtime but do not
change during the remainder of the program execution.
mmuullttiiffiillee _:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._. _[_I_S_O_]
Informs the system that the specified predicate(s) may be defined
over more than one file. This stops consult/1 from redefining a
predicate when a new definition is found.
ddiissccoonnttiigguuoouuss _:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._. _[_I_S_O_]
Informs the system that the clauses of the specified predicate(s)
might not be together in the source file. See also style_check/1.
ppuubblliicc _:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._.
Instructs the cross-referencer that the predicate can be called.
It has no semantics. The public declaration can be queried using
predicate_property/2. The public/1 directive does _n_o_t export the
predicate (see module/1 and export/1). The public directive is
used for (1) direct calls into the module from, e.g., foreign code,
(2) direct calls into the module from other modules, or (3) flag a
predicate as being called if the call is generated by meta-calling
constructs that are not analysed by the cross-referencer.
44..1155 EExxaammiinniinngg tthhee pprrooggrraamm
ccuurrrreenntt__aattoomm((_-_A_t_o_m))
Successively unifies _A_t_o_m with all atoms known to the system. Note
that current_atom/1 always succeeds if _A_t_o_m is instantiated to an
atom.
ccuurrrreenntt__bblloobb((_?_B_l_o_b_, _?_T_y_p_e))
Examine the type or enumerate blobs of the given _T_y_p_e. Typed blobs
are supported through the foreign language interface for storing
arbitrary BLOBs (Binary Large Object) or handles to external
entities. See section 10.4.7 for details.
ccuurrrreenntt__ffuunnccttoorr((_?_N_a_m_e_, _?_A_r_i_t_y))
Successively unifies _N_a_m_e with the name and _A_r_i_t_y with the arity of
functors known to the system.
ccuurrrreenntt__ffllaagg((_-_F_l_a_g_K_e_y))
Successively unifies _F_l_a_g_K_e_y with all keys used for flags (see
flag/3).
ccuurrrreenntt__kkeeyy((_-_K_e_y))
Successively unifies _K_e_y with all keys used for records (see
recorda/3, etc.).
ccuurrrreenntt__pprreeddiiccaattee((_:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r)) _[_I_S_O_]
True if _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r is a currently defined predicate. A
predicate is considered defined if it exists in the specified
module, is imported into the module or is defined in one of
the modules from which the predicate will be imported if it is
called (see section 6.9). Note that current_predicate/1 does
_n_o_t succeed for predicates that can be _a_u_t_o_l_o_a_d_e_d. See also
current_predicate/2 and predicate_property/2.
If _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r is not fully specified, the predicate only
generates values that are defined in or already imported into
the target module. Generating all callable predicates therefore
requires enumerating modules using current_module/1. Generating
predicates callable in a given module requires enumerating
the import modules using import_module/2 and the autoloadable
predicates using the predicate_property/2 autoload.
ccuurrrreenntt__pprreeddiiccaattee((_?_N_a_m_e_, _:_H_e_a_d))
Classical pre-ISO implementation of current_predicate/1, where the
predicate is represented by the head term. The advantage is that
this can be used for checking the existence of a predicate before
calling it without the need for functor/3:
____________________________________________________________________| |
| call_if_exists(G) :- |
| current_predicate(_, G), |
||________call(G).__________________________________________________ ||
Because of this intended usage, current_predicate/2 also succeeds
if the predicate can be autoloaded. Unfortunately, checking the
autoloader makes this predicate relatively slow, in particular
because a failed lookup of the autoloader will cause the autoloader
to verify that its index is up-to-date.
pprreeddiiccaattee__pprrooppeerrttyy((_:_H_e_a_d_, _?_P_r_o_p_e_r_t_y))
True when _H_e_a_d refers to a predicate that has property _P_r_o_p_e_r_t_y.
With sufficiently instantiated _H_e_a_d, predicate_property/2 tries
to resolve the predicate the same way as calling it would
do: if the predicate is not defined it scans the default
modules (see default_module/2) and finally tries the autoloader.
Unlike calling, failure to find the target predicate causes
predicate_property/2 to fail silently. If _H_e_a_d is not sufficiently
bound, only currently locally defined and already imported
predicates are enumerated. See current_predicate/1 for enumerating
all predicates. A common issue concerns _g_e_n_e_r_a_t_i_n_g all built-in
predicates. This can be achieved using the code below:
____________________________________________________________________| |
| generate_built_in(Name/Arity) :- |
| predicate_property(system:Head, built_in), |
| functor(Head, Name, Arity), |
||____\+_sub_atom(Name,_0,__,__,_$).___%_discard_reserved_names_____ ||
_P_r_o_p_e_r_t_y is one of:
aauuttoollooaadd((_F_i_l_e))
True if the predicate can be autoloaded from the file _F_i_l_e.
Like undefined, this property is _n_o_t generated.
bbuuiilltt__iinn
True if the predicate is locked as a built-in predicate. This
implies it cannot be redefined in its definition module and it
can normally not be seen in the tracer.
ddyynnaammiicc
True if assert/1 and retract/1 may be used to modify the
predicate. This property is set using dynamic/1.
eexxppoorrtteedd
True if the predicate is in the public list of the context
module.
iimmppoorrtteedd__ffrroomm((_M_o_d_u_l_e))
Is true if the predicate is imported into the context module
from module _M_o_d_u_l_e.
ffiillee((_F_i_l_e_N_a_m_e))
Unify _F_i_l_e_N_a_m_e with the name of the source file in which
the predicate is defined. See also source_file/2 and the
property line_count. Note that this reports the file of the
first clause of a predicate. A more robust interface can be
achieved using nth_clause/3 and clause_property/2.
ffoorreeiiggnn
True if the predicate is defined in the C language.
iinnddeexxeedd((_I_n_d_e_x_e_s))
_I_n_d_e_x_e_s is a list of additional (hash) indexes on the
predicate. Each element of the list is a term _A_r_g_S_p_e_c-_I_n_d_e_x.
Currently _A_r_g_S_p_e_c is an integer denoting the argument position
and _I_n_d_e_x is a term hash(_B_u_c_k_e_t_s_, _S_p_e_e_d_u_p_, _I_s_L_i_s_t). Here
_B_u_c_k_e_t_s is the number of buckets in the hash and _S_p_e_e_d_u_p is
the expected speedup relative to trying all clauses linearly.
_I_s_L_i_s_t indicates that a list is created for all clauses with
the same key. This is currently not used.
iinntteerrpprreetteedd
True if the predicate is defined in Prolog. We return true
on this because, although the code is actually compiled, it is
completely transparent, just like interpreted code.
iissoo
True if the predicate is covered by the ISO standard (ISO/IEC
13211-1).
lliinnee__ccoouunntt((_L_i_n_e_N_u_m_b_e_r))
Unify _L_i_n_e_N_u_m_b_e_r with the line number of the first clause of
the predicate. Fails if the predicate is not associated with
a file. See also source_file/2. See also the file property
above, notably the reference to clause_property/2.
mmuullttiiffiillee
True if there may be multiple (or no) files providing clauses
for the predicate. This property is set using multifile/1.
mmeettaa__pprreeddiiccaattee((_H_e_a_d))
If the predicate is declared as a meta-predicate using
meta_predicate/1, unify _H_e_a_d with the head-pattern. The
head-pattern is a compound term with the same name and
arity as the predicate where each argument of the term is a
meta-predicate specifier. See meta_predicate/1 for details.
nnooddeebbuugg
Details of the predicate are not shown by the debugger. This
is the default for built-in predicates. User predicates can
be compiled this way using the Prolog flag generate_debug_info.
nnoottrraaccee
Do not show ports of this predicate in the debugger.
nnuummbbeerr__ooff__ccllaauusseess((_C_l_a_u_s_e_C_o_u_n_t))
Unify _C_l_a_u_s_e_C_o_u_n_t to the number of clauses associated with the
predicate. Fails for foreign predicates.
nnuummbbeerr__ooff__rruulleess((_R_u_l_e_C_o_u_n_t))
Unify _R_u_l_e_C_o_u_n_t to the number of clauses associated with
the predicate. A _r_u_l_e is defined as a clauses that has
a body that is not just true (i.e., a _f_a_c_t). Fails for
foreign predicates. This property is used to avoid analysing
predicates with only facts in prolog_codewalk.
ppuubblliicc
Predicate is declared public using public/1. Note that
without further definition, public predicates are considered
undefined and this property is _n_o_t reported.
qquuaassii__qquuoottaattiioonn__ssyynnttaaxx((_T))
he predicate (with arity 4) is declared to provide quasi
quotation syntax with quasi_quotation_syntax/1.
ssttaattiicc
The definition can _n_o_t be modified using assertz/1 and
friends. This property is the opposite from dynamic, i.e.,
for each defined predicate, either static or dynamic is true
but never both.
tthhrreeaadd__llooccaall
If true (only possible on the multithreaded version) each
thread has its own clauses for the predicate. This property
is set using thread_local/1.
ttrraannssppaarreenntt
True if the predicate is declared transparent using the
module_transparent/1 or meta_predicate/1 declaration. In the
latter case the property meta_predicate(_H_e_a_d) is also provided.
See chapter 6 for details.
uunnddeeffiinneedd
True if a procedure definition block for the predicate exists,
but there are no clauses for it and it is not declared dynamic
or multifile. This is true if the predicate occurs in the
body of a loaded predicate, an attempt to call it has been
made via one of the meta-call predicates, the predicate has
been declared as e.g., a meta-predicate or the predicate had
a definition in the past. See the library package check for
example usage.
vviissiibbllee
True when predicate can be called without raising a predicate
existence error. This means that the predicate is (1)
defined, (2) can be inherited from one of the default modules
(see default_module/2) or (3) can be autoloaded. The behaviour
is logically consistent iff the property visible is provided
explicitly. If the property is left unbound, only defined
predicates are enumerated.
vvoollaattiillee
If true, the clauses are not saved into a saved state by
qsave_program/[1,2]. This property is set using volatile/1.
ddwwiimm__pprreeddiiccaattee((_+_T_e_r_m_, _-_D_w_i_m))
`Do What I Mean' (`dwim') support predicate. _T_e_r_m is a term,
whose name and arity are used as a predicate specification. _D_w_i_m
is instantiated with the most general term built from _N_a_m_e and the
arity of a defined predicate that matches the predicate specified
by _T_e_r_m in the `Do What I Mean' sense. See dwim_match/2 for `Do
What I Mean' string matching. Internal system predicates are not
generated, unless the access level is system (see access_level).
Backtracking provides all alternative matches.
ccllaauussee((_:_H_e_a_d_, _?_B_o_d_y)) _[_I_S_O_]
True if _H_e_a_d can be unified with a clause head and _B_o_d_y with
the corresponding clause body. Gives alternative clauses on
backtracking. For facts, _B_o_d_y is unified with the atom _t_r_u_e.
ccllaauussee((_:_H_e_a_d_, _?_B_o_d_y_, _?_R_e_f_e_r_e_n_c_e))
Equivalent to clause/2, but unifies _R_e_f_e_r_e_n_c_e with a unique
reference to the clause (see also assert/2, erase/1). If _R_e_f_e_r_e_n_c_e
is instantiated to a reference the clause's head and body will be
unified with _H_e_a_d and _B_o_d_y.
nntthh__ccllaauussee((_?_P_r_e_d_, _?_I_n_d_e_x_, _?_R_e_f_e_r_e_n_c_e))
Provides access to the clauses of a predicate using their index
number. Counting starts at 1. If _R_e_f_e_r_e_n_c_e is specified it
unifies _P_r_e_d with the most general term with the same name/arity
as the predicate and _I_n_d_e_x with the index number of the clause.
Otherwise the name and arity of _P_r_e_d are used to determine the
predicate. If _I_n_d_e_x is provided, _R_e_f_e_r_e_n_c_e will be unified with
the clause reference. If _I_n_d_e_x is unbound, backtracking will
yield both the indexes and the references of all clauses of the
predicate. The following example finds the 2nd clause of append/3:
____________________________________________________________________| |
| ?- use_module(library(lists)). |
| ... |
| ?- nth_clause(append(_,_,_), 2, Ref), clause(Head, Body, Ref). |
| Ref = <clause>(0x994290), |
| Head = lists:append([_G23|_G24], _G21, [_G23|_G27]), |
||Body_=_append(_G24,__G21,__G27).__________________________________ ||
ccllaauussee__pprrooppeerrttyy((_+_C_l_a_u_s_e_R_e_f_, _-_P_r_o_p_e_r_t_y))
Queries properties of a clause. _C_l_a_u_s_e_R_e_f is a reference
to a clause as produced by clause/3, nth_clause/3 or
prolog_frame_attribute/3. Unlike most other predicates that access
clause references, clause_property/2may be used to get information
about erased clauses that have not yet been reclaimed. _P_r_o_p_e_r_t_y is
one of the following:
ffiillee((_F_i_l_e_N_a_m_e))
Unify _F_i_l_e_N_a_m_e with the name of the file in which the clause
textually appears. Fails if the clause is created by loading
a file (e.g., clauses added using assertz/1). See also
source.
lliinnee__ccoouunntt((_L_i_n_e_N_u_m_b_e_r))
Unify _L_i_n_e_N_u_m_b_e_r with the line number of the clause. Fails if
the clause is not associated to a file.
ssiizzee((_S_i_z_e_I_n_B_y_t_e_s))
True when _S_i_z_e_I_n_B_y_t_e_s is the size that the clause uses in
memory in bytes. The size required by a predicate also
includes the predicate data record, a linked list of clauses,
clause selection instructions and optionally one or more
clause indexes.
ssoouurrccee((_F_i_l_e_N_a_m_e))
Unify _F_i_l_e_N_a_m_e with the name of the source file that created
the clause. This is the same as the file property, unless
the file is loaded from a file that is textually included
into source using include/1. In this scenario, file is the
included file, while the source property refers to the _m_a_i_n
file.
ffaacctt
True if the clause has no body.
eerraasseedd
True if the clause has been erased, but not yet reclaimed
because it is referenced.
pprreeddiiccaattee((_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r))
_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r denotes the predicate to which this clause
belongs. This is needed to obtain information on erased
clauses because the usual way to obtain this information using
clause/3 fails for erased clauses.
mmoodduullee((_M_o_d_u_l_e))
_M_o_d_u_l_e is the context module used to execute the body of the
clause. For normal clauses, this is the same as the module
in which the predicate is defined. However, if a clause
is compiled with a module qualified _h_e_a_d, the clause belongs
to the predicate with the qualified head, while the body is
executed in the context of the module in which the clause was
defined.
44..1166 IInnppuutt aanndd oouuttppuutt
SWI-Prolog provides two different packages for input and output. The
native I/O system is based on the ISO standard predicates open/3,
close/1 and friends. Being more widely portable and equipped with a
clearer and more robust specification, new code is encouraged to use
these predicates for manipulation of I/O streams.
Section 4.16.3 describes tell/1, see/1 and friends, providing I/O in
the spirit of the traditional Edinburgh standard. These predicates
are layered on top of the ISO predicates. Both packages are fully
integrated; the user may switch freely between them.
44..1166..11 PPrreeddeeffiinneedd ssttrreeaamm aalliiaasseess
Each thread has five stream aliases: user_input, user_output,
user_error, current_input, and current_output. Newly created threads
inherit these stream aliases from their parent. The user_input,
user_output and user_error aliases of the main thread are initially
bound to the standard operating system I/O streams (_s_t_d_i_n, _s_t_d_o_u_t and
_s_t_d_e_r_r, normally bound to the POSIX file handles 0, 1 and 2). These
aliases may be re-bound, for example if standard I/O refers to a window
such as in the swipl-win.exe GUI executable for Windows. They can be
re-bound by the user using set_prolog_IO/3 and set_stream/2 by setting
the alias of a stream (e.g, set_stream(S, alias(user_output))). An
example of rebinding can be found in library prolog_server, providing
a telnet service. The aliases current_input and current_output define
the source and destination for predicates that do not take a stream
argument (e.g., read/1, write/1, get_code/1, ...). Initially, these
are bound to the same stream as user_input and user_error. They
are re-bound by see/1, tell/1, set_input/1 and set_output/1. The
current_output stream is also temporary re-bound by with_output_to/2
or format/3 using e.g., format(atom(A), .... Note that code which
explicitly writes to the streams user_output and user_error will not be
redirected by with_output_to/2.
CCoommppaattiibbiilliittyy Note that the ISO standard only defines the user_*
streams. The `current' streams can be accessed using current_input/1
and current_output/1. For example, an ISO compatible implementation of
write/1 is
________________________________________________________________________| |
|write(Term)|:-_current_output(Out),_write_term(Out,_Term)._____________ | |
while SWI-Prolog additionally allows for
________________________________________________________________________| |
|write(Term)|:-_write(current_output,_Term).____________________________ | |
44..1166..22 IISSOO IInnppuutt aanndd OOuuttppuutt SSttrreeaammss
The predicates described in this section provide ISO compliant I/O,
where streams are explicitly created using the predicate open/3. The
resulting stream identifier is then passed as a parameter to the
reading and writing predicates to specify the source or destination of
the data.
This schema is not vulnerable to filename and stream ambiguities as
well as changes to the working directory. On the other hand, using the
notion of current-I/O simplifies reusability of code without the need
to pass arguments around. E.g., see with_output_to/2.
SWI-Prolog streams are, compatible with the ISO standard, either input
or output streams. To accommodate portability to other systems, a pair
of streams can be packed into a _s_t_r_e_a_m_-_p_a_i_r. See stream_pair/3 for
details.
SWI-Prolog stream handles are unique symbols that have no syntactical
representation. They are written as <stream>(hex-number), which is not
valid input for read/1. They are realised using a _b_l_o_b of type stream
(see blob/2 and section 10.4.7).
ooppeenn((_+_S_r_c_D_e_s_t_, _+_M_o_d_e_, _-_-_S_t_r_e_a_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
True when _S_r_c_D_e_s_t can be opened in _M_o_d_e and _S_t_r_e_a_m is an I/O
stream to/from the object. _S_r_c_D_e_s_t is normally the name of a
file, represented as an atom or string. _M_o_d_e is one of read,
write, append or update. Mode append opens the file for writing,
positioning the file pointer at the end. Mode update opens the
file for writing, positioning the file pointer at the beginning of
the file without truncating the file. _S_t_r_e_a_m is either a variable,
in which case it is bound to an integer identifying the stream, or
an atom, in which case this atom will be the stream identifier.
SWI-Prolog also allows _S_r_c_D_e_s_t to be a term pipe(_C_o_m_m_a_n_d). In
this form, _C_o_m_m_a_n_d is started as a child process and if _M_o_d_e is
write, output written to _S_t_r_e_a_m is sent to the standard input of
_C_o_m_m_a_n_d. Viso versa, if _M_o_d_e is read, data written by _C_o_m_m_a_n_d to
the standard output may be read from _S_t_r_e_a_m. On Unix systems,
_C_o_m_m_a_n_d is handed to popen() which hands it to the Unix shell. On
Windows, _C_o_m_m_a_n_d is executed directly. See also process_create/3
from process.
The following _O_p_t_i_o_n_s are recognised by open/4:
aalliiaass((_A_t_o_m))
Gives the stream a name. Below is an example. Be careful
with this option as stream names are global. See also
set_stream/2.
_______________________________________________________________| |
|?- open(data, read, Fd, [alias(input)]). |
| |
| ..., |
| read(input, Term), |
||_______...___________________________________________________ ||
bboomm((_B_o_o_l))
Check for a BOM (_B_y_t_e _O_r_d_e_r _M_a_r_k_e_r) or write one. If omitted,
the default is true for mode read and false for mode write.
See also stream_property/2 and especially section 2.18.1.1 for
a discussion of this feature.
bbuuffffeerr((_B_u_f_f_e_r_i_n_g))
Defines output buffering. The atom full (default) defines
full buffering, line buffering by line, and false implies the
stream is fully unbuffered. Smaller buffering is useful if
another process or the user is waiting for the output as it is
being produced. See also flush_output/[0,1]. This option is
not an ISO option.
cclloossee__oonn__aabboorrtt((_B_o_o_l))
If true (default), the stream is closed on an abort (see
abort/0). If false, the stream is not closed. If it is
an output stream, however, it will be flushed. Useful for
logfiles and if the stream is associated to a process (using
the pipe/1 construct).
ccrreeaattee((_+_L_i_s_t))
Specifies how a new file is created when opening in write,
append or update mode. Currently, _L_i_s_t is a list of atoms
that describe the permissions of the created file. Defined
values are below. Not recognised values are silently ignored,
allowing for adding platform specific extensions to this set.
rreeaadd
Allow read access to the file.
wwrriittee
Allow write access to the file.
eexxeeccuuttee
Allow execution access to the file.
ddeeffaauulltt
Allow read and write access to the file.
aallll
Allow any access provided by the OS.
Note that if _L_i_s_t is empty, the created file has no associated
access permissions. The create options map to the POSIX _m_o_d_e
option of open(), where read map to 0444, write to 0222 and
execute to 0111. On POSIX systems, the final permission is
defined as (mode & ~umask).
eennccooddiinngg((_E_n_c_o_d_i_n_g))
Define the encoding used for reading and writing text to this
stream. The default encoding for type text is derived from
the Prolog flag encoding. For binary streams the default
encoding is octet. For details on encoding issues, see
section 2.18.1.
eeooff__aaccttiioonn((_A_c_t_i_o_n))
Defines what happens if the end of the input stream is
reached. Action eof_code makes get0/1 and friends return -1,
and read/1 and friends return the atom end_of_file. Repetitive
reading keeps yielding the same result. Action error is like
eof_code, but repetitive reading will raise an error. With
action reset, Prolog will examine the file again and return
more data if the file has grown.
llooccaallee((_+_L_o_c_a_l_e))
Set the locale that is used by notably format/2 for output on
this stream. See section 4.22.
lloocckk((_L_o_c_k_i_n_g_M_o_d_e))
Try to obtain a lock on the open file. Default is none, which
does not lock the file. The value read or shared means other
processes may read the file, but not write it. The value
write or exclusive means no other process may read or write
the file.
Locks are acquired through the POSIX function fcntl() using
the command F_SETLKW, which makes a blocked call wait for the
lock to be released. Please note that fcntl() locks are
_a_d_v_i_s_o_r_y and therefore only other applications using the same
advisory locks honour your lock. As there are many issues
around locking in Unix, especially related to NFS (network
file system), please study the fcntl() manual page before
trusting your locks!
The lock option is a SWI-Prolog extension.
ttyyppee((_T_y_p_e))
Using type text (default), Prolog will write a text file in an
operating system compatible way. Using type binary the bytes
will be read or written without any translation. See also the
option encoding.
wwaaiitt((_B_o_o_l))
This option can be combined with the lock option. If false
(default true), the open call returns immediately with an
exception if the file is locked. The exception has the format
permission_error(_l_o_c_k_, _s_o_u_r_c_e___s_i_n_k_, _S_r_c_D_e_s_t).
The option reposition is not supported in SWI-Prolog. All streams
connected to a file may be repositioned.
ooppeenn((_+_S_r_c_D_e_s_t_, _+_M_o_d_e_, _-_-_S_t_r_e_a_m)) _[_I_S_O_]
Equivalent to open/4 with an empty option list.
ooppeenn__nnuullll__ssttrreeaamm((_-_-_S_t_r_e_a_m))
Open an output stream that produces no output. All counting
functions are enabled on such a stream. It can be used to discard
output (like Unix /dev/null) or exploit the counting properties.
The initial encoding of _S_t_r_e_a_m is utf8, enabling arbitrary Unicode
output. The encoding can be changed to determine byte counts
of the output in a particular encoding or validate if output is
possible in a particular encoding. For example, the code below
determines the number of characters emitted when writing _T_e_r_m.
____________________________________________________________________| |
| write_length(Term, Len) :- |
| open_null_stream(Out), |
| write(Out, Term), |
| character_count(Out, Len0), |
| close(Out), |
||________Len_=_Len0._______________________________________________ ||
cclloossee((_+_S_t_r_e_a_m)) _[_I_S_O_]
Close the specified stream. If _S_t_r_e_a_m is not open, an existence
error is raised. See stream_pair/3for the implications of closing
a _s_t_r_e_a_m _p_a_i_r.
If the closed stream is the current input, output or error stream,
the stream alias is bound to the initial standard I/O streams of
the process. Calling close/1 on the initial standard I/O streams
of the process is a no-op for an input stream and flushes an output
stream without closing it.
cclloossee((_+_S_t_r_e_a_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
Provides close(_S_t_r_e_a_m_, _[_f_o_r_c_e_(_t_r_u_e_)_]) as the only option. Called
this way, any resource errors (such as write errors while flushing
the output buffer) are ignored.
ssttrreeaamm__pprrooppeerrttyy((_?_S_t_r_e_a_m_, _?_S_t_r_e_a_m_P_r_o_p_e_r_t_y)) _[_I_S_O_]
ISO compatible predicate for querying the status of open I/O
streams. _S_t_r_e_a_m_P_r_o_p_e_r_t_y is one of:
aalliiaass((_A_t_o_m))
If _A_t_o_m is bound, test if the stream has the specified alias.
Otherwise unify _A_t_o_m with the first alias of the stream.
bbuuffffeerr((_B_u_f_f_e_r_i_n_g))
SWI-Prolog extension to query the buffering mode of this
stream. _B_u_f_f_e_r_i_n_g is one of full, line or false. See also
open/4.
bbuuffffeerr__ssiizzee((_I_n_t_e_g_e_r))
SWI-Prolog extension to query the size of the I/O buffer
associated to a stream in bytes. Fails if the stream is not
buffered.
bboomm((_B_o_o_l))
If present and true, a BOM (_B_y_t_e _O_r_d_e_r _M_a_r_k) was detected
while opening the file for reading, or a BOM was written while
opening the stream. See section 2.18.1.1 for details.
cclloossee__oonn__aabboorrtt((_B_o_o_l))
Determine whether or not abort/0 closes the stream. By
default streams are closed.
cclloossee__oonn__eexxeecc((_B_o_o_l))
Determine whether or not the stream is closed when executing
a new process (exec() in Unix, CreateProcess() in Windows).
Default is to close streams. This maps to fcntl()
F_SETFD using the flag FD_CLOEXEC on Unix and (negated)
HANDLE_FLAG_INHERIT on Windows.
eennccooddiinngg((_E_n_c_o_d_i_n_g))
Query the encoding used for text. See section 2.18.1 for an
overview of wide character and encoding issues in SWI-Prolog.
eenndd__ooff__ssttrreeaamm((_E))
If _S_t_r_e_a_m is an input stream, unify _E with one of the atoms
not, at or past. See also at_end_of_stream/[0,1].
eeooff__aaccttiioonn((_A))
Unify _A with one of eof_code, reset or error. See open/4 for
details.
ffiillee__nnaammee((_A_t_o_m))
If _S_t_r_e_a_m is associated to a file, unify _A_t_o_m to the name of
this file.
ffiillee__nnoo((_I_n_t_e_g_e_r))
If the stream is associated with a POSIX file descriptor,
unify _I_n_t_e_g_e_r with the descriptor number. SWI-Prolog
extension used primarily for integration with foreign code.
See also Sfileno() from SWI-Stream.h.
iinnppuutt
True if _S_t_r_e_a_m has mode read.
llooccaallee((_L_o_c_a_l_e))
True when _L_o_c_a_l_e is the current locale associated with the
stream. See section 4.22.
mmooddee((_I_O_M_o_d_e))
Unify _I_O_M_o_d_e to the mode given to open/4 for opening the
stream. Values are: read, write, append and the SWI-Prolog
extension update.
nneewwlliinnee((_N_e_w_l_i_n_e_M_o_d_e))
One of posix or dos. If dos, text streams will emit \r\n for
\n and discard \r from input streams. Default depends on the
operating system.
nnlliinnkk((_-_C_o_u_n_t))
Number of hard links to the file. This expresses the number
of `names' the file has. Not supported on all operating
systems and the value might be bogus. See the documentation
of fstat() for your OS and the value st_nlink.
oouuttppuutt
True if _S_t_r_e_a_m has mode write, append or update.
ppoossiittiioonn((_P_o_s))
Unify _P_o_s with the current stream position. A stream
position is an opaque term whose fields can be extracted using
stream_position_data/3. See also set_stream_position/2.
rreeppoossiittiioonn((_B_o_o_l))
Unify _B_o_o_l with _t_r_u_e if the position of the stream can be set
(see seek/4). It is assumed the position can be set if the
stream has a _s_e_e_k_-_f_u_n_c_t_i_o_n and is not based on a POSIX file
descriptor that is not associated to a regular file.
rreepprreesseennttaattiioonn__eerrrroorrss((_M_o_d_e))
Determines behaviour of character output if the stream cannot
represent a character. For example, an ISO Latin-1 stream
cannot represent Cyrillic characters. The behaviour is one
of error (throw an I/O error exception), prolog (write \...\
escape code) or xml (write &#...; XML character entity). The
initial mode is prolog for the user streams and error for all
other streams. See also section 2.18.1 and set_stream/2.
ttiimmeeoouutt((_-_T_i_m_e))
_T_i_m_e is the timeout currently associated with the stream. See
set_stream/2 with the same option. If no timeout is specified,
_T_i_m_e is unified to the atom infinite.
ttyyppee((_T_y_p_e))
Unify _T_y_p_e with text or binary.
ttttyy((_B_o_o_l))
This property is reported with _B_o_o_l equal to true if the
stream is associated with a terminal. See also set_stream/2.
ccuurrrreenntt__ssttrreeaamm((_?_O_b_j_e_c_t_, _?_M_o_d_e_, _?_S_t_r_e_a_m))
The predicate current_stream/3 is used to access the status of a
stream as well as to generate all open streams. _O_b_j_e_c_t is the
name of the file opened if the stream refers to an open file, an
integer file descriptor if the stream encapsulates an operating
system stream, or the atom [] if the stream refers to some other
object. _M_o_d_e is one of read or write.
iiss__ssttrreeaamm((_+_T_e_r_m))
True if _T_e_r_m is a stream name or valid stream handle. This
predicate realises a safe test for the existence of a stream alias
or handle.
ssttrreeaamm__ppaaiirr((_?_S_t_r_e_a_m_P_a_i_r_, _?_R_e_a_d_, _?_W_r_i_t_e))
This predicate can be used in mode (-,+,+) to create a _s_t_r_e_a_m_-_p_a_i_r
from an input stream and an output stream. Mode (+,-,-) can be
used to get access to the underlying streams. If a stream has
already been closed, the corresponding argument is left unbound.
If mode (+,-,-) is used on a single stream, either _R_e_a_d or _W_r_i_t_e is
unified with the stream while the other argument is left unbound.
This behaviour simplifies writing code that must operate both on
streams and stream pairs.
Stream-pairs can be used by all I/O operations on streams, where
the operation selects the appropriate member of the pair. The
predicate close/1 closes the still open streams of the pair. The
output stream is closed before the input stream. If closing
the output stream results in an error, the input stream is still
closed. Success is only returned if both streams were closed
successfully.
sseett__ssttrreeaamm__ppoossiittiioonn((_+_S_t_r_e_a_m_, _+_P_o_s)) _[_I_S_O_]
Set the current position of _S_t_r_e_a_m to _P_o_s. _P_o_s is a term as
returned by stream_property/2 using the position(_P_o_s) property.
See also seek/4.
ssttrreeaamm__ppoossiittiioonn__ddaattaa((_?_F_i_e_l_d_, _+_P_o_s_, _-_D_a_t_a))
Extracts information from the opaque stream position term as re-
turned by stream_property/2 requesting the position(_P_o_s) property.
_F_i_e_l_d is one of line_count, line_position, char_count or byte_count.
See also line_count/2, line_position/2, character_count/2 and
byte_count/2.
sseeeekk((_+_S_t_r_e_a_m_, _+_O_f_f_s_e_t_, _+_M_e_t_h_o_d_, _-_N_e_w_L_o_c_a_t_i_o_n))
Reposition the current point of the given _S_t_r_e_a_m. _M_e_t_h_o_d is one of
bof, current or eof, indicating positioning relative to the start,
current point or end of the underlying object. _N_e_w_L_o_c_a_t_i_o_n is
unified with the new offset, relative to the start of the stream.
Positions are counted in `units'. A unit is 1 byte, except
for text files using 2-byte Unicode encoding (2 bytes) or _w_c_h_a_r
encoding (sizeof(wchar_t)). The latter guarantees comfortable
interaction with wide-character text objects. Otherwise, the
use of seek/4 on non-binary files (see open/4) is of limited
use, especially when using multi-byte text encodings (e.g. UTF-8)
or multi-byte newline files (e.g. DOS/Windows). On text
files, SWI-Prolog offers reliable backup to an old position
using stream_property/2 and set_stream_position/2. Skipping N
character codes is achieved calling get_code/2 N times or using
copy_stream_data/3, directing the output to a null stream (see
open_null_stream/1). If the seek modifies the current location,
the line number and character position in the line are set to 0.
If the stream cannot be repositioned, a permission_error is raised.
If applying the offset would result in a file position less
than zero, a domain_error is raised. Behaviour when seeking to
positions beyond the size of the underlying object depend on the
object and possibly the operating system. The predicate seek/4
is compatible with Quintus Prolog, though the error conditions
and signalling is ISO compliant. See also stream_property/2 and
set_stream_position/2.
sseett__ssttrreeaamm((_+_S_t_r_e_a_m_, _+_A_t_t_r_i_b_u_t_e))
Modify an attribute of an existing stream. _A_t_t_r_i_b_u_t_e specifies
the stream property to set. If stream is a _p_a_i_r (see
stream_pair/3) both streams are modified, unless the property is
only meaningful on one of the streams or setting both is not
meaningful. In particular, eof_action only applies to the _r_e_a_d
stream, representation_errors only applies to the _w_r_i_t_e stream
and trying to set alias or line_position on a pair results in a
permission_error exception. See also stream_property/2 and open/4.
aalliiaass((_A_l_i_a_s_N_a_m_e))
Set the alias of an already created stream. If _A_l_i_a_s_N_a_m_e
is the name of one of the standard streams, this stream
is rebound. Thus, set_stream(S, current_input) is the same
as set_input/1, and by setting the alias of a stream to
user_input, etc., all user terminal input is read from this
stream. See also interactor/0.
bbuuffffeerr((_B_u_f_f_e_r_i_n_g))
Set the buffering mode of an already created stream. Buffer-
ing is one of full, line or false.
bbuuffffeerr__ssiizzee((_+_S_i_z_e))
Set the size of the I/O buffer of the underlying stream to
_S_i_z_e bytes.
cclloossee__oonn__aabboorrtt((_B_o_o_l))
Determine whether or not the stream is closed by abort/0. By
default, streams are closed.
cclloossee__oonn__eexxeecc((_B_o_o_l))
Set the close_on_exec property. See stream_property/2.
eennccooddiinngg((_A_t_o_m))
Defines the mapping between bytes and character codes used
for the stream. See section 2.18.1 for supported encodings.
The value bom causes the stream to check whether the current
character is a Unicode BOM marker. If a BOM marker is
found, the encoding is set accordingly and the call succeeds.
Otherwise the call fails.
eeooff__aaccttiioonn((_A_c_t_i_o_n))
Set end-of-file handling to one of eof_code, reset or error.
ffiillee__nnaammee((_F_i_l_e_N_a_m_e))
Set the filename associated to this stream. This call can be
used to set the file for error locations if _S_t_r_e_a_m corresponds
to _F_i_l_e_N_a_m_e and is not obtained by opening the file directly
but, for example, through a network service.
lliinnee__ppoossiittiioonn((_L_i_n_e_P_o_s))
Set the line position attribute of the stream. This feature
is intended to correct position management of the stream
after sending a terminal escape sequence (e.g., setting ANSI
character attributes). Setting this attribute raises a
permission error if the stream does not record positions. See
line_position/2 and stream_property/2(property position).
llooccaallee((_+_L_o_c_a_l_e))
Change the locale of the stream. See section 4.22.
nneewwlliinnee((_N_e_w_l_i_n_e_M_o_d_e))
Set input or output translation for newlines. See correspond-
ing stream_property/2 for details. In addition to the detected
modes, an input stream can be set in mode detect. It will be
set to dos if a \r character was removed.
ttiimmeeoouutt((_S_e_c_o_n_d_s))
This option can be used to make streams generate an exception
if it takes longer than _S_e_c_o_n_d_s before any new data arrives
at the stream. The value _i_n_f_i_n_i_t_e (default) makes the
stream block indefinitely. Like wait_for_input/3, this call
only applies to streams that support the select() system
call. For further information about timeout handling, see
wait_for_input/3. The exception is of the form
error(timeout_error_(_r_e_a_d_, _S_t_r_e_a_m_)_, __)
ttyyppee((_T_y_p_e))
Set the type of the stream to one of text or binary. See also
open/4 and the encoding property of streams. Switching to
binary sets the encoding to octet. Switching to text sets the
encoding to the default text encoding.
rreeccoorrdd__ppoossiittiioonn((_B_o_o_l))
Do/do not record the line count and line position (see
line_count/2 and line_position/2).
rreepprreesseennttaattiioonn__eerrrroorrss((_M_o_d_e))
Change the behaviour when writing characters to the stream
that cannot be represented by the encoding. See also
stream_property/2 and section 2.18.1.
ttttyy((_B_o_o_l))
Modify whether Prolog thinks there is a terminal (i.e. human
interaction) connected to this stream. On Unix systems the
initial value comes from isatty(). On Windows, the initial
user streams are supposed to be associated to a terminal. See
also stream_property/2.
sseett__pprroolloogg__IIOO((_+_I_n_, _+_O_u_t_, _+_E_r_r_o_r))
Prepare the given streams for interactive behaviour normally
associated to the terminal. _I_n becomes the user_input and
current_input of the calling thread. _O_u_t becomes user_output
and current_output. If _E_r_r_o_r equals _O_u_t an unbuffered stream
is associated to the same destination and linked to user_error.
Otherwise _E_r_r_o_r is used for user_error. Output buffering for _O_u_t
is set to line and buffering on _E_r_r_o_r is disabled. See also
prolog/0 and set_stream/2. The _c_l_i_b package provides the library
prolog_server, creating a TCP/IP server for creating an interactive
session to Prolog.
44..1166..33 EEddiinnbbuurrgghh--ssttyyllee II//OO
The package for implicit input and output destinations is (almost)
compatible with Edinburgh DEC-10 and C-Prolog. The reading and writing
predicates refer to, resp., the _c_u_r_r_e_n_t input and output streams.
Initially these streams are connected to the terminal. The current
output stream is changed using tell/1 or append/1. The current input
stream is changed using see/1. The stream's current value can be
obtained using telling/1 for output and seeing/1 for input.
Source and destination are either a file, user, or a term
`pipe(_C_o_m_m_a_n_d)'. The reserved stream name user refers to the terminal.
In the predicate descriptions below we will call the source/destination
argument `_S_r_c_D_e_s_t'. Below are some examples of source/destination
specifications.
?- see(data). % Start reading from file `data'.
?- tell(user). % Start writing to the terminal.
?- tell(pipe(lpr)). % Start writing to the printer.
Another example of using the pipe/1 construct is shown below. Note
that the pipe/1 construct is not part of Prolog's standard I/O
repertoire.
________________________________________________________________________| |
|getwd(Wd) :- |
| seeing(Old), see(pipe(pwd)), |
| collect_wd(String), |
| seen, see(Old), |
| atom_codes(Wd, String). |
| |
|collect_wd([C|R]) :- |
| get0(C), C \== -1, !, |
| collect_wd(R). |
|collect_wd([]).|_______________________________________________________ | |
The effect of tell/1 is not undone on backtracking, and since the
stream handle is not specified explicitly in further I/O operations
when using Edinburgh-style I/O, you may write to unintended streams
more easily than when using ISO compliant I/O. For example, the
following query writes both "a" and "b" into the file `out' :
________________________________________________________________________| |
|?-|(tell(out),_write(a),_false_;_write(b)),_told.______________________ | |
CCoommppaattiibbiilliittyy nnootteess
Unlike Edinburgh Prolog systems, telling/1 and seeing/1 do not return
the filename of the current input/output but rather the stream
identifier, to ensure the design pattern below works under all
circumstances:
________________________________________________________________________| |
| ..., |
| telling(Old), tell(x), |
| ..., |
| told, tell(Old), |
||_______...,___________________________________________________________ ||
The predicates tell/1 and see/1 first check for user, the pipe(_c_o_m_m_a_n_d)
and a stream handle. Otherwise, if the argument is an atom it is first
compared to open streams associated to a file with _e_x_a_c_t_l_y the same
name. If such a stream exists, created using tell/1 or see/1, output
(input) is switched to the open stream. Otherwise a file with the
specified name is opened.
The behaviour is compatible with Edinburgh Prolog. This is not without
problems. Changing directory, non-file streams, and multiple names
referring to the same file easily lead to unexpected behaviour. New
code, especially when managing multiple I/O channels, should consider
using the ISO I/O predicates defined in section 4.16.2.
sseeee((_+_S_r_c_D_e_s_t))
Open _S_r_c_D_e_s_t for reading and make it the current input (see
set_input/1). If _S_r_c_D_e_s_t is a stream handle, just make this stream
the current input. See the introduction of section 4.16.3 for
details.
tteellll((_+_S_r_c_D_e_s_t))
Open _S_r_c_D_e_s_t for writing and make it the current output (see
set_output/1). If _S_r_c_D_e_s_t is a stream handle, just make this
stream the current output. See the introduction of section 4.16.3
for details.
aappppeenndd((_+_F_i_l_e))
Similar to tell/1, but positions the file pointer at the end of
_F_i_l_e rather than truncating an existing file. The pipe construct
is not accepted by this predicate.
sseeeeiinngg((_?_S_r_c_D_e_s_t))
Same as current_input/1, except that user is returned if the
current input is the stream user_input to improve compatibility
with traditional Edinburgh I/O. See the introduction of
section 4.16.3 for details.
tteelllliinngg((_?_S_r_c_D_e_s_t))
Same as current_output/1, except that user is returned if the
current output is the stream user_output to improve compatibility
with traditional Edinburgh I/O. See the introduction of
section 4.16.3 for details.
sseeeenn
Close the current input stream. The new input stream becomes
user_input.
ttoolldd
Close the current output stream. The new output stream becomes
user_output.
44..1166..44 SSwwiittcchhiinngg bbeettwweeeenn EEddiinnbbuurrgghh aanndd IISSOO II//OO
The predicates below can be used for switching between the implicit and
the explicit stream-based I/O predicates.
sseett__iinnppuutt((_+_S_t_r_e_a_m)) _[_I_S_O_]
Set the current input stream to become _S_t_r_e_a_m. Thus,
open(file, read, Stream), set_input(Stream) is equivalent to
see(file).
sseett__oouuttppuutt((_+_S_t_r_e_a_m)) _[_I_S_O_]
Set the current output stream to become _S_t_r_e_a_m. See also
with_output_to/2.
ccuurrrreenntt__iinnppuutt((_-_S_t_r_e_a_m)) _[_I_S_O_]
Get the current input stream. Useful for getting access to the
status predicates associated with streams.
ccuurrrreenntt__oouuttppuutt((_-_S_t_r_e_a_m)) _[_I_S_O_]
Get the current output stream.
44..1166..55 WWrriittee oonnttoo aattoommss,, ccooddee--lliissttss,, eettcc..
wwiitthh__oouuttppuutt__ttoo((_+_O_u_t_p_u_t_, _:_G_o_a_l))
Run _G_o_a_l as once/1, while characters written to the current
output are sent to _O_u_t_p_u_t. The predicate is SWI-Prolog-specific,
inspired by various posts to the mailinglist. It provides a
flexible replacement for predicates such as sformat/3, swritef/3,
term_to_atom/2, atom_number/2 converting numbers to atoms, etc. The
predicate format/3 accepts the same terms as output argument.
Applications should generally avoid creating atoms by breaking and
concatenating other atoms, as the creation of large numbers of
intermediate atoms generally leads to poor performance, even more
so in multithreaded applications. This predicate supports creating
difference lists from character data efficiently. The example
below defines the DCG rule term//1 to insert a term in the output:
____________________________________________________________________| |
| term(Term, In, Tail) :- |
| with_output_to(codes(In, Tail), write(Term)). |
| |
| ?- phrase(term(hello), X). |
| |
||X_=_[104,_101,_108,_108,_111]_____________________________________ ||
AA SSttrreeaamm hhaannddllee oorr aalliiaass
Temporarily switch current output to the given stream. Redi-
rection using with_output_to/2guarantees the original output
is restored, also if _G_o_a_l fails or raises an exception. See
also call_cleanup/2.
aattoomm((_-_A_t_o_m))
Create an atom from the emitted characters. Please note the
remark above.
ssttrriinngg((_-_S_t_r_i_n_g))
Create a string object as defined in section 5.2.
ccooddeess((_-_C_o_d_e_s))
Create a list of character codes from the emitted characters,
similar to atom_codes/2.
ccooddeess((_-_C_o_d_e_s_, _-_T_a_i_l))
Create a list of character codes as a difference list.
cchhaarrss((_-_C_h_a_r_s))
Create a list of one-character atoms from the emitted charac-
ters, similar to atom_chars/2.
cchhaarrss((_-_C_h_a_r_s_, _-_T_a_i_l))
Create a list of one-character atoms as a difference list.
44..1177 SSttaattuuss ooff ssttrreeaammss
wwaaiitt__ffoorr__iinnppuutt((_+_L_i_s_t_O_f_S_t_r_e_a_m_s_, _-_R_e_a_d_y_L_i_s_t_, _+_T_i_m_e_O_u_t))
Wait for input on one of the streams in _L_i_s_t_O_f_S_t_r_e_a_m_s and return
a list of streams on which input is available in _R_e_a_d_y_L_i_s_t.
wait_for_input/3 waits for at most _T_i_m_e_O_u_t seconds. _T_i_m_e_o_u_t may
be specified as a floating point number to specify fractions of
a second. If _T_i_m_e_o_u_t equals infinite, wait_for_input/3 waits
indefinitely.
This predicate can be used to implement timeout while reading and
to handle input from multiple sources. The following example
will wait for input from the user and an explicitly opened second
terminal. On return, _I_n_p_u_t_s may hold user_input or _P_4 or both.
____________________________________________________________________| |
| ?- open('/dev/ttyp4', read, P4), |
||___wait_for_input([user_input,_P4],_Inputs,_0).___________________ ||
This predicate relies on the select() call on most operating
systems. On Unix this call is implemented for any stream referring
to a file handle, which implies all OS-based streams: sockets,
terminals, pipes, etc. On non-Unix systems select() is generally
only implemented for socket-based streams. See also socket from
the clib package.
Note that wait_for_input/3 returns streams that have data waiting.
This does not mean you can, for example, call read/2 on the
stream without blocking as the stream might hold an incomplete
term. The predicate set_stream/2 using the option timeout(_S_e_c_o_n_d_s)
can be used to make the stream generate an exception if no new
data arrives within the timeout period. Suppose two processes
communicate by exchanging Prolog terms. The following code makes
the server immune for clients that write an incomplete term:
____________________________________________________________________| |
| ..., |
| tcp_accept(Server, Socket, _Peer), |
| tcp_open(Socket, In, Out), |
| set_stream(In, timeout(10)), |
| catch(read(In, Term), _, (close(Out), close(In), fail)), |
||____...,__________________________________________________________ ||
bbyyttee__ccoouunntt((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Byte position in _S_t_r_e_a_m. For binary streams this is the same as
character_count/2. For text files the number may be different due
to multi-byte encodings or additional record separators (such as
Control-M in Windows).
cchhaarraacctteerr__ccoouunntt((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Unify _C_o_u_n_t with the current character index. For input streams
this is the number of characters read since the open; for output
streams this is the number of characters written. Counting starts
at 0.
lliinnee__ccoouunntt((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Unify _C_o_u_n_t with the number of lines read or written. Counting
starts at 1.
lliinnee__ppoossiittiioonn((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Unify _C_o_u_n_t with the position on the current line. Note that this
assumes the position is 0 after the open. Tabs are assumed to
be defined on each 8-th character, and backspaces are assumed to
reduce the count by one, provided it is positive.
44..1188 PPrriimmiittiivvee cchhaarraacctteerr II//OO
See section 4.2 for an overview of supported character representations.
nnll _[_I_S_O_]
Write a newline character to the current output stream. On Unix
systems nl/0 is equivalent to put(10).
nnll((_+_S_t_r_e_a_m)) _[_I_S_O_]
Write a newline to _S_t_r_e_a_m.
ppuutt((_+_C_h_a_r))
Write _C_h_a_r to the current output stream. _C_h_a_r is either an
integer expression evaluating to a character code or an atom of
one character. Deprecated. New code should use put_char/1 or
put_code/1.
ppuutt((_+_S_t_r_e_a_m_, _+_C_h_a_r))
Write _C_h_a_r to _S_t_r_e_a_m. See put/1 for details.
ppuutt__bbyyttee((_+_B_y_t_e)) _[_I_S_O_]
Write a single byte to the output. _B_y_t_e must be an integer between
0 and 255.
ppuutt__bbyyttee((_+_S_t_r_e_a_m_, _+_B_y_t_e)) _[_I_S_O_]
Write a single byte to _S_t_r_e_a_m. _B_y_t_e must be an integer between 0
and 255.
ppuutt__cchhaarr((_+_C_h_a_r)) _[_I_S_O_]
Write a character to the current output, obeying the encoding
defined for the current output stream. Note that this may raise
an exception if the encoding of the output stream cannot represent
_C_h_a_r.
ppuutt__cchhaarr((_+_S_t_r_e_a_m_, _+_C_h_a_r)) _[_I_S_O_]
Write a character to _S_t_r_e_a_m, obeying the encoding defined for
_S_t_r_e_a_m. Note that this may raise an exception if the encoding of
_S_t_r_e_a_m cannot represent _C_h_a_r.
ppuutt__ccooddee((_+_C_o_d_e)) _[_I_S_O_]
Similar to put_char/1, but using a _c_h_a_r_a_c_t_e_r _c_o_d_e. _C_o_d_e is a
non-negative integer. Note that this may raise an exception if the
encoding of the output stream cannot represent _C_o_d_e.
ppuutt__ccooddee((_+_S_t_r_e_a_m_, _+_C_o_d_e)) _[_I_S_O_]
Same as put_code/1 but directing _C_o_d_e to _S_t_r_e_a_m.
ttaabb((_+_A_m_o_u_n_t))
Write _A_m_o_u_n_t spaces on the current output stream. _A_m_o_u_n_t should
be an expression that evaluates to a positive integer (see
section 4.26).
ttaabb((_+_S_t_r_e_a_m_, _+_A_m_o_u_n_t))
Write _A_m_o_u_n_t spaces to _S_t_r_e_a_m.
fflluusshh__oouuttppuutt _[_I_S_O_]
Flush pending output on current output stream. flush_output/0 is
automatically generated by read/1 and derivatives if the current
input stream is user and the cursor is not at the left margin.
fflluusshh__oouuttppuutt((_+_S_t_r_e_a_m)) _[_I_S_O_]
Flush output on the specified stream. The stream must be open for
writing.
ttttyyfflluusshh
Flush pending output on stream user. See also flush_output/[0,1].
ggeett__bbyyttee((_-_B_y_t_e)) _[_I_S_O_]
Read the current input stream and unify the next byte with _B_y_t_e (an
integer between 0 and 255). _B_y_t_e is unified with -1 on end of
file.
ggeett__bbyyttee((_+_S_t_r_e_a_m_, _-_B_y_t_e)) _[_I_S_O_]
Read the next byte from _S_t_r_e_a_m and unify _B_y_t_e with an integer
between 0 and 255.
ggeett__ccooddee((_-_C_o_d_e)) _[_I_S_O_]
Read the current input stream and unify _C_o_d_e with the character
code of the next character. _C_o_d_e is unified with -1 on end of
file. See also get_char/1.
ggeett__ccooddee((_+_S_t_r_e_a_m_, _-_C_o_d_e)) _[_I_S_O_]
Read the next character code from _S_t_r_e_a_m.
ggeett__cchhaarr((_-_C_h_a_r)) _[_I_S_O_]
Read the current input stream and unify _C_h_a_r with the next
character as a one-character atom. See also atom_chars/2. On
end-of-file, _C_h_a_r is unified to the atom end_of_file.
ggeett__cchhaarr((_+_S_t_r_e_a_m_, _-_C_h_a_r)) _[_I_S_O_]
Unify _C_h_a_r with the next character from _S_t_r_e_a_m as a one-character
atom. See also get_char/2, get_byte/2 and get_code/2.
ggeett00((_-_C_h_a_r)) _[_d_e_p_r_e_c_a_t_e_d_]
Edinburgh version of the ISO get_code/1 predicate. Note that
Edinburgh Prolog didn't support wide characters and therefore
technically speaking get0/1 should have been mapped to get_byte/1.
The intention of get0/1, however, is to read character codes.
ggeett00((_+_S_t_r_e_a_m_, _-_C_h_a_r)) _[_d_e_p_r_e_c_a_t_e_d_]
Edinburgh version of the ISO get_code/2 predicate. See also
get0/1.
ggeett((_-_C_h_a_r)) _[_d_e_p_r_e_c_a_t_e_d_]
Read the current input stream and unify the next non-blank
character with _C_h_a_r. _C_h_a_r is unified with -1 on end of file. The
predicate get/1 operates on character _c_o_d_e_s. See also get0/1.
ggeett((_+_S_t_r_e_a_m_, _-_C_h_a_r)) _[_d_e_p_r_e_c_a_t_e_d_]
Read the next non-blank character from _S_t_r_e_a_m. See also get/1,
get0/1 and get0/2.
ppeeeekk__bbyyttee((_-_B_y_t_e)) _[_I_S_O_]
ppeeeekk__bbyyttee((_+_S_t_r_e_a_m_, _-_B_y_t_e)) _[_I_S_O_]
ppeeeekk__ccooddee((_-_C_o_d_e)) _[_I_S_O_]
ppeeeekk__ccooddee((_+_S_t_r_e_a_m_, _-_C_o_d_e)) _[_I_S_O_]
ppeeeekk__cchhaarr((_-_C_h_a_r)) _[_I_S_O_]
ppeeeekk__cchhaarr((_+_S_t_r_e_a_m_, _-_C_h_a_r)) _[_I_S_O_]
Read the next byte/code/char from the input without removing
it. These predicates do not modify the stream's position or
end-of-file status. These predicates require a buffered stream
(see set_stream/2) and raise a permission error if the stream
is unbuffered or the buffer is too small to hold the longest
multi-byte sequence that might need to be buffered.
ppeeeekk__ssttrriinngg((_+_S_t_r_e_a_m_, _+_L_e_n_, _-_S_t_r_i_n_g))
Read the next _L_e_n characters (if the stream is a text stream) or
bytes (if the stream is binary) from Stream without removing the
data. If _L_e_n is larger that the stream buffer size, the buffer
size is increased to _L_e_n. _S_t_r_i_n_g can be shorter than _L_e_n if the
stream contains less data. This predicate is intended to guess the
content type of data read from non-repositionable streams.
sskkiipp((_+_C_o_d_e))
Read the input until _C_o_d_e or the end of the file is encountered. A
subsequent call to get_code/1 will read the first character after
_C_o_d_e.
sskkiipp((_+_S_t_r_e_a_m_, _+_C_o_d_e))
Skip input (as skip/1) on _S_t_r_e_a_m.
ggeett__ssiinnggllee__cchhaarr((_-_C_o_d_e))
Get a single character from input stream `user' (regardless of the
current input stream). Unlike get_code/1, this predicate does not
wait for a return. The character is not echoed to the user's
terminal. This predicate is meant for keyboard menu selection,
etc. If SWI-Prolog was started with the -tty option this predicate
reads an entire line of input and returns the first non-blank
character on this line, or the character code of the newline (10)
if the entire line consisted of blank characters.
aatt__eenndd__ooff__ssttrreeaamm _[_I_S_O_]
Succeeds after the last character of the current input stream has
been read. Also succeeds if there is no valid current input
stream.
aatt__eenndd__ooff__ssttrreeaamm((_+_S_t_r_e_a_m)) _[_I_S_O_]
Succeeds after the last character of the named stream is read, or
_S_t_r_e_a_m is not a valid input stream. The end-of-stream test is only
available on buffered input streams (unbuffered input streams are
rarely used; see open/4).
sseett__eenndd__ooff__ssttrreeaamm((_+_S_t_r_e_a_m))
Set the size of the file opened as _S_t_r_e_a_m to the current file
position. This is typically used in combination with the open-mode
update.
ccooppyy__ssttrreeaamm__ddaattaa((_+_S_t_r_e_a_m_I_n_, _+_S_t_r_e_a_m_O_u_t_, _+_L_e_n))
Copy _L_e_n codes from _S_t_r_e_a_m_I_n to _S_t_r_e_a_m_O_u_t. Note that the copy is
done using the semantics of get_code/2 and put_code/2, taking care
of possibly recoding that needs to take place between two text
files. See section 2.18.1.
ccooppyy__ssttrreeaamm__ddaattaa((_+_S_t_r_e_a_m_I_n_, _+_S_t_r_e_a_m_O_u_t))
Copy all (remaining) data from _S_t_r_e_a_m_I_n to _S_t_r_e_a_m_O_u_t.
rreeaadd__ppeennddiinngg__iinnppuutt((_+_S_t_r_e_a_m_I_n_, _-_C_o_d_e_s_, _?_T_a_i_l))
Read input pending in the input buffer of _S_t_r_e_a_m_I_n and return it in
the difference list _C_o_d_e_s-_T_a_i_l. That is, the available characters
codes are used to create the list _C_o_d_e_s ending in the tail _T_a_i_l.
This predicate is intended for efficient unbuffered copying and
filtering of input coming from network connections or devices.
The following code fragment realises efficient non-blocking copying
of data from an input to an output stream. The at_end_of_stream/1
call checks for end-of-stream and fills the input buffer. Note
that the use of a get_code/2 and put_code/2 based loop requires a
flush_output/1 call after _e_a_c_h put_code/2. The copy_stream_data/2
does not allow for inspection of the copied data and suffers from
the same buffering issues.
____________________________________________________________________| |
| copy(In, Out) :- |
| repeat, |
| ( at_end_of_stream(In) |
| -> ! |
| ; read_pending_input(In, Chars, []), |
| format(Out, '~s', [Chars]), |
| flush_output(Out), |
| fail |
||____________).____________________________________________________ ||
44..1199 TTeerrmm rreeaaddiinngg aanndd wwrriittiinngg
This section describes the basic term reading and writing predicates.
The predicates format/[1,2] and writef/2 provide formatted output.
Writing to Prolog data structures such as atoms or code-lists is
supported by with_output_to/2and format/3.
Reading is sensitive to the Prolog flag character_escapes, which
controls the interpretation of the \ character in quoted atoms and
strings.
wwrriittee__tteerrmm((_+_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
The predicate write_term/2 is the generic form of all Prolog
term-write predicates. Valid options are:
aattttrriibbuutteess((_A_t_o_m))
Define how attributed variables (see section 7.1) are written.
The default is determined by the Prolog flag write_attributes.
Defined values are ignore (ignore the attribute), dots (write
the attributes as {...}), write (simply hand the attributes
recursively to write_term/2) and portray (hand the attributes
to attr_portray_hook/2).
bbaacckk__qquuootteess((_A_t_o_m))
Fulfills the same role as the back_quotes prolog flag.
Notably, the value string causes string objects to be printed
between back quotes and symbol_char causes the backquote to be
printed unquoted. In all other cases the backquote is printed
as a quoted atom.
bbrraaccee__tteerrmmss((_B_o_o_l))
If true (default), write {}(X) as {X}. See also dotlists and
ignore_ops.
bblloobbss((_A_t_o_m))
Define how non-text blobs are handled. By default, this is
left to the write handler specified with the blob type. Using
portray, portray/1 is called for each blob encountered. See
section 10.4.7.
cchhaarraacctteerr__eessccaappeess((_B_o_o_l))
If true and quoted(_t_r_u_e) is active, special characters in
quoted atoms and strings are emitted as ISO escape sequences.
Default is taken from the reference module (see below).
ccyycclleess((_B_o_o_l))
If true (default), cyclic terms are written as @(_T_e_m_p_l_a_t_e_,
_S_u_b_s_t_i_t_u_t_i_o_n_s), where _S_u_b_s_t_i_t_u_t_i_o_n_s is a list _V_a_r = _V_a_l_u_e. If
cycles is false, max_depth is not given, and _T_e_r_m is cyclic,
write_term/2 raises a domain_error. See also the cycles option
in read_term/2.
ddoottlliissttss((_B_o_o_l))
If true (default false), write lists using the dotted term
notation rather than the list notation. Note that as
of version 7, the list constructor is '[|]'. Using
dotlists(_t_r_u_e), write_term/2 writes a list using `.' as
constructor. This is intended for communication with programs
such as other Prolog systems, that rely on this notation.
ffuullllssttoopp((_B_o_o_l))
If true (default false), add a fullstop token to the output.
The dot is preceeded by a space if needed and followed by
a space (default) or newline if the nl(_t_r_u_e) option is also
given.
iiggnnoorree__ooppss((_B_o_o_l))
If true, the generic term representation (<_f_u_n_c_t_o_r>(<_a_r_g_s> ...))
will be used for all terms. Otherwise (default), operators
will be used where appropriate..
mmaaxx__ddeepptthh((_I_n_t_e_g_e_r))
If the term is nested deeper than _I_n_t_e_g_e_r, print the remainder
as ellipses (...). A 0 (zero) value (default) imposes no
depth limit. This option also delimits the number of printed
items in a list. Example:
_______________________________________________________________| |
|?- write_term(a(s(s(s(s(0)))), [a,b,c,d,e,f]), |
| [max_depth(3)]). |
|a(s(s(...)), [a, b|...]) |
|true.|________________________________________________________ | |
Used by the top level and debugger to limit screen
output. See also the Prolog flags answer_write_options and
debugger_write_options.
mmoodduullee((_M_o_d_u_l_e))
Define the reference module (default user). This defines the
default value for the character_escapes option as well as the
operator definitions to use. See also op/3.
nnll((_B_o_o_l))
Add a newline to the output. See also the fullstop option.
nnuummbbeerrvvaarrss((_B_o_o_l))
If true, terms of the format $VAR(N), where _N is a non-
negative integer, will be written as a variable name. If _N is
an atom it is written without quotes. This extension allows
for writing variables with user-provided names. The default
is false. See also numbervars/3 and the option variable_names.
ppaarrttiiaall((_B_o_o_l))
If true (default false), do not reset the logic that inserts
extra spaces that separate tokens where needed. This is
intended to solve the problems with the code below. Calling
write_value(.) writes .., which cannot be read. By adding
partial(_t_r_u_e) to the option list, it correctly emits . ..
Similar problems appear when emitting operators using multiple
calls to write_term/3.
_______________________________________________________________| |
|write_value(Value) :- |
| write_term(Value, [partial(true)]), |
||_______write('.'),_nl._______________________________________ ||
ppoorrttrraayy((_B_o_o_l))
Same as portrayed(_B_o_o_l). Deprecated.
ppoorrttrraayy__ggooaall((_:_G_o_a_l))
Implies portray(_t_r_u_e), but calls _G_o_a_l rather than the prede-
fined hook portray/1. _G_o_a_l is called through call/3, where
the first argument is _G_o_a_l, the second is the term to be
printed and the 3rd argument is the current write option list.
The write option list is copied from the write_term call,
but the list is guaranteed to hold an option priority that
reflects the current priority.
ppoorrttrraayyeedd((_B_o_o_l))
If true, the hook portray/1 is called before printing a term
that is not a variable. If portray/1 succeeds, the term is
considered printed. See also print/1. The default is false.
This option is an extension to the ISO write_term options.
pprriioorriittyy((_I_n_t_e_g_e_r))
An integer between 0 and 1200 representing the `context
priority'. Default is 1200. Can be used to write partial
terms appearing as the argument to an operator. For example:
_______________________________________________________________| |
| format('~w = ', [VarName]), |
||_______write_term(Value,_[quoted(true),_priority(699)])______ ||
qquuootteedd((_B_o_o_l))
If true, atoms and functors that need quotes will be quoted.
The default is false.
ssppaacciinngg((_+_S_p_a_c_i_n_g))
Determines whether and where extra white space is added to
enhance readability. The default is standard, adding only
space where needed for proper tokenization by read_term/3.
Currently, the only other value is next_argument, adding a
space after a comma used to separate arguments in a term or
list.
vvaarriiaabbllee__nnaammeess((_+_L_i_s_t))
Assign names to variables in _T_e_r_m. _L_i_s_t is a list of terms
_N_a_m_e = _V_a_r, where _N_a_m_e is an atom that represents a valid
Prolog variable name. Terms where _V_a_r is bound or is a
variable that does not appear in _T_e_r_m are ignored. Raises an
error if _L_i_s_t is not a list, one of the members is not a term
_N_a_m_e = _V_a_r, _N_a_m_e is not an atom or _N_a_m_e does not represent a
valid Prolog variable name.
The implementation binds the variables from _L_i_s_t to a term
'$VAR'(_N_a_m_e). Like write_canonical/1, terms that where already
bound to '$VAR'(_X) before write_term/2 are printed normally,
unless the option numbervars(_t_r_u_e) is also provided. If the
option numbervars(_t_r_u_e) is used, the user is responsible for
avoiding collisions between assigned names and numbered names.
See also the variable_names option of read_term/2.
Possible variable attributes (see section 7) are ignored. In
most cases one should use copy_term/3 to obtain a copy that
is free of attributed variables and handle the associated
constraints as appropriate for the use-case.
wwrriittee__tteerrmm((_+_S_t_r_e_a_m_, _+_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
As write_term/2, but output is sent to _S_t_r_e_a_m rather than the
current output.
wwrriittee__lleennggtthh((_+_T_e_r_m_, _-_L_e_n_g_t_h_, _+_O_p_t_i_o_n_s)) _[_s_e_m_i_d_e_t_]
True when _L_e_n_g_t_h is the number of characters emitted for
_w_r_i_t_e___t_e_r_mTerm, Options. In addition to valid options for
write_term/2, it processes the option:
mmaaxx__lleennggtthh((_+_M_a_x_L_e_n_g_t_h))
If provided, fail if _L_e_n_g_t_h would be larger than _M_a_x_L_e_n_g_t_h.
The implementation ensures that the runtime is limited when
computing the length of a huge term with a bounded maximum.
wwrriittee__ccaannoonniiccaall((_+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m on the current output stream using standard paren-
thesised prefix notation (i.e., ignoring operator declarations).
Atoms that need quotes are quoted. Terms written with this
predicate can always be read back, regardless of current operator
declarations. Equivalent to write_term/2 using the options
ignore_ops, quoted and numbervars after numbervars/4 using the
singletons option.
Note that due to the use of numbervars/4, non-ground terms must be
written using a _s_i_n_g_l_e write_canonical/1 call. This used to be
the case anyhow, as garbage collection between multiple calls to
one of the write predicates can change the _G<NNN> identity of the
variables.
wwrriittee__ccaannoonniiccaall((_+_S_t_r_e_a_m_, _+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m in canonical form on _S_t_r_e_a_m.
wwrriittee((_+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m to the current output, using brackets and operators
where appropriate.
wwrriittee((_+_S_t_r_e_a_m_, _+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m to _S_t_r_e_a_m.
wwrriitteeqq((_+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m to the current output, using brackets and operators
where appropriate. Atoms that need quotes are quoted. Terms
written with this predicate can be read back with read/1 provided
the currently active operator declarations are identical.
wwrriitteeqq((_+_S_t_r_e_a_m_, _+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m to _S_t_r_e_a_m, inserting quotes.
wwrriitteellnn((_+_T_e_r_m))
Equivalent to write(Term), nl.. The output stream is locked, which
implies no output from other threads can appear between the term
and newline.
wwrriitteellnn((_+_S_t_r_e_a_m_, _+_T_e_r_m))
Equivalent to write(Stream, Term), nl(Stream).. The output stream
is locked, which implies no output from other threads can appear
between the term and newline.
pprriinntt((_+_T_e_r_m))
Print a term for debugging porposes. The predicate print/1 acts as
if defined as below.
____________________________________________________________________| |
| print(Term) :- |
| current_prolog_flag(print_write_options, Options), !, |
| write_term(Term, Options). |
| print(Term) :- |
| write_term(Term, [ portray(true), |
| numbervars(true), |
| quoted(true) |
||_____________________]).__________________________________________ ||
The print/1 predicate is used primarily through the ~p escape
sequence of format/2, which is commonly used in the recipies used
by print_message/2 to emit messages.
The classical definition of this predicate is equivalent to the
ISO predicate write_term/2 using the options portray(_t_r_u_e) and
numbervars(_t_r_u_e). The portray(_t_r_u_e) options allows the user to
implement application-specific printing of terms printed during
debugging to facilitate easy understanding of the output. See
also portray/1 and portray_text. SWI-Prolog adds quoted(_t_r_u_e) to
facilitate copy/paste of terms not affected by portray/1 and better
distinguishing of e.g., 42, '42' and "42", a number, atom and
string.
pprriinntt((_+_S_t_r_e_a_m_, _+_T_e_r_m))
Print _T_e_r_m to _S_t_r_e_a_m.
ppoorrttrraayy((_+_T_e_r_m))
A dynamic predicate, which can be defined by the user to change the
behaviour of print/1 on (sub)terms. For each subterm encountered
that is not a variable print/1 first calls portray/1 using the term
as argument. For lists, only the list as a whole is given to
portray/1. If portray/1 succeeds print/1 assumes the term has been
written.
rreeaadd((_-_T_e_r_m)) _[_I_S_O_]
Read the next Prolog term from the current input stream and unify
it with _T_e_r_m. On a syntax error read/1 displays an error message,
attempts to skip the erroneous term and fails. On reaching
end-of-file _T_e_r_m is unified with the atom end_of_file.
rreeaadd((_+_S_t_r_e_a_m_, _-_T_e_r_m)) _[_I_S_O_]
Read _T_e_r_m from _S_t_r_e_a_m.
rreeaadd__ccllaauussee((_+_S_t_r_e_a_m_, _-_T_e_r_m_, _+_O_p_t_i_o_n_s))
Equivalent to read_term/3, but sets options according to the
current compilation context and optionally processes comments.
Defined options:
ssyynnttaaxx__eerrrroorrss((_+_A_t_o_m))
See read_term/3, but the default is dec10 (report and restart).
tteerrmm__ppoossiittiioonn((_-_T_e_r_m_P_o_s))
Same as for read_term/3.
ssuubbtteerrmm__ppoossiittiioonnss((_-_T_e_r_m_P_o_s))
Same as for read_term/3.
vvaarriiaabbllee__nnaammeess((_-_B_i_n_d_i_n_g_s))
Same as for read_term/3.
pprroocceessss__ccoommmmeenntt((_+_B_o_o_l_e_a_n))
If true (default), call prolog:comment_hook(_C_o_m_m_e_n_t_s_, _T_e_r_m_P_o_s_,
_T_e_r_m) if this multifile hook is defined (see pro-
log:comment_hook/3). This is used to drive PlDoc.
ccoommmmeennttss((_-_C_o_m_m_e_n_t_s))
If provided, unify _C_o_m_m_e_n_t_s with the comments encountered
while reading _T_e_r_m. This option implies pro-
cess_comment(_f_a_l_s_e).
The singletons option of read_term/3is initialised from the active
style-checking mode. The module option is initialised to the
current compilation module (see prolog_load_context/2).
rreeaadd__tteerrmm((_-_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
Read a term from the current input stream and unify the term with
_T_e_r_m. The reading is controlled by options from the list of
_O_p_t_i_o_n_s. If this list is empty, the behaviour is the same as for
read/1. The options are upward compatible with Quintus Prolog.
The argument order is according to the ISO standard. Syntax
errors are always reported using exception-handling (see catch/3).
Options:
bbaacckkqquuootteedd__ssttrriinngg((_B_o_o_l))
If true, read `...` to a string object (see section 5.2). The
default depends on the Prolog flag back_quotes.
cchhaarraacctteerr__eessccaappeess((_B_o_o_l))
Defines how to read \ escape sequences in quoted atoms. See
the Prolog flag character_escapes in current_prolog_flag/2.
(SWI-Prolog).
ccoommmmeennttss((_-_C_o_m_m_e_n_t_s))
Unify _C_o_m_m_e_n_t_s with a list of _P_o_s_i_t_i_o_n-_C_o_m_m_e_n_t, where _P_o_s_i_t_i_o_n
is a stream position object (see stream_position_data/3)
indicating the start of a comment and _C_o_m_m_e_n_t is a string
object containing the text including delimiters of a comment.
It returns all comments from where the read_term/2 call started
up to the end of the term read.
ccyycclleess((_B_o_o_l))
If true (default false), re-instantiate templates as produced
by the corresponding write_term/2 option. Note that the
default is false to avoid misinterpretation of @(_T_e_m_p_l_a_t_e_,
_S_u_b_s_t_u_t_i_o_n_s), while the default of write_term/2 is true because
emitting cyclic terms without using the template construct
produces an infinitely large term (read: it will generate an
error after producing a huge amount of output).
ddoottlliissttss((_B_o_o_l))
If true (default false), read .(a,[]) as a list, even if lists
are internally nor constructed using the dot as functor. This
is primarily intended to read the output from write_canonical/1
from other Prolog systems. See section 5.1.
ddoouubbllee__qquuootteess((_A_t_o_m))
Defines how to read "..." strings. See the Prolog flag
double_quotes. (SWI-Prolog).
mmoodduullee((_M_o_d_u_l_e))
Specify _M_o_d_u_l_e for operators, character_escapes flag and
double_quotes flag. The value of the latter two is overruled
if the corresponding read_term/3 option is provided. If no
module is specified, the current `source module' is used.
(SWI-Prolog).
qquuaassii__qquuoottaattiioonnss((_-_L_i_s_t))
If present, unify _L_i_s_t with the quasi quotations (see sec-
tion 12.26 instead of evaluating quasi quotations. Each quasi
quotation is a term quasi_quotation(_+_S_y_n_t_a_x_, _+_Q_u_o_t_a_t_i_o_n_, _+_V_a_r_-
_D_i_c_t_, _-_R_e_s_u_l_t), where _S_y_n_t_a_x is the term in {|Syntax||..|},
_Q_u_o_t_a_t_i_o_n is a list of character codes that represent the
quotation, _V_a_r_D_i_c_t is a list of _N_a_m_e=_V_a_r_i_a_b_l_e and _R_e_s_u_l_t is a
variable that shares with the place where the quotation must
be inserted. This option is intended to support tools that
manipulate Prolog source text.
ssiinngglleettoonnss((_V_a_r_s))
As variable_names, but only reports the variables occurring
only once in the _T_e_r_m read. Variables starting with an
underscore (`_') are not included in this list. (ISO). If
_V_a_r_s is the constant warning, singleton variables are reported
using print_message/2. The variables appear in the order they
have been read.
ssyynnttaaxx__eerrrroorrss((_A_t_o_m))
If error (default), throw an exception on a syntax error.
Other values are fail, which causes a message to be printed
using print_message/2, after which the predicate fails, quiet
which causes the predicate to fail silently, and dec10 which
causes syntax errors to be printed, after which read_term/[2,3]
continues reading the next term. Using dec10, read_term/[2,3]
never fails. (Quintus, SICStus).
ssuubbtteerrmm__ppoossiittiioonnss((_T_e_r_m_P_o_s))
Describes the detailed layout of the term. The formats for
the various types of terms are given below. All positions are
character positions. If the input is related to a normal
stream, these positions are relative to the start of the
input; when reading from the terminal, they are relative to
the start of the term.
_F_r_o_m--_T_o
Used for primitive types (atoms, numbers, variables).
ssttrriinngg__ppoossiittiioonn((_F_r_o_m_, _T_o))
Used to indicate the position of a string enclosed in
double quotes (").
bbrraaccee__tteerrmm__ppoossiittiioonn((_F_r_o_m_, _T_o_, _A_r_g))
Term of the form {...}, as used in DCG rules. _A_r_g
describes the argument.
lliisstt__ppoossiittiioonn((_F_r_o_m_, _T_o_, _E_l_m_s_, _T_a_i_l))
A list. _E_l_m_s describes the positions of the elements.
If the list specifies the tail as |<TailTerm>, _T_a_i_l is
unified with the term position of the tail, otherwise with
the atom none.
tteerrmm__ppoossiittiioonn((_F_r_o_m_, _T_o_, _F_F_r_o_m_, _F_T_o_, _S_u_b_P_o_s))
Used for a compound term not matching one of the above.
_F_F_r_o_m and _F_T_o describe the position of the functor.
_S_u_b_P_o_s is a list, each element of which describes the term
position of the corresponding subterm.
mmaapp__ppoossiittiioonn((_F_r_o_m_, _T_o_, _T_y_p_e_F_r_o_m_, _T_y_p_e_T_o_, _K_e_y_V_a_l_u_e_P_o_s_L_i_s_t))
Used for a map (see section 5.4). The position of
the key-value pairs is described by _K_e_y_V_a_l_u_e_P_o_s_L_i_s_t,
which is a list of key_value_position/7 terms. The
key_value_position/7 terms appear in the order of the
input. Because maps to not preserve ordering, the key is
provided in the position description.
kkeeyy__vvaalluuee__ppoossiittiioonn((_F_r_o_m_, _T_o_, _S_e_p_F_r_o_m_, _S_e_p_T_o_, _K_e_y_, _K_e_y_P_o_s_, _V_a_l_u_e_P_o_s))
Used for key-value pairs in a map (see section 5.4). It
is similar to the term_position/5 that would be created,
except that the key and value positions do not need an
intermediate list and the key is provided in _K_e_y to enable
synchronisation of the file position data with the data
structure.
tteerrmm__ppoossiittiioonn((_P_o_s))
Unifies _P_o_s with the starting position of the term read. _P_o_s
is of the same format as used by stream_property/2.
vvaarriiaabblleess((_V_a_r_s))
Unify _V_a_r_s with a list of variables in the term. The
variables appear in the order they have been read. See also
term_variables/2. (ISO).
vvaarriiaabbllee__nnaammeess((_V_a_r_s))
Unify _V_a_r_s with a list of `_N_a_m_e = _V_a_r', where _N_a_m_e is an atom
describing the variable name and _V_a_r is a variable that shares
with the corresponding variable in _T_e_r_m. (ISO). The variables
appear in the order they have been read.
rreeaadd__tteerrmm((_+_S_t_r_e_a_m_, _-_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
Read term with options from _S_t_r_e_a_m. See read_term/2.
rreeaadd__tteerrmm__ffrroomm__aattoomm((_+_A_t_o_m_, _-_T_e_r_m_, _+_O_p_t_i_o_n_s))
Use read_term/3 to read the next term from _A_t_o_m. _A_t_o_m is either
an atom or a string object (see section 5.2). It is not required
for _A_t_o_m to end with a full-stop. This predicate supersedes
atom_to_term/3.
rreeaadd__hhiissttoorryy((_+_S_h_o_w_, _+_H_e_l_p_, _+_S_p_e_c_i_a_l_, _+_P_r_o_m_p_t_, _-_T_e_r_m_, _-_B_i_n_d_i_n_g_s))
Similar to read_term/2 using the option variable_names, but allows
for history substitutions. read_history/6is used by the top level
to read the user's actions. _S_h_o_w is the command the user should
type to show the saved events. _H_e_l_p is the command to get an
overview of the capabilities. _S_p_e_c_i_a_l is a list of commands that
are not saved in the history. _P_r_o_m_p_t is the first prompt given.
Continuation prompts for more lines are determined by prompt/2.
A %w in the prompt is substituted by the event number. See
section 2.7 for available substitutions.
SWI-Prolog calls read_history/6 as follows:
____________________________________________________________________| |
||read_history(h,_'!h',_[trace],_'%w_?-_',_Goal,_Bindings)__________ ||
pprroommpptt((_-_O_l_d_, _+_N_e_w))
Set prompt associated with read/1 and its derivatives. _O_l_d is
first unified with the current prompt. On success the prompt will
be set to _N_e_w if this is an atom. Otherwise an error message is
displayed. A prompt is printed if one of the read predicates is
called and the cursor is at the left margin. It is also printed
whenever a newline is given and the term has not been terminated.
Prompts are only printed when the current input stream is _u_s_e_r.
pprroommpptt11((_+_P_r_o_m_p_t))
Sets the prompt for the next line to be read. Continuation lines
will be read using the prompt defined by prompt/2.
44..2200 AAnnaallyyssiinngg aanndd CCoonnssttrruuccttiinngg TTeerrmmss
ffuunnccttoorr((_?_T_e_r_m_, _?_N_a_m_e_, _?_A_r_i_t_y)) _[_I_S_O_]
True when _T_e_r_m is a term with functor _N_a_m_e/_A_r_i_t_y. If _T_e_r_m is a
variable it is unified with a new term whose arguments are all
different variables (such a term is called a skeleton). If _T_e_r_m is
atomic, _A_r_i_t_y will be unified with the integer 0, and _N_a_m_e will be
unified with _T_e_r_m. Raises instantiation_error if _T_e_r_m is unbound
and _N_a_m_e/_A_r_i_t_y is insufficiently instantiated.
SWI-Prolog also supports terms with arity 0, as in a()
(see section 5. Such terms must be processed using
compound_name_arity/3. The predicate functor/3 and =../2 raise a
domain_error when faced with these terms. Without this precaution,
the inconsistency demonstrated below could happen silently.
____________________________________________________________________| |
| ?- functor(a(), N, A). |
| N = a, A = 0. |
| ?- functor(T, a, 0). |
||T_=_a.____________________________________________________________ ||
aarrgg((_?_A_r_g_, _+_T_e_r_m_, _?_V_a_l_u_e)) _[_I_S_O_]
_T_e_r_m should be instantiated to a term, _A_r_g to an integer between
1 and the arity of _T_e_r_m. _V_a_l_u_e is unified with the _A_r_g-th
argument of _T_e_r_m. _A_r_g may also be unbound. In this case _V_a_l_u_e
will be unified with the successive arguments of the term. On
successful unification, _A_r_g is unified with the argument number.
Backtracking yields alternative solutions. The predicate arg/3
fails silently if _A_r_g= 0 or _A_r_g > _a_r_i_t_y and raises the exception
domain_error(not_less_than_zero, _A_r_g)if _A_r_g <0.
_?_T_e_r_m =.. _?_L_i_s_t _[_I_S_O_]
_L_i_s_t is a list whose head is the functor of _T_e_r_m and the remaining
arguments are the arguments of the term. Either side of the
predicate may be a variable, but not both. This predicate is
called `Univ'.
____________________________________________________________________| |
| ?- foo(hello, X) =.. List. |
| List = [foo, hello, X] |
| |
| ?- Term =.. [baz, foo(1)]. |
||Term_=_baz(foo(1))________________________________________________ ||
SWI-Prolog also supports terms with arity 0, as in a()
(see section 5. Such terms must be processed using
compound_name_arguments/3. This predicate raises a domain error as
shown below. See also functor/3.
____________________________________________________________________| |
| ?- a() =.. L. |
||ERROR:_Domain_error:_`compound_non_zero_arity'_expected,_found_`a()'||_
ccoommppoouunndd__nnaammee__aarriittyy((_?_C_o_m_p_o_u_n_d_, _?_N_a_m_e_, _?_A_r_i_t_y))
Rationalized version of functor/3 that only works for compound
terms and can examine and create compound terms with zero arguments
(e.g, name(). See also compound_name_arguments/3.
ccoommppoouunndd__nnaammee__aarrgguummeennttss((_?_C_o_m_p_o_u_n_d_, _?_N_a_m_e_, _?_A_r_g_u_m_e_n_t_s))
Rationalized version of =../2 that can compose and decompose com-
pound terms with zero arguments. See also compound_name_arity/3.
nnuummbbeerrvvaarrss((_+_T_e_r_m_, _+_S_t_a_r_t_, _-_E_n_d))
Unify the free variables in _T_e_r_m with a term $VAR(_N), where _N is
the number of the variable. Counting starts at _S_t_a_r_t. _E_n_d is
unified with the number that should be given to the next variable.
The example below illustrates this. Note that the toplevel prints
'$VAR'(0) as _A due to the numbervars(_t_r_u_e) option used to print
answers.
____________________________________________________________________| |
| ?- Term = f(X,Y,X), |
| numbervars(Term, 0, End), |
| write_canonical(Term), nl. |
| f('$VAR'(0),'$VAR'(1),'$VAR'(0)) |
| Term = f(A, B, A), |
| X = A, |
| Y = B, |
||End_=_2.__________________________________________________________ ||
See also the numbervars option to write_term/3 and numbervars/4.
nnuummbbeerrvvaarrss((_+_T_e_r_m_, _+_S_t_a_r_t_, _-_E_n_d_, _+_O_p_t_i_o_n_s))
As numbervars/3, providing the following options:
ffuunnccttoorr__nnaammee((_+_A_t_o_m))
Name of the functor to use instead of $VAR.
aattttvvaarr((_+_A_c_t_i_o_n))
What to do if an attributed variable is encountered. Options
are skip, which causes numbervars/3 to ignore the attributed
variable, bind which causes it to thread it as a normal
variable and assign the next '$VAR'(N) term to it, or
(default) error which raises a type_error exception.
ssiinngglleettoonnss((_+_B_o_o_l))
If true (default false), numbervars/4 does singleton detec-
tion. Singleton variables are unified with '$VAR'('_'),
causing them to be printed as _ by write_term/2 using
the numbervars option. This option is exploited by
portray_clause/2 and write_canonical/2.
vvaarr__nnuummbbeerr((_@_T_e_r_m_, _-_V_a_r_N_u_m_b_e_r))
True if _T_e_r_m is numbered by numbervars/3 and _V_a_r_N_u_m_b_e_r is the
number given to this variable. This predicate avoids the need for
unification with '$VAR'(X) and opens the path for replacing this
valid Prolog term by an internal representation that has no textual
equivalent.
tteerrmm__vvaarriiaabblleess((_+_T_e_r_m_, _-_L_i_s_t)) _[_I_S_O_]
Unify _L_i_s_t with a list of variables, each sharing with a unique
variable of _T_e_r_m. The variables in _L_i_s_t are ordered in order of
appearance traversing _T_e_r_m depth-first and left-to-right. See also
term_variables/3. For example:
____________________________________________________________________| |
| ?- term_variables(a(X, b(Y, X), Z), L). |
||L_=_[X,_Y,_Z].____________________________________________________ ||
tteerrmm__vvaarriiaabblleess((_+_T_e_r_m_, _-_L_i_s_t_, _?_T_a_i_l))
Difference list version of term_variables/2. That is, _T_a_i_l is the
tail of the variable list _L_i_s_t.
ccooppyy__tteerrmm((_+_I_n_, _-_O_u_t)) _[_I_S_O_]
Create a version of _I_n with renamed (fresh) variables and unify
it to _O_u_t. Attributed variables (see section 7.1) have their
attributes copied. The implementation of copy_term/2 can deal
with infinite trees (cyclic terms). As pure Prolog cannot
distinguish a ground term from another ground term with exactly the
same structure, ground sub-terms are _s_h_a_r_e_d between _I_n and _O_u_t.
Sharing ground terms does affect setarg/3. SWI-Prolog provides
duplicate_term/2 to create a true copy of a term.
44..2200..11 NNoonn--llooggiiccaall ooppeerraattiioonnss oonn tteerrmmss
Prolog is not able to _m_o_d_i_f_y instantiated parts of a term. Lacking
that capability makes the language much safer, but unfortunately there
are problems that suffer severely in terms of time and/or memory usage.
Always try hard to avoid the use of these primitives, but they can be a
good alternative to using dynamic predicates. See also section 7.3,
discussing the use of global variables.
sseettaarrgg((_+_A_r_g_, _+_T_e_r_m_, _+_V_a_l_u_e))
Extra-logical predicate. Assigns the _A_r_g-th argument of the
compound term _T_e_r_m with the given _V_a_l_u_e. The assignment is undone
if backtracking brings the state back into a position before the
setarg/3 call. See also nb_setarg/3.
This predicate may be used for destructive assignment to terms,
using them as an extra-logical storage bin. Always try hard to
avoid the use of setarg/3 as it is not supported by many Prolog
systems and one has to be very careful about unexpected copying
as well as unexpected noncopying of terms. A good practice to
improve somewhat on this situation is to make sure that terms whose
arguments are subject to setarg/3 have one unused and unshared
variable in addition to the used arguments. This variable avoids
unwanted sharing in, e.g., copy_term/2, and causes the term to be
considered as non-ground.
nnbb__sseettaarrgg((_+_A_r_g_, _+_T_e_r_m_, _+_V_a_l_u_e))
Assigns the _A_r_g-th argument of the compound term _T_e_r_m with the
given _V_a_l_u_e as setarg/3, but on backtracking the assignment
is _n_o_t reversed. If _V_a_l_u_e is not atomic, it is duplicated
using duplicate_term/2. This predicate uses the same technique
as nb_setval/2. We therefore refer to the description of
nb_setval/2 for details on non-backtrackable assignment of terms.
This predicate is compatible with GNU-Prolog setarg(_A_,_T_,_V_,_f_a_l_s_e),
removing the type restriction on _V_a_l_u_e. See also nb_linkarg/3.
Below is an example for counting the number of solutions of a
goal. Note that this implementation is thread-safe, reentrant
and capable of handling exceptions. Realising these features with
a traditional implementation based on assert/retract or flag/3 is
much more complicated.
____________________________________________________________________| |
| :- meta_predicate |
| succeeds_n_times(0, -). |
| |
| succeeds_n_times(Goal, Times) :- |
| Counter = counter(0), |
| ( Goal, |
| arg(1, Counter, N0), |
| N is N0 + 1, |
| nb_setarg(1, Counter, N), |
| fail |
| ; arg(1, Counter, Times) |
||________).________________________________________________________ ||
nnbb__lliinnkkaarrgg((_+_A_r_g_, _+_T_e_r_m_, _+_V_a_l_u_e))
As nb_setarg/3, but like nb_linkval/2 it does _n_o_t duplicate _V_a_l_u_e.
Use with extreme care and consult the documentation of nb_linkval/2
before use.
dduupplliiccaattee__tteerrmm((_+_I_n_, _-_O_u_t))
Version of copy_term/2 that also copies ground terms and therefore
ensures that destructive modification using setarg/3 does not
affect the copy. See also nb_setval/2, nb_linkval/2, nb_setarg/3
and nb_linkarg/3.
ssaammee__tteerrmm((_@_T_1_, _@_T_2)) _[_s_e_m_i_d_e_t_]
True if _T_1 and _T_2 are equivalent and will remain equivalent, even
if setarg/3 is used on either of them. This means _T_1 and _T_2
are the same variable, equivalent atomic data or a compound term
allocated at the same address.
44..2211 AAnnaallyyssiinngg aanndd CCoonnssttrruuccttiinngg AAttoommss
These predicates convert between Prolog constants and lists of
character codes. The predicates atom_codes/2, number_codes/2 and name/2
behave the same when converting from a constant to a list of character
codes. When converting the other way around, atom_codes/2 will
generate an atom, number_codes/2 will generate a number or exception
and name/2 will return a number if possible and an atom otherwise.
The ISO standard defines atom_chars/2 to describe the `broken-up' atom
as a list of one-character atoms instead of a list of codes. Up
to version 3.2.x, SWI-Prolog's atom_chars/2 behaved like atom_codes,
compatible with Quintus and SICStus Prolog. As of 3.3.x, SWI-Prolog
atom_codes/2 and atom_chars/2are compliant to the ISO standard.
To ease the pain of all variations in the Prolog community, all
SWI-Prolog predicates behave as flexible as possible. This implies
the `list-side' accepts either a code-list or a char-list and the
`atom-side' accepts all atomic types (atom, number and string).
aattoomm__ccooddeess((_?_A_t_o_m_, _?_S_t_r_i_n_g)) _[_I_S_O_]
Convert between an atom and a list of character codes. If _A_t_o_m is
instantiated, it will be translated into a list of character codes
and the result is unified with _S_t_r_i_n_g. If _A_t_o_m is unbound and
_S_t_r_i_n_g is a list of character codes, _A_t_o_m will be unified with an
atom constructed from this list.
aattoomm__cchhaarrss((_?_A_t_o_m_, _?_C_h_a_r_L_i_s_t)) _[_I_S_O_]
As atom_codes/2, but _C_h_a_r_L_i_s_t is a list of one-character atoms
rather than a list of character codes.
____________________________________________________________________| |
| ?- atom_chars(hello, X). |
| |
||X_=_[h,_e,_l,_l,_o]_______________________________________________ ||
cchhaarr__ccooddee((_?_A_t_o_m_, _?_C_o_d_e)) _[_I_S_O_]
Convert between character and character code for a single charac-
ter.
nnuummbbeerr__cchhaarrss((_?_N_u_m_b_e_r_, _?_C_h_a_r_L_i_s_t)) _[_I_S_O_]
Similar to atom_chars/2, but converts between a number and its
representation as a list of one-character atoms. Fails with a
syntax_error if _N_u_m_b_e_r is unbound or _C_h_a_r_L_i_s_t does not describe a
number. Following the ISO standard, it allows for _l_e_a_d_i_n_g white
space (including newlines) and does not allow for _t_r_a_i_l_i_n_g white
space.
nnuummbbeerr__ccooddeess((_?_N_u_m_b_e_r_, _?_C_o_d_e_L_i_s_t)) _[_I_S_O_]
As number_chars/2, but converts to a list of character codes rather
than one-character atoms. In the mode (-, +), both predicates
behave identically to improve handling of non-ISO source.
aattoomm__nnuummbbeerr((_?_A_t_o_m_, _?_N_u_m_b_e_r))
Realises the popular combination of atom_codes/2 and number_codes/2
to convert between atom and number (integer or float) in
one predicate, avoiding the intermediate list. Unlike the
ISO number_codes/2 predicates, atom_number/2 fails silently in
mode (+,-) if _A_t_o_m does not represent a number. See also
atomic_list_concat/2 for assembling an atom from atoms and numbers.
nnaammee((_?_A_t_o_m_i_c_, _?_C_o_d_e_L_i_s_t))
_C_o_d_e_L_i_s_t is a list of character codes representing the same text
as _A_t_o_m_i_c. Each of the arguments may be a variable, but not
both. When _C_o_d_e_L_i_s_t describes an integer or floating point number
and _A_t_o_m_i_c is a variable, _A_t_o_m_i_c will be unified with the numeric
value described by _C_o_d_e_L_i_s_t (e.g., name(N, "300"), 400 is N + 100
succeeds). If _C_o_d_e_L_i_s_t is not a representation of a number, _A_t_o_m_i_c
will be unified with the atom with the name given by the character
code list. When _A_t_o_m_i_c is an atom or number, the unquoted print
representation of it as a character code list will be unified with
_C_o_d_e_L_i_s_t.
Note that it is not possible to produce the atom '300'
using name/2, and that name(300, CodeList), name('300', CodeList)
succeeds. For these reasons, new code should consider using
the ISO predicates atom_codes/2 or number_codes/2. See also
atom_number/2.
tteerrmm__ttoo__aattoomm((_?_T_e_r_m_, _?_A_t_o_m))
True if _A_t_o_m describes a term that unifies with _T_e_r_m. When
_A_t_o_m is instantiated, _A_t_o_m is parsed and the result unified with
_T_e_r_m. If _A_t_o_m has no valid syntax, a syntax_error exception is
raised. Otherwise _T_e_r_m is ``written'' on _A_t_o_m using write_term/2
with the option quoted(_t_r_u_e). See also format/3, with_output_to/2
and term_string/2.
aattoomm__ttoo__tteerrmm((_+_A_t_o_m_, _-_T_e_r_m_, _-_B_i_n_d_i_n_g_s)) _[_d_e_p_r_e_c_a_t_e_d_]
Use _A_t_o_m as input to read_term/2 using the option variable_names
and return the read term in _T_e_r_m and the variable bindings in
_B_i_n_d_i_n_g_s. _B_i_n_d_i_n_g_s is a list of _N_a_m_e =_V_a_r couples, thus providing
access to the actual variable names. See also read_term/2. If
_A_t_o_m has no valid syntax, a syntax_error exception is raised. New
code should use read_term_from_atom/3.
aattoomm__ccoonnccaatt((_?_A_t_o_m_1_, _?_A_t_o_m_2_, _?_A_t_o_m_3)) _[_I_S_O_]
_A_t_o_m_3 forms the concatenation of _A_t_o_m_1 and _A_t_o_m_2. At least two
of the arguments must be instantiated to atoms. This predicate
also allows for the mode (-,-,+), non-deterministically splitting
the 3rd argument into two parts (as append/3 does for lists).
SWI-Prolog allows for atomic arguments. Portable code must use
atomic_concat/3 if non-atom arguments are involved.
aattoommiicc__ccoonnccaatt((_+_A_t_o_m_i_c_1_, _+_A_t_o_m_i_c_2_, _-_A_t_o_m))
_A_t_o_m represents the text after converting _A_t_o_m_i_c_1 and _A_t_o_m_i_c_2 to
text and concatenating the result:
____________________________________________________________________| |
| ?- atomic_concat(name, 42, X). |
||X_=_name42._______________________________________________________ ||
aattoommiicc__lliisstt__ccoonnccaatt((_+_L_i_s_t_, _-_A_t_o_m)) _[_c_o_m_m_o_n_s_]
_L_i_s_t is a list of strings, atoms, integers or floating point
numbers. Succeeds if _A_t_o_m can be unified with the concatenated
elements of _L_i_s_t. Equivalent to atomic_list_concat(_L_i_s_t_, _'_'_,
_A_t_o_m).
aattoommiicc__lliisstt__ccoonnccaatt((_+_L_i_s_t_, _+_S_e_p_a_r_a_t_o_r_, _-_A_t_o_m)) _[_c_o_m_m_o_n_s_]
Creates an atom just like atomic_list_concat/2, but inserts _S_e_p_a_r_a_-
_t_o_r between each pair of inputs. For example:
____________________________________________________________________| |
| ?- atomic_list_concat([gnu, gnat], ', ', A). |
| |
||A_=_'gnu,_gnat'___________________________________________________ ||
The SWI-Prolog version of this predicate can also be used to split
atoms by instantiating _S_e_p_a_r_a_t_o_r and _A_t_o_m as shown below. We
kept this functionality to simplify porting old SWI-Prolog code
where this predicate was called concat_atom/3. When used in
mode (-,+,+), _S_e_p_a_r_a_t_o_r must be a non-empty atom. See also
split_string/4.
____________________________________________________________________| |
| ?- atomic_list_concat(L, -, 'gnu-gnat'). |
| |
||L_=_[gnu,_gnat]___________________________________________________ ||
aattoomm__lleennggtthh((_+_A_t_o_m_, _-_L_e_n_g_t_h)) _[_I_S_O_]
True if _A_t_o_m is an atom of _L_e_n_g_t_h characters. The SWI-Prolog
version accepts all atomic types, as well as code-lists and
character-lists. New code should avoid this feature and use
write_length/3 to get the number of characters that would be
written if the argument was handed to write_term/3.
aattoomm__pprreeffiixx((_+_A_t_o_m_, _+_P_r_e_f_i_x)) _[_d_e_p_r_e_c_a_t_e_d_]
True if _A_t_o_m starts with the characters from _P_r_e_f_i_x. Its behaviour
is equivalent to ?- sub_atom(_A_t_o_m, 0, _, _, _P_r_e_f_i_x). Deprecated.
ssuubb__aattoomm((_+_A_t_o_m_, _?_B_e_f_o_r_e_, _?_L_e_n_, _?_A_f_t_e_r_, _?_S_u_b)) _[_I_S_O_]
ISO predicate for breaking atoms. It maintains the following
relation: _S_u_b is a sub-atom of _A_t_o_m that starts at _B_e_f_o_r_e, has _L_e_n
characters, and _A_t_o_m contains _A_f_t_e_r characters after the match.
____________________________________________________________________| |
| ?- sub_atom(abc, 1, 1, A, S). |
| |
||A_=_1,_S_=_b______________________________________________________ ||
The implementation minimises non-determinism and creation of atoms.
This is a flexible predicate that can do search, prefix- and
suffix-matching, etc.
ssuubb__aattoomm__iiccaasseecchhkk((_+_H_a_y_s_t_a_c_k_, _?_S_t_a_r_t_, _+_N_e_e_d_l_e)) _[_s_e_m_i_d_e_t_]
True when _N_e_e_d_l_e is a sub atom of _H_a_y_s_t_a_c_k starting at _S_t_a_r_t. The
match is `half case insensitive', i.e., uppercase letters in _N_e_e_d_l_e
only match themselves, while lowercase letters in _N_e_e_d_l_e match case
insensitively. _S_t_a_r_t is the first 0-based offset inside _H_a_y_s_t_a_c_k
where _N_e_e_d_l_e matches.
44..2222 LLooccaalliizzaattiioonn ((llooccaallee)) ssuuppppoorrtt
SWI-Prolog provides (currently limited) support for localized
applications.
o The predicates char_type/2 and code_type/2 query character classes
depending on the locale.
o The predicates collation_key/2 and locale_sort/2 can be used for
locale dependent sorting of atoms.
o The predicate format_time/3 can be used to format time and date
representations, where some of the specifiers are locale dependent.
o The predicate format/2 provides locale-specific formating of
numbers. This functionality is based on a more fine-grained
localization model that is the subject of this section.
A locale is a (optionally named) read-only object that provides
information to locale specific functions. The system creates a default
locale object named default from the system locale. This locale is
used as the initial locale for the three standard streams as well as
the main thread. Locale sensitive output predicates such as format/3
get their locale from the stream to which they deliver their output.
New streams get their locale from the thread that created the stream.
Threads get their locale from the thread that created them.
llooccaallee__ccrreeaattee((_-_L_o_c_a_l_e_, _+_D_e_f_a_u_l_t_, _+_O_p_t_i_o_n_s))
Create a new locale object. _D_e_f_a_u_l_t is either an existing locale
or a string that denotes the name of a locale provided by the
system, such as "en_EN.UTF-8". The values read from the default
locale can be modified using _O_p_t_i_o_n_s. _O_p_t_i_o_n_s provided are:
aalliiaass((_+_A_t_o_m))
Give the locale a name.
ddeecciimmaall__ppooiinntt((_+_A_t_o_m))
Specify the decimal point to use.
tthhoouussaannddss__sseepp((_+_A_t_o_m))
Specify the string that delimits digit groups. Only effective
is grouping is also specified.
ggrroouuppiinngg((_+_L_i_s_t))
Specify the grouping of digits. Groups are created from the
right (least significant) digits, left of the decimal point.
_L_i_s_t is a list of integers, specifying the number of digits in
each group, counting from the right. If the last element is
repeat(_C_o_u_n_t), the remaining digits are grouped in groups of
size _C_o_u_n_t. If the last element is a normal integer, digits
further to the left are not grouped.
For example, the English locale uses
____________________________________________________________________| |
||[_decimal_point('.'),_thousands_sep(','),_grouping([repeat(3)])_]_ ||
Named locales exists until they are destroyed using
locale_destroy/1 and they are no longer referenced. Un-
named locales are subject to (atom) garbage collection.
llooccaallee__ddeessttrrooyy((_+_L_o_c_a_l_e))
Destroy a locale. If the locale is named, this removes the name
association from the locale, after which the locale is left to be
reclaimed by garbage collection.
llooccaallee__pprrooppeerrttyy((_?_L_o_c_a_l_e_, _?_P_r_o_p_e_r_t_y))
True when _L_o_c_a_l_e has _P_r_o_p_e_r_t_y. Properties are the same as the
_O_p_t_i_o_n_s described with locale_create/3.
sseett__llooccaallee((_+_L_o_c_a_l_e))
Set the default locale for the current thread, as well as
the locale for the standard streams (user_input, user_output,
user_error, current_output and current_input. This locale is used
for new streams, unless overruled using the locale(_L_o_c_a_l_e) option
of open/4 or set_stream/2.
ccuurrrreenntt__llooccaallee((_-_L_o_c_a_l_e))
True when _L_o_c_a_l_e is the locale of the calling thread.
44..2233 CChhaarraacctteerr pprrooppeerrttiieess
SWI-Prolog offers two comprehensive predicates for classifying
characters and character codes. These predicates are defined
as built-in predicates to exploit the C-character classification's
handling of _l_o_c_a_l_e (handling of local character sets). These
predicates are fast, logical and deterministic if applicable.
In addition, there is the library ctype providing compatibility with
some other Prolog systems. The predicates of this library are defined
in terms of code_type/2.
cchhaarr__ttyyppee((_?_C_h_a_r_, _?_T_y_p_e))
Tests or generates alternative _T_y_p_es or _C_h_a_rs. The character types
are inspired by the standard C <ctype.h> primitives.
aallnnuumm
_C_h_a_r is a letter (upper- or lowercase) or digit.
aallpphhaa
_C_h_a_r is a letter (upper- or lowercase).
ccssyymm
_C_h_a_r is a letter (upper- or lowercase), digit or the un-
derscore (_). These are valid C and Prolog symbol
characters.
ccssyymmff
_C_h_a_r is a letter (upper- or lowercase) or the underscore (_).
These are valid first characters for C and Prolog symbols.
aasscciiii
_C_h_a_r is a 7-bit ASCII character (0..127).
wwhhiittee
_C_h_a_r is a space or tab, i.e. white space inside a line.
ccnnttrrll
_C_h_a_r is an ASCII control character (0..31).
ddiiggiitt
_C_h_a_r is a digit.
ddiiggiitt((_W_e_i_g_h_t))
_C_h_a_r is a digit with value _W_e_i_g_h_t. I.e. char_type(X, digit(6)
yields _X = '6'. Useful for parsing numbers.
xxddiiggiitt((_W_e_i_g_h_t))
_C_h_a_r is a hexadecimal digit with value _W_e_i_g_h_t. I.e.
char_type(a, xdigit(X) yields _X = '10'. Useful for parsing
numbers.
ggrraapphh
_C_h_a_r produces a visible mark on a page when printed. Note
that the space is not included!
lloowweerr
_C_h_a_r is a lowercase letter.
lloowweerr((_U_p_p_e_r))
_C_h_a_r is a lowercase version of _U_p_p_e_r. Only true if _C_h_a_r is
lowercase and _U_p_p_e_r uppercase.
ttoo__lloowweerr((_U_p_p_e_r))
_C_h_a_r is a lowercase version of _U_p_p_e_r. For non-letters, or
letter without case, _C_h_a_r and _L_o_w_e_r are the same. See also
upcase_atom/2 and downcase_atom/2.
uuppppeerr
_C_h_a_r is an uppercase letter.
uuppppeerr((_L_o_w_e_r))
_C_h_a_r is an uppercase version of _L_o_w_e_r. Only true if _C_h_a_r is
uppercase and _L_o_w_e_r lowercase.
ttoo__uuppppeerr((_L_o_w_e_r))
_C_h_a_r is an uppercase version of _L_o_w_e_r. For non-letters, or
letter without case, _C_h_a_r and _L_o_w_e_r are the same. See also
upcase_atom/2 and downcase_atom/2.
ppuunncctt
_C_h_a_r is a punctuation character. This is a graph character
that is not a letter or digit.
ssppaaccee
_C_h_a_r is some form of layout character (tab, vertical tab,
newline, etc.).
eenndd__ooff__ffiillee
_C_h_a_r is -1.
eenndd__ooff__lliinnee
_C_h_a_r ends a line (ASCII: 10..13).
nneewwlliinnee
_C_h_a_r is a newline character (10).
ppeerriioodd
_C_h_a_r counts as the end of a sentence (.,!,?).
qquuoottee
_C_h_a_r is a quote character (", ', `).
ppaarreenn((_C_l_o_s_e))
_C_h_a_r is an open parenthesis and _C_l_o_s_e is the corresponding
close parenthesis.
pprroolloogg__vvaarr__ssttaarrtt
_C_h_a_r can start a Prolog variable name.
pprroolloogg__aattoomm__ssttaarrtt
_C_h_a_r can start a unquoted Prolog atom that is not a symbol.
pprroolloogg__iiddeennttiiffiieerr__ccoonnttiinnuuee
_C_h_a_r can continue a Prolog variable name or atom.
pprroolloogg__pprroolloogg__ssyymmbbooll
_C_h_a_r is a Prolog symbol character. Sequences of Prolog symbol
characters glue together to form an unquoted atom. Examples
are =.., \=, etc.
ccooddee__ttyyppee((_?_C_o_d_e_, _?_T_y_p_e))
As char_type/2, but uses character codes rather than one-character
atoms. Please note that both predicates are as flexible as
possible. They handle either representation if the argument is
instantiated and will instantiate only with an integer code or a
one-character atom, depending of the version used. See also the
Prolog flag double_quotes, atom_chars/2 and atom_codes/2.
44..2233..11 CCaassee ccoonnvveerrssiioonn
There is nothing in the Prolog standard for converting case in textual
data. The SWI-Prolog predicates code_type/2 and char_type/2 can be
used to test and convert individual characters. We have started some
additional support:
ddoowwnnccaassee__aattoomm((_+_A_n_y_C_a_s_e_, _-_L_o_w_e_r_C_a_s_e))
Converts the characters of _A_n_y_C_a_s_e into lowercase as char_type/2
does (i.e. based on the defined _l_o_c_a_l_e if Prolog provides locale
support on the hosting platform) and unifies the lowercase atom
with _L_o_w_e_r_C_a_s_e.
uuppccaassee__aattoomm((_+_A_n_y_C_a_s_e_, _-_U_p_p_e_r_C_a_s_e))
Converts, similar to downcase_atom/2, an atom to uppercase.
44..2233..22 WWhhiittee ssppaaccee nnoorrmmaalliizzaattiioonn
nnoorrmmaalliizzee__ssppaaccee((_-_O_u_t_, _+_I_n))
Normalize white space in _I_n. All leading and trailing white
space is removed. All non-empty sequences for Unicode white space
characters are replaced by a single space (\u0020) character. _O_u_t
uses the same conventions as with_output_to/2 and format/3.
44..2233..33 LLaanngguuaaggee--ssppeecciiffiicc ccoommppaarriissoonn
This section deals with predicates for language-specific string
comparison operations.
ccoollllaattiioonn__kkeeyy((_+_A_t_o_m_, _-_K_e_y))
Create a _K_e_y from _A_t_o_m for locale-specific comparison. The key is
defined such that if the key of atom A precedes the key of atom B
in the standard order of terms, A is alphabetically smaller than B
using the sort order of the current locale.
The predicate collation_key/2 is used by locale_sort/2 from
library(sort). Please examine the implementation of locale_sort/2
as an example of using this call.
The _K_e_y is an implementation-defined and generally unreadable
string. On systems that do not support locale handling, _K_e_y is
simply unified with _A_t_o_m.
llooccaallee__ssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d))
Sort a list of atoms using the current locale. _L_i_s_t is a list of
atoms or string objects (see section 5.2). _S_o_r_t_e_d is unified with
a list containing all atoms of _L_i_s_t, sorted to the rules of the
current locale. See also collation_key/2 and setlocale/3.
44..2244 OOppeerraattoorrss
Operators are defined to improve the readability of source code.
For example, without operators, to write 2*3+4*5 one would have to
write +(*(2,3),*(4,5)). In Prolog, a number of operators have been
predefined. All operators, except for the comma (,) can be redefined
by the user.
Some care has to be taken before defining new operators. Defining
too many operators might make your source `natural' looking, but at
the same time make it hard to understand the limits of your syntax.
To ease the pain, as of SWI-Prolog 3.3.0, operators are local to the
module in which they are defined. Operators can be exported from
modules using a term op(_P_r_e_c_e_d_e_n_c_e_, _T_y_p_e_, _N_a_m_e) in the export list
as specified by module/2. Many modern Prolog systems have module
specific operators. Unfortunately, there is no established interface
for exporting and importing operators. SWI-Prolog's convention has
been addopted by YAP.
The module table of the module user acts as default table for all
modules and can be modified explicitly from inside a module to
achieve compatibility with other Prolog that do not have module-local
operators:
________________________________________________________________________| |
|:- module(prove, |
| [ prove/1 |
| ]). |
| |
|:-|op(900,_xfx,_user:(=>)).____________________________________________ | |
In SWI-Prolog, a _q_u_o_t_e_d _a_t_o_m never acts as an operator. Note that the
portable way to stop an atom acting as an operator is to enclose it in
parentheses like this: (myop). See also section 5.3.1.
oopp((_+_P_r_e_c_e_d_e_n_c_e_, _+_T_y_p_e_, _:_N_a_m_e)) _[_I_S_O_]
Declare _N_a_m_e to be an operator of type _T_y_p_e with precedence
_P_r_e_c_e_d_e_n_c_e. _N_a_m_e can also be a list of names, in which case
all elements of the list are declared to be identical operators.
_P_r_e_c_e_d_e_n_c_e is an integer between 0 and 1200. Precedence 0 removes
the declaration. _T_y_p_e is one of: xf, yf, xfx, xfy, yfx, fy or
fx. The `f' indicates the position of the functor, while x and y
indicate the position of the arguments. `y' should be interpreted
as ``on this position a term with precedence lower or equal to the
precedence of the functor should occur''. For `x' the precedence
of the argument must be strictly lower. The precedence of a term
is 0, unless its principal functor is an operator, in which case
the precedence is the precedence of this operator. A term enclosed
in parentheses (...) has precedence 0.
The predefined operators are shown in table 4.2. Operators can
be redefined, unless prohibited by one of the limitations below.
Applications must be careful with (re-)defining operators because
changing operators may cause (other) files to be interpreted
ddiiffffeerreennttllyy. Often this will lead to a syntax error. In other
cases, text is read silently into a different term which may lead
to subtle and difficult to track errors.
o It is not allowed to redefine the comma (',').
o The bar (|) can only be (re-)defined as infix operator with
priority not less than 1001.
o It is not allowed to define the empty list ([]) or the
curly-bracket pair ({}) as operators.
In SWI-Prolog, operators are _l_o_c_a_l to a module (see also
section 6.8). Keeping operators in modules and using controlled
import/export of operators as described with the module/2 directive
keep the issues manageable. The module system provides the
operators from table 4.2 and these operators cannot be modified.
Files that are loaded from the SWI-Prolog directories resolve
operators and predicates from this system module rather than user,
which makes the semantics of the library and development system
modules independent of operator changes to the user module.
______________________________________________________________
| 1200 |xfx |-->, :- |
| 1200 | fx |:-, ?- |
| 1150 | fx |dynamic, discontiguous, initialization, |
| | |meta_predicate, module_transparent, multifile,|
| | |public, thread_local, thread_initialization,|
| | |volatile |
| 1100 |xfy |;, | |
| 1050 |xfy |->, *-> |
| 1000 |xfy |, |
| 990 |xfx |:= |
| 900 | fy |\+ |
| 700 |xfx |<, =, =.., =@=, \=@=, =:=, =<, ==, =\=, >, >=, |
| | |@<, @=<, @>, @>=, \=, \==, as, is, >:<, :< |
| 600 |xfy |: |
| 500 | yfx |+, -, /\, \/, xor |
| 500 | fx |? |
| 400 | yfx |*, /, //, div, rdiv, <<, >>, mod, rem |
| 200 |xfx |** |
| 200 |xfy |^ |
| 200 | fy |+, -, \ |
| 100 | yfx |. |
|____1_|_fx__|$______________________________________________|_
Table 4.2: System operators
ccuurrrreenntt__oopp((_?_P_r_e_c_e_d_e_n_c_e_, _?_T_y_p_e_, _?_:_N_a_m_e)) _[_I_S_O_]
True if _N_a_m_e is currently defined as an operator of type _T_y_p_e with
precedence _P_r_e_c_e_d_e_n_c_e. See also op/3.
44..2255 CChhaarraacctteerr CCoonnvveerrssiioonn
Although I wouldn't really know why you would like to use these
features, they are provided for ISO compliance.
cchhaarr__ccoonnvveerrssiioonn((_+_C_h_a_r_I_n_, _+_C_h_a_r_O_u_t)) _[_I_S_O_]
Define that term input (see read_term/3) maps each character read
as _C_h_a_r_I_n to the character _C_h_a_r_O_u_t. Character conversion is only
executed if the Prolog flag char_conversion is set to true and
not inside quoted atoms or strings. The initial table maps each
character onto itself. See also current_char_conversion/2.
ccuurrrreenntt__cchhaarr__ccoonnvveerrssiioonn((_?_C_h_a_r_I_n_, _?_C_h_a_r_O_u_t)) _[_I_S_O_]
Queries the current character conversion table. See
char_conversion/2 for details.
44..2266 AArriitthhmmeettiicc
Arithmetic can be divided into some special purpose integer predicates
and a series of general predicates for integer, floating point and
rational arithmetic as appropriate. The general arithmetic predicates
all handle _e_x_p_r_e_s_s_i_o_n_s. An expression is either a simple number or a
_f_u_n_c_t_i_o_n. The arguments of a function are expressions. The functions
are described in section 4.26.2.3.
44..2266..11 SSppeecciiaall ppuurrppoossee iinntteeggeerr aarriitthhmmeettiicc
The predicates in this section provide more logical operations between
integers. They are not covered by the ISO standard, although they are
`part of the community' and found as either library or built-in in many
other Prolog systems.
bbeettwweeeenn((_+_L_o_w_, _+_H_i_g_h_, _?_V_a_l_u_e))
_L_o_w and _H_i_g_h are integers, _H_i_g_h >=_L_o_w. If _V_a_l_u_e is an integer,
_L_o_w=< _V_a_l_u_e=< _H_i_g_h. When _V_a_l_u_e is a variable it is successively
bound to all integers between _L_o_w and _H_i_g_h. If _H_i_g_h is inf
or infinite between/3 is true iff _V_a_l_u_e>= _L_o_w, a feature that is
particularly interesting for generating integers from a certain
value.
ssuucccc((_?_I_n_t_1_, _?_I_n_t_2))
True if _I_n_t_2= _I_n_t_1+1 and _I_n_t_1>=0. At least one of the arguments
must be instantiated to a natural number. This predicate raises
the domain error not_less_than_zero if called with a negative
integer. E.g. succ(_X_, _0) fails silently and succ(_X_, _-_1) raises a
domain error.
pplluuss((_?_I_n_t_1_, _?_I_n_t_2_, _?_I_n_t_3))
True if _I_n_t_3 =_I_n_t_1 +_I_n_t_2. At least two of the three arguments
must be instantiated to integers.
ddiivvmmoodd((_+_D_i_v_i_d_e_n_d_, _+_D_i_v_i_s_o_r_, _-_Q_u_o_t_i_e_n_t_, _-_R_e_m_a_i_n_d_e_r))
This predicate is a shorthand for computing both the _Q_u_o_t_i_e_n_t and
_R_e_m_a_i_n_d_e_r of two integers in a single operation. This allows for
exploiting the fact that the low level implementation for computing
the quotient also produces the remainder. Timing confirms that
this predicate is almost twice as fast as performing the steps
independently. Semantically, divmod/4 is defined as below.
____________________________________________________________________| |
| divmod(Dividend, Divisor, Quotient, Remainder) :- |
| Quotient is Dividend div Divisor, |
||________Remainder_is_Dividend_mod_Divisor.________________________ ||
Note that this predicate is only available if SWI-Prolog is
compiled with unbounded integer support. This is the case for all
packaged versions.
nntthh__iinntteeggeerr__rroooott__aanndd__rreemmaaiinnddeerr((_+_N_, _+_I_, _-_R_o_o_t_, _-_R_e_m_a_i_n_d_e_r))
True when Root to the power N+ Remainder= I. _N and _I must be
integers. _N must be one or more. If _I is negative and _N is _o_d_d,
_R_o_o_t and _R_e_m_a_i_n_d_e_r are negative, i.e., the following holds for
_I <0:
____________________________________________________________________| |
| % I < 0, |
| % N mod 2 =\= 0, |
| nth_integer_root_and_remainder( |
| N, I, Root, Remainder), |
| IPos is -I, |
| nth_integer_root_and_remainder( |
| N, IPos, RootPos, RemainderPos), |
| Root =:= -RootPos, |
||____Remainder_=:=_-RemainderPos.__________________________________ ||
44..2266..22 GGeenneerraall ppuurrppoossee aarriitthhmmeettiicc
The general arithmetic predicates are optionally compiled (see
set_prolog_flag/2 and the -O command line option). Compiled
arithmetic reduces global stack requirements and improves performance.
Unfortunately compiled arithmetic cannot be traced, which is why it is
optional.
_+_E_x_p_r_1 > _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a larger number than _E_x_p_r_2.
_+_E_x_p_r_1 < _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a smaller number than _E_x_p_r_2.
_+_E_x_p_r_1 =< _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a smaller or equal number to
_E_x_p_r_2.
_+_E_x_p_r_1 >= _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a larger or equal number to
_E_x_p_r_2.
_+_E_x_p_r_1 =\= _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a number non-equal to _E_x_p_r_2.
_+_E_x_p_r_1 =:= _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a number equal to _E_x_p_r_2.
_-_N_u_m_b_e_r iiss _+_E_x_p_r _[_I_S_O_]
True when _N_u_m_b_e_r is the value to which _E_x_p_r evaluates. Typically,
is/2 should be used with unbound left operand. If equality is to
be tested, =:=/2 should be used. For example:
?- 1 is sin(pi/2). Fails! sin(pi/2) evaluates
to the float 1.0, which does
not unify with the integer 1.
?- 1 =:= sin(pi/2). Succeeds as expected.
44..2266..22..11 AArriitthhmmeettiicc ttyyppeess
SWI-Prolog defines the following numeric types:
o _i_n_t_e_g_e_r
If SWI-Prolog is built using the _G_N_U _m_u_l_t_i_p_l_e _p_r_e_c_i_s_i_o_n _a_r_i_t_h_m_e_t_i_c
_l_i_b_r_a_r_y (GMP), integer arithmetic is _u_n_b_o_u_n_d_e_d, which means that
the size of integers is limited by available memory only. Without
GMP, SWI-Prolog integers are 64-bits, regardless of the native
integer size of the platform. The type of integer support
can be detected using the Prolog flags bounded, min_integer and
max_integer. As the use of GMP is default, most of the following
descriptions assume unbounded integer arithmetic.
Internally, SWI-Prolog has three integer representations. Small
integers (defined by the Prolog flag max_tagged_integer) are
encoded directly. Larger integers are represented as 64-bit values
on the global stack. Integers that do not fit in 64 bits are
represented as serialised GNU MPZ structures on the global stack.
o _r_a_t_i_o_n_a_l _n_u_m_b_e_r
Rational numbers (Q) are quotients of two integers. Rational
arithmetic is only provided if GMP is used (see above). Rational
numbers are currently not supported by a Prolog type. They are
represented by the compound term rdiv(_N_,_M). Rational numbers that
are returned from is/2 are _c_a_n_o_n_i_c_a_l, which means M is positive
and N and M have no common divisors. Rational numbers are
introduced in the computation using the rational/1, rationalize/1
or the rdiv/2 (rational division) function. Using the same functor
for rational division and for representing rational numbers allows
for passing rational numbers between computations as well as for
using format/3 for printing.
In the long term, it is likely that rational numbers will become
_a_t_o_m_i_c as well as a subtype of _n_u_m_b_e_r. User code that creates
or inspects the rdiv(_M_,_N) terms will not be portable to future
versions. Rationals are created using one of the functions
mentioned above and inspected using rational/3.
o _f_l_o_a_t
Floating point numbers are represented using the C type double.
On most of today's platforms these are 64-bit IEEE floating point
numbers.
Arithmetic functions that require integer arguments accept, in addition
to integers, rational numbers with (canonical) denominator `1'. If
the required argument is a float the argument is converted to float.
Note that conversion of integers to floating point numbers may raise an
overflow exception. In all other cases, arguments are converted to the
same type using the order below.
integer ! rational number ! floating point number
44..2266..22..22 RRaattiioonnaall nnuummbbeerr eexxaammpplleess
The use of rational numbers with unbounded integers allows for
exact integer or _f_i_x_e_d _p_o_i_n_t arithmetic under addition, subtraction,
multiplication and division. To exploit rational arithmetic rdiv/2
should be used instead of `/' and floating point numbers must be
converted to rational using rational/1. Omitting the rational/1 on
floats will convert a rational operand to float and continue the
arithmetic using floating point numbers. Here are some examples.
A is 2 rdiv 6 A = 1 rdiv 3
A is 4 rdiv 3 + 1 A = 7 rdiv 3
A is 4 rdiv 3 + 1.5 A = 2.83333
A is 4 rdiv 3 + rational(1.5) A = 17 rdiv 6
Note that floats cannot represent all decimal numbers exactly. The
function rational/1 creates an _e_x_a_c_t equivalent of the float, while
rationalize/1 creates a rational number that is within the float
rounding error from the original float. Please check the documentation
of these functions for details and examples.
Rational numbers can be printed as decimal numbers with arbitrary
precision using the format/3 floating point conversion:
________________________________________________________________________| |
|?- A is 4 rdiv 3 + rational(1.5), |
| format('~50f~n', [A]). |
|2.83333333333333333333333333333333333333333333333333 |
| |
|A|=_17_rdiv_6__________________________________________________________ | |
44..2266..22..33 AArriitthhmmeettiicc FFuunnccttiioonnss
Arithmetic functions are terms which are evaluated by the arithmetic
predicates described in section 4.26.2. There are four types of
arguments to functions:
_E_x_p_r Arbitrary expression, returning either a
floating point value or an integer.
_I_n_t_E_x_p_r Arbitrary expression that must evaluate to an
integer.
_R_a_t_E_x_p_r Arbitrary expression that must evaluate to a
rational number.
_F_l_o_a_t_E_x_p_r Arbitrary expression that must evaluate to a
floating point.
For systems using bounded integer arithmetic (default is unbounded,
see section 4.26.2.1 for details), integer operations that would cause
overflow automatically convert to floating point arithmetic.
SWI-Prolog provides many extensions to the set of floating point
functions defined by the ISO standard. The current policy is to
provide such functions on `as-needed' basis if the function is widely
supported elsewhere and notably if it is part of the C99 mathematical
library. In addition, we try to maintain compatibility with YAP.
- _+_E_x_p_r _[_I_S_O_]
_R_e_s_u_l_t =-_E_x_p_r
+ _+_E_x_p_r _[_I_S_O_]
_R_e_s_u_l_t =_E_x_p_r. Note that if + is followed by a number, the parser
discards the +. I.e. ?- integer(+1) succeeds.
_+_E_x_p_r_1 + _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t =_E_x_p_r_1 +_E_x_p_r_2
_+_E_x_p_r_1 - _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t =_E_x_p_r_1 -_E_x_p_r_2
_+_E_x_p_r_1 * _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t =_E_x_p_r_1_*Expr2
_+_E_x_p_r_1 / _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t = _E_x_p_r_1=_E_x_p_r_2. If the flag iso is true, both arguments are
converted to float and the return value is a float. Otherwise
(default), if both arguments are integers the operation returns an
integer if the division is exact. If at least one of the arguments
is rational and the other argument is integer, the operation
returns a rational number. In all other cases the return value is
a float. See also ///2 and rdiv/2.
_+_I_n_t_E_x_p_r_1 mmoodd _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Modulo, defined as _R_e_s_u_l_t = _I_n_t_E_x_p_r_1 - (_I_n_t_E_x_p_r_1 div _I_n_t_E_x_p_r_2) * _I_n_t_E_x_p_r_2,
where div is _f_l_o_o_r_e_d division.
_+_I_n_t_E_x_p_r_1 rreemm _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Remainder of integer division. Behaves as if defined by
_R_e_s_u_l_t is _I_n_t_E_x_p_r_1 - (_I_n_t_E_x_p_r_1 // _I_n_t_E_x_p_r_2) * _I_n_t_E_x_p_r_2
_+_I_n_t_E_x_p_r_1 // _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Integer division, defined as _R_e_s_u_l_t is rndI(_E_x_p_r_1/_E_x_p_r_2). The
function rndI is the default rounding used by the C compiler and
available through the Prolog flag integer_rounding_function. In
the C99 standard, C-rounding is defined as towards_zero.
ddiivv((_+_I_n_t_E_x_p_r_1_, _+_I_n_t_E_x_p_r_2)) _[_I_S_O_]
Integer division, defined as
_R_e_s_u_l_t is (_I_n_t_E_x_p_r_1 - _I_n_t_E_x_p_r_1 mod _I_n_t_E_x_p_r_2) // _I_n_t_E_x_p_r_2 . In
other words, this is integer division that rounds towards
-infinity. This function guarantees behaviour that is consistent
with mod/2, i.e., the following holds for every pair of integers
X; Y where Y =\= 0.
____________________________________________________________________| |
| Q is div(X, Y), |
| M is mod(X, Y), |
||________X_=:=_Y*Q+M.______________________________________________ ||
_+_R_a_t_E_x_p_r rrddiivv _+_R_a_t_E_x_p_r
Rational number division. This function is only available if
SWI-Prolog has been compiled with rational number support. See
section 4.26.2.2 for details.
_+_I_n_t_E_x_p_r_1 ggccdd _+_I_n_t_E_x_p_r_2
Result is the greatest common divisor of _I_n_t_E_x_p_r_1, _I_n_t_E_x_p_r_2.
aabbss((_+_E_x_p_r)) _[_I_S_O_]
Evaluate _E_x_p_r and return the absolute value of it.
ssiiggnn((_+_E_x_p_r)) _[_I_S_O_]
Evaluate to -1 if _E_x_p_r< 0, 1 if _E_x_p_r> 0 and 0 if _E_x_p_r= 0. If _E_x_p_r
evaluates to a float, the return value is a float (e.g., -1.0, 0.0
or 1.0). In particular, note that sign(-0.0) evaluates to 0.0.
See also copysign/1
ccooppyyssiiggnn((_+_E_x_p_r_1_, _+_E_x_p_r_2)) _[_I_S_O_]
Evaluate to _X, where the absolute value of _X equals the absolute
value of _E_x_p_r_1 and the sign of _X matches the sign of _E_x_p_r_2.
This function is based on copysign() from C99, which works on
double precision floats and deals with handling the sign of special
floating point values such as -0.0. Our implementation follows C99
if both arguments are floats. Otherwise, copysign/1 evaluates to
_E_x_p_r_1 if the sign of both expressions matches or -_E_x_p_r_1 if the
signs do not match. Here, we use the extended notion of signs for
floating point numbers, where the sign of -0.0 and other special
floats is negative.
mmaaxx((_+_E_x_p_r_1_, _+_E_x_p_r_2)) _[_I_S_O_]
Evaluate to the larger of _E_x_p_r_1 and _E_x_p_r_2. Both arguments are
compared after converting to the same type, but the return value is
in the original type. For example, max(2.5, 3) compares the two
values after converting to float, but returns the integer 3.
mmiinn((_+_E_x_p_r_1_, _+_E_x_p_r_2)) _[_I_S_O_]
Evaluate to the smaller of _E_x_p_r_1 and _E_x_p_r_2. See max/2 for a
description of type handling.
.((_+_I_n_t_, _[_]))
A list of one element evaluates to the element. This implies "a"
evaluates to the character code of the letter `a' (97) using the
traditional mapping of double quoted string to a list of character
codes. Arithmetic evaluation also translates a string object (see
section 5.2) of one character length into the character code for
that character. This implies that expression "a" also works of the
Prolog flag double_quotesis set to string. The recommended way to
specify the character code of the letter `a' is 0'a.
rraannddoomm((_+_I_n_t_E_x_p_r))
Evaluate to a random integer _i for which 0=< i< _I_n_t_E_x_p_r. The
system has two implementations. If it is compiled with support
for unbounded arithmetic (default) it uses the GMP library random
functions. In this case, each thread keeps its own random state.
The default algorithm is the _M_e_r_s_e_n_n_e _T_w_i_s_t_e_r algorithm. The seed
is set when the first random number in a thread is generated. If
available, it is set from /dev/random. Otherwise it is set from
the system clock. If unbounded arithmetic is not supported, random
numbers are shared between threads and the seed is initialised from
the clock when SWI-Prolog was started. The predicate set_random/1
can be used to control the random number generator.
rraannddoomm__ffllooaatt
Evaluate to a random float I for which 0:0 <i <1:0. This function
shares the random state with random/1. All remarks with the
function random/1 also apply for random_float/0. Note that both
sides of the domain are _o_p_e_n. This avoids evaluation errors on,
e.g., log/1 or //2 while no practical application can expect 0.0.
rroouunndd((_+_E_x_p_r)) _[_I_S_O_]
Evaluate _E_x_p_r and round the result to the nearest integer.
According to ISO, round/1 is defined as floor(_E_x_p_r_+_1_/_2), i.e.,
rounding _d_o_w_n. This is an unconventional choice and under
which the relation round(Expr) == -round(-Expr) does not hold.
SWI-Prolog rounds _o_u_t_w_a_r_d, e.g., round(1.5) =:= 2 and round
round(-1.5) =:= -2.
iinntteeggeerr((_+_E_x_p_r))
Same as round/1 (backward compatibility).
ffllooaatt((_+_E_x_p_r)) _[_I_S_O_]
Translate the result to a floating point number. Normally, Prolog
will use integers whenever possible. When used around the 2nd
argument of is/2, the result will be returned as a floating point
number. In other contexts, the operation has no effect.
rraattiioonnaall((_+_E_x_p_r))
Convert the _E_x_p_r to a rational number or integer. The function
returns the input on integers and rational numbers. For floating
point numbers, the returned rational number _e_x_a_c_t_l_y represents the
float. As floats cannot exactly represent all decimal numbers
the results may be surprising. In the examples below, doubles
can represent 0.25 and the result is as expected, in contrast to
the result of rational(_0_._1). The function rationalize/1 remedies
this. See section 4.26.2.2 for more information on rational number
support.
____________________________________________________________________| |
| ?- A is rational(0.25). |
| |
| A is 1 rdiv 4 |
| ?- A is rational(0.1). |
||A_=_3602879701896397_rdiv_36028797018963968_______________________ ||
rraattiioonnaalliizzee((_+_E_x_p_r))
Convert the _E_x_p_r to a rational number or integer. The function
is similar to rational/1, but the result is only accurate within
the rounding error of floating point numbers, generally producing a
much smaller denominator.
____________________________________________________________________| |
| ?- A is rationalize(0.25). |
| |
| A = 1 rdiv 4 |
| ?- A is rationalize(0.1). |
| |
||A_=_1_rdiv_10_____________________________________________________ ||
ffllooaatt__ffrraaccttiioonnaall__ppaarrtt((_+_E_x_p_r)) _[_I_S_O_]
Fractional part of a floating point number. Negative if
_E_x_p_r is negative, rational if _E_x_p_r is rational and 0 if
_E_x_p_r is integer. The following relation is always true:
Xisfloatfractionalpart(X)+ floatintegerpart(X).
ffllooaatt__iinntteeggeerr__ppaarrtt((_+_E_x_p_r)) _[_I_S_O_]
Integer part of floating point number. Negative if _E_x_p_r is
negative, _E_x_p_r if _E_x_p_r is integer.
ttrruunnccaattee((_+_E_x_p_r)) _[_I_S_O_]
Truncate _E_x_p_r to an integer. If _E_x_p_r>= 0 this is the same as
floor(_E_x_p_r). For _E_x_p_r <0 this is the same as ceil(_E_x_p_r). That is,
truncate/1 rounds towards zero.
fflloooorr((_+_E_x_p_r)) _[_I_S_O_]
Evaluate _E_x_p_r and return the largest integer smaller or equal to
the result of the evaluation.
cceeiilliinngg((_+_E_x_p_r)) _[_I_S_O_]
Evaluate _E_x_p_r and return the smallest integer larger or equal to
the result of the evaluation.
cceeiill((_+_E_x_p_r))
Same as ceiling/1 (backward compatibility).
_+_I_n_t_E_x_p_r_1 >> _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Bitwise shift _I_n_t_E_x_p_r_1 by _I_n_t_E_x_p_r_2 bits to the right. The
operation performs _a_r_i_t_h_m_e_t_i_c _s_h_i_f_t, which implies that the
inserted most significant bits are copies of the original most
significant bits.
_+_I_n_t_E_x_p_r_1 << _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Bitwise shift _I_n_t_E_x_p_r_1 by _I_n_t_E_x_p_r_2 bits to the left.
_+_I_n_t_E_x_p_r_1 \/ _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Bitwise `or' _I_n_t_E_x_p_r_1 and _I_n_t_E_x_p_r_2.
_+_I_n_t_E_x_p_r_1 /\ _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Bitwise `and' _I_n_t_E_x_p_r_1 and _I_n_t_E_x_p_r_2.
_+_I_n_t_E_x_p_r_1 xxoorr _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Bitwise `exclusive or' _I_n_t_E_x_p_r_1 and _I_n_t_E_x_p_r_2.
\ _+_I_n_t_E_x_p_r _[_I_S_O_]
Bitwise negation. The returned value is the one's complement of
_I_n_t_E_x_p_r.
ssqqrrtt((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =square root of _E_x_p_r
ssiinn((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =sine of _E_x_p_r. _E_x_p_r is the angle in radians.
ccooss((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =cosine of _E_x_p_r. _E_x_p_r is the angle in radians.
ttaann((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =tangus of _E_x_p_r. _E_x_p_r is the angle in radians.
aassiinn((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =inverse sine of _E_x_p_r. _R_e_s_u_l_t is the angle in radians.
aaccooss((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =inverse cosine of _E_x_p_r. _R_e_s_u_l_t is the angle in radians.
aattaann((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =inverse tangus of _E_x_p_r. _R_e_s_u_l_t is the angle in radians.
aattaann22((_+_Y_E_x_p_r_, _+_X_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t = inverse tangus of _Y_E_x_p_r / _X_E_x_p_r. _R_e_s_u_l_t is the angle in
radians. The return value is in the range [-pi:::pi]. Used to
convert between rectangular and polar coordinate system.
Note that the ISO Prolog standard demands atan2(_0_._0_,_0_._0) to raise
an evaluation error, whereas the C99 and POSIX standards demand
this to evaluate to 0.0. SWI-Prolog follows C99 and POSIX.
aattaann((_+_Y_E_x_p_r_, _+_X_E_x_p_r))
Same as atan2/2 (backward compatibility).
ssiinnhh((_+_E_x_p_r))
_R_e_s_u_l_t = sinh_E_x_p_r. The hyperbolic sine of X is defined as
e to the power X -e to the power -X=2.
ccoosshh((_+_E_x_p_r))
_R_e_s_u_l_t = cosh_E_x_p_r. The hyperbolic cosine of X is defined as
e to the power X +e to the power -X=2.
ttaannhh((_+_E_x_p_r))
_R_e_s_u_l_t = tanh_E_x_p_r. The hyperbolic tangent of X is defined as
sinhX=coshX.
aassiinnhh((_+_E_x_p_r))
_R_e_s_u_l_t =arcsinh(_E_x_p_r) (inverse hyperbolic sine).
aaccoosshh((_+_E_x_p_r))
_R_e_s_u_l_t =arccosh(_E_x_p_r) (inverse hyperbolic cosine).
aattaannhh((_+_E_x_p_r))
_R_e_s_u_l_t =arctanh(_E_x_p_r). (inverse hyperbolic tangent).
lloogg((_+_E_x_p_r)) _[_I_S_O_]
Natural logarithm. _R_e_s_u_l_t =natural logarithm of _E_x_p_r
lloogg1100((_+_E_x_p_r))
Base-10 logarithm. _R_e_s_u_l_t =10 base logarithm of _E_x_p_r
eexxpp((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =e to the power _E_x_p_r
_+_E_x_p_r_1 ** _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t = _E_x_p_r_1 to the power _E_x_p_r_2. The result is a float, unless
SWI-Prolog is compiled with unbounded integer support and the
inputs are integers and produce an integer result. The integer ex-
pressions 0 to the power I, 1 to the power I and -1 to the power I
are guaranteed to work for any integer I. Other integer base
values generate a resource error if the result does not fit in
memory.
The ISO standard demands a float result for all inputs and
introduces ^/2 for integer exponentiation. The function float/1
can be used on one or both arguments to force a floating point
result. Note that casting the _i_n_p_u_t result in a floating
point computation, while casting the _o_u_t_p_u_t performs integer
exponentiation followed by a conversion to float.
_+_E_x_p_r_1 ^ _+_E_x_p_r_2 _[_I_S_O_]
In SWI-Prolog, ^/2 is equivalent to **/2. The ISO version is
similar, except that it produces a evaluation error if both _E_x_p_r_1
and _E_x_p_r_2 are integers and the result is not an integer. The table
below illustrates the behaviour of the exponentiation functions in
ISO and SWI.
_____________________________________________________
|__E_x_p_r_1__E_x_p_r_2__|Function_|SWI__________|ISO__________|_
| Int Int |**/2 |Int or Float |Float |
| Int Float |**/2 |Float |Float |
| Float Int |**/2 |Float |Float |
|_Float_Float_|**/2_____|Float________|Float________|_
| Int Int |^/2 |Int or Float |Int or error |
| Int Float |^/2 |Float |Float |
| Float Int |^/2 |Float |Float |
|_Float_Float_|^/2______|Float________|Float________|_
ppoowwmm((_+_I_n_t_E_x_p_r_B_a_s_e_, _+_I_n_t_E_x_p_r_E_x_p_, _+_I_n_t_E_x_p_r_M_o_d))
_R_e_s_u_l_t = (_I_n_t_E_x_p_r_B_a_s_e to the power _I_n_t_E_x_p_r_E_x_p) modulo _I_n_t_E_x_p_r_M_o_d.
Only available when compiled with unbounded integer support. This
formula is required for Diffie-Hellman key-exchange, a technique
where two parties can establish a secret key over a public network.
llggaammmmaa((_+_E_x_p_r))
Return the natural logarithm of the absolute value of the Gamma
function.
eerrff((_+_E_x_p_r))
WikipediA: ``In mathematics, the error function (also called the
Gauss error function) is a special function (non-elementary) of
sigmoid shape which occurs in probability, statistics and partial
differential equations.''
eerrffcc((_+_E_x_p_r))
WikipediA: ``The complementary error function.''
ppii _[_I_S_O_]
Evaluate to the mathematical constant pi (3.14159...).
ee
Evaluate to the mathematical constant e (2.71828...).
eeppssiilloonn
Evaluate to the difference between the float 1.0 and the first
larger floating point number.
ccppuuttiimmee
Evaluate to a floating point number expressing the cpu time (in
seconds) used by Prolog up till now. See also statistics/2 and
time/1.
eevvaall((_+_E_x_p_r))
Evaluate _E_x_p_r. Although ISO standard dictates that `A=1+2, B is
A' works and unifies B to 3, it is widely felt that source level
variables in arithmetic expressions should have been limited to
numbers. In this view the eval function can be used to evaluate
arbitrary expressions.
BBiittvveeccttoorr ffuunnccttiioonnss
The functions below are not covered by the standard. The
msb/1 function also appears in hProlog and SICStus Prolog. The
getbit/2 function also appears in ECLiPSe, which also provides
setbit(_V_e_c_t_o_r_,_I_n_d_e_x) and clrbit(_V_e_c_t_o_r_,_I_n_d_e_x). The others are
SWI-Prolog extensions that improve handling of ---unbounded--- integers
as bit-vectors.
mmssbb((_+_I_n_t_E_x_p_r))
Return the largest integer N such that (IntExpr >> N) /\ 1 =:= 1.
This is the (zero-origin) index of the most significant 1 bit in
the value of _I_n_t_E_x_p_r, which must evaluate to a positive integer.
Errors for 0, negative integers, and non-integers.
llssbb((_+_I_n_t_E_x_p_r))
Return the smallest integer N such that (IntExpr >> N) /\ 1 =:= 1.
This is the (zero-origin) index of the least significant 1 bit in
the value of _I_n_t_E_x_p_r, which must evaluate to a positive integer.
Errors for 0, negative integers, and non-integers.
ppooppccoouunntt((_+_I_n_t_E_x_p_r))
Return the number of 1s in the binary representation of the
non-negative integer _I_n_t_E_x_p_r.
ggeettbbiitt((_+_I_n_t_E_x_p_r_V_, _+_I_n_t_E_x_p_r_I))
Evaluates to the bit value (0 or 1) of the _I_n_t_E_x_p_r_I-th bit of
_I_n_t_E_x_p_r_V. Both arguments must evaluate to non-negative integers.
The result is equivalent to (IntExprV >> IntExprI)/\1, but more
efficient because materialization of the shifted value is avoided.
Future versions will optimise (IntExprV >> IntExprI)/\1 to a call
to getbit/2, providing both portability and performance.
44..2277 MMiisscc aarriitthhmmeettiicc ssuuppppoorrtt pprreeddiiccaatteess
sseett__rraannddoomm((_+_O_p_t_i_o_n))
Controls the random number generator accessible through the
_f_u_n_c_t_i_o_n_s random/1 and random_float/0. Note that the library
random provides an alternative API to the same random primitives.
sseeeedd((_+_S_e_e_d))
Set the seed of the random generator for this thread. _S_e_e_d
is an integer or the atom random. If random, repeat the
initialization procedure described with the function random/1.
Here is an example:
_______________________________________________________________| |
|?- set_random(seed(111)), A is random(6). |
|A = 5. |
|?- set_random(seed(111)), A is random(6). |
|A|=_5.________________________________________________________ | |
ssttaattee((_+_S_t_a_t_e))
Set the generator to a state fetched using the state property
of random_property/1. Using other values may lead to undefined
behaviour.
rraannddoomm__pprrooppeerrttyy((_?_O_p_t_i_o_n))
True when _O_p_t_i_o_n is a current property of the random generator.
Currently, this predicate provides access to the state. This
predicate is not present on systems where the state is
inaccessible.
ssttaattee((_-_S_t_a_t_e))
Describes the current state of the random generator. State
is a normal Prolog term that can be asserted or written to a
file. Applications should make no other assumptions about its
representation. The only meaningful operation is to use as
argument to set_random/1 using the state(_S_t_a_t_e) option.
ccuurrrreenntt__aarriitthhmmeettiicc__ffuunnccttiioonn((_?_H_e_a_d))
True when _H_e_a_d is an evaluable function. For example:
____________________________________________________________________| |
| ?- current_arithmetic_function(sin(_)). |
||true._____________________________________________________________ ||
44..2288 BBuuiilltt--iinn lliisstt ooppeerraattiioonnss
Most list operations are defined in the library lists described
in section 12.14. Some that are implemented with more low-level
primitives are built-in and described here.
iiss__lliisstt((_+_T_e_r_m))
True if _T_e_r_m is bound to the empty list ([]) or a term with functor
`'[|]'' and arity 2 and the second argument is a list. This
predicate acts as if defined by the definition below on _a_c_y_c_l_i_c
terms. The implementation _f_a_i_l_s safely if _T_e_r_m represents a cyclic
list.
____________________________________________________________________| |
| is_list(X) :- |
| var(X), !, |
| fail. |
| is_list([]). |
| is_list([_|T]) :- |
||________is_list(T)._______________________________________________ ||
mmeemmbbeerrcchhkk((_?_E_l_e_m_, _+_L_i_s_t)) _[_s_e_m_i_d_e_t_]
True when _E_l_e_m is an element of _L_i_s_t. This `chk' variant
of member/2 is semi deterministic and typically used to test
membership of a list. Raises a type error if scanning _L_i_s_t
encounters a non-list. Note that memberchk/2 does _n_o_t perform a
full list typecheck. For example, memberchk(a, [a|b]) succeeds
without error and memberchk/2 loops on a cyclic list if _E_l_e_m is not
a member of _L_i_s_t.
lleennggtthh((_?_L_i_s_t_, _?_I_n_t)) _[_I_S_O_]
True if _I_n_t represents the number of elements in _L_i_s_t. This
predicate is a true relation and can be used to find the length
of a list or produce a list (holding variables) of length _I_n_t.
The predicate is non-deterministic, producing lists of increasing
length if _L_i_s_t is a _p_a_r_t_i_a_l _l_i_s_t and _I_n_t is unbound. It raises
errors if
o _I_n_t is bound to a non-integer.
o _I_n_t is a negative integer.
o _L_i_s_t is neither a list nor a partial list. This error
condition includes cyclic lists.
This predicate fails if the tail of _L_i_s_t is equivalent to _I_n_t
(e.g., length(L,L)).
ssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d)) _[_I_S_O_]
True if _S_o_r_t_e_d can be unified with a list holding the elements of
_L_i_s_t, sorted to the standard order of terms (see section 4.7).
Duplicates are removed. The implementation is in C, using _n_a_t_u_r_a_l
_m_e_r_g_e _s_o_r_t. The sort/2 predicate can sort a cyclic list, returning
a non-cyclic version with the same elements.
ssoorrtt((_+_K_e_y_, _+_O_r_d_e_r_, _+_L_i_s_t_, _-_S_o_r_t_e_d))
True when _S_o_r_t_e_d can be unified with a list holding the element of
_L_i_s_t. _K_e_y determines which part of each element in _L_i_s_t is used
for comparing two term and _O_r_d_e_r describes the relation between
each set of consecutive elements in _S_o_r_t_e_d.
If _K_e_y is the integer zero (0), the entire term is used to compare
two elements. Using _K_e_y=0 can be used to sort arbitrary Prolog
terms. Other values for _K_e_y can only be used with compound terms
or dicts (see section 5.4). An integer key extracts the _K_e_y-th
argument from a compound term. An integer or atom key extracts
the value from a dict that is associated with the given key. A
type_error is raised if the list element is of the wrong type
and an existence_error is raised if the compound has not enough
argument or the dict does not contain the requested key.
Deeper nested elements of structures can be selected by using a
list of keys for the _K_e_y argument.
The _O_r_d_e_r argument is described in the table below
_Order__Ordering____Duplicate_handling__
@< ascending remove
@=< ascending keep
@> descending remove
@>= descending keep
The sort is _s_t_a_b_l_e, which implies that, if duplicates are kept, the
order of duplicates is not changed. If duplicates are removed,
only the first element of a sequence of duplicates appears in
_S_o_r_t_e_d.
This predicate supersedes most of the other sorting primitives, for
example:
____________________________________________________________________| |
| sort(List, Sorted) :- sort(0, @<, List, Sorted). |
| msort(List, Sorted) :- sort(0, @=<, List, Sorted). |
||keysort(Pairs,_Sorted)_:-_sort(1,_@=<,_Pairs,_Sorted).____________ ||
The following example sorts a list of rows, for example resulting
from csv_read_file/2) ascending on the 3th column and descending on
the 4th column:
____________________________________________________________________| |
| sort(4, @>=, Rows0, Rows1), |
||____sort(3,_@=<,_Rows1,_Sorted).__________________________________ ||
See also sort/2 (ISO), msort/2, keysort/2, predsort/3 and
order_by/2.
mmssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d))
Equivalent to sort/2, but does not remove duplicates. Raises a
type_error if _L_i_s_t is a cyclic list or not a list.
kkeeyyssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d)) _[_I_S_O_]
Sort a list of _p_a_i_r_s. _L_i_s_t must be a list of _K_e_y-_V_a_l_u_e pairs,
terms whose principal functor is (-)/2. _L_i_s_t is sorted on _K_e_y
according to the standard order of terms (see section 4.7.1).
Duplicates are _n_o_t removed. Sorting is _s_t_a_b_l_e with regard to the
order of the _V_a_l_u_e_s, i.e., the order of multiple elements that have
the same _K_e_y is not changed.
The keysort/2 predicate is often used together with library pairs.
It can be used to sort lists on different or multiple criteria.
For example, the following predicates sorts a list of atoms
according to their length, maintaining the initial order for atoms
that have the same length.
____________________________________________________________________| |
| :- use_module(library(pairs)). |
| |
| sort_atoms_by_length(Atoms, ByLength) :- |
| map_list_to_pairs(atom_length, Atoms, Pairs), |
| keysort(Pairs, Sorted), |
||________pairs_values(Sorted,_ByLength).___________________________ ||
pprreeddssoorrtt((_+_P_r_e_d_, _+_L_i_s_t_, _-_S_o_r_t_e_d))
Sorts similar to sort/2, but determines the order of two terms by
calling _P_r_e_d(-_D_e_l_t_a, +_E_1, +_E_2). This call must unify _D_e_l_t_a with
one of <, > or =. If the built-in predicate compare/3 is used, the
result is the same as sort/2. See also keysort/2.
44..2299 FFiinnddiinngg aallll SSoolluuttiioonnss ttoo aa GGooaall
ffiinnddaallll((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_B_a_g)) _[_I_S_O_]
Create a list of the instantiations _T_e_m_p_l_a_t_e gets successively on
backtracking over _G_o_a_l and unify the result with _B_a_g. Succeeds
with an empty list if _G_o_a_l has no solutions. findall/3 is
equivalent to bagof/3 with all free variables bound with the
existential operator (^), except that bagof/3 fails when _G_o_a_l has
no solutions.
ffiinnddaallll((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_B_a_g_, _+_T_a_i_l))
As findall/3, but returns the result as the difference list
_B_a_g-_T_a_i_l. The 3-argument version is defined as
____________________________________________________________________| |
| findall(Templ, Goal, Bag) :- |
||________findall(Templ,_Goal,_Bag,_[])_____________________________ ||
ffiinnddnnssoollss((_+_N_, _@_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_L_i_s_t)) _[_n_o_n_d_e_t_]
ffiinnddnnssoollss((_+_N_, _@_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_L_i_s_t_, _?_T_a_i_l)) _[_n_o_n_d_e_t_]
As findall/3 and findall/4, but generates at most _N solutions. If
_N solutions are returned, this predicate succeeds with a choice
point if _G_o_a_l has a choice point. Backtracking returns the next
chunk of (at most) _N solutions. In addition to passing a plain
integer for _N, a term of the form count(_N) is accepted. Using
count(_N), the size of the next chunk can be controlled using
nb_setarg/3. The non-deterministic behaviour used to implement the
_c_h_u_n_k option in pengines. Based on Ciao, but the Ciao version
is deterministic. Portability can be achieved by wrapping the
goal in once/1. Below are three examples. The first illustrates
standard chunking of answers. The second illustrates that the
chunk size can be adjusted dynamically and the last illustrates
that no choice point is left if _G_o_a_l leaves no choice-point after
the last solution.
____________________________________________________________________| |
| ?- findnsols(5, I, between(1, 12, I), L). |
| L = [1, 2, 3, 4, 5] ; |
| L = [6, 7, 8, 9, 10] ; |
| L = [11, 12]. |
| |
| ?- State = count(2), |
| findnsols(State, I, between(1, 12, I), L), |
| nb_setarg(1, State, 5). |
| State = count(5), L = [1, 2] ; |
| State = count(5), L = [3, 4, 5, 6, 7] ; |
| State = count(5), L = [8, 9, 10, 11, 12]. |
| |
| ?- findnsols(4, I, between(1, 4, I), L). |
||L_=_[1,_2,_3,_4]._________________________________________________ ||
bbaaggooff((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_B_a_g)) _[_I_S_O_]
Unify _B_a_g with the alternatives of _T_e_m_p_l_a_t_e. If _G_o_a_l has free
variables besides the one sharing with _T_e_m_p_l_a_t_e, bagof/3 will
backtrack over the alternatives of these free variables, unifying
_B_a_g with the corresponding alternatives of _T_e_m_p_l_a_t_e. The construct
+_V_a_r^_G_o_a_l tells bagof/3 not to bind _V_a_r in _G_o_a_l. bagof/3 fails if
_G_o_a_l has no solutions.
The example below illustrates bagof/3 and the ^ operator. The
variable bindings are printed together on one line to save paper.
____________________________________________________________________| |
| 2 ?- listing(foo). |
| foo(a, b, c). |
| foo(a, b, d). |
| foo(b, c, e). |
| foo(b, c, f). |
| foo(c, c, g). |
| true. |
| |
| 3 ?- bagof(C, foo(A, B, C), Cs). |
| A = a, B = b, C = G308, Cs = [c, d] ; |
| A = b, B = c, C = G308, Cs = [e, f] ; |
| A = c, B = c, C = G308, Cs = [g]. |
| |
| 4 ?- bagof(C, A^foo(A, B, C), Cs). |
| A = G324, B = b, C = G326, Cs = [c, d] ; |
| A = G324, B = c, C = G326, Cs = [e, f, g]. |
| |
||5_?-______________________________________________________________ ||
sseettooff((_+_T_e_m_p_l_a_t_e_, _+_G_o_a_l_, _-_S_e_t)) _[_I_S_O_]
Equivalent to bagof/3, but sorts the result using sort/2 to get a
sorted list of alternatives without duplicates.
44..3300 FFoorraallll
ffoorraallll((_:_C_o_n_d_, _:_A_c_t_i_o_n)) _[_s_e_m_i_d_e_t_]
For all alternative bindings of _C_o_n_d, _A_c_t_i_o_n can be proven. The
example verifies that all arithmetic statements in the given list
are correct. It does not say which is wrong if one proves wrong.
____________________________________________________________________| |
| ?- forall(member(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]), |
||_________________Result_=:=_Formula)._____________________________ ||
The predicate forall/2 is implemented as \+ ( Cond, \+ Action),
i.e., _T_h_e_r_e _i_s _n_o _i_n_s_t_a_n_t_i_a_t_i_o_n _o_f _C_o_n_d _f_o_r _w_h_i_c_h _A_c_t_i_o_n _i_s _f_a_l_s_e_..
The use of double negation implies that forall/2 _d_o_e_s _n_o_t _c_h_a_n_g_e
_a_n_y _v_a_r_i_a_b_l_e _b_i_n_d_i_n_g_s. It proves a relation. The forall/2 control
structure can be used for its side-effects. E.g., the following
asserts relations in a list into the dynamic database:
____________________________________________________________________| |
| ?- forall(member(Child-Parent, ChildPairs), |
||__________assertz(child_of(Child,_Parent))).______________________ ||
Using forall/2 as forall(_G_e_n_e_r_a_t_o_r_, _S_i_d_e_E_f_f_e_c_t) is preferred over
the classical _f_a_i_l_u_r_e _d_r_i_v_e_n _l_o_o_p as shown below because it makes
it explicit which part of the construct is the generator and which
part creates the side effects. Also, unexpected failure of the
side effect causes the construct to fail. Failure makes it evident
that there is an issue with the code, while a failure driven loop
would succeed with an erroneous result.
____________________________________________________________________| |
| ..., |
| ( Generator, |
| SideEffect, |
| fail |
| ; true |
||________)_________________________________________________________ ||
If your intent is to create variable bindings, the forall/2 control
structure is inadequate. Possibly you are looking for maplist/2,
findall/3 or foreach/2.
44..3311 FFoorrmmaatttteedd WWrriittee
The current version of SWI-Prolog provides two formatted write
predicates. The `writef' family (writef/1, writef/2, swritef/3), is
compatible with Edinburgh C-Prolog and should be considered _d_e_p_r_e_c_a_t_e_d.
The `format' family (format/1, format/2, format/3), was defined by
Quintus Prolog and currently available in many Prolog systems, although
the details vary.
44..3311..11 WWrriitteeff
wwrriitteeff((_+_A_t_o_m)) _[_d_e_p_r_e_c_a_t_e_d_]
Equivalent to writef(Atom, []). See writef/2 for details.
wwrriitteeff((_+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s)) _[_d_e_p_r_e_c_a_t_e_d_]
Formatted write. _F_o_r_m_a_t is an atom whose characters will be
printed. _F_o_r_m_a_t may contain certain special character sequences
which specify certain formatting and substitution actions.
_A_r_g_u_m_e_n_t_s provides all the terms required to be output.
Escape sequences to generate a single special character:
__________________________________________________
| \n |Output a newline character (see also |
| |nl/[0,1]) |
| \l |Output a line separator (same as \n) |
| \r |Output a carriage return character |
| |(ASCII 13) |
| \t |Output the ASCII character TAB (9) |
| \\ |The character \ is output |
| \% |The character % is output |
| \nnn |where <_n_n_n> is an integer (1-3 digits); |
| |the character with code <_n_n_n> is output |
|______|(NB_:_<_n_n_n>_is_read_as_ddeecciimmaall)___________|
Note that \l, \nnn and \\ are interpreted differently when
character escapes are in effect. See section 2.15.2.1.
Escape sequences to include arguments from _A_r_g_u_m_e_n_t_s. Each time
a % escape sequence is found in _F_o_r_m_a_t the next argument from
_A_r_g_u_m_e_n_t_s is formatted according to the specification.
_________________________________________________%t
| %w print/1 the next item (mnemonic: term) | |
| %q |write/1the next item |
| |writeq/1the next item |
| %d |Write the term, ignoring operators. See|
| |also write_term/2. Mnemonic: old|
| %p |Edinburgh display/1 |
| |print/1the next item (identical to %t) |
| %n |Put the next item as a character (i.e.,|
| |it is a character code) |
| %r |Write the next item N times where N is|
| |the second item (an integer) |
| %s |Write the next item as a String (so it|
| |must be a list of characters) |
| %f |Perform a ttyflush/0 (no items used) |
| %Nc |Write the next item Centered in N |
| |columns |
| %Nl |Write the next item Left justified in N |
| |columns |
| %Nr |Write the next item Right justified in N |
| |columns. N is a decimal number with at|
| |least one digit. The item must be an|
|_____|atom,_integer,_float_or_string.__________|_
sswwrriitteeff((_-_S_t_r_i_n_g_, _+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s)) _[_d_e_p_r_e_c_a_t_e_d_]
Equivalent to writef/2, but ``writes'' the result on _S_t_r_i_n_g instead
of the current output stream. Example:
____________________________________________________________________| |
| ?- swritef(S, '%15L%w', ['Hello', 'World']). |
| |
||S_=_"Hello__________World"________________________________________ ||
sswwrriitteeff((_-_S_t_r_i_n_g_, _+_F_o_r_m_a_t)) _[_d_e_p_r_e_c_a_t_e_d_]
Equivalent to swritef(String, Format, []).
44..3311..22 FFoorrmmaatt
The format family of predicates is the most versatile and portable way
to produce textual output.
ffoorrmmaatt((_+_F_o_r_m_a_t))
Defined as `format(Format) :- format(Format, []).'. See format/2
for details.
ffoorrmmaatt((_+_F_o_r_m_a_t_, _:_A_r_g_u_m_e_n_t_s))
_F_o_r_m_a_t is an atom, list of character codes, or a Prolog string.
_A_r_g_u_m_e_n_t_s provides the arguments required by the format
specification. If only one argument is required and this single
argument is not a list, the argument need not be put in a list.
Otherwise the arguments are put in a list.
Special sequences start with the tilde (~), followed by an optional
numeric argument, optionally followed by a colon modifier (:),
followed by a character describing the action to be undertaken. A
numeric argument is either a sequence of digits, representing a
positive decimal number, a sequence `<_c_h_a_r_a_c_t_e_r>, representing the
character code value of the character (only useful for ~t) or a
asterisk (*), in which case the numeric argument is taken from the
next argument of the argument list, which should be a positive
integer. E.g., the following three examples all pass 46 (.) to ~t:
____________________________________________________________________| |
| ?- format('~w ~46t ~w~72|~n', ['Title', 'Page']). |
| ?- format('~w ~`.t ~w~72|~n', ['Title', 'Page']). |
||?-_format('~w_~*t_~w~72|~n',_['Title',_46,_'Page']).______________ ||
Numeric conversion (d, D, e, E, f, g and G) accept an arithmetic
expression as argument. This is introduced to handle rational
numbers transparently (see section 4.26.2.2). The floating point
conversions allow for unlimited precision for printing rational
numbers in decimal form. E.g., the following will write as many
3's as you want by changing the `70'.
____________________________________________________________________| |
| ?- format('~50f', [10 rdiv 3]). |
||3.33333333333333333333333333333333333333333333333333______________ ||
~ Output the tilde itself.
a Output the next argument, which must be an atom. This option
is equivalent to ww, except that it requires the argument to be
an atom.
c Interpret the next argument as a character code and add it to
the output. This argument must be a valid Unicode character
code. Note that the actually emitted bytes are defined by the
character encoding of the output stream and an exception may
be raised if the output stream is not capable of representing
the requested Unicode character. See section 2.18.1 for
details.
d Output next argument as a decimal number. It should be
an integer. If a numeric argument is specified, a dot is
inserted _a_r_g_u_m_e_n_t positions from the right (useful for doing
fixed point arithmetic with integers, such as handling amounts
of money).
The colon modifier (e.g., ~:d) causes the number to be
printed according to the locale of the output stream. See
section 4.22.
D Same as dd, but makes large values easier to read by inserting
a comma every three digits left or right of the dot. This is
the same as ~:d, but using the fixed English locale.
e Output next argument as a floating point number in exponential
notation. The numeric argument specifies the precision.
Default is 6 digits. Exact representation depends on the C
library function printf(). This function is invoked with the
format %.<_p_r_e_c_i_s_i_o_n>e.
E Equivalent to ee, but outputs a capital E to indicate the
exponent.
f Floating point in non-exponential notation. The numeric
argument defines the number of digits right of the decimal
point. If the colon modifier (:) is used, the float is
formatted using conventions from the current locale, which may
define the decimal point as well as grouping of digits left of
the decimal point.
g Floating point in ee or ff notation, whichever is shorter.
G Floating point in EE or ff notation, whichever is shorter.
i Ignore next argument of the argument list. Produces no
output.
I Emit a decimal number using Prolog digit grouping (the
underscore, _). The argument describes the size of each digit
group. The default is 3. See also section 2.15.2.3. For
example:
_______________________________________________________________| |
|?- A is 1<<100, format('~10I', [A]). |
|1_2676506002_2822940149_6703205376|___________________________ | |
k Give the next argument to write_canonical/1.
n Output a newline character.
N Only output a newline if the last character output on this
stream was not a newline. Not properly implemented yet.
p Give the next argument to print/1.
q Give the next argument to writeq/1.
r Print integer in radix numeric argument notation. Thus ~16r
prints its argument hexadecimal. The argument should be in
the range [2;:::;36]. Lowercase letters are used for digits above
9. The colon modifier may be used to form locale-specific
digit groups.
R Same as rr, but uses uppercase letters for digits above 9.
s Output text from a list of character codes or a string (see
string/1 and section 5.2) from the next argument.
@ Interpret the next argument as a goal and execute it. Output
written to the current_output stream is inserted at this place.
Goal is called in the module calling format/3. This option
is not present in the original definition by Quintus, but
supported by some other Prolog systems.
t All remaining space between 2 tab stops is distributed equally
over ~t statements between the tab stops. This space is
padded with spaces by default. If an argument is supplied, it
is taken to be the character code of the character used for
padding. This can be used to do left or right alignment,
centering, distributing, etc. See also ~| and ~+ to set tab
stops. A tab stop is assumed at the start of each line.
| Set a tab stop on the current position. If an argument is
supplied set a tab stop on the position of that argument.
This will cause all ~t's to be distributed between the
previous and this tab stop.
+ Set a tab stop (as ~|) relative to the last tab stop or
the beginning of the line if no tab stops are set before
the ~+. This constructs can be used to fill fields. The
partial format sequence below prints an integer right-aligned
and padded with zeros in 6 columns. The ... sequences in the
example illustrate that the integer is aligned in 6 columns
regardless of the remainder of the format specification.
_______________________________________________________________| |
||_______format('...~|~`0t~d~6+...',_[...,_Integer,_...])______ ||
w Give the next argument to write/1.
W Give the next two arguments to write_term/2. For example,
format('~W', [Term, [numbervars(true)]]). This option is
SWI-Prolog specific.
Example:
____________________________________________________________________| |
| simple_statistics :- |
| <obtain statistics> % left to the user |
| format('~tStatistics~t~72|~n~n'), |
| format('Runtime: ~`.t ~2f~34| Inferences: ~`.t ~D~72|~n', |
| [RunT, Inf]), |
||____....__________________________________________________________ ||
will output
____________________________________________________________________| |
| Statistics |
| |
||Runtime:_.................._3.45__Inferences:_.........._60,345___ ||
ffoorrmmaatt((_+_O_u_t_p_u_t_, _+_F_o_r_m_a_t_, _:_A_r_g_u_m_e_n_t_s))
As format/2, but write the output on the given _O_u_t_p_u_t. The de-
facto standard only allows _O_u_t_p_u_t to be a stream. The SWI-Prolog
implementation allows all valid arguments for with_output_to/2.
For example:
____________________________________________________________________| |
| ?- format(atom(A), '~D', [1000000]). |
||A_=_'1,000,000'___________________________________________________ ||
44..3311..33 PPrrooggrraammmmiinngg FFoorrmmaatt
ffoorrmmaatt__pprreeddiiccaattee((_+_C_h_a_r_, _+_H_e_a_d))
If a sequence ~c (tilde, followed by some character) is found, the
format/3 and friends first check whether the user has defined a
predicate to handle the format. If not, the built-in formatting
rules described above are used. _C_h_a_r is either a character code
or a one-character atom, specifying the letter to be (re)defined.
_H_e_a_d is a term, whose name and arity are used to determine the
predicate to call for the redefined formatting character. The
first argument to the predicate is the numeric argument of the
format command, or the atom default if no argument is specified.
The remaining arguments are filled from the argument list. The
example below defines ~T to print a timestamp in ISO8601 format
(see format_time/3). The subsequent block illustrates a possible
call.
____________________________________________________________________| |
| :- format_predicate('T', format_time(_Arg,_Time)). |
| |
| format_time(_Arg, Stamp) :- |
| must_be(number, Stamp), |
||________format_time(current_output,_'%FT%T%z',_Stamp).____________ ||
____________________________________________________________________| |
| ?- get_time(Now), |
| format('Now, it is ~T~n', [Now]). |
| Now, it is 2012-06-04T19:02:01+0200 |
||Now_=_1338829321.6620328._________________________________________ ||
ccuurrrreenntt__ffoorrmmaatt__pprreeddiiccaattee((_?_C_o_d_e_, _?_:_H_e_a_d))
True when ~_C_o_d_e is handled by the user-defined predicate specified
by _H_e_a_d.
44..3322 TTeerrmmiinnaall CCoonnttrrooll
The following predicates form a simple access mechanism to the
Unix termcap library to provide terminal-independent I/O for screen
terminals. These predicates are only available on Unix machines. The
SWI-Prolog Windows console accepts the ANSI escape sequences.
ttttyy__ggeett__ccaappaabbiilliittyy((_+_N_a_m_e_, _+_T_y_p_e_, _-_R_e_s_u_l_t))
Get the capability named _N_a_m_e from the termcap library. See
termcap(5) for the capability names. _T_y_p_e specifies the type of
the expected result, and is one of string, number or bool. String
results are returned as an atom, number results as an integer, and
bool results as the atom on or off. If an option cannot be found,
this predicate fails silently. The results are only computed once.
Successive queries on the same capability are fast.
ttttyy__ggoottoo((_+_X_, _+_Y))
Goto position (_X, _Y) on the screen. Note that the predicates
line_count/2 and line_position/2 will not have a well-defined
behaviour while using this predicate.
ttttyy__ppuutt((_+_A_t_o_m_, _+_L_i_n_e_s))
Put an atom via the termcap library function tputs(). This
function decodes padding information in the strings returned by
tty_get_capability/3 and should be used to output these strings.
_L_i_n_e_s is the number of lines affected by the operation, or 1 if not
applicable (as in almost all cases).
ttttyy__ssiizzee((_-_R_o_w_s_, _-_C_o_l_u_m_n_s))
Determine the size of the terminal. Platforms:
UUnniixx If the system provides _i_o_c_t_l calls for this, these are
used and tty_size/2 properly reflects the actual size after a
user resize of the window. As a fallback, the system uses
tty_get_capability/3 using li and co capabilities. In this
case the reported size reflects the size at the first call and
is not updated after a user-initiated resize of the terminal.
WWiinnddoowwss Getting the size of the terminal is provided for
swipl-win.exe. The requested value reflects the current size.
For the multithreaded version the console that is associated
with the user_input stream is used.
44..3333 OOppeerraattiinngg SSyysstteemm IInntteerraaccttiioonn
sshheellll((_+_C_o_m_m_a_n_d_, _-_S_t_a_t_u_s))
Execute _C_o_m_m_a_n_d on the operating system. _C_o_m_m_a_n_d is given to the
Bourne shell (/bin/sh). _S_t_a_t_u_s is unified with the exit status of
the command.
On Windows, shell/[1,2] executes the command using the
CreateProcess() API and waits for the command to terminate. If the
command ends with a & sign, the command is handed to the WinExec()
API, which does not wait for the new task to terminate. See also
win_exec/2 and win_shell/2. Please note that the CreateProcess()
API does nnoott imply the Windows command interpreter (cmd.exe and
therefore commands that are built in the command interpreter can
only be activated using the command interpreter. For example, a
file can be compied using the command below.
____________________________________________________________________| |
||?-_shell('cmd.exe_/C_copy_file1.txt_file2.txt').__________________ ||
Note that many of the operations that can be achieved using
the shell built-in commands can easily be achieved using Prolog
primitives. See make_directory/1, delete_file/1, rename_file/2,
etc. The clib package provides filesex, implementing various high
level file operations such as copy_file/2. Using Prolog primitives
instead of shell commands improves the portability of your program.
The library process provides process_create/3 and several related
primitives that support more fine-grained interaction with
processes, including I/O redirection and management of asynchronous
processes.
sshheellll((_+_C_o_m_m_a_n_d))
Equivalent to `shell(Command, 0)'.
sshheellll
Start an interactive Unix shell. Default is /bin/sh; the
environment variable SHELL overrides this default. Not available
for Win32 platforms.
ggeetteennvv((_+_N_a_m_e_, _-_V_a_l_u_e))
Get environment variable. Fails silently if the variable does
not exist. Please note that environment variable names are
case-sensitive on Unix systems and case-insensitive on Windows.
sseetteennvv((_+_N_a_m_e_, _+_V_a_l_u_e))
Set an environment variable. _N_a_m_e and _V_a_l_u_e must be instantiated
to atoms or integers. The environment variable will be passed
to shell/[0-2] and can be requested using getenv/2. They also
influence expand_file_name/2. Environment variables are shared
between threads. Depending on the underlying C library, setenv/2
and unsetenv/1 may not be thread-safe and may cause memory leaks.
Only changing the environment once and before starting threads is
safe in all versions of SWI-Prolog.
uunnsseetteennvv((_+_N_a_m_e))
Remove an environment variable from the environment. Some systems
lack the underlying unsetenv() library function. On these systems
unsetenv/1 sets the variable to the empty string.
sseettllooccaallee((_+_C_a_t_e_g_o_r_y_, _-_O_l_d_, _+_N_e_w))
Set/Query the _l_o_c_a_l_e setting which tells the C library how to
interpret text files, write numbers, dates, etc. Category is
one of all, collate, ctype, messages, monetary, numeric or time.
For details, please consult the C library locale documentation.
See also section 2.18.1. Please note that the locale is shared
between all threads and thread-safe usage of setlocale/3 is in
general not possible. Do locale operations before starting
threads or thoroughly study threading aspects of locale support
in your environment before using in multithreaded environments.
Locale settings are used by format_time/3, collation_key/2 and
locale_sort/2.
uunniixx((_+_C_o_m_m_a_n_d))
This predicate comes from the Quintus compatibility library and
provides a partial implementation thereof. It provides access to
some operating system features and unlike the name suggests, is not
operating system specific. Defined _C_o_m_m_a_n_d's are below.
ssyysstteemm((_+_C_o_m_m_a_n_d))
Equivalent to calling shell/1. Use for compatibility only.
sshheellll((_+_C_o_m_m_a_n_d))
Equivalent to calling shell/1. Use for compatibility only.
sshheellll
Equivalent to calling shell/0. Use for compatibility only.
ccdd
Equivalent to calling working_directory/2 to the expansion (see
expand_file_name/2) of ~. For compatibility only.
ccdd((_+_D_i_r_e_c_t_o_r_y))
Equivalent to calling working_directory/2. Use for compatibil-
ity only.
aarrggvv((_-_A_r_g_v))
Unify _A_r_g_v with the list of command line arguments provided to
this Prolog run. Please note that Prolog system arguments and
application arguments are separated by --. Integer arguments
are passed as Prolog integers, float arguments and Prolog
floating point numbers and all other arguments as Prolog
atoms. New applications should use the Prolog flag argv. See
also the Prolog flag argv.
A stand-alone program could use the following skeleton to
handle command line arguments. See also section 2.10.2.4.
_______________________________________________________________| |
|main :- |
| current_prolog_flag(argv, Argv), |
| append(_PrologArgs, [--|AppArgs], Argv), !, |
||_______main(AppArgs).________________________________________ ||
44..3333..11 WWiinnddoowwss--ssppeecciiffiicc OOppeerraattiinngg SSyysstteemm IInntteerraaccttiioonn
The predicates in this section are only available on the Windows
version of SWI-Prolog. Their use is discouraged if there are
portably alternatives. For example, win_exec/2 and win_shell/2 can
often be replaced by the more portable shell/2 or the more powerful
process_create/3.
wwiinn__eexxeecc((_+_C_o_m_m_a_n_d_, _+_S_h_o_w))
Windows only. Spawns a Windows task without waiting for its
completion. _S_h_o_w is one of the Win32 SW_* constants written
in lowercase without the SW_*: hide maximize minimize restore
show showdefault showmaximized showminimized showminnoactive showna
shownoactive shownormal. In addition, iconic is a synonym for
minimize and normal for shownormal.
wwiinn__sshheellll((_+_O_p_e_r_a_t_i_o_n_, _+_F_i_l_e_, _+_S_h_o_w))
Windows only. Opens the document _F_i_l_e using the Windows shell
rules for doing so. _O_p_e_r_a_t_i_o_n is one of open, print or explore or
another operation registered with the shell for the given document
type. On modern systems it is also possible to pass a URL as _F_i_l_e,
opening the URL in Windows default browser. This call interfaces
to the Win32 API ShellExecute(). The _S_h_o_w argument determines the
initial state of the opened window (if any). See win_exec/2 for
defined values.
wwiinn__sshheellll((_+_O_p_e_r_a_t_i_o_n_, _+_F_i_l_e))
Same as win_shell(_O_p_e_r_a_t_i_o_n_, _F_i_l_e_, _n_o_r_m_a_l)
wwiinn__rreeggiissttrryy__ggeett__vvaalluuee((_+_K_e_y_, _+_N_a_m_e_, _-_V_a_l_u_e))
Windows only. Fetches the value of a Windows registry key. _K_e_y
is an atom formed as a path name describing the desired registry
key. _N_a_m_e is the desired attribute name of the key. _V_a_l_u_e is
unified with the value. If the value is of type DWORD, the
value is returned as an integer. If the value is a string, it
is returned as a Prolog atom. Other types are currently not
supported. The default `root' is HKEY_CURRENT_USER. Other roots
can be specified explicitly as HKEY_CLASSES_ROOT, HKEY_CURRENT_USER,
HKEY_LOCAL_MACHINE or HKEY_USERS. The example below fetches the
extension to use for Prolog files (see README.TXT on the Windows
version):
____________________________________________________________________| |
| ?- win_registry_get_value( |
| 'HKEY_LOCAL_MACHINE/Software/SWI/Prolog', |
| fileExtension, |
| Ext). |
| |
||Ext_=_pl__________________________________________________________ ||
wwiinn__ffoollddeerr((_?_N_a_m_e_, _-_D_i_r_e_c_t_o_r_y))
True if _N_a_m_e is the Windows `CSIDL' of _D_i_r_e_c_t_o_r_y. If _N_a_m_e is
unbound, all known Windows special paths are generated. _N_a_m_e
is the CSIDL after deleting the leading CSIDL_ and mapping the
constant to lowercase. Check the Windows documentation for the
function SHGetSpecialFolderPath() for a description of the defined
constants. This example extracts the `My Documents' folder:
____________________________________________________________________| |
| ?- win_folder(personal, MyDocuments). |
| |
||MyDocuments_=_'C:/Documents_and_Settings/jan/My_Documents'________ ||
wwiinn__aadddd__ddllll__ddiirreeccttoorryy((_+_A_b_s_D_i_r))
This predicate adds a directory to the search path for de-
pendent DLL files. If possible, this is achieved with
win_add_dll_directory/2. Otherwise, %PATH% is extended with the
provided directory. _A_b_s_D_i_r may be specified in the Prolog
canonical syntax. See prolog_to_os_filename/2. Note that
use_foreign_library/1 passes an absolute path to the DLL if the
destination DLL can be located from the specification using
absolute_file_name/3.
wwiinn__aadddd__ddllll__ddiirreeccttoorryy((_+_A_b_s_D_i_r_, _-_C_o_o_k_i_e))
This predicate adds a directory to the search path for dependent
DLL files. If the call is successful it unifies _C_o_o_k_i_e with a
handle that must be passed to win_remove_dll_directory/1to remove
the directory from the search path. Error conditions:
o This predicate is available in the Windows port of SWI-Prolog
starting from 6.3.8/6.2.6.
o This predicate _f_a_i_l_s if Windows does not yet support the
underlying primitives. These are available in recently
patched Windows 7 systems and later.
o This predicate throws an acception if the provided path is
invalid or the underlying Windows API returns an error.
If open_shared_object/2 is passed an _a_b_s_o_l_u_t_e path to
a DLL on a Windows installation that supports Ad-
dDllDirectory() and friends, SWI-Prolog uses LoadLi-
braryEx() with the flags LOAD_LIBRARY_SEARCH_DLL_LOAD_DIR and
LOAD_LIBRARY_SEARCH_DEFAULT_DIRS. In this scenario, directories from
%PATH% and _n_o_t searched. Additional directories can be added using
win_add_dll_directory/2.
wwiinn__rreemmoovvee__ddllll__ddiirreeccttoorryy((_-_C_o_o_k_i_e))
Remove a DLL search directory installed using
win_add_dll_directory/2.
44..3333..22 DDeeaalliinngg wwiitthh ttiimmee aanndd ddaattee
Representing time in a computer system is surprisingly complicated.
There are a large number of time representations in use, and the
correct choice depends on factors such as compactness, resolution and
desired operations. Humans tend to think about time in hours, days,
months, years or centuries. Physicists think about time in seconds.
But, a month does not have a defined number of seconds. Even a day
does not have a defined number of seconds as sometimes a leap-second
is introduced to synchronise properly with our earth's rotation. At
the same time, resolution demands a range from better than pico-seconds
to millions of years. Finally, civilizations have a wide range of
calendars. Although there exist libraries dealing with most if this
complexity, our desire to keep Prolog clean and lean stops us from
fully supporting these.
For human-oriented tasks, time can be broken into years, months, days,
hours, minutes, seconds and a timezone. Physicists prefer to have
time in an arithmetic type representing seconds or fraction thereof, so
basic arithmetic deals with comparison and durations. An additional
advantage of the physicist's approach is that it requires much less
space. For these reasons, SWI-Prolog uses an arithmetic type as its
prime time representation.
Many C libraries deal with time using fixed-point arithmetic, dealing
with a large but finite time interval at constant resolution. In our
opinion, using a floating point number is a more natural choice as we
can use a natural unit and the interface does not need to be changed if
a higher resolution is required in the future. Our unit of choice is
the second as it is the scientific unit. We have placed our origin at
1970-1-1T0:0:0Z for compatibility with the POSIX notion of time as well
as with older time support provided by SWI-Prolog.
Where older versions of SWI-Prolog relied on the POSIX conversion
functions, the current implementation uses libtai to realise conversion
between time-stamps and calendar dates for a period of 10 million
years.
44..3333..22..11 TTiimmee aanndd ddaattee ddaattaa ssttrruuccttuurreess
We use the following time representations
TTiimmeeSSttaammpp
A TimeStamp is a floating point number expressing the time in
seconds since the Epoch at 1970-1-1.
ddaattee((_Y_,_M_,_D_,_H_,_M_n_,_S_,_O_f_f_,_T_Z_,_D_S_T))
We call this term a _d_a_t_e_-_t_i_m_e structure. The first 5 fields are
integers expressing the year, month (1..12), day (1..31), hour
(0..23) and minute (0..59). The _S field holds the seconds as a
floating point number between 0.0 and 60.0. _O_f_f is an integer
representing the offset relative to UTC in seconds, where positive
values are west of Greenwich. If converted from local time (see
stamp_date_time/3), _T_Z holds the name of the local timezone. If
the timezone is not known, _T_Z is the atom -. _D_S_T is true if
daylight saving time applies to the current time, false if daylight
saving time is relevant but not effective, and - if unknown or the
timezone has no daylight saving time.
ddaattee((_Y_,_M_,_D))
Date using the same values as described above. Extracted using
date_time_value/3.
ttiimmee((_H_,_M_n_,_S))
Time using the same values as described above. Extracted using
date_time_value/3.
44..3333..22..22 TTiimmee aanndd ddaattee pprreeddiiccaatteess
ggeett__ttiimmee((_-_T_i_m_e_S_t_a_m_p))
Return the current time as a _T_i_m_e_S_t_a_m_p. The granularity is
system-dependent. See section 4.33.2.1.
ssttaammpp__ddaattee__ttiimmee((_+_T_i_m_e_S_t_a_m_p_, _-_D_a_t_e_T_i_m_e_, _+_T_i_m_e_Z_o_n_e))
Convert a _T_i_m_e_S_t_a_m_p to a _D_a_t_e_T_i_m_e in the given timezone. See
section 4.33.2.1 for details on the data types. _T_i_m_e_Z_o_n_e describes
the timezone for the conversion. It is one of local to extract the
local time, 'UTC' to extract a UTC time or an integer describing
the seconds west of Greenwich.
ddaattee__ttiimmee__ssttaammpp((_+_D_a_t_e_T_i_m_e_, _-_T_i_m_e_S_t_a_m_p))
Compute the timestamp from a date/9 term. Values for month, day,
hour, minute or second need not be normalized. This flexibility
allows for easy computation of the time at any given number of
these units from a given timestamp. Normalization can be achieved
following this call with stamp_date_time/3. This example computes
the date 200 days after 2006-7-14:
____________________________________________________________________| |
| ?- date_time_stamp(date(2006,7,214,0,0,0,0,-,-), Stamp), |
| stamp_date_time(Stamp, D, 0), |
| date_time_value(date, D, Date). |
||Date_=_date(2007,_1,_30)__________________________________________ ||
When computing a time stamp from a local time specification, the
UTC offset (arg 7), TZ (arg 8) and DST (arg 9) argument may be left
unbound and are unified with the proper information. The example
below, executed in Amsterdam, illustrates this behaviour. On the
25th of March at 01:00, DST does not apply. At 02.00, the clock is
advanced by one hour and thus both 02:00 and 03:00 represent the
same time stamp.
____________________________________________________________________| |
| 1 ?- date_time_stamp(date(2012,3,25,1,0,0,UTCOff,TZ,DST), |
| Stamp). |
| UTCOff = -3600, |
| TZ = 'CET', |
| DST = false, |
| Stamp = 1332633600.0. |
| |
| 2 ?- date_time_stamp(date(2012,3,25,2,0,0,UTCOff,TZ,DST), |
| Stamp). |
| UTCOff = -7200, |
| TZ = 'CEST', |
| DST = true, |
| Stamp = 1332637200.0. |
| |
| 3 ?- date_time_stamp(date(2012,3,25,3,0,0,UTCOff,TZ,DST), |
| Stamp). |
| UTCOff = -7200, |
| TZ = 'CEST', |
| DST = true, |
||Stamp_=_1332637200.0._____________________________________________ ||
Note that DST and offset calculation are based on the
POSIX function mktime(). If mktime() returns an error, a
representation_error dst is generated.
ddaattee__ttiimmee__vvaalluuee((_?_K_e_y_, _+_D_a_t_e_T_i_m_e_, _?_V_a_l_u_e))
Extract values from a date/9 term. Provided keys are:
______________________________________________________________kkeeyyvvaalluuee
____________________________________________________________________________________________________________________________yearCalendar year as an integer
month Calendar month as an integer 1..12
day Calendar day as an integer 1..31
hour Clock hour as an integer 0..23
minute Clock minute as an integer 0..59
second Clock second as a float 0.0..60.0
utc_offset Offset to UTC in seconds (positive is west)
time_zone Name of timezone; fails if unknown
daylight_saving Bool (true) if dst is in effect
date Term date(_Y_,_M_,_D)
_time_____________Term_time(_H_,_M_,_S)____________________________
ffoorrmmaatt__ttiimmee((_+_O_u_t_, _+_F_o_r_m_a_t_, _+_S_t_a_m_p_O_r_D_a_t_e_T_i_m_e))
Modelled after POSIX strftime(), using GNU extensions. _O_u_t is
a destination as specified with with_output_to/2. _F_o_r_m_a_t is
an atom or string with the following conversions. Conversions
start with a tilde (%) character. _S_t_a_m_p_O_r_D_a_t_e_T_i_m_e is either a
numeric time-stamp, a term date(_Y_,_M_,_D_,_H_,_M_,_S_,_O_,_T_Z_,_D_S_T) or a term
date(_Y_,_M_,_D).
a The abbreviated weekday name according to the current locale.
Use format_time/4 for POSIX locale.
A The full weekday name according to the current locale. Use
format_time/4 for POSIX locale.
b The abbreviated month name according to the current locale.
Use format_time/4 for POSIX locale.
B The full month name according to the current locale. Use
format_time/4 for POSIX locale.
c The preferred date and time representation for the current
locale.
C The century number (year/100) as a 2-digit integer.
d The day of the month as a decimal number (range 01 to 31).
D Equivalent to %m/%d/%y. (For Americans only. Americans
should note that in other countries %d/%m/%y is rather common.
This means that in an international context this format is
ambiguous and should not be used.)
e Like %d, the day of the month as a decimal number, but a
leading zero is replaced by a space.
E Modifier. Not implemented.
f Number of microseconds. The f can be prefixed by an integer
to print the desired number of digits. E.g., %3f prints
milliseconds. This format is not covered by any standard,
but available with different format specifiers in various
incarnations of the strftime() function.
F Equivalent to %Y-%m-%d (the ISO 8601 date format).
g Like %G, but without century, i.e., with a 2-digit year
(00-99).
G The ISO 8601 year with century as a decimal number. The
4-digit year corresponding to the ISO week number (see %V).
This has the same format and value as %y, except that if the
ISO week number belongs to the previous or next year, that
year is used instead.
V The ISO 8601:1988 week number of the current year as a decimal
number, range 01 to 53, where week 1 is the first week that
has at least 4 days in the current year, and with Monday as
the first day of the week. See also %U and %W.
h Equivalent to %b.
H The hour as a decimal number using a 24-hour clock (range 00
to 23).
I The hour as a decimal number using a 12-hour clock (range 01
to 12).
j The day of the year as a decimal number (range 001 to 366).
k The hour (24-hour clock) as a decimal number (range 0 to 23);
single digits are preceded by a blank. (See also %H.)
l The hour (12-hour clock) as a decimal number (range 1 to 12);
single digits are preceded by a blank. (See also %I.)
m The month as a decimal number (range 01 to 12).
M The minute as a decimal number (range 00 to 59).
n A newline character.
O Modifier to select locale-specific output. Not implemented.
p Either `AM' or `PM' according to the given time value, or the
corresponding strings for the current locale. Noon is treated
as `pm' and midnight as `am'.
P Like %p but in lowercase: `am' or `pm' or a corresponding
string for the current locale.
r The time in a.m. or p.m. notation. In the POSIX locale this
is equivalent to `%I:%M:%S %p'.
R The time in 24-hour notation (%H:%M). For a version including
the seconds, see %T below.
s The number of seconds since the Epoch, i.e., since 1970-01-01
00:00:00 UTC.
S The second as a decimal number (range 00 to 60). (The range
is up to 60 to allow for occasional leap seconds.)
t A tab character.
T The time in 24-hour notation (%H:%M:%S).
u The day of the week as a decimal, range 1 to 7, Monday being
1. See also %w.
U The week number of the current year as a decimal number, range
00 to 53, starting with the first Sunday as the first day of
week 01. See also %V and %W.
w The day of the week as a decimal, range 0 to 6, Sunday being
0. See also %u.
W The week number of the current year as a decimal number, range
00 to 53, starting with the first Monday as the first day of
week 01.
x The preferred date representation for the current locale
without the time.
X The preferred time representation for the current locale
without the date.
y The year as a decimal number without a century (range 00 to
99).
Y The year as a decimal number including the century.
z The timezone as hour offset from GMT using the format
HHmm. Required to emit RFC822-conforming dates (using
'%a, %d %b %Y %T %z'). Our implementation supports %:z, which
modifies the output to HH:mm as required by XML-Schema. Note
that both notations are valid in ISO 8601. The sequence %:z
is compatible to the GNU date(1) command.
Z The timezone or name or abbreviation.
+ The date and time in date(1) format.
% A literal `%' character.
The table below gives some format strings for popular time
representations. RFC1123 is used by HTTP. The full implementation
of http_timestamp/2 as available from http/http_header is here.
____________________________________________________________________| |
| http_timestamp(Time, Atom) :- |
| stamp_date_time(Time, Date, 'UTC'), |
| format_time(atom(Atom), |
| '%a, %d %b %Y %T GMT', |
||____________________Date,_posix)._________________________________ ||
__________________________________SSttaannddaarrddFFoorrmmaatt ssttrriinngg
____________________________________________________________________xxssdd'%FT%T%:z'
IISSOO88660011 '%FT%T%z'
RRFFCC882222 '%a, %d %b %Y %T %z'
_RRFFCC11112233___'%a,_%d_%b_%Y_%T_GMT'__
ffoorrmmaatt__ttiimmee((_+_O_u_t_, _+_F_o_r_m_a_t_, _+_S_t_a_m_p_O_r_D_a_t_e_T_i_m_e_, _+_L_o_c_a_l_e))
Format time given a specified _L_o_c_a_l_e. This predicate is a
work-around for lacking proper portable and thread-safe time
and locale handling in current C libraries. In its current
implementation the only value allowed for _L_o_c_a_l_e is posix, which
currently only modifies the behaviour of the a, A, b and B format
specifiers. The predicate is used to be able to emit POSIX locale
week and month names for emitting standardised time-stamps such as
RFC1123.
ppaarrssee__ttiimmee((_+_T_e_x_t_, _-_S_t_a_m_p))
Same as parse_time(_T_e_x_t_, ___F_o_r_m_a_t_, _S_t_a_m_p). See parse_time/3.
ppaarrssee__ttiimmee((_+_T_e_x_t_, _?_F_o_r_m_a_t_, _-_S_t_a_m_p))
Parse a textual time representation, producing a time-stamp.
Supported formats for _T_e_x_t are in the table below. If the
format is known, it may be given to reduce parse time and
avoid ambiguities. Otherwise, _F_o_r_m_a_t is unified with the format
encountered.
___________________________________________
|__NNaammee________||EExxaammppllee__________________________________________________||
|| rfc_1123F|ri, 08 Dec 2006 15:29:44 GMT |
|_________|Fri,_08_Dec_2006_15:29:44_+0000_|
| iso_86012|006-12-08T17:29:44+02:00 |
| |20061208T172944+0200 |
| |2006-12-08T15:29Z |
| |2006-12-08 |
| |20061208 |
| |2006-12 |
| |2006-W49-5 |
|_________|2006-342________________________|
ddaayy__ooff__tthhee__wweeeekk((_+_D_a_t_e_,_-_D_a_y_O_f_T_h_e_W_e_e_k))
Computes the day of the week for a given date.
_D_a_t_e = date(_Y_e_a_r,_M_o_n_t_h,_D_a_y). Days of the week are num-
bered from one to seven: Monday = 1, Tuesday = 2, ..., Sunday =
7.
44..3333..33 CCoonnttrroolllliinngg tthhee swipl-win.exe ccoonnssoollee wwiinnddooww
The Windows executable swipl-win.exe console has a number of predicates
to control the appearance of the console. Being totally non-portable,
we do not advise using it for your own application, but use XPCE or
another portable GUI platform instead. We give the predicates for
reference here.
wwiinnddooww__ttiittllee((_-_O_l_d_, _+_N_e_w))
Unify _O_l_d with the title displayed in the console and change the
title to _N_e_w.
wwiinn__wwiinnddooww__ppooss((_+_L_i_s_t_O_f_O_p_t_i_o_n_s))
Interface to the MS-Windows SetWindowPos() function, controlling
size, position and stacking order of the window. _L_i_s_t_O_f_O_p_t_i_o_n_s is
a list that may hold any number of the terms below:
ssiizzee((_W_, _H))
Change the size of the window. _W and _H are expressed in
character units.
ppoossiittiioonn((_X_, _Y))
Change the top-left corner of the window. The values are
expressed in pixel units.
zzoorrddeerr((_Z_O_r_d_e_r))
Change the location in the window stacking order. Values
are bottom, top, topmost and notopmost. _T_o_p_m_o_s_t windows are
displayed above all other windows.
sshhooww((_B_o_o_l))
If true, show the window, if false hide the window.
aaccttiivvaattee
If present, activate the window.
wwiinn__hhaass__mmeennuu
True if win_insert_menu/2 and win_insert_menu_item/4are present.
wwiinn__iinnsseerrtt__mmeennuu((_+_L_a_b_e_l_, _+_B_e_f_o_r_e))
Insert a new entry (pulldown) in the menu. If the menu already
contains this entry, nothing is done. The _L_a_b_e_l is the label
and, using the Windows convention, a letter prefixed with & is
underlined and defines the associated accelerator key. _B_e_f_o_r_e is
the label before which this one must be inserted. Using - adds the
new entry at the end (right). For example, the call below adds an
Application entry just before the Help menu.
____________________________________________________________________| |
||win_insert_menu('&Application',_'&Help')__________________________ ||
wwiinn__iinnsseerrtt__mmeennuu__iitteemm((_+_P_u_l_l_d_o_w_n_, _+_L_a_b_e_l_, _+_B_e_f_o_r_e_, _:_G_o_a_l))
Add an item to the named _P_u_l_l_d_o_w_n menu. _L_a_b_e_l and _B_e_f_o_r_e
are handled as in win_insert_menu/2, but the label - inserts a
_s_e_p_a_r_a_t_o_r. _G_o_a_l is called if the user selects the item.
44..3344 FFiillee SSyysstteemm IInntteerraaccttiioonn
aacccceessss__ffiillee((_+_F_i_l_e_, _+_M_o_d_e))
True if _F_i_l_e exists and can be accessed by this Prolog process
under mode _M_o_d_e. _M_o_d_e is one of the atoms read, write, append,
exist, none or execute. _F_i_l_e may also be the name of a directory.
Fails silently otherwise. access_file(File, none)simply succeeds
without testing anything.
If _M_o_d_e is write or append, this predicate also succeeds if the
file does not exist and the user has write access to the directory
of the specified location.
eexxiissttss__ffiillee((_+_F_i_l_e))
True if _F_i_l_e exists and is a regular file. This does not imply the
user has read and/or write permission for the file.
ffiillee__ddiirreeccttoorryy__nnaammee((_+_F_i_l_e_, _-_D_i_r_e_c_t_o_r_y))
Extracts the directory part of _F_i_l_e. The returned _D_i_r_e_c_t_o_r_y name
does not end in /. There are two special cases. The directory
name of / is / itself, and the directory name is . if _F_i_l_e does
not contain any / characters. If the _F_i_l_e argument ends with a /,
e.g., '/hello/', it is not a valid file name. In this case the
final / is removed from _F_i_l_e, e.g., '/hello'.
See also directory_file_path/3 from filesex. The system
ensures that for every valid _P_a_t_h using the Prolog (POSIX)
directory separators, following is true on systems with a sound
implementation of same_file/2. See also prolog_to_os_filename/2.
____________________________________________________________________| |
| ..., |
| file_directory_name(Path, Dir), |
| file_base_name(Path, File), |
| directory_file_path(Dir, File, Path2), |
||________same_file(Path,_Path2).___________________________________ ||
ffiillee__bbaassee__nnaammee((_+_F_i_l_e_, _-_B_a_s_e_N_a_m_e))
Extracts the filename part from a path specification. If _F_i_l_e does
not contain any directory separators, _F_i_l_e is returned in _B_a_s_e_N_a_m_e.
See also file_directory_name/2. If the _F_i_l_e arguments ends with a
/, e.g., '/hello/', _B_a_s_e_N_a_m_e is unified with the empty atom ('').
ssaammee__ffiillee((_+_F_i_l_e_1_, _+_F_i_l_e_2))
True if both filenames refer to the same physical file. That
is, if _F_i_l_e_1 and _F_i_l_e_2 are the same string or both names exist
and point to the same file (due to hard or symbolic links
and/or relative vs. absolute paths). On systems that provide
stat() with meaningful values for st_dev and st_inode, same_file/2
is implemented by comparing the device and inode identifiers.
On Windows, same_file/2 compares the strings returned by the
GetFullPathName() system call.
eexxiissttss__ddiirreeccttoorryy((_+_D_i_r_e_c_t_o_r_y))
True if _D_i_r_e_c_t_o_r_y exists and is a directory. This does not imply
the user has read, search or write permission for the directory.
ddeelleettee__ffiillee((_+_F_i_l_e))
Remove _F_i_l_e from the file system.
rreennaammee__ffiillee((_+_F_i_l_e_1_, _+_F_i_l_e_2))
Rename _F_i_l_e_1 as _F_i_l_e_2. The semantics is compatible to the POSIX
semantics of the rename() system call as far as the operating
system allows. Notably, if _F_i_l_e_2 exists, the operation succeeds
(except for possible permission errors) and is _a_t_o_m_i_c (meaning
there is no window where _F_i_l_e_2 does not exist).
ssiizzee__ffiillee((_+_F_i_l_e_, _-_S_i_z_e))
Unify _S_i_z_e with the size of _F_i_l_e in bytes.
ttiimmee__ffiillee((_+_F_i_l_e_, _-_T_i_m_e))
Unify the last modification time of _F_i_l_e with _T_i_m_e. _T_i_m_e is a
floating point number expressing the seconds elapsed since Jan 1,
1970. See also convert_time/[2,8] and get_time/1.
aabbssoolluuttee__ffiillee__nnaammee((_+_F_i_l_e_, _-_A_b_s_o_l_u_t_e))
Expand a local filename into an absolute path. The absolute
path is canonicalised: references to . and .. are deleted.
This predicate ensures that expanding a filename returns the same
absolute path regardless of how the file is addressed. SWI-Prolog
uses absolute filenames to register source files independent of the
current working directory. See also absolute_file_name/3. See
also absolute_file_name/3 and expand_file_name/2.
aabbssoolluuttee__ffiillee__nnaammee((_+_S_p_e_c_, _-_A_b_s_o_l_u_t_e_, _+_O_p_t_i_o_n_s))
Convert the given file specification into an absolute path. _S_p_e_c
is a term Alias(Relative) (e.g., (library(lists)), a relative
filename or an absolute filename. The primary intention of this
predicate is to resolve files specified as Alias(Relative). _O_p_t_i_o_n
is a list of options to guide the conversion:
eexxtteennssiioonnss((_L_i_s_t_O_f_E_x_t_e_n_s_i_o_n_s))
List of file extensions to try. Default is ''. For each
extension, absolute_file_name/3 will first add the extension
and then verify the conditions imposed by the other options.
If the condition fails, the next extension on the list is
tried. Extensions may be specified both as .ext or plain ext.
rreellaattiivvee__ttoo((_+_F_i_l_e_O_r_D_i_r))
Resolve the path relative to the given directory or the
directory holding the given file. Without this option,
paths are resolved relative to the working directory
(see working_directory/2) or, if _S_p_e_c is atomic and
absolute_file_name/[2,3] is executed in a directive, it uses
the current source file as reference.
aacccceessss((_M_o_d_e))
Imposes the condition access_file(_F_i_l_e, _M_o_d_e). _M_o_d_e is one
of read, write, append, execute, exist or none. See also
access_file/2.
ffiillee__ttyyppee((_T_y_p_e))
Defines extensions. Current mapping: txt implies [''],
prolog implies ['.pl', ''], executable implies ['.so', ''],
qlf implies ['.qlf', ''] and directory implies ['']. The
file type source is an alias for prolog for compatibility
with SICStus Prolog. See also prolog_file_type/2. This
predicate only returns non-directories, unless the option
file_type(_d_i_r_e_c_t_o_r_y) is specified.
ffiillee__eerrrroorrss((_f_a_i_l_/_e_r_r_o_r))
If error (default), throw an existence_error exception if the
file cannot be found. If fail, stay silent.
ssoolluuttiioonnss((_f_i_r_s_t_/_a_l_l))
If first (default), the predicate leaves no choice point.
Otherwise a choice point will be left and backtracking may
yield more solutions.
eexxppaanndd((_t_r_u_e_/_f_a_l_s_e))
If true (default is false) and _S_p_e_c is atomic, call
expand_file_name/2 followed by member/2 on _S_p_e_c before
proceeding. This is a SWI-Prolog extension.
The Prolog flag verbose_file_search can be set to true to help
debugging Prolog's search for files.
This predicate is derived from Quintus Prolog. In Quintus Prolog,
the argument order was absolute_file_name(_+_S_p_e_c_, _+_O_p_t_i_o_n_s_, _-_P_a_t_h).
The argument order has been changed for compatibility with ISO and
SICStus. The Quintus argument order is still accepted.
iiss__aabbssoolluuttee__ffiillee__nnaammee((_+_F_i_l_e))
True if _F_i_l_e specifies an absolute path name. On Unix systems,
this implies the path starts with a `/'. For Microsoft-based sys-
tems this implies the path starts with <_l_e_t_t_e_r>:. This predicate
is intended to provide platform-independent checking for absolute
paths. See also absolute_file_name/2 and prolog_to_os_filename/2.
ffiillee__nnaammee__eexxtteennssiioonn((_?_B_a_s_e_, _?_E_x_t_e_n_s_i_o_n_, _?_N_a_m_e))
This predicate is used to add, remove or test filename extensions.
The main reason for its introduction is to deal with different
filename properties in a portable manner. If the file system
is case-insensitive, testing for an extension will also be done
case-insensitive. _E_x_t_e_n_s_i_o_n may be specified with or without a
leading dot (.). If an _E_x_t_e_n_s_i_o_n is generated, it will not have a
leading dot.
ddiirreeccttoorryy__ffiilleess((_+_D_i_r_e_c_t_o_r_y_, _-_E_n_t_r_i_e_s))
Unify _E_n_t_r_i_e_s with a list of entries in _D_i_r_e_c_t_o_r_y. Each member
of _E_n_t_r_i_e_s is an atom denoting an entry relative to _D_i_r_e_c_t_o_r_y.
_E_n_t_r_i_e_s contains all entries, including hidden files and, if
supplied by the OS, the special entries . and ... See also
expand_file_name/2.
eexxppaanndd__ffiillee__nnaammee((_+_W_i_l_d_C_a_r_d_, _-_L_i_s_t))
Unify _L_i_s_t with a sorted list of files or directories matching
_W_i_l_d_C_a_r_d. The normal Unix wildcard constructs `?', `*', `[...]'
and `{...}' are recognised. The interpretation of `{...}' is
slightly different from the C shell (csh(1)). The comma-separated
argument can be arbitrary patterns, including `{...}' patterns.
The empty pattern is legal as well: `\{.pl,\}' matches either
`.pl' or the empty string.
If the pattern contains wildcard characters, only existing files
and directories are returned. Expanding a `pattern' without
wildcard characters returns the argument, regardless of whether or
not it exists.
Before expanding wildcards, the construct $_v_a_r is expanded to the
value of the environment variable _v_a_r, and a possible leading ~
character is expanded to the user's home directory.
pprroolloogg__ttoo__ooss__ffiilleennaammee((_?_P_r_o_l_o_g_P_a_t_h_, _?_O_s_P_a_t_h))
Convert between the internal Prolog path name conventions and the
operating system path name conventions. The internal conventions
follow the POSIX standard, which implies that this predicate is
equivalent to =/2 (unify) on POSIX (e.g., Unix) systems. On
Windows systems it changes the directory separator from \ into /.
rreeaadd__lliinnkk((_+_F_i_l_e_, _-_L_i_n_k_, _-_T_a_r_g_e_t))
If _F_i_l_e points to a symbolic link, unify _L_i_n_k with the value of the
link and _T_a_r_g_e_t to the file the link is pointing to. _T_a_r_g_e_t points
to a file, directory or non-existing entry in the file system, but
never to a link. Fails if _F_i_l_e is not a link. Fails always on
systems that do not support symbolic links.
ttmmpp__ffiillee((_+_B_a_s_e_, _-_T_m_p_N_a_m_e)) _[_d_e_p_r_e_c_a_t_e_d_]
Create a name for a temporary file. _B_a_s_e is an identifier for the
category of file. The _T_m_p_N_a_m_e is guaranteed to be unique. If the
system halts, it will automatically remove all created temporary
files. _B_a_s_e is used as part of the final filename. Portable
applications should limit themselves to alphanumeric characters.
Because it is possible to guess the generated filename, attackers
may create the filesystem entry as a link and possibly create a
security issue. New code should use tmp_file_stream/3.
ttmmpp__ffiillee__ssttrreeaamm((_+_E_n_c_o_d_i_n_g_, _-_F_i_l_e_N_a_m_e_, _-_S_t_r_e_a_m))
Create a temporary filename _F_i_l_e_N_a_m_e and open it for writing
in the given _E_n_c_o_d_i_n_g. _E_n_c_o_d_i_n_g is a text-encoding name or
binary. _S_t_r_e_a_m is the output stream. If the OS supports it,
the created file is only accessible to the current user. If the
OS supports it, the file is created using the open()-flag O_EXCL,
which guarantees that the file did not exist before this call.
This predicate is a safe replacement of tmp_file/2. Note that in
those cases where the temporary file is needed to store output from
an external command, the file must be closed first. E.g., the
following downloads a file from a URL to a temporary file and opens
the file for reading (on Unix systems you can delete the file for
cleanup after opening it for reading):
____________________________________________________________________| |
| open_url(URL, In) :- |
| tmp_file_stream(text, File, Stream), |
| close(Stream), |
| process_create(curl, ['-o', File, URL], []), |
| open(File, read, In), |
||________delete_file(File).______________%_Unix-only_______________ ||
Temporary files created using this call are removed if the
Prolog process terminates _g_r_a_c_e_f_u_l_l_y. Calling delete_file/1
using _F_i_l_e_N_a_m_e removes the file and removes the entry from the
administration of files-to-be-deleted.
mmaakkee__ddiirreeccttoorryy((_+_D_i_r_e_c_t_o_r_y))
Create a new directory (folder) on the filesystem. Raises an
exception on failure. On Unix systems, the directory is created
with default permissions (defined by the process _u_m_a_s_k setting).
ddeelleettee__ddiirreeccttoorryy((_+_D_i_r_e_c_t_o_r_y))
Delete directory (folder) from the filesystem. Raises an exception
on failure. Please note that in general it will not be possible to
delete a non-empty directory.
wwoorrkkiinngg__ddiirreeccttoorryy((_-_O_l_d_, _+_N_e_w))
Unify _O_l_d with an absolute path to the current working directory
and change working directory to _N_e_w. Use the pattern
working_directory(_C_W_D_, _C_W_D) to get the current directory. See also
absolute_file_name/2 and chdir/1. Note that the working directory
is shared between all threads.
cchhddiirr((_+_P_a_t_h))
Compatibility predicate. New code should use working_directory/2.
44..3355 UUsseerr TToopp--lleevveell MMaanniippuullaattiioonn
bbrreeaakk
Recursively start a new Prolog top level. This Prolog top level
has its own stacks, but shares the heap with all break environments
and the top level. Debugging is switched off on entering a break
and restored on leaving one. The break environment is terminated
by typing the system's end-of-file character (control-D). If the
-t toplevel command line option is given, this goal is started
instead of entering the default interactive top level (prolog/0).
aabboorrtt
Abort the Prolog execution and restart the top level. If the
-t toplevel command line option is given, this goal is started
instead of entering the default interactive top level.
Aborting is implemented by throwing the reserved exception
'$aborted'. This exception can be caught using catch/3, but the
recovery goal is wrapped with a predicate that prunes the choice
points of the recovery goal (i.e., as once/1) and re-throws the
exception. This is illustrated in the example below, where we
press control-C and `a'.
____________________________________________________________________| |
| ?- catch((repeat,fail), E, true). |
| ^CAction (h for help) ? abort |
||%_Execution_Aborted_______________________________________________ ||
hhaalltt _[_I_S_O_]
Terminate Prolog execution. This is the same as halt(_0). See
halt/1 for details.
hhaalltt((_+_S_t_a_t_u_s)) _[_I_S_O_]
Terminate Prolog execution with _S_t_a_t_u_s. This predicate calls
PL_halt() which preforms the following steps:
1. Set the Prolog flag exit_status to _S_t_a_t_u_s.
2. Call all hooks registered using at_halt/1. If _S_t_a_t_u_s equals 0
(zero), any of these hooks calls cancel_halt/1, termination is
cancelled.
3. Call all hooks registered using PL_at_halt(). In the future,
if any of these hooks returns non-zero, termination will be
cancelled. Currently, this only prints a warning.
4. Perform the following system cleanup actions:
o Cancel all threads, calling thread_at_exit/1 registered
termination hooks. Threads not responding within 1 second
are cancelled forcefully.
o Flush I/O and close all streams except for standard I/O.
o Reset the terminal if its properties were changed.
o Remove temporary files and incomplete compilation output.
o Reclaim memory.
5. Call exit(Status) to terminate the process
pprroolloogg
This goal starts the default interactive top level. Queries are
read from the stream user_input. See also the Prolog flag history.
The prolog/0 predicate is terminated (succeeds) by typing the
end-of-file character (typically control-D).
The following two hooks allow for expanding queries and handling the
result of a query. These hooks are used by the top level variable
expansion mechanism described in section 2.8.
eexxppaanndd__qquueerryy((_+_Q_u_e_r_y_, _-_E_x_p_a_n_d_e_d_, _+_B_i_n_d_i_n_g_s_, _-_E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s))
Hook in module user, normally not defined. _Q_u_e_r_y and _B_i_n_d_i_n_g_s
represents the query read from the user and the names of the
free variables as obtained using read_term/3. If this predicate
succeeds, it should bind _E_x_p_a_n_d_e_d and _E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s to the query
and bindings to be executed by the top level. This predicate is
used by the top level (prolog/0). See also expand_answer/2 and
term_expansion/2.
eexxppaanndd__aannsswweerr((_+_B_i_n_d_i_n_g_s_, _-_E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s))
Hook in module user, normally not defined. Expand the result of
a successfully executed top-level query. _B_i_n_d_i_n_g_s is the query
< Name >=<_V_a_l_u_e> binding list from the query. _E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s
must be unified with the bindings the top level should print.
44..3366 CCrreeaattiinngg aa PPrroottooccooll ooff tthhee UUsseerr IInntteerraaccttiioonn
SWI-Prolog offers the possibility to log the interaction with the user
on a file. All Prolog interaction, including warnings and tracer
output, are written to the protocol file.
pprroottooccooll((_+_F_i_l_e))
Start protocolling on file _F_i_l_e. If there is already a protocol
file open, then close it first. If _F_i_l_e exists it is truncated.
pprroottooccoollaa((_+_F_i_l_e))
Equivalent to protocol/1, but does not truncate the _F_i_l_e if it
exists.
nnoopprroottooccooll
Stop making a protocol of the user interaction. Pending output is
flushed on the file.
pprroottooccoolllliinngg((_-_F_i_l_e))
True if a protocol was started with protocol/1 or protocola/1 and
unifies _F_i_l_e with the current protocol output file.
44..3377 DDeebbuuggggiinngg aanndd TTrraacciinngg PPrrooggrraammss
This section is a reference to the debugger interaction predicates. A
more use-oriented overview of the debugger is in section 2.9.
If you have installed XPCE, you can use the graphical front-end of the
tracer. This front-end is installed using the predicate guitracer/0.
ttrraaccee
Start the tracer. trace/0 itself cannot be seen in the tracer.
Note that the Prolog top level treats trace/0 special; it means
`trace the next goal'.
ttrraacciinngg
True if the tracer is currently switched on. tracing/0 itself
cannot be seen in the tracer.
nnoottrraaccee
Stop the tracer. notrace/0 itself cannot be seen in the tracer.
gguuiittrraacceerr
Installs hooks (see prolog_trace_interception/4) into the system
that redirect tracing information to a GUI front-end providing
structured access to variable bindings, graphical overview of the
stack and highlighting of relevant source code.
nnoogguuiittrraacceerr
Revert back to the textual tracer.
ttrraaccee((_+_P_r_e_d))
Equivalent to trace(_P_r_e_d, +all).
ttrraaccee((_+_P_r_e_d_, _+_P_o_r_t_s))
Put a trace point on all predicates satisfying the predicate
specification _P_r_e_d. _P_o_r_t_s is a list of port names (call, redo,
exit, fail). The atom all refers to all ports. If the port is
preceded by a - sign, the trace point is cleared for the port. If
it is preceded by a +, the trace point is set.
The predicate trace/2 activates debug mode (see debug/0). Each
time a port (of the 4-port model) is passed that has a trace point
set, the goal is printed as with trace/0. Unlike trace/0, however,
the execution is continued without asking for further information.
Examples:
?- trace(hello). Trace all ports of hello with any
arity in any module.
?- trace(foo/2, +fail). Trace failures of foo/2 in any
module.
?- trace(bar/1, -all). Stop tracing bar/1.
The predicate debugging/0 shows all currently defined trace points.
nnoottrraaccee((_:_G_o_a_l))
Call _G_o_a_l, but suspend the debugger while _G_o_a_l is executing.
The current implementation cuts the choice points of _G_o_a_l after
successful completion. See once/1. Later implementations may have
the same semantics as call/1.
ddeebbuugg
Start debugger. In debug mode, Prolog stops at spy and trace
points, disables last-call optimisation and aggressive destruction
of choice points to make debugging information accessible.
Implemented by the Prolog flag debug.
Note that the min_free parameter of all stacks is enlarged to 8 K
cells if debugging is switched off in order to avoid excessive GC.
GC complicates tracing because it renames the __G_<_N_N_N_> variables and
replaces unreachable variables with the atom <garbage_collected>.
Calling nodebug/0 does _n_o_t reset the initial free-margin because
several parts of the top level and debugger disable debugging of
system code regions. See also set_prolog_stack/2.
nnooddeebbuugg
Stop debugger. Implemented by the Prolog flag debug. See also
debug/0.
ddeebbuuggggiinngg
Print debug status and spy points on current output stream. See
also the Prolog flag debug.
ssppyy((_+_P_r_e_d))
Put a spy point on all predicates meeting the predicate specifica-
tion _P_r_e_d. See section 4.5.
nnoossppyy((_+_P_r_e_d))
Remove spy point from all predicates meeting the predicate
specification _P_r_e_d.
nnoossppyyaallll
Remove all spy points from the entire program.
lleeaasshh((_?_P_o_r_t_s))
Set/query leashing (ports which allow for user interaction). _P_o_r_t_s
is one of _+_N_a_m_e, _-_N_a_m_e, _?_N_a_m_e or a list of these. _+_N_a_m_e enables
leashing on that port, _-_N_a_m_e disables it and _?_N_a_m_e succeeds or
fails according to the current setting. Recognised ports are call,
redo, exit, fail and unify. The special shorthand all refers to
all ports, full refers to all ports except for the unify port
(default). half refers to the call, redo and fail port.
vviissiibbllee((_+_P_o_r_t_s))
Set the ports shown by the debugger. See leash/1 for a description
of the _P_o_r_t_s specification. Default is full.
uunnkknnoowwnn((_-_O_l_d_, _+_N_e_w))
Edinburgh-Prolog compatibility predicate, interfacing to the ISO
Prolog flag unknown. Values are trace (meaning error) and fail.
If the unknown flag is set to warning, unknown/2 reports the value
as trace.
ssttyyllee__cchheecckk((_+_S_p_e_c))
Modify/query style checking options. _S_p_e_c is one of the terms
below or a list of these.
o +_S_t_y_l_e enables a style check
o -_S_t_y_l_e disables a style check
o ?(_S_t_y_l_e) queries a style check (note the brackets). If _S_t_y_l_e
is unbound, all active style check options are returned on
backtracking.
Loading a file using load_files/2 or one of its derived predicates
reset the style checking options to their value before loading the
file, scoping the option to the remainder of the file and all files
loaded _a_f_t_e_r changing the style checking.
ssiinngglleettoonn((_t_r_u_e))
The predicate read_clause/3 (used by the compiler to read
source code) warns on variables appearing only once in a term
(clause) which have a name not starting with an underscore.
See section 2.15.2.5 for details on variable handling and
warnings.
nnoo__eeffffeecctt((_t_r_u_e))
This warning is generated by the compiler for BIPs (built-in
predicates) that are inlined by the compiler and for which
the compiler can prove that they are meaningless. An
example is using ==/2 against a not-yet-initialised variable
as illustrated in the example below. This comparison is
always false.
_______________________________________________________________| |
|always_false(X) :- |
| X == Y, |
||_______write(Y)._____________________________________________ ||
vvaarr__bbrraanncchheess((_f_a_l_s_e))
Verifies that if a variable is introduced in a branch and used
_a_f_t_e_r the branch, it is introduced in all branches. This code
aims at bugs following the skeleton below, where p(_N_e_x_t) may
be called with _N_e_x_t unbound.
_______________________________________________________________| |
|p(Arg) :- |
| ( Cond |
| -> Next = value1 |
| ; true |
| ), |
||_______p(Next).______________________________________________ ||
If a variable _V is intended to be left unbound, one can use
V=_. This construct is removed by the compiler and thus has no
implications for the performance of your program.
This check was suggested together with _s_e_m_a_n_t_i_c singleton
checking. The SWI-Prolog libraries contain about a hundred
clauses that are triggered by this style check. Unlike
semantic singleton analysis, only a tiny fraction of these
clauses proofed faulty. In most cases, the branches failing
to bind the variable fail or raise an exception or the caller
handles the case where the variable is unbound. The status
of this style check is unclear. It might be removed in the
future or it might be enhanced with a deeper analysis to be
more precise.
aattoomm((_t_r_u_e))
The predicate read/1 and derived predicates produce an error
message on quoted atoms or strings with more than 6 _u_n_e_s_c_a_p_e_d
newlines. Newlines may be escaped with \ or \c. This
flag also enables warnings on \<_n_e_w_l_i_n_e> followed by blank
space in native mode. See section 2.15.2.1. Note that the
ISO standard does not allow for unescaped newlines in quoted
atoms.
ddiissccoonnttiigguuoouuss((_t_r_u_e))
Warn if the clauses for a predicate are not together in the
same source file. It is advised to disable the warning for
discontiguous predicates using the discontiguous/1 directive.
cchhaarrsseett((_f_a_l_s_e))
Warn on atoms and variable names holding non-ASCII characters
that are not quoted. See also section 2.15.1.1.
44..3388 OObbttaaiinniinngg RRuunnttiimmee SSttaattiissttiiccss
ssttaattiissttiiccss((_+_K_e_y_, _-_V_a_l_u_e))
Unify system statistics determined by _K_e_y with _V_a_l_u_e. The
possible keys are given in the table 4.3. This predicate
supports additional keys for compatibility reasons. These keys are
described in table 4.4.
___________________________________________________________________________
|_________________Native_keys_(times_as_float_in_seconds)__________________|
| agc |Number of atom garbage collections performed |
| agc_gained N|umber of atoms removed |
| agc_time T|ime spent in atom garbage collections |
| epoch |Time stamp when thread was started |
| process_epoch T|ime stamp when Prolog was started |
| cputime |(User) cpu time since thread was started in seconds |
| process_cputime(|User) cpu time since Prolog was started in seconds |
| inferences |Total number of passes via the call and redo ports|
| |since Prolog was started |
| heapused |Bytes of heap in use by Prolog (0 if not maintained) |
| heap_gc N|umber of heap garbage collections performed. Only|
| p|rovided if SWI-Prolog is configured with Boehm-GC. See|
| a|lso garbage_collect_heap/0. |
| c_stack S|ystem (C-) stack limit. 0 if not known. |
| stack |Total memory in use for stacks in all threads |
| local |Allocated size of the local stack in bytes |
| localused |Number of bytes in use on the local stack |
| locallimit |Size to which the local stack is allowed to grow |
| local_shifts N|umber of local stack expansions |
| global |Allocated size of the global stack in bytes |
| globalused |Number of bytes in use on the global stack |
| globallimit |Size to which the global stack is allowed to grow |
| global_shifts N|umber of global stack expansions |
| trail |Allocated size of the trail stack in bytes |
| trailused |Number of bytes in use on the trail stack |
| traillimit |Size to which the trail stack is allowed to grow |
| trail_shifts N|umber of trail stack expansions |
| shift_time T|ime spent in stack-shifts |
| atoms |Total number of defined atoms |
| functors |Total number of defined name/arity pairs |
| clauses |Total number of clauses in the program |
| modules |Total number of defined modules |
| codes |Total size of (virtual) executable code in words |
| threads |MT-version: number of active threads |
| threads_createdM|T-version: number of created threads |
| thread_cputime M|T-version: seconds CPU time used by finished threads.|
| S|upported on Windows-NT and later, Linux and possibly|
| a| few more. Verify it gives plausible results before |
|________________u|sing.__________________________________________________|_
Table 4.3: Keys for statistics/2. Space is expressed in bytes. Time
is expressed in seconds, represented as a floating point number.
__________________________________________________________________________________
|____________________Compatibility_keys_(times_in_milliseconds)___________________|
| runtime |[ CPU time, CPU time since last ] (milliseconds,|
| |excluding time spent in garbage collection) |
| system_time [| System CPU time, System CPU time since last ] |
| (|milliseconds) |
| real_time [|Wall time, Wall time since last ] (integer seconds. |
| S|ee get_time/1) |
| walltime |[ Wall time since start, Wall time since last]|
| |(milliseconds, SICStus compatibility) |
| memory |[ Total unshared data, free memory ] (Uses getrusage()|
| |if available, otherwise incomplete own statistics.) |
| stacks |[ global use, local use ] |
| program |[ heap, 0 ] |
| global_stack [|global use, global free ] |
| local_stack [|local use, local free ] |
| trail |[ trail use, trail free ] |
| garbage_collection [|number of GC, bytes gained, time spent, bytes left ] |
| T|he last column is a SWI-Prolog extension. It contains|
| t|he sum of the memory left after each collection,|
| w|hich can be divided by the count to find the average|
| w|orking set size after GC. Use [Count, Gained, Time|_]|
| f|or compatiblity. |
| stack_shifts [|global shifts, local shifts, time spent ] |
| atoms |[ number, memory use, 0 ] |
| atom_garbage_collection[|number of AGC, bytes gained, time spent ] |
|_core___________________|Same_as_memory_________________________________________|_
Table 4.4: Compatibility keys for statistics/2. Time is expressed in
milliseconds.
ssttaattiissttiiccss
Display a table of system statistics on the stream user_error.
ttiimmee((_:_G_o_a_l))
Execute _G_o_a_l just like call/1 and print time used, number of
logical inferences and the average number of _l_i_p_s (logical
inferences per second). Note that SWI-Prolog counts the actual
executed number of inferences rather than the number of passes
through the call and redo ports of the theoretical 4-port model.
If _G_o_a_l is non-deterministic, print statistics for each solution,
where the reported values are relative to the previous answer.
44..3399 EExxeeccuuttiioonn pprrooffiilliinngg
This section describes the hierarchical execution profiler. This pro-
filer is based on ideas from gprof described in [Graham _e_t _a_l_., 1982].
The profiler consists of two parts: the information-gathering
component built into the kernel, and a presentation component which is
defined in the statistics library. The latter can be hooked, which
is used by the XPCE module swi/pce_profile to provide an interactive
graphical frontend for the results.
44..3399..11 PPrrooffiilliinngg pprreeddiiccaatteess
The following predicates are defined to interact with the profiler.
pprrooffiillee((_:_G_o_a_l))
Execute _G_o_a_l just like once/1, collecting profiling statistics, and
call show_profile(_[_]). With XPCE installed this opens a graphical
interface to examine the collected profiling data.
pprrooffiillee((_:_G_o_a_l_, _+_O_p_t_i_o_n_s))
Execute _G_o_a_l just like once/1. Collect profiling statistics
according to _O_p_t_i_o_n_s and call show_profile/1 with _O_p_t_i_o_n_s. The
default collects CPU profiling and opens a graphical interface when
provided, printing the `plain' time usage of the top 25 predicates
as a ballback. Options are described below. Remaining options are
passed to show_profile/1.
ttiimmee((_+_W_h_i_c_h))
If _W_h_i_c_h is cpu (default), collect CPU timing statistics. If
wall, collect wall time statistics based on a 5 millisecond
sampling rate. Wall time statistics can be useful if _G_o_a_l
calls blocking system calls.
sshhooww__pprrooffiillee((_+_O_p_t_i_o_n_s))
This predicate first calls prolog:show_profile_hook/1. If XPCE is
loaded, this hook is used to activate a GUI interface to visualise
the profile results. If not, a report is printed to the terminal
according to _O_p_t_i_o_n_s:
ttoopp((_+_N))
Show the only top _N predicates. Default is 25.
ccuummmmuullaattiivvee((_+_B_o_o_l))
If true (default false), include the time spent in children in
the time reported for a predicate.
pprrooffiilleerr((_-_O_l_d_, _+_N_e_w))
Query or change the status of the profiler. The status is one of
ffaallssee
The profiler is not activated.
ccppuuttiimmee
The profiler collects CPU statistics.
wwaallllttiimmee
The profiler collects wall time statistics.
The value true is accepted as a synonym for cputime for
compatibility reasons.
rreesseett__pprrooffiilleerr
Switches the profiler to false and clears all collected statistics.
nnoopprrooffiillee((_+_N_a_m_e_/_+_A_r_i_t_y_, _._._.))
Declares the predicate _N_a_m_e/_A_r_i_t_y to be invisible to the profiler.
The time spent in the named predicate is added to the caller,
and the callees are linked directly to the caller. This is
particularly useful for simple meta-predicates such as call/1,
ignore/1, catch/3, etc.
44..3399..22 VViissuuaalliizziinngg pprrooffiilliinngg ddaattaa
Browsing the annotated call-tree as described in section 4.39.3
itself is not very attractive. Therefore, the results are combined
per predicate, collecting all _c_a_l_l_e_r_s and _c_a_l_l_e_e_s as well as the
propagation of time and activations in both directions. Figure ????
illustrates this. The central yellowish line is the `current'
predicate with counts for time spent in the predicate (`Self'), time
spent in its children (`Siblings'), activations through the call and
redo ports. Above that are the _c_a_l_l_e_r_s. Here, the two time fields
indicate how much time is spent serving each of the callers. The
columns sum to the time in the yellowish line. The caller <_r_e_c_u_r_s_i_v_e>
is the number of recursive calls. Below the yellowish lines are the
callees, with the time spent in the callee itself for serving the
current predicate and the time spent in the callees of the callee
('Siblings'), so the whole time-block adds up to the `Siblings' field
of the current predicate. The `Access' fields show how many times the
current predicate accesses each of the callees.
The predicates have a menu that allows changing the view of the detail
window to the given caller or callee, showing the documentation (if it
is a built-in) and/or jumping to the source.
The statistics shown in the report field of figure ???? show the
following information:
o _s_a_m_p_l_e_s
Number of times the call-tree was sampled for collecting time
statistics. On most hardware, the resolution of SIGPROF is 1/100
second. This number must be sufficiently large to get reliable
timing figures. The Time menu allows viewing time as samples,
relative time or absolute time.
o _s_e_c
Total user CPU time with the profiler active.
o _p_r_e_d_i_c_a_t_e_s
Total count of predicates that have been called at least one time
during the profile.
o _n_o_d_e_s
Number of nodes in the call-tree.
o _d_i_s_t_o_r_t_i_o_n
How much of the time is spent building the call-tree as a
percentage of the total execution time. Timing samples while the
profiler is building the call-tree are not added to the call-tree.
44..3399..33 IInnffoorrmmaattiioonn ggaatthheerriinngg
While the program executes under the profiler, the system builds a
_d_y_n_a_m_i_c call-tree. It does this using three hooks from the kernel:
one that starts a new goal (_p_r_o_f_C_a_l_l), one that tells the system
which goal is resumed after an _e_x_i_t (_p_r_o_f_E_x_i_t) and one that tells the
system which goal is resumed after a _f_a_i_l (i.e., which goal is used
to _r_e_t_r_y (_p_r_o_f_R_e_d_o)). The profCall() function finds or creates the
subnode for the argument predicate below the current node, increments
the call-count of this link and returns the sub-node which is recorded
in the Prolog stack-frame. Choice-points are marked with the current
profiling node. profExit() and profRedo() pass the profiling node
where execution resumes.
Just using the above algorithm would create a much too big tree due to
recursion. For this reason the system performs detection of recursion.
In the simplest case, recursive procedures increment the `recursive'
count on the current node. Mutual recursion, however, is not easily
detected. For example, call/1 can call a predicate that uses call/1
itself. This can be viewed as a recursive invocation, but this is
generally not desirable. Recursion is currently assumed if the same
predicate _w_i_t_h _t_h_e _s_a_m_e _p_a_r_e_n_t appears higher in the call-graph. Early
experience with some non-trivial programs are promising.
The last part of the profiler collects statistics on the CPU time
used in each node. On systems providing setitimer() with SIGPROF, it
`ticks' the current node of the call-tree each time the timer fires.
On Windows, a MM-timer in a separate thread checks 100 times per second
how much time is spent in the profiled thread and adds this to the
current node. See section 4.39.3.1 for details.
44..3399..33..11 PPrrooffiilliinngg iinn tthhee WWiinnddoowwss IImmpplleemmeennttaattiioonn
Profiling in the Windows version is similar, but as profiling is a
statistical process it is good to be aware of the implementation for
proper interpretation of the results.
Windows does not provide timers that fire asynchronously, frequent and
proportional to the CPU time used by the process. Windows does provide
multi-media timers that can run at high frequency. Such timers,
however, run in a separate thread of execution and they are fired on
the wall clock rather than the amount of CPU time used. The profiler
installs such a timer running, for saving CPU time, rather inaccurately
at about 100 Hz. Each time it is fired, it determines the CPU time in
milliseconds used by Prolog since the last time it was fired. If this
value is non-zero, active predicates are incremented with this value.
44..4400 MMeemmoorryy MMaannaaggeemmeenntt
ggaarrbbaaggee__ccoolllleecctt
Invoke the global and trail stack garbage collector. Normally
the garbage collector is invoked automatically if necessary.
Explicit invocation might be useful to reduce the need for
garbage collections in time-critical segments of the code. After
the garbage collection trim_stacks/0 is invoked to release the
collected memory resources.
ggaarrbbaaggee__ccoolllleecctt__aattoommss
Reclaim unused atoms. Normally invoked after agc_margin (a Prolog
flag) atoms have been created. On multithreaded versions the
actual collection is delayed until there are no threads performing
normal garbage collection. In this case garbage_collect_atoms/0
returns immediately. Note that there is no guarantee it will
_e_v_e_r happen, as there may always be threads performing garbage
collection.
ttrriimm__ssttaacckkss
Release stack memory resources that are not in use at this moment,
returning them to the operating system. It can be used to release
memory resources in a backtracking loop, where the iterations
require typically seconds of execution time and very different,
potentially large, amounts of stack space. Such a loop can be
written as follows:
____________________________________________________________________| |
| loop :- |
| generator, |
| trim_stacks, |
| potentially_expensive_operation, |
||________stop_condition,_!.________________________________________ ||
The Prolog top-level loop is written this way, reclaiming memory
resources after every user query.
sseett__pprroolloogg__ssttaacckk((_+_S_t_a_c_k_, _+_K_e_y_V_a_l_u_e))
Set a parameter for one of the Prolog runtime stacks. _S_t_a_c_k is one
of local, global, trail or argument. The table below describes the
_K_e_y(_V_a_l_u_e) pairs. _V_a_l_u_e can be an arithmetic integer expression.
For example, to specify a 2 GB limit for the global stack, one can
use:
____________________________________________________________________| |
||?-_set_prolog_stack(global,_limit(2*10**9)).______________________ ||
Current settings can be retrieved with prolog_stack_property/2.
lliimmiitt((_+_B_y_t_e_s))
Set the limit to which the stack is allowed to grow. If
the specified value is lower than the current usage a
permission_error is raised. If the limit is larger than
supported, the system silently reduces the requested limit to
the system limit.
mmiinn__ffrreeee((_+_C_e_l_l_s))
Minimum amount of free space after trimming or shifting the
stack. Setting this value higher can reduce the number of
garbage collections and stack-shifts at the cost of higher
memory usage. The spare stack amount is reported and
specified in `cells'. A cell is 4 bytes in the 32-bit version
and 8 bytes on the 64-bit version. See address_bits. See also
trim_stacks/0 and debug/0.
ssppaarree((_+_C_e_l_l_s))
All stacks trigger overflow before actually reaching the
limit, so the resulting error can be handled gracefully.
The spare stack is used for print_message/2 from the garbage
collector and for handling exceptions. The default suffices,
unless the user redefines related hooks. Do nnoott specify
large values for this because it reduces the amount of memory
available for your real task.
Related hooks are message_hook/3 (redefining GC messages),
prolog_trace_interception/4and prolog_exception_hook/4.
pprroolloogg__ssttaacckk__pprrooppeerrttyy((_?_S_t_a_c_k_, _?_K_e_y_V_a_l_u_e))
True if _K_e_y_V_a_l_u_e is a current property of _S_t_a_c_k. See
set_prolog_stack/2 for defined properties.
44..4411 WWiinnddoowwss DDDDEE iinntteerrffaaccee
The predicates in this section deal with MS-Windows `Dynamic Data
Exchange' or DDE protocol. A Windows DDE conversation is a form
of interprocess communication based on sending reserved window events
between the communicating processes.
Failing DDE operations raise an error of the structure below, where
_O_p_e_r_a_t_i_o_n is the name of the (partial) operation that failed and
_M_e_s_s_a_g_e is a translation of the operator error code. For some errors,
_C_o_n_t_e_x_t provides additional comments.
________________________________________________________________________| |
||_______error(dde_error(Operation,_Message),_Context)__________________ ||
44..4411..11 DDDDEE cclliieenntt iinntteerrffaaccee
The DDE client interface allows Prolog to talk to DDE server programs.
We will demonstrate the use of the DDE interface using the Windows
PROGMAN (Program Manager) application:
________________________________________________________________________| |
|1 ?- open_dde_conversation(progman, progman, C). |
| |
|C = 0 |
|2 ?- dde_request(0, groups, X) |
| |
|--> Unifies X with description of groups |
| |
|3 ?- dde_execute(0, '[CreateGroup("DDE Demo")]'). |
|true. |
| |
|4 ?- close_dde_conversation(0). |
|true.|_________________________________________________________________ | |
For details on interacting with progman, use the SDK online
manual section on the Shell DDE interface. See also the Prolog
library(progman), which may be used to write simple Windows setup
scripts in Prolog.
ooppeenn__ddddee__ccoonnvveerrssaattiioonn((_+_S_e_r_v_i_c_e_, _+_T_o_p_i_c_, _-_H_a_n_d_l_e))
Open a conversation with a server supporting the given service name
and topic (atoms). If successful, _H_a_n_d_l_e may be used to send
transactions to the server. If no willing server is found this
predicate fails silently.
cclloossee__ddddee__ccoonnvveerrssaattiioonn((_+_H_a_n_d_l_e))
Close the conversation associated with _H_a_n_d_l_e. All opened
conversations should be closed when they're no longer needed,
although the system will close any that remain open on process
termination.
ddddee__rreeqquueesstt((_+_H_a_n_d_l_e_, _+_I_t_e_m_, _-_V_a_l_u_e))
Request a value from the server. _I_t_e_m is an atom that identifies
the requested data, and _V_a_l_u_e will be a string (CF_TEXT data in DDE
parlance) representing that data, if the request is successful.
ddddee__eexxeeccuuttee((_+_H_a_n_d_l_e_, _+_C_o_m_m_a_n_d))
Request the DDE server to execute the given command string.
Succeeds if the command could be executed and fails with an error
message otherwise.
ddddee__ppookkee((_+_H_a_n_d_l_e_, _+_I_t_e_m_, _+_C_o_m_m_a_n_d))
Issue a POKE command to the server on the specified _I_t_e_m. _c_o_m_m_a_n_d
is passed as data of type CF_TEXT.
44..4411..22 DDDDEE sseerrvveerr mmooddee
The library(dde) defines primitives to realise simple DDE server
applications in SWI-Prolog. These features are provided as of version
2.0.6 and should be regarded as prototypes. The C part of the DDE
server can handle some more primitives, so if you need features not
provided by this interface, please study library(dde).
ddddee__rreeggiisstteerr__sseerrvviiccee((_+_T_e_m_p_l_a_t_e_, _+_G_o_a_l))
Register a server to handle DDE request or DDE execute requests
from other applications. To register a service for a DDE request,
_T_e_m_p_l_a_t_e is of the form:
+Service(+Topic, +Item, +Value)
_S_e_r_v_i_c_e is the name of the DDE service provided (like progman in
the client example above). _T_o_p_i_c is either an atom, indicating
_G_o_a_l only handles requests on this topic, or a variable that also
appears in _G_o_a_l. _I_t_e_m and _V_a_l_u_e are variables that also appear in
_G_o_a_l. _I_t_e_m represents the request data as a Prolog atom.
The example below registers the Prolog current_prolog_flag/2
predicate to be accessible from other applications. The request
may be given from the same Prolog as well as from another
application.
____________________________________________________________________| |
| ?- dde_register_service(prolog(current_prolog_flag, F, V), |
| current_prolog_flag(F, V)). |
| |
| ?- open_dde_conversation(prolog, current_prolog_flag, Handle), |
| dde_request(Handle, home, Home), |
| close_dde_conversation(Handle). |
| |
||Home_=_'/usr/local/lib/pl-2.0.6/'_________________________________ ||
Handling DDE execute requests is very similar. In this case the
template is of the form:
+Service(+Topic, +Item)
Passing a _V_a_l_u_e argument is not needed as execute requests either
succeed or fail. If _G_o_a_l fails, a `not processed' is passed back
to the caller of the DDE request.
ddddee__uunnrreeggiisstteerr__sseerrvviiccee((_+_S_e_r_v_i_c_e))
Stop responding to _S_e_r_v_i_c_e. If Prolog is halted, it will
automatically call this on all open services.
ddddee__ccuurrrreenntt__sseerrvviiccee((_-_S_e_r_v_i_c_e_, _-_T_o_p_i_c))
Find currently registered services and the topics served on them.
ddddee__ccuurrrreenntt__ccoonnnneeccttiioonn((_-_S_e_r_v_i_c_e_, _-_T_o_p_i_c))
Find currently open conversations.
44..4422 MMiisscceellllaanneeoouuss
ddwwiimm__mmaattcchh((_+_A_t_o_m_1_, _+_A_t_o_m_2))
True if _A_t_o_m_1 matches _A_t_o_m_2 in the `Do What I Mean' sense. Both
_A_t_o_m_1 and _A_t_o_m_2 may also be integers or floats. The two atoms
match if:
o They are identical
o They differ by one character (spy spu)
o One character is inserted/deleted (debug deug)
o Two characters are transposed (trace tarce)
o `Sub-words' are glued differently (existsfile existsFile
exists_file)
o Two adjacent sub-words are transposed (existsFile
fileExists)
ddwwiimm__mmaattcchh((_+_A_t_o_m_1_, _+_A_t_o_m_2_, _-_D_i_f_f_e_r_e_n_c_e))
Equivalent to dwim_match/2, but unifies _D_i_f_f_e_r_e_n_c_e with an atom
identifying the difference between _A_t_o_m_1 and _A_t_o_m_2. The return
values are (in the same order as above): equal, mismatched_char,
inserted_char, transposed_char, separated and transposed_word.
wwiillddccaarrdd__mmaattcchh((_+_P_a_t_t_e_r_n_, _+_S_t_r_i_n_g))
True if _S_t_r_i_n_g matches the wildcard pattern _P_a_t_t_e_r_n. _P_a_t_t_e_r_n is
very similar to the Unix csh pattern matcher. The patterns are
given below:
? Matches one arbitrary character.
* Matches any number of arbitrary characters.
[...] Matches one of the characters specified between the brackets.
<_c_h_a_r_1>-<_c_h_a_r_2>indicates a range.
{...} Matches any of the patterns of the comma-separated list between the braces.
Example:
____________________________________________________________________| |
| ?- wildcard_match('[a-z]*.{pro,pl}[%~]', 'a_hello.pl%'). |
||true._____________________________________________________________ ||
sslleeeepp((_+_T_i_m_e))
Suspend execution _T_i_m_e seconds. _T_i_m_e is either a floating point
number or an integer. Granularity is dependent on the system's
timer granularity. A negative time causes the timer to return
immediately. On most non-realtime operating systems we can only
ensure execution is suspended for aatt lleeaasstt _T_i_m_e seconds.
On Unix systems the sleep/1 predicate is realised ---in order of
preference--- by nanosleep(), usleep(), select() if the time is
below 1 minute, or sleep(). On Windows systems Sleep() is used.
CChhaapptteerr 55.. SSWWII--PPRROOLLOOGG EEXXTTEENNSSIIOONNSS
This chapter describes extensions to the Prolog language introduced
with SWI-Prolog version 7. The changes bring more modern syntactical
conventions to Prolog such as key-value maps, called _d_i_c_t_s as primary
citizens and a restricted form of _f_u_n_c_t_i_o_n_a_l _n_o_t_a_t_i_o_n. They also
extend Prolog basic types with strings, providing a natural notation to
textual material as opposed to identifiers (atoms) and lists.
These extensions make the syntax more intuitive to new users, simplify
the integration of domain specific languages (DSLs) and facilitate a
more natural Prolog representation for popular exchange languages such
as XML and JSON.
While many programs run unmodified in SWI-Prolog version 7, especially
those that pass double quoted strings to general purpose list
processing predicates require modifications. We provide a tool
(list_strings/0) that we used to port a huge code base in half a day.
55..11 LLiissttss aarree ssppeecciiaall
As of version 7, SWI-Prolog lists can be distinguished unambiguously at
runtime from ./2 terms and the atom '[]'. The constant [] is special
constant that is not an atom. It has the following properties:
________________________________________________________________________| |
|?- atom([]). |
|false. |
|?- atomic([]). |
|true. |
|?- [] == '[]'. |
|false. |
|?- [] == []. |
|true.|_________________________________________________________________ | |
The `cons' operator for creating list cells has changed from the pretty
atom '.' to the ugly atom '[|]', so we can use the '.' for other
purposes. See section 5.4.1.
This modification has minimal impact on typical Prolog code. It does
affect foreign code (see section 10) that uses the normal atom and
compound term interface for manipulation lists. In most cases this can
be avoided by using the dedicated list functions. For convenience, the
macros ATOM_nil and ATOM_dot are provided by SWI-Prolog.h.
Another place that is affected is write_canonical/1. Impact is
minimized by using the list syntax for lists. The predicates
read_term/2 and write_term/2 support the option dotlists(_t_r_u_e), which
causes read_term/2 to read .(a,[]) as [a] and write_term/2to write [a]
as .(a,[]).
55..11..11 MMoottiivvaattiinngg ''[|]'' aanndd [[]] ffoorr lliissttss
Representing lists the conventional way using ./2 as cons-cell and '[]'
as list terminator both (independently) poses conflicts, while these
conflicts are easily avoided.
o Using ./2 prevents using this commonly used symbol as an operator
because a.B cannot be distinguished from [a|B]. Freeing ./2
provides us with a unique term that we can use for functional
notation on dicts as described in section 5.4.1.
o Using '[]' as list terminator prevents dynamic distinction between
atoms and lists. As a result, we cannot use type polymorphism
that involve both atoms and lists. For example, we cannot use
_m_u_l_t_i _l_i_s_t_s (arbitrary deeply nested lists) of atoms. Multi lists
of atoms are a in some situations a good representation of a
flat list that is assembled from sub sequences. The alternative,
using difference lists or DCGs is often less natural and sometimes
demands for `opening' proper lists (i.e., copying the list while
replacing the terminating empty list with a variable) that have
to be added to the sequence. The ambiguity of atom and list
is particularly painful when mapping external data representations
that do not suffer from this ambiguity.
At the same time, avoiding '[]' as a list terminator makes the
various text representations unambiguous, which allows us to write
predicates that require a textual argument to accept both atoms,
strings, and lists of character codes or one-character atoms.
Traditionally, the empty list can be interpreted both as the string
"[]" and "".
55..22 TThhee ssttrriinngg ttyyppee aanndd iittss ddoouubbllee qquuootteedd ssyynnttaaxx
As of SWI-Prolog version 7, text encloses in double quotes (e.g.,
"Hello world") is read as objects of the type _s_t_r_i_n_g. A string
is a compact representation of a character sequence that lives on
the global (term) stack. Strings represent sequences of Unicode
characters including the character code 0 (zero). The length strings
is limited by the available space on the global (term) stack (see
set_prolog_stack/2). Strings are distinct from lists, which makes it
possible to detect them at runtime and print them using the string
syntax, as illustrated below:
________________________________________________________________________| |
|?- write("Hello world!"). |
|Hello world! |
| |
|?- writeq("Hello world!"). |
|"Hello|world!"_________________________________________________________ | |
_B_a_c_k _q_u_o_t_e_d text (as in `text`) is mapped to a list of character codes
in version 7. The settings for the flags that control how double and
back quoted text is read is summarised in table 5.1. Programs that
aim for compatibility should realise that the ISO standard defines back
quoted text, but does not define the back_quotes Prolog flag and does
not define the term that is produced by back quoted text.
_______________________________________________MMooddeedouble_quotesback_quotes
_______________________________________________Versions7tdefaultringcodes
_--traditional_________codes_______symbol_char_
Table 5.1: Mapping of double and back quoted text in the two modes.
Section 5.2.4 motivates the introduction of strings and mapping double
quoted text to this type.
55..22..11 PPrreeddiiccaatteess tthhaatt ooppeerraattee oonn ssttrriinnggss
Strings may be manipulated by a set of predicates that is similar to
the manipulation of atoms. In addition to the list below, string/1
performs the type check for this type and is described in section 4.6.
SWI-Prolog's string primitives are being synchronized with ECLiPSe.
We expect the set of predicates documented in this section to be
stable, although it might be expanded. In general, SWI-Prolog's text
manipulation predicates accept any form of text as input argument
and produce the type indicated by the predicate name as output.
This policy simplifies migration and writing programs that can run
unmodified or with minor modifications on systems that do not support
strings. Code should avoid relying on this feature as much as possible
for clarity as well as to facilitate a more strict mode and/or type
checking in future releases.
aattoomm__ssttrriinngg((_?_A_t_o_m_, _?_S_t_r_i_n_g))
Bi-directional conversion between an atom and a string. At least
one of the two arguments must be instantiated. _A_t_o_m can also be an
integer or floating point number.
nnuummbbeerr__ssttrriinngg((_?_N_u_m_b_e_r_, _?_S_t_r_i_n_g))
Bi-directional conversion between a number and a string. At least
one of the two arguments must be instantiated. Besides the type
used to represent the text, this predicate differs in several ways
from its ISO cousin:
o If _S_t_r_i_n_g does not represent a number, the predicate _f_a_i_l_s
rather than throwing a syntax error exception.
o Leading white space and Prolog comments are _n_o_t allowed.
o Numbers may start with '+' or '-'.
o It is _n_o_t allowed to have white space between a leading '+' or
'-' and the number.
o Floating point numbers in exponential notation do not require
a dot before exponent, i.e., "1e10" is a valid number.
tteerrmm__ssttrriinngg((_?_T_e_r_m_, _?_S_t_r_i_n_g))
Bi-directional conversion between a term and a string. If _S_t_r_i_n_g
is instantiated, it is parsed and the result is unified with _T_e_r_m.
Otherwise _T_e_r_m is `written' using the option quoted(_t_r_u_e) and the
result is converted to _S_t_r_i_n_g.
tteerrmm__ssttrriinngg((_?_T_e_r_m_, _?_S_t_r_i_n_g_, _+_O_p_t_i_o_n_s))
As term_string/2, passing _O_p_t_i_o_n_s to either read_term/2 or
write_term/2. For example:
____________________________________________________________________| |
| ?- term_string(Term, 'a(A)', [variable_names(VNames)]). |
| Term = a(_G1466), |
||VNames_=_['A'=_G1466].____________________________________________ ||
ssttrriinngg__cchhaarrss((_?_S_t_r_i_n_g_, _?_C_h_a_r_s))
Bi-directional conversion between a string and a list of characters
(one-character atoms). At least one of the two arguments must be
instantiated.
ssttrriinngg__ccooddeess((_?_S_t_r_i_n_g_, _?_C_o_d_e_s))
Bi-directional conversion between a string and a list of character
codes. At least one of the two arguments must be instantiated.
tteexxtt__ttoo__ssttrriinngg((_+_T_e_x_t_, _-_S_t_r_i_n_g)) _[_d_e_t_]
Converts _T_e_x_t to a string. _T_e_x_t is an atom, string or list of
characters (codes or chars). When running in --traditional mode,
'[]' is ambiguous and interpreted as an empty string.
ssttrriinngg__lleennggtthh((_+_S_t_r_i_n_g_, _-_L_e_n_g_t_h))
Unify _L_e_n_g_t_h with the number of characters in _S_t_r_i_n_g. This
predicate is functionally equivalent to atom_length/2 and also
accepts atoms, integers and floats as its first argument.
ssttrriinngg__ccooddee((_?_I_n_d_e_x_, _+_S_t_r_i_n_g_, _?_C_o_d_e))
True when _C_o_d_e represents the character at the 1-based _I_n_d_e_x
position in _S_t_r_i_n_g. If _I_n_d_e_x is unbound the string is scanned from
index 1. Raises a domain error if _I_n_d_e_x is negative. Fails
silently if _I_n_d_e_x is zero or greater than the length of _S_t_r_i_n_g.
The mode string_code(_-_,_+_,_+) is deterministic if the searched-for
_C_o_d_e appears only once in _S_t_r_i_n_g. See also sub_string/5.
ggeett__ssttrriinngg__ccooddee((_+_I_n_d_e_x_, _+_S_t_r_i_n_g_, _-_C_o_d_e))
Semi-deterministic version of string_code/3. In addition, this
version provides strict range checking, throwing a domain error if
_I_n_d_e_x is less than 1 or greater than the length of _S_t_r_i_n_g. ECLiPSe
provides this to support String[Index] notation.
ssttrriinngg__ccoonnccaatt((_?_S_t_r_i_n_g_1_, _?_S_t_r_i_n_g_2_, _?_S_t_r_i_n_g_3))
Similar to atom_concat/3, but the unbound argument will be unified
with a string object rather than an atom. Also, if both _S_t_r_i_n_g_1
and _S_t_r_i_n_g_2 are unbound and _S_t_r_i_n_g_3 is bound to text, it breaks
_S_t_r_i_n_g_3, unifying the start with _S_t_r_i_n_g_1 and the end with _S_t_r_i_n_g_2
as append does with lists. Note that this is not particularly
fast on long strings, as for each redo the system has to create
two entirely new strings, while the list equivalent only creates a
single new list-cell and moves some pointers around.
sspplliitt__ssttrriinngg((_+_S_t_r_i_n_g_, _+_S_e_p_C_h_a_r_s_, _+_P_a_d_C_h_a_r_s_, _-_S_u_b_S_t_r_i_n_g_s)) _[_d_e_t_]
Break _S_t_r_i_n_g into _S_u_b_S_t_r_i_n_g_s. The _S_e_p_C_h_a_r_s argument provides the
characters that act as separators and thus the length of _S_u_b_S_t_r_i_n_g_s
is one more than the number of separators found if _S_e_p_C_h_a_r_s and
_P_a_d_C_h_a_r_s do not have common characters. If _S_e_p_C_h_a_r_s and _P_a_d_C_h_a_r_s
are equal, sequences of adjacent separators act as a single
separator. Leading and trailing characters for each substring
that appear in _P_a_d_C_h_a_r_s are removed from the substring. The
input arguments can be either atoms, strings or char/code lists.
Compatible with ECLiPSe. Below are some examples:
____________________________________________________________________| |
| % a simple split |
| ?- split_string("a.b.c.d", ".", "", L). |
| L = ["a", "b", "c", "d"]. |
| % Consider sequences of separators as a single one |
| ?- split_string("/home//jan///nice/path", "/", "/", L). |
| L = ["home", "jan", "nice", "path"]. |
| % split and remove white space |
| ?- split_string("SWI-Prolog, 7.0", ",", " ", L). |
| L = ["SWI-Prolog", "7.0"]. |
| % only remove leading and trailing white space |
| ?- split_string(" SWI-Prolog ", "", "\s\t\n", L). |
||L_=_["SWI-Prolog"]._______________________________________________ ||
In the typical use cases, _S_e_p_C_h_a_r_s either does not overlap _P_a_d_C_h_a_r_s
or is equivalent to handle multiple adjacent separators as a single
(often white space). The behaviour with partially overlapping sets
of padding and separators should be considered undefined. See also
read_string/5.
ssuubb__ssttrriinngg((_+_S_t_r_i_n_g_, _?_B_e_f_o_r_e_, _?_L_e_n_g_t_h_, _?_A_f_t_e_r_, _?_S_u_b_S_t_r_i_n_g))
_S_u_b_S_t_r_i_n_g is a substring of _S_t_r_i_n_g. There are _B_e_f_o_r_e characters in
_S_t_r_i_n_g before _S_u_b_S_t_r_i_n_g, _S_u_b_S_t_r_i_n_g contains _L_e_n_g_t_h character and is
followed by _A_f_t_e_r characters in _S_t_r_i_n_g. If not enough information
is provided to compute the start of the match, _S_t_r_i_n_g is scanned
left-to-right. This predicate is functionally equivalent to
sub_atom/5, but operates on strings. The following example splits
a string of the form <_n_a_m_e>=<_v_a_l_u_e> into the name part (an atom) and
the value (a string).
____________________________________________________________________| |
| name_value(String, Name, Value) :- |
| sub_string(String, Before, _, After, "="), !, |
| sub_string(String, 0, Before, _, NameString), |
| atom_string(Name, NameString), |
||________sub_string(String,__,_After,_0,_Value).___________________ ||
aattoommiiccss__ttoo__ssttrriinngg((_+_L_i_s_t_, _-_S_t_r_i_n_g))
_L_i_s_t is a list of strings, atoms, integers or floating point
numbers. Succeeds if _S_t_r_i_n_g can be unified with the concatenated
elements of _L_i_s_t. Equivalent to atomics_to_string(_L_i_s_t_, _'_'_,
_S_t_r_i_n_g).
aattoommiiccss__ttoo__ssttrriinngg((_+_L_i_s_t_, _+_S_e_p_a_r_a_t_o_r_, _-_S_t_r_i_n_g))
Creates a string just like atomics_to_string/2, but inserts _S_e_p_a_r_a_-
_t_o_r between each pair of inputs. For example:
____________________________________________________________________| |
| ?- atomics_to_string([gnu, "gnat", 1], ', ', A). |
| |
||A_=_"gnu,_gnat,_1"________________________________________________ ||
ssttrriinngg__uuppppeerr((_+_S_t_r_i_n_g_, _-_U_p_p_e_r_C_a_s_e))
Convert _S_t_r_i_n_g to upper case and unify the result with _U_p_p_e_r_C_a_s_e.
ssttrriinngg__lloowweerr((_+_S_t_r_i_n_g_, _L_o_w_e_r_C_a_s_e))
Convert _S_t_r_i_n_g to lower case and unify the result with _U_p_p_e_r_C_a_s_e.
rreeaadd__ssttrriinngg((_+_S_t_r_e_a_m_, _?_L_e_n_g_t_h_, _-_S_t_r_i_n_g))
Read at most _L_e_n_g_t_h characters from _S_t_r_e_a_m and return them in the
string _S_t_r_i_n_g. If _L_e_n_g_t_h is unbound, _S_t_r_e_a_m is read to the end and
_L_e_n_g_t_h is unified with the number of characters read.
rreeaadd__ssttrriinngg((_+_S_t_r_e_a_m_, _+_S_e_p_C_h_a_r_s_, _+_P_a_d_C_h_a_r_s_, _-_S_e_p_, _-_S_t_r_i_n_g))
Read a string from _S_t_r_e_a_m, providing functionality similar to
split_string/4. The predicate performs the following steps:
1. Skip all characters that match _P_a_d_C_h_a_r_s
2. Read up to a character that matches _S_e_p_C_h_a_r_s or end of file
3. Discard trailing characters that match _P_a_d_C_h_a_r_s from the
collected input
4. Unify _S_t_r_i_n_g with a string created from the input and _S_e_p with
the separator character read. If input was terminated by the
end of the input, _S_e_p is unified with -1.
The predicate read_string/5called repeatedly on an input until _S_e_p
is -1 (end of file) is equivalent to reading the entire file into
a string and calling split_string/4, provided that _S_e_p_C_h_a_r_s and
_P_a_d_C_h_a_r_s are not _p_a_r_t_i_a_l_l_y _o_v_e_r_l_a_p_p_i_n_g. Below are some examples:
____________________________________________________________________| |
| % Read a line |
| read_string(Input, "\n", "\r", End, String) |
| % Read a line, stripping leading and trailing white space |
| read_string(Input, "\n", "\r\t ", End, String) |
| % Read upto , or ), unifying End with 0', or 0') |
||read_string(Input,_",)",_"\t_",_End,_String)______________________ ||
ooppeenn__ssttrriinngg((_+_S_t_r_i_n_g_, _-_S_t_r_e_a_m))
True when _S_t_r_e_a_m is an input stream that accesses the content of
_S_t_r_i_n_g. _S_t_r_i_n_g can be any text representation, i.e., string, atom,
list of codes or list of characters.
55..22..22 RReepprreesseennttiinngg tteexxtt:: ssttrriinnggss,, aattoommss aanndd ccooddee lliissttss
With the introduction of strings as a Prolog data type, there are
three main ways to represent text: using strings, atoms or code
lists. This section explains what to choose for what purpose. Both
strings and atoms are _a_t_o_m_i_c objects: you can only look inside them
using dedicated predicates. Lists of character codes are compound
datastructures.
LLiissttss ooff cchhaarraacctteerr ccooddeess is what you need if you want to _p_a_r_s_e text
using Prolog grammar rules (DCGs, see phrase/3). Most of the text
reading predicates (e.g., read_line_to_codes/2) return a list of
character codes because most applications need to parse these lines
before the data can be processed.
AAttoommss are _i_d_e_n_t_i_f_i_e_r_s. They are typically used in cases where
identity comparison is the main operation and that are typically
not composed nor taken apart. Examples are RDF resources (URIs
that identify something), system identifiers (e.g., 'Boeing 747'),
but also individual words in a natural language processing system.
They are also used where other languages would use _e_n_u_m_e_r_a_t_e_d
_t_y_p_e_s, such as the names of days in the week. Unlike enumerated
types, Prolog atoms do not form not a fixed set and the same atom
can represent different things in different contexts.
SSttrriinnggss typically represents text that is processed as a unit most of
the time, but which is not an identifier for something. Format
specifications for format/3 is a good example. Another example
is a descriptive text provided in an application. Strings
may be composed and decomposed using e.g., string_concat/3 and
sub_string/5 or converted for parsing using string_codes/2 or
created from codes generated by a generative grammar rule, also
using string_codes/2.
55..22..33 AAddaappttiinngg ccooddee ffoorr ddoouubbllee qquuootteedd ssttrriinnggss
The predicates in this section can help adapting your program to the
new convention for handling double quoted strings. We have adapted a
huge code base with which we were not familiar in about half a day.
lliisstt__ssttrriinnggss
This predicate may be used to assess compatibility issues due to
the representation of double quoted text as string objects. See
section 5.2 and section 5.2.4. To use it, load your program
into Prolog and run list_strings/0. The predicate lists source
locations of string objects encountered in the program that are not
considered safe. Such string need to be examined manually, after
which one of the actions below may be appropriate:
o Rewrite the code. For example, change [X] = "a" into X = 0'a.
o If a particular module relies heavily on representing strings
as lists of character code, consider adding the following
directive to the module. Note that this flag only applies to
the module in which it appears.
_______________________________________________________________| |
||_________:-_set_prolog_flag(double_quotes,_codes).___________ ||
o Use a back quoted string (e.g., `text`). Note that this
will not make your code run regardless of the --traditional
command line option and code exploiting this mapping is also
not portable to ISO compliant systems.
o If the strings appear in facts and usage is safe, add a clause
to the multifile predicate check:string_predicate/1 to silence
list_strings/0 on all clauses of that predicate.
o If the strings appear as an argument to a predicate that can
handle string objects, add a clause to the multifile predicate
check:valid_string_goal/1 to silence list_strings/0.
cchheecckk::ssttrriinngg__pprreeddiiccaattee((_:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r))
Declare that _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r has clauses that contain strings,
but that this is safe. For example, if there is a predicate
help_info/2, where the second argument contains a double quoted
string that is handled properly by the predicates of the
applications' help system, add the following declaration to stop
list_strings/0 from complaining:
____________________________________________________________________| |
| :- multifile check:string_predicate/1. |
| |
||string_predicate(user:help_info/2)._______________________________ ||
cchheecckk::vvaalliidd__ssttrriinngg__ggooaall((_:_G_o_a_l))
Declare that calls to _G_o_a_l are safe. The module qualification is
the actual module in which _G_o_a_l is defined. For example, a call
to format/3 is resolved by the predicate system:format/3. and
the code below specifies that the second argument may be a string
(system predicates that accept strings are defined in the library).
____________________________________________________________________| |
| :- multifile check:valid_string_goal/1. |
| |
||check:valid_string_goal(system:format(_,S,_))_:-_string(S)._______ ||
55..22..44 WWhhyy hhaass tthhee rreepprreesseennttaattiioonn ooff ddoouubbllee qquuootteedd tteexxtt cchhaannggeedd??
Prolog defines two forms of quoted text. Traditionally, single quoted
text is mapped to atoms while double quoted text is mapped to a list
of _c_h_a_r_a_c_t_e_r _c_o_d_e_s (integers) or characters represented as 1-character
atoms. Representing text using atoms is often considered inadequate
for several reasons:
o It hides the conceptual difference between text and program
symbols. Where content of text often matters because it is used
in I/O, program symbols are merely identifiers that match with the
same symbol elsewhere. Program symbols can often be consistently
replaced, for example to obfuscate or compact a program.
o Atoms are globally unique identifiers. They are stored in a shared
table. Volatile strings represented as atoms come at a significant
price due to the required cooperation between threads for creating
atoms. Reclaiming temporary atoms using _A_t_o_m _g_a_r_b_a_g_e _c_o_l_l_e_c_t_i_o_n is
a costly process that requires significant synchronisation.
o Many Prolog systems (not SWI-Prolog) put severe restrictions on the
length of atoms or the maximum number of atoms.
Representing text as a list of character codes or 1-character atoms
also comes at a price:
o It is not possible to distinguish (at runtime) a list of integers
or atoms from a string. Sometimes this information can be derived
from (implicit) typing. In other cases the list must be embedded
in a compound term to distinguish the two types. For example,
s("hello world") could be used to indicate that we are dealing with
a string.
Lacking runtime information, debuggers and the toplevel can only
use heuristics to decide whether to print a list of integers as
such or as a string (see portray_text/1).
While experienced Prolog programmers have learned to cope with
this, we still consider this an unfortunate situation.
o Lists are expensive structures, taking 2 cells per character (3 for
SWI-Prolog in its current form). This stresses memory consumption
on the stacks while pushing them on the stack and dealing with them
during garbage collection is unnecessarilly expensive.
We observe that in many programs, most strings are only handled as a
single unit during their lifetime. Examining real code tells us that
double quoted strings typically appear in one of the following roles:
AA DDCCGG lliitteerraall Although represented as a list of codes is the correct
representation for handling in DCGs, the DCG translator can
recognise the literal and convert it to the proper representation.
Such code need not be modified.
AA ffoorrmmaatt ssttrriinngg This is a typical example of text that is
conceptually not a program identifier. Format is designed to deal
with alternative representations of the format string. Such code
need not be modified.
GGeettttiinngg aa cchhaarraacctteerr ccooddee The construct [X] = "a" is a commonly used
template for getting the character code of the letter 'a'. ISO
Prolog defines the syntax 0'a for this purpose. Code using this
must be modified. The modified code will run on any ISO compliant
processor.
AAss aarrgguummeenntt ttoo lliisstt pprreeddiiccaatteess ttoo ooppeerraattee oonn ssttrriinnggss Here, we see
code such as append("name:", Rest, Codes). Such code needs to be
modified. In this particular example, the following is a good
portable alternative: phrase("name:", Codes, Rest)
CChheecckkss ffoorr aa cchhaarraacctteerr ttoo bbee iinn aa sseett Such tests are often performed
with code such as this: memberchk(C, "~!@#$"). This is a
rather inefficient check in a traditional Prolog system because it
pushes a list of character codes cell-by-cell the Prolog stack and
then traverses this list cell-by-cell to see whether one of the
cells unifies with _C. If the test is successful, the string will
eventually be subject to garbage collection. The best code for
this is to write a predicate as below, which pushes noting on the
stack and performs an indexed lookup to see whether the character
code is in `my_class'.
____________________________________________________________________| |
| my_class(0'~). |
| my_class(0'!). |
||..._______________________________________________________________ ||
An alternative to reach the same effect is to use term expansion to
create the clauses:
____________________________________________________________________| |
| term_expansion(my_class(_), Clauses) :- |
| findall(my_class(C), |
| string_code(_, "~!@#$", C), |
| Clauses). |
| |
||my_class(_).______________________________________________________ ||
Finally, the predicate string_code/3can be exploited directly as a
replacement for the memberchk/2 on a list of codes. Although the
string is still pushed onto the stack, it is more compact and only
a single entity.
We offer the predicate list_strings/0 to help porting your program.
55..33 SSyynnttaaxx cchhaannggeess
55..33..11 OOppeerraattoorrss aanndd qquuootteedd aattoommss
As of SWI-Prolog version 7, quoted atoms loose their operator property.
This means that expressions such as A = 'dynamic'/1 are valid syntax,
regardless of the operator definitions. From questions on the
mailinglist this is what people expect. To accomodate for real
quoted operators, a quoted atom that _n_e_e_d_s quotes can still act as an
operator. A good use-case for this is a unit library, which allows for
expressions such as below.
________________________________________________________________________| |
|?- Y isu 600kcal - 1h*200'W'. |
|Y|=_1790400.0'J'.______________________________________________________ | |
55..33..22 CCoommppoouunndd tteerrmmss wwiitthh zzeerroo aarrgguummeennttss
As of SWI-Prolog version 7, the system supports compound terms that
have no arguments. This implies that e.g., name() is valid syntax.
This extension aims at functions on dicts (see section 5.4) as well
as the implementation of domain specific languages (DSLs). To
minimise the consequences, the classic predicates functor/3 and =../2
have not been modified. The predicates compound_name_arity/3 and
compound_name_arguments/3 have been added. These predicates operate
only on compound terms and behave consistently for compounds with zero
arguments. Code that _g_e_n_e_r_a_l_i_s_e_s a term using the sequence below
should generally be changed to use compound_name_arity/3.
________________________________________________________________________| |
| ..., |
| functor(Specific, Name, Arity), |
| functor(General, Name, Arity), |
||___...,_______________________________________________________________ ||
Replacement of =../2 by compound_name_arguments/3 is typically needed to
deal with code that follow the skeleton below.
________________________________________________________________________| |
| ..., |
| Term0 =.. [Name|Args0], |
| maplist(convert, Args0, Args), |
| Term =.. [Name|Args], |
||___...,_______________________________________________________________ ||
For predicates, goals and arithmetic functions (evaluable terms), <_n_a_m_e>
and <_n_a_m_e>() are _e_q_u_i_v_a_l_e_n_t. Below are some examples that illustrate
this behaviour.
________________________________________________________________________| |
|go() :- format('Hello world~n'). |
| |
|?- go(). |
|Hello world |
| |
|?- go. |
|Hello world |
| |
|?- Pi is pi(). |
|Pi = 3.141592653589793. |
| |
|?- Pi is pi. |
|Pi|=_3.141592653589793.________________________________________________ | |
Note that the _c_a_n_n_o_n_i_c_a_l representation of predicate heads and
functions without arguments is an atom. Thus, clause(_g_o_(_)_, _B_o_d_y)
returns the clauses for go/0, but clause(_-_H_e_a_d_, _-_B_o_d_y_, _+_R_e_f) unifies
_H_e_a_d with an atom if the clause specified by _R_e_f is part of a predicate
with zero arguments.
55..33..33 BBlloocckk ooppeerraattoorrss
Introducing curly bracket and array subscripting. The symbols [] and
{} may be declared as an operator, which has the following effect:
[[ ]]
This operator is typically declared as a low-priority yf postfix
operator, which allows for array[index] notation. This syntax
produces a term []([index],array).
{ }
This operator is typically declared as a low-priority xf postfix
operator, which allows for head(arg) { body } notation. This
syntax produces a term {}({body},head(arg)).
Below is an example that illustrates the representation of a typical
`curly bracket language' in Prolog.
________________________________________________________________________| |
|?- op(100, xf, {}). |
|?- op(100, yf, []). |
|?- op(1100, yf, ;). |
| |
|?- displayq(func(arg) |
| { a[10] = 5; |
| update(); |
| }). |
|{}({;(=([]([10],a),5),;(update()))},func(arg))|________________________ | |
55..44 DDiiccttss:: ssttrruuccttuurreess wwiitthh nnaammeedd aarrgguummeennttss
SWI-Prolog version 7 introduces dicts as an abstract object with a
concrete modern syntax and functional notation for accessing members
and as well as access functions defined by the user. The syntax for
a dict is illustrated below. _T_a_g is either a variable or an atom.
As with compound terms, there is nnoo space between the tag and the
opening brace. The keys are either atoms or small integers (up to
max_tagged_integer). The values are arbitrary Prolog terms which are
parsed using the same rules as used for arguments in compound terms.
Tag{Key1:Value1, Key2:Value2, ...}
A dict can _n_o_t hold duplicate keys. The dict is transformed into
an opaque internal representation that does _n_o_t respect the order in
which the key-value pairs appear in the input text. If a dict is
written, the keys are written according to the standard order of terms
(see section 4.7.1). Here are some examples, where the second example
illustrates that the order is not maintained and the third illustrates
an anonymous dict.
________________________________________________________________________| |
|?- A = point{x:1, y:2}. |
|A = point{x:1, y:2}. |
| |
|?- A = point{y:2, x:1}. |
|A = point{x:1, y:2}. |
| |
|?- A = _{first_name:"Mel", last_name:"Smith"}. |
|A|=__G1476{first_name:"Mel",_last_name:"Smith"}._______________________ | |
Dicts can be unified following the standard symmetric Prolog
unification rules. As dicts use an internal canonical form, the
order in which the named keys are represented is not relevant. This
behaviour is illustrated by the following example.
________________________________________________________________________| |
|?- point{x:1, y:2} = Tag{y:2, x:X}. |
|Tag = point, |
|X|=_1._________________________________________________________________ | |
NNoottee In the current implementation, two dicts unify only if they have
the same set of keys and the tags and values associated with the keys
unify. In future versions, the notion of unification between dicts
could be modified such that two dicts unify if their tags and the
values associated with _c_o_m_m_o_n keys unify, turning both dicts into a new
dict that has the union of the keys of the two original dicts.
55..44..11 FFuunnccttiioonnss oonn ddiiccttss
The infix operator dot (op(_1_0_0_, _y_f_x_, _.) is used to extract values and
evaluate functions on dicts. Functions are recognised if they appear
in the argument of a _g_o_a_l in the source text, possibly nested in a
term. The keys act as field selector, which is illustrated in this
example.
________________________________________________________________________| |
|?- X = point{x:1,y:2}.x. |
|X = 1. |
| |
|?- Pt = point{x:1,y:2}, write(Pt.y). |
|2 |
|Pt = point{x:1,y:2}. |
| |
|?- X = point{x:1,y:2}.C. |
|X = 1, |
|C = x ; |
|X = 2, |
|C|=_y._________________________________________________________________ | |
The compiler translates a goal that contains ./2 terms in its arguments
into a conjunction of calls to ./3 defined in the system module. Terms
funcref.2 that appears in the head are replaced with a variable and
calls to ./3 are inserted at the start of the body. Below are two
examples, where the first extracts the x key from a dict and the second
extends a dict containing an address with the postal code, given a
find_postal_code/4predicate.
________________________________________________________________________| |
|dict_x(X, X.x). |
| |
|add_postal_code(Dict, Dict.put(postal_code, Code)) :- |
| find_postal_code(Dict.city, |
| Dict.street, |
| Dict.house_number, |
||________________________Code).________________________________________ ||
Note that expansion of ./2 terms implies that such terms cannot be
created by writing them explicitly in your source code. Such terms
can still be created with functor/3, =../2, compound_name_arity/3 and
compound_name_arguments/3.
.((_+_D_i_c_t_, _+_F_u_n_c_t_i_o_n_, _-_R_e_s_u_l_t))
This predicate is called to evaluate ./2 terms found in the
arguments of a goal. This predicate evaluates the field extraction
described above, which is mapped to get_dict_ex/3. If _F_u_n_c_t_i_o_n is
a compound term, it checks for the predefined functions on dicts
described in section 5.4.1.2 or executes a user defined function as
described in section 5.4.1.1.
55..44..11..11 UUsseerr ddeeffiinneedd ffuunnccttiioonnss oonn ddiiccttss
The tag of a dict associates the dict to a module. If the dot notation
uses a compound term, this calls the goal below.
<_m_o_d_u_l_e>:<_n_a_m_e>(Arg1, ..., +Dict, -Value)
Functions are normal Prolog predicates. The dict infrastructure
provides a more convenient syntax for representing the head of such
predicates without worrying about the argument calling conventions.
The code below defines a function multiply(_T_i_m_e_s) on a point that
creates a new point by multiplying both coordinates. and len to
compute the length from the origin. The . and := operators are used
to abstract the location of the predicate arguments. It is allowed to
define multiple a function with multiple clauses, providing overloading
and non-determinism.
________________________________________________________________________| |
|:- module(point, []). |
| |
|M.multiply(F) := point{x:X, y:Y} :- |
| X is M.x*F, |
| Y is M.y*F. |
| |
|M.len() := Len :- |
||_______Len_is_sqrt(M.x**2_+_M.y**2).__________________________________ ||
After these definitions, we can evaluate the following functions:
________________________________________________________________________| |
|?- X = point{x:1, y:2}.multiply(2). |
|X = point{x:2, y:4}. |
| |
|?- X = point{x:1, y:2}.multiply(2).len(). |
|X|=_4.47213595499958.__________________________________________________ | |
55..44..11..22 PPrreeddeeffiinneedd ffuunnccttiioonnss oonn ddiiccttss
Dicts currently define the following reserved functions:
ggeett((_?_K_e_y))
Same as _D_i_c_t._K_e_y, but maps to get_dict/3 instead of get_dict_ex/3.
This implies that the function evaluation fails silently if _K_e_y
does not appear in _D_i_c_t. See also :</2, which can be used to test
for existence and unify multiple key values from a dict. For
example:
____________________________________________________________________| |
| ?- write(t{a:x}.get(a)). |
| x |
| ?- write(t{a:x}.get(b)). |
||false.____________________________________________________________ ||
ppuutt((_+_N_e_w))
Evaluates to a new dict where the key-values in _N_e_w replace or
extend the key-values in the original dict. See put_dict/3.
ppuutt((_+_K_e_y_P_a_t_h_, _+_V_a_l_u_e))
Evaluates to a new dict where the _K_e_y_P_a_t_h-_V_a_l_u_e replaces or extends
the key-values in the original dict. _K_e_y_P_a_t_h is either a key
or a term _K_e_y_P_a_t_h/_K_e_y, replacing the value associated with _K_e_y
in a sub-dict of the dict on which the function operates. See
put_dict/4. Below are some examples:
____________________________________________________________________| |
| ?- A = _{}.put(a, 1). |
| A = _G7359{a:1}. |
| |
| ?- A = _{a:1}.put(a, 2). |
| A = _G7377{a:2}. |
| |
| ?- A = _{a:1}.put(b/c, 2). |
| A = _G1395{a:1, b:_G1584{c:2}}. |
| |
| ?- A = _{a:_{b:1}}.put(a/b, 2). |
| A = _G1429{a:_G1425{b:2}}. |
| |
| ?- A = _{a:1}.put(a/b, 2). |
||A_=__G1395{a:_G1578{b:2}}.________________________________________ ||
55..44..22 PPrreeddiiccaatteess ffoorr mmaannaaggiinngg ddiiccttss
This section documents the predicates that are defined on dicts. We
use the naming and argument conventions of the traditional assoc.
iiss__ddiicctt((_@_T_e_r_m))
True if _T_e_r_m is a dict. This is the same as is_dict(Term,_).
iiss__ddiicctt((_@_T_e_r_m_, _-_T_a_g))
True if _T_e_r_m is a dict of _T_a_g.
ggeett__ddiicctt((_?_K_e_y_, _+_D_i_c_t_, _-_V_a_l_u_e))
Unify the value associated with _K_e_y in dict with _V_a_l_u_e. If _K_e_y
is unbound, all associations in _D_i_c_t are returned on backtracking.
The order in which the associations are returned is undefined.
This predicate is normally accessed using the functional notation
Dict.Key. See section 5.4.1.
ggeett__ddiicctt((_+_K_e_y_, _+_D_i_c_t_, _-_V_a_l_u_e_, _-_N_e_w_D_i_c_t_, _+_N_e_w_V_a_l_u_e)) _[_s_e_m_i_d_e_t_]
Create a new dict after updating the value for _K_e_y. Fails if _V_a_l_u_e
does not unify with the current value associated with _K_e_y. Acts
according to the following below. _D_i_c_t is either a dict or a list
the can be converted into a dict.
____________________________________________________________________| |
| get_dict(Key, Dict, Value, NewDict, NewDict) :- |
| get_dict(Key, Dict, Value), |
||________put_dict(Key,_Dict,_NewDict,_NewDict).____________________ ||
ddiicctt__ccrreeaattee((_-_D_i_c_t_, _+_T_a_g_, _+_D_a_t_a))
Create a dict in _T_a_g from _D_a_t_a. _D_a_t_a is a list of attribute-value
pairs using the syntax Key:Value, Key=Value, Key-Value or
Key(Value). An exception is raised if _D_a_t_a is not a proper list,
one of the elements is not of the shape above, a key is neither an
atom nor a small integer or there is a duplicate key.
ddiicctt__ppaaiirrss((_?_D_i_c_t_, _?_T_a_g_, _?_P_a_i_r_s))
Bi-directional mapping between a dict and an ordered list of pairs
(see section 12.20).
ppuutt__ddiicctt((_+_N_e_w_, _+_D_i_c_t_I_n_, _-_D_i_c_t_O_u_t))
_D_i_c_t_O_u_t is a new dict created by replacing or adding key-value
pairs from _N_e_w to _D_i_c_t. _N_e_w is either a dict or a valid input
for dict_create/3. This predicate is normally accessed using the
functional notation. Below are some examples:
____________________________________________________________________| |
| ?- A = point{x:1, y:2}.put(_{x:3}). |
| A = point{x:3, y:2}. |
| |
| ?- A = point{x:1, y:2}.put([x=3]). |
| A = point{x:3, y:2}. |
| |
| ?- A = point{x:1, y:2}.put([x=3,z=0]). |
||A_=_point{x:3,_y:2,_z:0}._________________________________________ ||
ppuutt__ddiicctt((_+_K_e_y_, _+_D_i_c_t_I_n_, _+_V_a_l_u_e_, _-_D_i_c_t_O_u_t))
_D_i_c_t_O_u_t is a new dict created by replacing or adding _K_e_y-_V_a_l_u_e to
_D_i_c_t_I_n. This predicate is normally accessed using the functional
notation. Below is an example:
____________________________________________________________________| |
| ?- A = point{x:1, y:2}.put(x, 3). |
||A_=_point{x:3,_y:2}.______________________________________________ ||
ddeell__ddiicctt((_+_K_e_y_, _+_D_i_c_t_I_n_, _?_V_a_l_u_e_, _-_D_i_c_t_O_u_t))
True when _K_e_y-_V_a_l_u_e is in _D_i_c_t_I_n and _D_i_c_t_O_u_t contains all
associations of _D_i_c_t_I_n except for _K_e_y.
_+_S_e_l_e_c_t :< _+_F_r_o_m _[_s_e_m_i_d_e_t_]
True when _S_e_l_e_c_t is a `sub dict' of _F_r_o_m: the tages must unify
and all keys in _S_e_l_e_c_t must appear with unifying values in _F_r_o_m.
_F_r_o_m may contain keys that are not in _S_e_l_e_c_t. This operation
is frequently used to _m_a_t_c_h a dict and at the same time extract
relevant values from it. For example:
____________________________________________________________________| |
| plot(Dict, On) :- |
| _{x:X, y:Y, z:Z} :< Dict, !, |
| plot_xyz(X, Y, Z, On). |
| plot(Dict, On) :- |
| _{x:X, y:Y} :< Dict, !, |
||________plot_xy(X,_Y,_On).________________________________________ ||
The goal Select :< From is equivalent to select_dict(_S_e_l_e_c_t_, _F_r_o_m_,
__).
sseelleecctt__ddiicctt((_+_S_e_l_e_c_t_, _+_F_r_o_m_, _-_R_e_s_t)) _[_s_e_m_i_d_e_t_]
True when the tags of _S_e_l_e_c_t and _F_r_o_m have been unified, all keys
in _S_e_l_e_c_t appear in _F_r_o_m and the corresponding values have been
unified. The key-value pairs of _F_r_o_m that do not appear in _S_e_l_e_c_t
are used to form an anonymous dict, which us unified with _R_e_s_t.
For example:
____________________________________________________________________| |
| ?- select_dict(P{x:0, y:Y}, point{x:0, y:1, z:2}, R). |
| P = point, |
| Y = 1, |
||R_=__G1705{z:2}.__________________________________________________ ||
See also select_dict/2 to ignore _R_e_s_t and >:</2 for a symmetric
partial unification of two dicts.
_+_D_i_c_t_1 >:< _+_D_i_c_t_2
This operator specifies a _p_a_r_t_i_a_l _u_n_i_f_i_c_a_t_i_o_n between _D_i_c_t_1 and
_D_i_c_t_2. It is true when the tags and the values associated with all
_c_o_m_m_o_n keys have been unified. The values associated to keys that
do not appear in the other dict are ignored. Partial unification
is symmetric. For example, given a list of dicts, find dicts that
represent a point with X equal to zero:
____________________________________________________________________| |
| member(Dict, List), |
||____Dict_>:<_point{x:0,_y:Y}._____________________________________ ||
See also :</2 and select_dict/3.
55..44..22..11 DDeessttrruuccttiivvee aassssiiggnnmmeenntt iinn ddiiccttss
This section describes the destructive update operations defined on
dicts. These actions can only _u_p_d_a_t_e keys and not add or remove
keys. If the requested key does not exist the predicate raises
existence_error(_k_e_y_, _K_e_y_, _D_i_c_t). Note the additional argument.
Destructive assignment is a non-logical operation and should be used
with care because identical Prolog terms may be copied or shared add
will of the system. Some of this behaviour can be avoided by adding an
additional unbound value to the dict. This prevents unwanted sharing
and ensures that copy_term/2 actually copies the dict. This pitfall is
demonstrated in the example below:
________________________________________________________________________| |
|?- A = a{a:1}, copy_term(A,B), b_set_dict(a, A, 2). |
|A = B, B = a{a:2}. |
| |
|?- A = a{a:1,dummy:_}, copy_term(A,B), b_set_dict(a, A, 2). |
|A = a{a:2, dummy:_G3195}, |
|B|=_a{a:1,_dummy:_G3391}.______________________________________________ | |
bb__sseett__ddiicctt((_+_K_e_y_, _!_D_i_c_t_, _+_V_a_l_u_e)) _[_d_e_t_]
Destructively update the value associated with _K_e_y in _D_i_c_t to
_V_a_l_u_e. The update is trailed and undone on backtracking. This
predicate raises an existence error if _K_e_y does not appear in _D_i_c_t.
The update semantics are equivalent to setarg/3 and b_setval/2.
nnbb__sseett__ddiicctt((_+_K_e_y_, _!_D_i_c_t_, _+_V_a_l_u_e)) _[_d_e_t_]
Destructively update the value associated with _K_e_y in _D_i_c_t to a
copy of _V_a_l_u_e. The update is _n_o_t undone on backtracking. This
predicate raises an existence error if _K_e_y does not appear in _D_i_c_t.
The update semantics are equivalent to nb_setarg/3 and nb_setval/2.
nnbb__lliinnkk__ddiicctt((_+_K_e_y_, _!_D_i_c_t_, _+_V_a_l_u_e)) _[_d_e_t_]
Destructively update the value associated with _K_e_y in _D_i_c_t to
_V_a_l_u_e. The update is _n_o_t undone on backtracking. This predicate
raises an existence error if _K_e_y does not appear in _D_i_c_t. The
update semantics are equivalent to b_linkarg/3 and nb_linkval/2.
Use with extreme care and consult the documentation of nb_linkval/2
before use.
55..44..33 WWhheenn ttoo uussee ddiiccttss??
Dicts are a new type in the Prolog world. They compete with several
other types and libraries. In the list below we have a closer look
at these relations. We will see that dicts are first of all a good
replacement for compound terms with a high or not clearly fixed arity,
library record and option processing.
CCoommppoouunndd tteerrmmss Compound terms with positional arguments form the
traditional way to package data in Prolog. This representation is
well understood, fast and compound terms are stored efficiently.
Compound terms are still the representation of choice, provided
that the number of arguments is low and fixed or compactness or
performance are of utmost importance.
A good example of a compound term is the representation of RDF
triples using the term rdf(_S_u_b_j_e_c_t_, _P_r_e_d_i_c_a_t_e_, _O_b_j_e_c_t) because
RDF triples are defined to have precisely these three arguments
and they are always referred to in this order. An application
processing information about persons should probably use dicts
because the information that is related to a person is not so
fixed. Typically we see first and last name. But there may
also be title, middle name, gender, date of birth, etc. The
number of arguments becomes unmanagable when using a compound term,
while adding or removing an argument leads to many changes in the
program.
LLiibbrraarryy record Using library record relieves the maintenance issues
associated with using compound terms significantly. The library
generates access and modification predicates for each field in a
compound term from a declaration. The library provides sound
access to compound terms with many arguments. One of its problems
is the verbose syntax needed to access or modify fields which
results from long names for the generated predicates and the
restriction that each field needs to be extracted with a separate
goal. Consider the example below, where the first uses library
record and the second uses dicts.
____________________________________________________________________| |
| ..., |
| person_first_name(P, FirstName), |
| person_last_name(P, LastName), |
| format('Dear ~w ~w,~n~n', [FirstName, LastName]). |
| |
| ..., |
||____format('Dear_~w_~w,~n~n',_[Dict.first_name,_Dict.last_name])._ ||
Records have a fixed number of arguments and (non-)existence of
an argument must be represented using a value that is outside the
normal domain. This lead to unnatural code. For example, suppose
our person also has a title. If we know the first name we use this
and else we use the title. The code samples below illustrate this.
____________________________________________________________________| |
| salutation(P) :- |
| person_first_name(P, FirstName), nonvar(FirstName), !, |
| person_last_name(P, LastName), |
| format('Dear ~w ~w,~n~n', [FirstName, LastName]). |
| salutation(P) :- |
| person_title(P, Title), nonvar(Title), !, |
| person_last_name(P, LastName), |
| format('Dear ~w ~w,~n~n', [Title, LastName]). |
| |
| salutation(P) :- |
| _{first_name:FirstName, last_name:LastName} :< P, !, |
| format('Dear ~w ~w,~n~n', [FirstName, LastName]). |
| salutation(P) :- |
| _{title:Title, last_name:LastName} :< P, !, |
||____format('Dear_~w_~w,~n~n',_[Title,_LastName])._________________ ||
LLiibbrraarryy assoc This library implements a balanced binary tree. Dicts
can replace the use of this library if the association is fairly
static (i.e., there are few update operations), all keys are
atoms or (small) integers and the code does not rely on ordered
operations.
LLiibbrraarryy option Option lists are introduced by ISO Prolog, for example
for read_term/3, open/4, etc. The option library provides
operations to extract options, merge options lists, etc. Dicts are
well suited to replace option lists because they are cheaper, can
be processed faster and have a more natural syntax.
LLiibbrraarryy pairs This library is commonly used to process large name-
value associations. In many cases this concerns short-lived
datastructures that result from findall/3, maplist/3 and similar
list processing predicates. Dicts may play a role if frequent
random key lookups are needed on the resulting association. For
example, the skeleton `create a pairs list', `use list_to_assoc/2
to create an assoc', followed by frequent usage of get_assoc/2 to
extract key values can be replaced using dict_pairs/2and the dict
access functions. Using dicts in this scenario is more efficient
and provides a more pleasant access syntax.
55..44..44 AA mmoottiivvaattiioonn ffoorr ddiiccttss aass pprriimmaarryy cciittiizzeennss
Dicts, or key-value associations, are a common data structure. A good
old example are _p_r_o_p_e_r_t_y _l_i_s_t_s as found in Lisp, while a good recent
example is formed by JavaScript _o_b_j_e_c_t_s. Traditional Prolog does not
offer native property lists. As a result, people are using a wide
range of data structures for key-value associations:
o Using compound terms and positional arguments, e.g., point(1,2).
o Using compound terms with library record, which generates
access predicates for a term using positional arguments from a
description.
o Using lists of terms Name=Value, Name-Value, Name:Value or
Name(Value).
o Using library assoc which represents the associations as a balanced
binary tree.
This situation is unfortunate. Each of these have their advantages
and disadvantages. E.g., compound terms are compact and fast, but
inflexible and using positional arguments quickly breaks down. Library
record fixes this, but the syntax is considered hard to use. Lists are
flexible, but expensive and the alternative key-value representations
that are used complicate the matter even more. Library assoc
allows for efficient manipulation of changing associations, but the
syntactical representation of an assoc is complex, which makes them
unsuitable for e.g., _o_p_t_i_o_n_s _l_i_s_t_s as seen in predicates such as
open/4.
55..44..55 IImmpplleemmeennttaattiioonn nnootteess aabboouutt ddiiccttss
Although dicts are designed as an abstract data type and we
deliberately reserve the possibility to change the representation and
even use multiple representations, this section describes the current
implementation.
Dicts are currently represented as a compound term using the functor
`dict`. The first argument is the tag. The remaining arguments create
an array of sorted key-value pairs. This representation is compact and
guarantees good locality. Lookup is order log(N), while adding values,
deleting values and merging with other dicts has order N. The main
disadvantage is that changing values in large dicts is costly, both in
terms of memory and time.
Future versions may share keys in a separate structure or use a binary
trees to allow for cheaper updates. One of the issues is that the
representation must either be kept cannonical or unification must be
extended to compensate for alternate representations.
55..55 IInntteeggrraattiioonn ooff ssttrriinnggss aanndd ddiiccttss iinn tthhee lliibbrraarriieess
While lacking proper string support and dicts when designed, many
predicates and libraries use interfaces that must be classified as
suboptimal. Changing these interfaces is likely to break much more
code than the changes described in this chapter. This section
discusses some of these issues. Roughly, there are two cases.
There where key-value associations or text is required as _i_n_p_u_t, we
can facilitate the new features by overloading the accepted types.
Interfaces that produce text or key-value associations as their _o_u_t_p_u_t
however must make a choice. We plan to resolve that using either
options that specify the desired output or provide an alternative
library.
55..55..11 DDiiccttss aanndd ooppttiioonn pprroocceessssiinngg
System predicates and predicates based on library options process dicts
as an alternative to traditional option lists.
55..55..22 DDiiccttss iinn ccoorree ddaattaa ssttrruuccttuurreess
Some predicates now produce structured data using compound terms and
access predicates. We consider migrating these to dicts. Below is a
tentative list of candidates. Portable code should use the provided
access predicates and not rely on the term representation.
o Stream position terms
o Date and time records
55..55..33 DDiiccttss,, ssttrriinnggss aanndd XXMMLL
The XML representation could benefit significantly from the new
features. In due time we plan to provide an set of alternative
predicates and options to existing predicates that can be used to
exploit the new types. We propose the following changes to the data
representation:
o The attribute list of the element(_N_a_m_e_, _A_t_t_r_i_b_u_t_e_s_, _C_o_n_t_e_n_t) will
become a dict.
o Attribute values will remain atoms
o CDATA in element content will be represented as strings
55..55..44 DDiiccttss,, ssttrriinnggss aanndd JJSSOONN
The JSON representation could benefit significantly from the new
features. In due time we plan to provide an set of alternative
predicates and options to existing predicates that can be used to
exploit the new types. We propose the following changes to the data
representation:
o Instead of using json(_K_e_y_V_a_l_u_e_L_i_s_t), the new interface will
translate JSON objects to a dict. The type of this dict will be
json.
o String values in JSON will be mapped to strings.
o The values true, false and null will be represented as atoms.
55..55..55 DDiiccttss,, ssttrriinnggss aanndd HHTTTTPP
The HTTP library and related data structures would profit from
exploiting dicts. Below is a list of data structures that might be
affected by future changes. Code can be made more robust by using the
option library functions for extracting values from these structures.
o The HTTP request structure
o The HTTP parameter interface
o URI components
o Attributes to HTML elements
55..66 RReemmaaiinniinngg iissssuueess
The changes and extensions described in this chapter resolve a many
limitations of the Prolog language we have encountered. Still, there
are remaining issues for which we seek solutions in the future.
TTeexxtt rreepprreesseennttaattiioonn Although strings resolve this issue for many
applications, we are still faced with the representation of text as
lists of characters which we need for parsing using DCGs. The
ISO standard provides two representations, a list of _c_h_a_r_a_c_t_e_r _c_o_d_e_s
(`codes' for short) and a list of _o_n_e_-_c_h_a_r_a_c_t_e_r _a_t_o_m_s (`chars' for
short). There are two sets of predicates, named *_code(s) and
*_char(s) that provide the same functionality (e.g., atom_codes/2 and
atom_chars/2) using their own representation of characters. Codes
can be used in arithmetic expressions, while chars are more readable.
Neither can unambiguously be interpreted as a representation for text
because codes can be interpreted as a list of integers and chars as a
list of atoms.
We have not found a convincing way out. One of the options could
be the introduction of a `char' type. This type can be allowed in
arithmetic and with the 0'<char> syntax we have a concrete syntax for
it.
AArrrraayyss Although lists are generally a much cleaner alternative for
Prolog, real arrays with direct access to elements can be useful for
particular tasks. The problem of integrating arrays is twofold. First
of all, there is no good one-size-fits-all data representation for
arrays. Many tasks that involve arrays require _m_u_t_a_b_l_e arrays, while
Prolog data is immutable by design. Second, standard Prolog has no
good syntax support for arrays. SWI-Prolog version 7 has `block
operators' (see section 5.3.3) which can resolve the syntactic issues.
Block operators have been adopted by YAP.
LLaammbbddaa eexxpprreessssiioonnss Although many alternatives have been proposed, we
still feel uneasy with them.
LLooooppss Many people have explored routes to avoid the need for recursion
in Prolog for simple iterations over data. ECLiPSe have proposed
_l_o_g_i_c_a_l _l_o_o_p_s [Schimpf, 2002], while B-Prolog introduced _d_e_c_l_a_r_a_t_i_v_e
_l_o_o_p_s and _l_i_s_t _c_o_m_p_r_e_h_e_n_s_i_o_n. The above mentioned lambda expressions,
combined with maplist/2 can achieve similar results.
CChhaapptteerr 66.. MMOODDUULLEESS
A Prolog module is a collection of predicates which defines a public
interface by means of a set of provided predicates and operators.
Prolog modules are defined by an ISO standard. Unfortunately, the
standard is considered a failure and, as far as we are aware, not
implemented by any concrete Prolog implementation. The SWI-Prolog
module system syntax is derived from the Quintus Prolog module system.
The Quintus module system has been the starting point for the module
systems of a number of mainstream Prolog systems, such as SICStus,
Ciao and YAP. The underlying primitives of the SWI-Prolog module system
differ from the mentioned systems. These primitives allow for multiple
modules in a file, hierarchical modules, emulation of other modules
interfaces, etc.
This chapter motivates and describes the SWI-Prolog module system.
Novices can start using the module system after reading section 6.2
and section 6.3. The primitives defined in these sections suffice for
basic usage until one needs to export predicates that call or manage
other predicates dynamically (e.g., use call/1, assert/1, etc.). Such
predicates are called _m_e_t_a _p_r_e_d_i_c_a_t_e_s and are discussed in section 6.4.
Section 6.5 to section 6.8 describe more advanced issues. Starting
with section 6.9, we discuss more low-level aspects of the SWI-Prolog
module system that are used to implement the visible module system, and
can be used to build other code reuse mechanisms.
66..11 WWhhyy UUssee MMoodduulleess??
In classic Prolog systems, all predicates are organised in a single
namespace and any predicate can call any predicate. Because each
predicate in a file can be called from anywhere in the program,
it becomes very hard to find the dependencies and enhance the
implementation of a predicate without risking to break the overall
application. This is true for any language, but even worse for Prolog
due to its frequent need for `helper predicates'.
A Prolog module encapsulates a set of predicates and defines an
_i_n_t_e_r_f_a_c_e. Modules can import other modules, which makes the
dependencies explicit. Given explicit dependencies and a well-defined
interface, it becomes much easier to change the internal organisation
of a module without breaking the overall application.
Explicit dependencies can also be used by the development environment.
The SWI-Prolog library prolog_xref can be used to analyse completeness
and consistency of modules. This library is used by the built-in
editor PceEmacs for syntax highlighting, jump-to-definition, etc.
66..22 DDeeffiinniinngg aa MMoodduullee
Modules are normally created by loading a _m_o_d_u_l_e _f_i_l_e. A module file
is a file holding a module/2 directive as its first term. The module/2
directive declares the name and the public (i.e., externally visible)
predicates of the module. The rest of the file is loaded into the
module. Below is an example of a module file, defining reverse/2 and
hiding the helper predicate rev/3. A module can use all built-in
predicates and, by default, cannot redefine system predicates.
________________________________________________________________________| |
|:- module(reverse, [reverse/2]). |
| |
|reverse(List1, List2) :- |
| rev(List1, [], List2). |
| |
|rev([], List, List). |
|rev([Head|List1], List2, List3) :- |
||_______rev(List1,_[Head|List2],_List3)._______________________________ ||
The module is named reverse. Typically, the name of a module is
the same as the name of the file by which it is defined without the
filename extension, but this naming is not enforced. Modules are
organised in a single and flat namespace and therefore module names
must be chosen with some care to avoid conflicts. As we will see,
typical applications of the module system rarely use the name of a
module explicitly in the source text.
::-- mmoodduullee((_+_M_o_d_u_l_e_, _+_P_u_b_l_i_c_L_i_s_t))
This directive can only be used as the first term of a source
file. It declares the file to be a _m_o_d_u_l_e _f_i_l_e, defining a
module named _M_o_d_u_l_e. Note that a module name is an atom. The
module exports the predicates of _P_u_b_l_i_c_L_i_s_t. _P_u_b_l_i_c_L_i_s_t is a
list of predicate indicators (name/arity or name//arity pairs) or
operator declarations using the format op(_P_r_e_c_e_d_e_n_c_e_, _T_y_p_e_, _N_a_m_e).
Operators defined in the export list are available inside the
module as well as to modules importing this module. See also
section 4.24.
Compatible to Ciao Prolog, if _M_o_d_u_l_e is unbound, it is unified with
the basename without extension of the file being loaded.
::-- mmoodduullee((_+_M_o_d_u_l_e_, _+_P_u_b_l_i_c_L_i_s_t_, _+_D_i_a_l_e_c_t))
Same as module/2. The additional _D_i_a_l_e_c_t argument provides a list
of _l_a_n_g_u_a_g_e _o_p_t_i_o_n_s. Each atom in the list _D_i_a_l_e_c_t is mapped to a
use_module/1 goal as given below. See also section 14. The third
argument is supported for compatibility with the Prolog Commons
project.
____________________________________________________________________| |
||:-_use_module(library(dialect/LangOption))._______________________ ||
66..33 IImmppoorrttiinngg PPrreeddiiccaatteess iinnttoo aa MMoodduullee
Predicates can be added to a module by _i_m_p_o_r_t_i_n_g them from another
module. Importing adds predicates to the namespace of a module. An
imported predicate can be called exactly the same as a locally defined
predicate, although its implementation remains part of the module in
which it has been defined.
Importing the predicates from another module is achieved using the
directives use_module/1 or use_module/2. Note that both directives take
_f_i_l_e_n_a_m_e_(_s_) as arguments. That is, modules are imported based on their
filename rather than their module name.
uussee__mmoodduullee((_+_F_i_l_e_s))
Load the file(s) specified with _F_i_l_e_s just like ensure_loaded/1.
The files must all be module files. All exported predicates
from the loaded files are imported into the module from which
this predicate is called. This predicate is equivalent to
ensure_loaded/1, except that it raises an error if _F_i_l_e_s are not
module files.
The imported predicates act as _w_e_a_k _s_y_m_b_o_l_s in the module into
which they are imported. This implies that a local definition of
a predicate overrides (clobbers) the imported definition. If the
flag warn_override_implicit_importis true (default), a warning is
printed. Below is an example of a module that uses library(lists),
but redefines flatten/2, giving it a totally different meaning:
____________________________________________________________________| |
| :- module(shapes, []). |
| :- use_module(library(lists)). |
| |
| flatten(cube, square). |
||flatten(ball,_circle).____________________________________________ ||
Loading the above file prints the following message:
____________________________________________________________________| |
| Warning: /home/janw/Bugs/Import/t.pl:5: |
| Local definition of shapes:flatten/2 |
||________overrides_weak_import_from_lists__________________________ ||
This warning can be avoided by (1) using use_module/2 to only
import the predicates from the lists library that are actually used
in the `shapes' module, (2) using the except([flatten/2]) option
of use_module/2, (3) use :- abolish(flatten/2). before the local
definition or (4) setting warn_override_implicit_import to false.
Globally disabling this warning is only recommended if overriding
imported predicates is common as a result of design choices or the
program is ported from a system that silently overrides imported
predicates.
Note that it is always an error to import two modules with
use_module/1 that export the same predicate. Such conflicts must
be resolved with use_module/2 as described above.
uussee__mmoodduullee((_+_F_i_l_e_, _+_I_m_p_o_r_t_L_i_s_t))
Load _F_i_l_e, which must be a module file, and import the predicates
as specified by _I_m_p_o_r_t_L_i_s_t. _I_m_p_o_r_t_L_i_s_t is a list of predicate
indicators specifying the predicates that will be imported
from the loaded module. _I_m_p_o_r_t_L_i_s_t also allows for renaming
or import-everything-except. See also the import option of
load_files/2. The first example below loads member/2 from the
lists library and append/2 under the name list_concat, which is
how this predicate is named in YAP. The second example loads all
exports from library option except for meta_options/3. These
renaming facilities are generally used to deal with portability
issues with as few changes as possible to the actual code. See
also section 14 and section 6.7.
____________________________________________________________________| |
| :- use_module(library(lists), [ member/2, |
| append/2 as list_concat |
| ]). |
||:-_use_module(library(option),_except([meta_options/3]))._________ ||
The module/2, use_module/1 and use_module/2 directives are sufficient
to partition a simple Prolog program into modules. The SWI-Prolog
graphical cross-referencing tool gxref/0 can be used to analyse the
dependencies between non-module files and propose module declarations
for each file.
66..44 DDeeffiinniinngg aa mmeettaa--pprreeddiiccaattee
A meta-predicate is a predicate that calls other predicates
dynamically, modifies a predicate, or reasons about properties of
a predicate. Such predicates use either a compound term or a
_p_r_e_d_i_c_a_t_e _i_n_d_i_c_a_t_o_r to describe the predicate they address, e.g.,
assert(name(jan)) or abolish(name/1). With modules, this simple
schema no longer works as each module defines its own mapping from
name+arity to predicate. This is resolved by wrapping the original
description in a term <_m_o_d_u_l_e>:<_t_e_r_m>, e.g., assert(person:name(jan)) or
abolish(person:name/1).
Of course, when calling assert/1 from inside a module, we expect to
assert to a predicate local to this module. In other words, we do
not wish to provide this :/2 wrapper by hand. The meta_predicate/1
directive tells the compiler that certain arguments are terms that will
be used to look up a predicate and thus need to be wrapped (qualified)
with <_m_o_d_u_l_e>:<_t_e_r_m>, unless they are already wrapped.
In the example below, we use this to define maplist/3 inside a
module. The argument `2' in the meta_predicate declaration means that
the argument is module-sensitive and refers to a predicate with an
arity that is two more than the term that is passed in. The compiler
only distinguishes the values 0..9 and :, which denote module-sensitive
arguments, from +, - and ?, which denote _m_o_d_e_s. The values 0..9
are used by the _c_r_o_s_s_-_r_e_f_e_r_e_n_c_e_r and syntax highlighting. Note that
the helper predicate maplist_/3 does not need to be declared as a
meta-predicate because the maplist/3 wrapper already ensures that _G_o_a_l
is qualified as <_m_o_d_u_l_e>:_G_o_a_l. See the description of meta_predicate/1
for details.
________________________________________________________________________| |
|:- module(maplist, [maplist/3]). |
|:- meta_predicate maplist(2, ?, ?). |
| |
|%% maplist(:Goal, +List1, ?List2) |
|% |
|% True if Goal can successfully be applied to all |
|% successive pairs of elements from List1 and List2. |
| |
|maplist(Goal, L1, L2) :- |
| maplist_(L1, L2, Goal). |
| |
|maplist_([], [], _). |
|maplist_([H0|T0], [H|T], Goal) :- |
| call(Goal, H0, H), |
||_______maplist_(T0,_T,_Goal)._________________________________________ ||
mmeettaa__pprreeddiiccaattee _+_H_e_a_d_, _._._.
Define the predicates referenced by the comma-separated list _H_e_a_d
as _m_e_t_a_-_p_r_e_d_i_c_a_t_e_s. Each argument of each head is a _m_e_t_a _a_r_g_u_m_e_n_t
_s_p_e_c_i_f_i_e_r. Defined specifiers are given below. Only 0..9, : and ^
are interpreted; the mode declarations +, - and ? are ignored.
00....99
The argument is a term that is used to reference a predicate
with N more arguments than the given argument term. For
example: call(0) or maplist(1, +).
:
The argument is module-sensitive, but does not directly refer
to a predicate. For example: consult(:).
-
The argument is not module-sensitive and unbound on entry.
?
The argument is not module-sensitive and the mode is unspeci-
fied.
*
The argument is not module-sensitive and the mode is unspeci-
fied. The specification * is equivalent to ?. It is accepted
for compatibility reasons. The predicate predicate_property/2
reports arguments declared using * with ?.
+
The argument is not module-sensitive and bound (i.e., nonvar)
on entry.
^
This extension is used to denote the possibly ^-annotated goal
of setof/3, bagof/3, aggregate/3 and aggregate/4. It is
processed similar to `0', but leaving the ^/2 intact.
//
The argument is a DCG body. See phrase/3.
Each argument that is module-sensitive (i.e., marked 0..9, : or ^)
is qualified with the context module of the caller if it is not
already qualified. The implementation ensures that the argument is
passed as <_m_o_d_u_l_e>:<_t_e_r_m>, where <_m_o_d_u_l_e> is an atom denoting the
name of a module and <_t_e_r_m> itself is not a :/2 term where the
first argument is an atom. Below is a simple declaration and a
number of queries.
____________________________________________________________________| |
| :- meta_predicate |
| meta(0, +). |
| |
| meta(Module:Term, _Arg) :- |
||________format('Module=~w,_Term_=_~q~n',_[Module,_Term])._________ ||
____________________________________________________________________| |
| ?- meta(test, x). |
| Module=user, Term = test |
| ?- meta(m1:test, x). |
| Module=m1, Term = test |
| ?- m2:meta(test, x). |
| Module=m2, Term = test |
| ?- m1:meta(m2:test, x). |
| Module=m2, Term = test |
| ?- meta(m1:m2:test, x). |
| Module=m2, Term = test |
| ?- meta(m1:42:test, x). |
||Module=42,_Term_=_test____________________________________________ ||
The meta_predicate/1 declaration is the portable mechanism
for defining meta-predicates and replaces the old SWI-Prolog
specific mechanism provided by the deprecated predicates
module_transparent/1, context_module/1 and strip_module/3. See also
section 6.15.
66..55 OOvveerrrruulliinngg MMoodduullee BBoouunnddaarriieess
The module system described so far is sufficient to distribute programs
over multiple modules. There are, however, cases in which we would
like to be able to overrule this schema and explicitly call a predicate
in some module or assert explicitly into some module. Calling in
a particular module is useful for debugging from the user's top
level or to access multiple implementations of the same interface
that reside in multiple modules. Accessing the same interface from
multiple modules cannot be achieved using importing because importing a
predicate with the same name and arity from two modules results in a
name conflict. Asserting in a different module can be used to create
models dynamically in a new module. See section 6.12.
Direct addressing of modules is achieved using a :/2 explicitly in a
program and relies on the module qualification mechanism described in
section 6.4. Here are a few examples:
________________________________________________________________________| |
|?- assert(world:done). % asserts done/0 into module world |
|?- world:asserta(done). % the same |
|?-|world:done.___________%_calls_done/0_in_module_world________________ | |
Note that the second example is the same due to the Prolog flag
colon_sets_calling_context. The system predicate asserta/1 is called
in the module world, which is possible because system predicates are
_v_i_s_i_b_l_e in all modules. At the same time, the _c_a_l_l_i_n_g _c_o_n_t_e_x_t is
set to world. Because meta arguments are qualified with the calling
context, the resulting call is the same as the first example.
66..55..11 EExxpplliicciitt mmaanniippuullaattiioonn ooff tthhee ccaalllliinngg ccoonntteexxtt
Quintus' derived module systems have no means to separate the
lookup module (for finding predicates) from the calling context (for
qualifying meta arguments). Some other Prolog implementations (e.g.,
ECLiPSe and IF/Proloog) distinguish these operations, using @/2 for
setting the calling context of a goal. This is provided by SWI-Prolog,
currently mainly to support compatibility layers.
@@((_:_G_o_a_l_, _+_M_o_d_u_l_e))
Execute _G_o_a_l, setting the calling context to _M_o_d_u_l_e. Setting
the calling context affects meta-predicates, for which meta
arguments are qualified with _M_o_d_u_l_e and transparent predicates
(see module_transparent/1). It has no implications for other
predicates.
For example, the code asserta(done)@world is the same as
asserta(world:done). Unlike in world:asserta(done), asserta/1 is
resolved in the current module rather than the module world. This
makes no difference for system predicates, but usually does make a
difference for user predicates.
Not that SWI-Prolog does not define @ as an operator. Some systems
define this construct using op(900, xfx, @).
66..66 IInntteerraaccttiinngg wwiitthh mmoodduulleess ffrroomm tthhee ttoopp lleevveell
Debugging often requires interaction with predicates that reside in
modules: running them, setting spy points on them, etc. This can
be achieved using the <_m_o_d_u_l_e>:<_t_e_r_m> construct explicitly as described
above. In SWI-Prolog, you may also wish to omit the module
qualification. Setting a spy point (spy/1) on a plain predicate sets
a spy point on any predicate with that name in any module. Editing
(edit/1) or calling an unqualified predicate invokes the DWIM (Do
What I Mean) mechanism, which generally suggests the correct qualified
query.
Mainly for compatibility, we provide module/1 to switch the module with
which the interactive top level interacts:
mmoodduullee((_+_M_o_d_u_l_e))
The call module(_M_o_d_u_l_e) may be used to switch the default working
module for the interactive top level (see prolog/0). This may be
used when debugging a module. The example below lists the clauses
of file_of_label/2 in the module tex.
____________________________________________________________________| |
| 1 ?- module(tex). |
| true. |
| tex: 2 ?- listing(file_of_label/2). |
||..._______________________________________________________________ ||
66..77 CCoommppoossiinngg mmoodduulleess ffrroomm ootthheerr mmoodduulleess
The predicates in this section are intended to create new modules
from the content of other modules. Below is an example to define
a _c_o_m_p_o_s_i_t_e module. The example exports all public predicates of
module_1, module_2 and module_3, pred/1 from module_4, all predicates
from module_5 except do_not_use/1 and all predicates from module_6 while
renaming pred/1 into mypred/1.
________________________________________________________________________| |
|:- module(my_composite, []). |
|:- reexport([ module_1, |
| module_2, |
| module_3 |
| ]). |
|:- reexport(module_4, [ pred/1 ]). |
|:- reexport(module_5, except([do_not_use/1])). |
|:-|reexport(module_6,_except([pred/1_as_mypred]))._____________________ | |
rreeeexxppoorrtt((_+_F_i_l_e_s))
Load and import predicates as use_module/1 and re-export all
imported predicates. The reexport declarations must immediately
follow the module declaration.
rreeeexxppoorrtt((_+_F_i_l_e_, _+_I_m_p_o_r_t))
Import from _F_i_l_e as use_module/2 and re-export the imported
predicates. The reexport declarations must immediately follow the
module declaration.
66..88 OOppeerraattoorrss aanndd mmoodduulleess
Operators (section 4.24) are local to modules, where the initial
table behaves as if it is copied from the module user (see
section 6.10). A specific operator can be disabled inside a module
using :- op(0, Type, Name). Inheritance from the public table can be
restored using :- op(-1, Type, Name).
In addition to using the op/3 directive, operators can be declared in
the module/2 directive as shown below. Such operator declarations
are visible inside the module, and importing such a module makes
the operators visible in the target module. Exporting operators is
typically used by modules that implement sub-languages such as chr (see
chapter 8). The example below is copied from the library clpfd.
________________________________________________________________________| |
|:- module(clpfd, |
| [ op(760, yfx, #<==>), |
| op(750, xfy, #==>), |
| op(750, yfx, #<==), |
| op(740, yfx, #\/), |
| ... |
| (#<==>)/2, |
| (#==>)/2, |
| (#<==)/2, |
| (#\/)/2, |
| ... |
||_________]).__________________________________________________________ ||
66..99 DDyynnaammiicc iimmppoorrttiinngg uussiinngg iimmppoorrtt mmoodduulleess
Until now we discussed the public module interface that is, at least
to some extent, portable between Prolog implementations with a module
system that is derived from Quintus Prolog. The remainder of this
chapter describes the underlying mechanisms that can be used to emulate
other module systems or implement other code-reuse mechanisms.
In addition to built-in predicates, imported predicates and locally
defined predicates, SWI-Prolog modules can also call predicates from
its _i_m_p_o_r_t _m_o_d_u_l_e_s. Each module has a (possibly empty) list of import
modules. In the default setup, each new module has a single import
module, which is user for all normal user modules and system for all
system library modules. Module user imports from system where all
built-in predicates reside. These special modules are described in
more detail in section 6.10.
The list of import modules can be manipulated and queried using the
following predicates, as well as using set_module/1.
iimmppoorrtt__mmoodduullee((_+_M_o_d_u_l_e_, _-_I_m_p_o_r_t)) _[_n_o_n_d_e_t_]
True if _M_o_d_u_l_e inherits directly from _I_m_p_o_r_t. All normal
modules only import from user, which imports from system. The
predicates add_import_module/3 and delete_import_module/2 can be
used to manipulate the import list. See also default_module/2.
ddeeffaauulltt__mmoodduullee((_+_M_o_d_u_l_e_, _-_D_e_f_a_u_l_t)) _[_m_u_l_t_i_]
True if predicates and operators in _D_e_f_a_u_l_t are visible in _M_o_d_u_l_e.
Modules are returned in the same search order used for predicates
and operators. That is, _D_e_f_a_u_l_t is first unified with _M_o_d_u_l_e,
followed by the depth-first transitive closure of import_module/2.
aadddd__iimmppoorrtt__mmoodduullee((_+_M_o_d_u_l_e_, _+_I_m_p_o_r_t_, _+_S_t_a_r_t_O_r_E_n_d))
If _I_m_p_o_r_t is not already an import module for _M_o_d_u_l_e, add it to
this list at the start or end depending on _S_t_a_r_t_O_r_E_n_d. See also
import_module/2 and delete_import_module/2.
ddeelleettee__iimmppoorrtt__mmoodduullee((_+_M_o_d_u_l_e_, _+_I_m_p_o_r_t))
Delete _I_m_p_o_r_t from the list of import modules for _M_o_d_u_l_e. Fails
silently if _I_m_p_o_r_t is not in the list.
One usage scenario of import modules is to define a module that is a
copy of another, but where one or more predicates have an alternative
definition.
66..1100 RReesseerrvveedd MMoodduulleess aanndd uussiinngg tthhee ``uusseerr'' mmoodduullee
As mentioned above, SWI-Prolog contains two special modules. The
first one is the module system. This module contains all built-in
predicates. Module system has no import module. The second special
module is the module user. This module forms the initial working space
of the user. Initially it is empty. The import module of module user
is system, making all built-in predicates available.
All other modules import from the module user. This implies they
can use all predicates imported into user without explicitly importing
them. If an application loads all modules from the user module using
use_module/1, one achieves a scoping system similar to the C-language,
where every module can access all exported predicates without any
special precautions.
66..1111 AAnn aalltteerrnnaattiivvee iimmppoorrtt//eexxppoorrtt iinntteerrffaaccee
The use_module/1 predicate from section 6.3 defines import and export
relations based on the filename from which a module is loaded. If
modules are created differently, such as by asserting predicates into a
new module as described in section 6.12, this interface cannot be used.
The interface below provides for import/export from modules that are
not created using a module file.
eexxppoorrtt((_+_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._.))
Add predicates to the public list of the context module. This
implies the predicate will be imported into another module if this
module is imported with use_module/[1,2]. Note that predicates are
normally exported using the directive module/2. export/1 is meant
to handle export from dynamically created modules.
iimmppoorrtt((_+_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._.))
Import predicates _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r into the current context
module. _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r must specify the source module using
the <_m_o_d_u_l_e>:<_p_i>construct. Note that predicates are normally
imported using one of the directives use_module/[1,2]. The
import/1 alternative is meant for handling imports into dynamically
created modules. See also export/1 and export_list/2.
66..1122 DDyynnaammiicc MMoodduulleess
So far, we discussed modules that were created by loading a module
file. These modules have been introduced to facilitate the development
of large applications. The modules are fully defined at load-time of
the application and normally will not change during execution. Having
the notion of a set of predicates as a self-contained world can
be attractive for other purposes as well. For example, assume an
application that can reason about multiple worlds. It is attractive
to store the data of a particular world in a module, so we extract
information from a world simply by invoking goals in this world.
Dynamic modules can easily be created. Any built-in predicate that
tries to locate a predicate in a specific module will create this
module as a side-effect if it did not yet exist. For example:
________________________________________________________________________| |
|?- assert(world_a:consistent), |
||__set_prolog_flag(world_a:unknown,_fail)._____________________________ ||
These calls create a module called `world_a' and make the call
`world_a:consistent' succeed. Undefined predicates will not raise an
exception for this module (see unknown).
Import and export from a dynamically created world can be achieved
using import/1 and export/1 or by specifying the import module as
described in section 6.9.
________________________________________________________________________| |
|?- world_b:export(solve/2). % exports solve/2 from world_b |
|?-|world_c:import(world_b:solve/2).__%_and_import_it_to_world_c________ | |
66..1133 TTrraannssppaarreenntt pprreeddiiccaatteess:: ddeeffiinniittiioonn aanndd ccoonntteexxtt mmoodduullee
_T_h_e _`_m_o_d_u_l_e_-_t_r_a_n_s_p_a_r_e_n_t_' _m_e_c_h_a_n_i_s_m _i_s _s_t_i_l_l _u_n_d_e_r_l_y_i_n_g _t_h_e _a_c_t_u_a_l
_i_m_p_l_e_m_e_n_t_a_t_i_o_n_. _D_i_r_e_c_t _u_s_a_g_e _b_y _p_r_o_g_r_a_m_m_e_r_s _i_s _d_e_p_r_e_c_a_t_e_d_. _P_l_e_a_s_e _u_s_e
meta_predicate/1 _t_o _d_e_a_l _w_i_t_h _m_e_t_a_-_p_r_e_d_i_c_a_t_e_s_.
The qualification of module-sensitive arguments described in
section 6.4 is realised using _t_r_a_n_s_p_a_r_e_n_t predicates. It is now
deprecated to use this mechanism directly. However, studying the
underlying mechanism helps to understand SWI-Prolog's modules. In some
respect, the transparent mechanism is more powerful than meta-predicate
declarations.
Each predicate of the program is assigned a module, called its
_d_e_f_i_n_i_t_i_o_n _m_o_d_u_l_e. The definition module of a predicate is always the
module in which the predicate was originally defined. Each active goal
in the Prolog system has a _c_o_n_t_e_x_t _m_o_d_u_l_e assigned to it.
The context module is used to find predicates for a Prolog term. By
default, the context module is the definition module of the predicate
running the goal. For transparent predicates, however, this is the
context module of the goal inherited from the parent goal. Below,
we implement maplist/3 using the transparent mechanism. The code of
maplist/3 and maplist_/3 is the same as in section 6.4, but now we must
declare both the main predicate and the helper as transparent to avoid
changing the context module when calling the helper.
________________________________________________________________________| |
|:- module(maplist, maplist/3). |
| |
|:- module_transparent |
| maplist/3, |
| maplist_/3. |
| |
|maplist(Goal, L1, L2) :- |
| maplist_(L1, L2, G). |
| |
|maplist_([], [], _). |
|maplist_([H0|T0], [H|T], Goal) :- |
| call(Goal, H0, H), |
||_______maplist_(T0,_T,_Goal)._________________________________________ ||
Note that _a_n_y call that translates terms into predicates is
subject to the transparent mechanism, not just the terms passed
to module-sensitive arguments. For example, the module below
counts the number of unique atoms returned as bindings for a
variable. It works as expected. If we use the directive
:- module_transparent count_atom_results/3. instead, atom_result/2 is
called wrongly in the module _c_a_l_l_i_n_g count_atom_results/3. This can
be solved using strip_module/3 to create a qualified goal and a
non-transparent helper predicate that is defined in the same module.
________________________________________________________________________| |
|:- module(count_atom_results, |
| [ count_atom_results/3 |
| ]). |
|:- meta_predicate count_atom_results(-,0,-). |
| |
|count_atom_results(A, Goal, Count) :- |
| setof(A, atom_result(A, Goal), As), !, |
| length(As, Count). |
|count_atom_results(_, _, 0). |
| |
|atom_result(Var, Goal) :- |
| call(Goal), |
||_______atom(Var)._____________________________________________________ ||
The following predicates support the module-transparent interface:
::-- mmoodduullee__ttrraannssppaarreenntt((_+_P_r_e_d_s))
_P_r_e_d_s is a comma-separated list of name/arity pairs (like
dynamic/1). Each goal associated with a transparent-declared
predicate will inherit the _c_o_n_t_e_x_t _m_o_d_u_l_e from its parent goal.
ccoonntteexxtt__mmoodduullee((_-_M_o_d_u_l_e))
Unify _M_o_d_u_l_e with the context module of the current goal.
context_module/1 itself is, of course, transparent.
ssttrriipp__mmoodduullee((_+_T_e_r_m_, _-_M_o_d_u_l_e_, _-_P_l_a_i_n))
Used in module-transparent predicates or meta-predicates to extract
the referenced module and plain term. If _T_e_r_m is a
module-qualified term, i.e. of the format _M_o_d_u_l_e:_P_l_a_i_n, _M_o_d_u_l_e and
_P_l_a_i_n are unified to these values. Otherwise, _P_l_a_i_n is unified to
_T_e_r_m and _M_o_d_u_l_e to the context module.
66..1144 MMoodduullee pprrooppeerrttiieess
The following predicates can be used to query the module system for
reflexive programming:
ccuurrrreenntt__mmoodduullee((_?_M_o_d_u_l_e)) _[_n_o_n_d_e_t_]
True if _M_o_d_u_l_e is a currently defined module. This predicate
enumerates all modules, whether loaded from a file or created
dynamically. Note that modules cannot be destroyed in the current
version of SWI-Prolog.
mmoodduullee__pprrooppeerrttyy((_?_M_o_d_u_l_e_, _?_P_r_o_p_e_r_t_y))
True if _P_r_o_p_e_r_t_y is a property of _M_o_d_u_l_e. Defined properties are:
ccllaassss((_-_C_l_a_s_s))
True when _C_l_a_s_s is the class of the module. Defined classes
are
uusseerr
Default for user-defined modules.
ssyysstteemm
Module system and modules from <_h_o_m_e>/boot.
lliibbrraarryy
Other modules from the system directories.
tteemmppoorraarryy
Module is temporary.
tteesstt
Modules that create tests.
ddeevveellooppmmeenntt
Modules that only support the development environment.
ffiillee((_?_F_i_l_e))
True if _M_o_d_u_l_e was loaded from _F_i_l_e.
lliinnee__ccoouunntt((_-_L_i_n_e))
True if _M_o_d_u_l_e was loaded from the N-th line of file.
eexxppoorrttss((_-_L_i_s_t_O_f_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_s))
True if _M_o_d_u_l_e exports the given predicates. Predicate
indicators are in canonical form (i.e., always using
name/arity and never the DCG form name//arity). Future
versions may also use the DCG form and include public
operators. See also predicate_property/2.
eexxppoorrtteedd__ooppeerraattoorrss((_-_L_i_s_t_O_f_O_p_e_r_a_t_o_r_s))
True if _M_o_d_u_l_e exports the given operators. Each exported
operator is represented as a term op(_P_r_i_,_A_s_s_o_c_,_N_a_m_e).
pprrooggrraamm__ssiizzee((_-_B_y_t_e_s))
Memory (in bytes) used for string the predicates of this
module. This figure includes the predicate header and
clauses. Future versions might give a more precise number,
including e.g., the clause index tables.
pprrooggrraamm__ssppaaccee((_-_B_y_t_e_s))
If present, this number limits the program_size. See
set_module/1.
sseett__mmoodduullee((_:_P_r_o_p_e_r_t_y))
Modify properties of the module. Currently, the following
properties may be modified:
bbaassee((_+_B_a_s_e))
Set the default import module of the current module to _M_o_d_u_l_e.
Typically, _M_o_d_u_l_e is one of user or system. See section 6.9.
ccllaassss((_+_C_l_a_s_s))
Set the class of the module. See module_property/2.
pprrooggrraamm__ssppaaccee((_+_B_y_t_e_s))
Maximum amount of memory used to store the predicates defined
inside the module. Raises a permission error if the
current usage is above the requested limit. Setting the
limit to 0 (zero) removes the limit. An attempt to
assert clauses that causes the limit to be exceeded causes
a resource_error(_p_r_o_g_r_a_m___s_p_a_c_e) exception. See assertz/1 and
module_property/2.
66..1155 CCoommppaattiibbiilliittyy ooff tthhee MMoodduullee SSyysstteemm
The SWI-Prolog module system is largely derived from the Quintus
Prolog module system, which is also adopted by SICStus, Ciao and YAP.
Originally, the mechanism for defining meta-predicates in SWI-Prolog
was based on the module_transparent/1 directive and strip_module/3.
Since 5.7.4 it supports the de-facto standard meta_predicate/1
directive for implementing meta-predicates, providing much better
compatibility.
The support for the meta_predicate/1 mechanism, however, is
considerably different. On most systems, the _c_a_l_l_e_r of a
meta-predicate is compiled differently to provide the required
<_m_o_d_u_l_e>:<_t_e_r_m> qualification. This implies that the meta-declaration
must be available to the compiler when compiling code that calls a
meta-predicate. In practice, this implies that other systems pose the
following restrictions on meta-predicates:
o Modules that provide meta-predicates for a module to be compiled
must be loaded explicitly by that module.
o The meta-predicate directives of exported predicates must follow
the module/2 directive immediately.
o After changing a meta-declaration, all modules that _c_a_l_l the
modified predicates need to be recompiled.
In SWI-Prolog, meta-predicates are also _m_o_d_u_l_e_-_t_r_a_n_s_p_a_r_e_n_t, and
qualifying the module-sensitive arguments is done inside the meta-
predicate. As a result, the caller need not be aware that it is
calling a meta-predicate and none of the above restrictions hold for
SWI-Prolog. However, code that aims at portability must obey the above
rules.
Other differences are listed below.
o If a module does not define a predicate, it is searched for in the
_i_m_p_o_r_t _m_o_d_u_l_e_s. By default, the import module of any user-defined
module is the user module. In turn, the user module imports from
the module system that provides all built-in predicates. The
auto-import hierarchy can be changed using add_import_module/3 and
delete_import_module/2.
This mechanism can be used to realise a simple object-oriented
system or a hierarchical module system.
o Operator declarations are local to a module and may be exported.
In Quintus and SICStus all operators are global. YAP and Ciao
also use local operators. SWI-Prolog provides global operator
declarations from within a module by explicitly qualifying the
operator name with the user module. I.e., operators are inherited
from the _i_m_p_o_r_t _m_o_d_u_l_e_s (see above).
____________________________________________________________________| |
||:-_op(precedence,_type,_user:(operatorname))._____________________ ||
CChhaapptteerr 77.. SSPPEECCIIAALL VVAARRIIAABBLLEESS AANNDD CCOORROOUUTTIINNIINNGG
This chapter deals with extensions primarily designed to support
constraint logic programming (CLP). The low-level attributed variable
interface defined in section 7.1 is not intended for the typical Prolog
programmer. Instead, the typical Prolog programmer should use the
coroutining predicates and the various constraint solvers built on top
of attributed variables. CHR (chapter 8) provides a general purpose
constraint handling language.
As a rule of thumb, constraint programming reduces the search space
by reordering goals and joining goals based on domain knowledge. A
typical example is constraint reasoning over integer domains. Plain
Prolog has no efficient means to deal with (integer) X >0 and X <3.
At best it could translate X >0 with uninstantiated X to between(_1_,
_i_n_f_i_n_i_t_e_, _X) and a similar primitive for X< 3. If the two are
combined it has no choice but to generate and test over this infinite
two-dimensional space. Instead, a constraint system will _d_e_l_a_y an
uninstantiated goal to X> 0. If, later, it finds a value for _X
it will execute the test. If it finds X< 3 it will combine this
knowledge to infer that X is in 1..2 (see below). If it never finds a
concrete value for _X it can be asked to _l_a_b_e_l _X and produce 1 and 2 on
backtracking. See section 12.8.
________________________________________________________________________| |
|1 ?- [library(clpfd)]. |
|... |
|true. |
| |
|2 ?- X #> 0, X #< 3. |
|X|in_1..2._____________________________________________________________ | |
Using constraints generally makes your program more _d_e_c_l_a_r_a_t_i_v_e. There
are some caveats though:
o Constraints and cuts do not merge well. A cut after a goal that is
delayed prunes the search space before the condition is true.
o Term-copying operations (assert/1, retract/2, findall/3,
copy_term/2, etc.) generally also copy constraints. The
effect varies from ok, silent copying of huge constraint networks
to violations of the internal consistency of constraint networks.
As a rule of thumb, copying terms holding attributes must be
deprecated.
77..11 AAttttrriibbuutteedd vvaarriiaabblleess
_A_t_t_r_i_b_u_t_e_d _v_a_r_i_a_b_l_e_s provide a technique for extending the Prolog
unification algorithm [Holzbaur, 1992] by hooking the binding of
attributed variables. There is no consensus in the Prolog community
on the exact definition and interface to attributed variables. The
SWI-Prolog interface is identical to the one realised by Bart Demoen
for hProlog [Demoen, 2002]. This interface is simple and available on
all Prolog systems that can run the Leuven CHR system (see chapter 8
and the Leuven CHR page).
Binding an attributed variable schedules a goal to be executed at
the first possible opportunity. In the current implementation the
hooks are executed immediately after a successful unification of the
clause-head or successful completion of a foreign language (built-in)
predicate. Each attribute is associated to a module, and the hook
(attr_unify_hook/2) is executed in this module. The example below
realises a very simple and incomplete finite domain reasoner:
________________________________________________________________________| |
|:- module(domain, |
| [ domain/2 % Var, ?Domain |
| ]). |
|:- use_module(library(ordsets)). |
| |
|domain(X, Dom) :- |
| var(Dom), !, |
| get_attr(X, domain, Dom). |
|domain(X, List) :- |
| list_to_ord_set(List, Domain), |
| put_attr(Y, domain, Domain), |
| X = Y. |
| |
|% An attributed variable with attribute value Domain has been |
|% assigned the value Y |
| |
|attr_unify_hook(Domain, Y) :- |
| ( get_attr(Y, domain, Dom2) |
| -> ord_intersection(Domain, Dom2, NewDomain), |
| ( NewDomain == [] |
| -> fail |
| ; NewDomain = [Value] |
| -> Y = Value |
| ; put_attr(Y, domain, NewDomain) |
| ) |
| ; var(Y) |
| -> put_attr( Y, domain, Domain ) |
| ; ord_memberchk(Y, Domain) |
| ). |
| |
|% Translate attributes from this module to residual goals |
| |
|attribute_goals(X) --> |
| { get_attr(X, domain, List) }, |
||_______[domain(X,_List)]._____________________________________________ ||
Before explaining the code we give some example queries:
?- domain(X, [a,b]), X = c fail
?- domain(X, [a,b]), domain(X, [a,c]). X = a
?- domain(X, [a,b,c]), domain(X, [a,c]). domain(X, [a, c])
The predicate domain/2 fetches (first clause) or assigns (second
clause) the variable a _d_o_m_a_i_n, a set of values the variable can
be unified with. In the second clause, domain/2 first associates
the domain with a fresh variable (Y) and then unifies X to this
variable to deal with the possibility that X already has a domain.
The predicate attr_unify_hook/2 (see below) is a hook called after a
variable with a domain is assigned a value. In the simple case where
the variable is bound to a concrete value, we simply check whether this
value is in the domain. Otherwise we take the intersection of the
domains and either fail if the intersection is empty (first example),
assign the value if there is only one value in the intersection
(second example), or assign the intersection as the new domain of the
variable (third example). The nonterminal attribute_goals/3 is used
to translate remaining attributes to user-readable goals that, when
executed, reinstate these attributes.
77..11..11 AAttttrriibbuuttee mmaanniippuullaattiioonn pprreeddiiccaatteess
aattttvvaarr((_@_T_e_r_m))
Succeeds if _T_e_r_m is an attributed variable. Note that var/1 also
succeeds on attributed variables. Attributed variables are created
with put_attr/3.
ppuutt__aattttrr((_+_V_a_r_, _+_M_o_d_u_l_e_, _+_V_a_l_u_e))
If _V_a_r is a variable or attributed variable, set the value for
the attribute named _M_o_d_u_l_e to _V_a_l_u_e. If an attribute with this
name is already associated with _V_a_r, the old value is replaced.
Backtracking will restore the old value (i.e., an attribute is
a mutable term; see also setarg/3). This predicate raises a
representation error if _V_a_r is not a variable and a type error if
_M_o_d_u_l_e is not an atom.
ggeett__aattttrr((_+_V_a_r_, _+_M_o_d_u_l_e_, _-_V_a_l_u_e))
Request the current _v_a_l_u_e for the attribute named _M_o_d_u_l_e. If
_V_a_r is not an attributed variable or the named attribute is not
associated to _V_a_r this predicate fails silently. If _M_o_d_u_l_e is not
an atom, a type error is raised.
ddeell__aattttrr((_+_V_a_r_, _+_M_o_d_u_l_e))
Delete the named attribute. If _V_a_r loses its last attribute it
is transformed back into a traditional Prolog variable. If _M_o_d_u_l_e
is not an atom, a type error is raised. In all other cases this
predicate succeeds regardless of whether or not the named attribute
is present.
77..11..22 AAttttrriibbuutteedd vvaarriiaabbllee hhooookkss
Attribute names are linked to modules. This means that certain
operations on attributed variables cause _h_o_o_k_s to be called in the
module whose name matches the attribute name.
aattttrr__uunniiffyy__hhooookk((_+_A_t_t_V_a_l_u_e_, _+_V_a_r_V_a_l_u_e))
A hook that must be defined in the module to which an attributed
variable refers. It is called _a_f_t_e_r the attributed variable has
been unified with a non-var term, possibly another attributed
variable. _A_t_t_V_a_l_u_e is the attribute that was associated to the
variable in this module and _V_a_r_V_a_l_u_e is the new value of the
variable. Normally this predicate fails to veto binding the
variable to _V_a_r_V_a_l_u_e, forcing backtracking to undo the binding. If
_V_a_r_V_a_l_u_e is another attributed variable the hook often combines the
two attributes and associates the combined attribute with _V_a_r_V_a_l_u_e
using put_attr/3.
aattttrr__ppoorrttrraayy__hhooookk((_+_A_t_t_V_a_l_u_e_, _+_V_a_r)) _[_d_e_p_r_e_c_a_t_e_d_]
Called by write_term/2and friends for each attribute if the option
attributes(_p_o_r_t_r_a_y) is in effect. If the hook succeeds the
attribute is considered printed. Otherwise Module = ... is printed
to indicate the existence of a variable. New infrastructure
dealing with communicating attribute values must be based on
copy_term/3 and its hook attribute_goals//1.
aattttrriibbuuttee__ggooaallss((_+_V_a_r)) //
This nonterminal, if it is defined in a module, is used by
copy_term/3 to project attributes of that module to residual goals.
It is also used by the top level to obtain residual goals after
executing a query.
pprroojjeecctt__aattttrriibbuutteess((_A))
hook that can be defined in each module to project constraints on
newly introduced variables back to the query variables. _Q_u_e_r_y_V_a_r_s
is the list of variables occurring in the query and _R_e_s_i_d_u_a_l_V_a_r_s
is a list of variables that have attributes attached. There
may be variables that occur in both lists. If possible,
project_attributes/2 should change the attributes so that all
constraints are expressed as residual goals that refer only to
_Q_u_e_r_y_V_a_r_s, while other variables are existentially quantified.
77..11..33 OOppeerraattiioonnss oonn tteerrmmss wwiitthh aattttrriibbuutteedd vvaarriiaabblleess
ccooppyy__tteerrmm((_+_T_e_r_m_, _-_C_o_p_y_, _-_G_s))
Create a regular term _C_o_p_y as a copy of _T_e_r_m (without any
attributes), and a list _G_s of goals that represents the attributes.
The goal maplist(call,_G_s) recreates the attributes for _C_o_p_y. The
nonterminal attribute_goals//1, as defined in the modules the
attributes stem from, is used to convert attributes to lists of
goals.
This building block is used by the top level to report pending
attributes in a portable and understandable fashion. This
predicate is the preferred way to reason about and communicate
terms with constraints.
ccooppyy__tteerrmm__nnaatt((_+_T_e_r_m_, _-_C_o_p_y))
As copy_term/2. Attributes, however, are _n_o_t copied but replaced
by fresh variables.
tteerrmm__aattttvvaarrss((_+_T_e_r_m_, _-_A_t_t_V_a_r_s))
_A_t_t_V_a_r_s is a list of all attributed variables in _T_e_r_m and
its attributes. That is, term_attvars/2 works recursively
through attributes. This predicate is cycle-safe. The goal
term_attvars(_T_e_r_m_, _[_]) in an efficient test that _T_e_r_m has _n_o
attributes; scanning the term is aborted after the first attributed
variable is found.
77..11..44 SSppeecciiaall ppuurrppoossee pprreeddiiccaatteess ffoorr aattttrriibbuutteess
Normal user code should deal with put_attr/3, get_attr/3 and del_attr/2.
The routines in this section fetch or set the entire attribute list of
a variable. Use of these predicates is anticipated to be restricted to
printing and other special purpose operations.
ggeett__aattttrrss((_+_V_a_r_, _-_A_t_t_r_i_b_u_t_e_s))
Get all attributes of _V_a_r. _A_t_t_r_i_b_u_t_e_s is a term of the form
att(_M_o_d_u_l_e_, _V_a_l_u_e_, _M_o_r_e_A_t_t_r_i_b_u_t_e_s), where _M_o_r_e_A_t_t_r_i_b_u_t_e_s is [] for
the last attribute.
ppuutt__aattttrrss((_+_V_a_r_, _-_A_t_t_r_i_b_u_t_e_s))
Set all attributes of _V_a_r. See get_attrs/2 for a description of
_A_t_t_r_i_b_u_t_e_s.
ddeell__aattttrrss((_+_V_a_r))
If _V_a_r is an attributed variable, delete _a_l_l its attributes. In
all other cases, this predicate succeeds without side-effects.
77..22 CCoorroouuttiinniinngg
Coroutining deals with having Prolog goals scheduled for execution
as soon as some conditions are fulfilled. In Prolog the most
commonly used condition is the instantiation (binding) of a variable.
Scheduling a goal to execute immediately after a variable is bound
can be used to avoid instantiation errors for some built-in predicates
(e.g. arithmetic), do work _l_a_z_y, prevent the binding of a variable to
a particular value, etc. Using freeze/2 for example we can define a
variable that can only be assigned an even number:
________________________________________________________________________| |
|?- freeze(X, X mod 2 =:= 0), X = 3 |
| |
|No|____________________________________________________________________ | |
ffrreeeezzee((_+_V_a_r_, _:_G_o_a_l))
Delay the execution of _G_o_a_l until _V_a_r is bound (i.e. is not a
variable or attributed variable). If _V_a_r is bound on entry
freeze/2 is equivalent to call/1. The freeze/2 predicate is
realised using an attributed variable associated with the module
freeze. Use frozen(Var, Goal) to find out whether and which goals
are delayed on _V_a_r.
ffrroozzeenn((_@_V_a_r_, _-_G_o_a_l))
Unify _G_o_a_l with the goal or conjunction of goals delayed on _V_a_r.
If no goals are frozen on _V_a_r, _G_o_a_l is unified to true.
wwhheenn((_@_C_o_n_d_i_t_i_o_n_, _:_G_o_a_l))
Execute _G_o_a_l when _C_o_n_d_i_t_i_o_n becomes true. _C_o_n_d_i_t_i_o_n is one of
?=(_X_, _Y), nonvar(_X), ground(_X), ,(_C_o_n_d_1_, _C_o_n_d_2) or ;(_C_o_n_d_1_, _C_o_n_d_2).
See also freeze/2 and dif/2. The implementation can deal with
cyclic terms in _X and _Y.
The when/2 predicate is realised using attributed variables
associated with the module when. It is defined in the autoload
library when.
ddiiff((_@_A_, _@_B))
The dif/2 predicate provides a constraint stating that _A and _B
are different terms. If _A and _B can never unify, dif/2 succeeds
deterministically. If _A and _B are identical it fails immediately,
and finally, if _A and _B can unify, goals are delayed that prevent
_A and _B to become equal. The dif/2 predicate behaves as if
defined by dif(X, Y) :- when(?=(X, Y), X \== Y). See also ?=/2.
The implementation can deal with cyclic terms.
The dif/2 predicate is realised using attributed variables
associated with the module dif. It is defined in the autoload
library dif.
ccaallll__rreessiidduuee__vvaarrss((_:_G_o_a_l_, _-_V_a_r_s))
Find residual attributed variables left by _G_o_a_l. This predicate is
intended for debugging programs using coroutining or constraints.
Consider a program that poses contradicting constraints on a
variable. Such programs should fail, but sometimes succeed because
the constraint solver is too weak to detect the contradiction.
Ideally, delayed goals and constraints are all executed at the end
of the computation. The meta predicate call_residue_vars/2 finds
variables that are given attribute variables or whose attributes
are modified by _G_o_a_l, regardless of whether or not these variables
are reachable from the arguments of _G_o_a_l..
77..33 GGlloobbaall vvaarriiaabblleess
Global variables are associations between names (atoms) and terms.
They differ in various ways from storing information using assert/1 or
recorda/3.
o The value lives on the Prolog (global) stack. This implies that
lookup time is independent of the size of the term. This is
particularly interesting for large data structures such as parsed
XML documents or the CHR global constraint store.
o They support both global assignment using nb_setval/2 and
backtrackable assignment using b_setval/2.
o Only one value (which can be an arbitrary complex Prolog term) can
be associated to a variable at a time.
o Their value cannot be shared among threads. Each thread has its
own namespace and values for global variables.
o Currently global variables are scoped globally. We may consider
module scoping in future versions.
Both b_setval/2 and nb_setval/2 implicitly create a variable if the
referenced name does not already refer to a variable.
Global variables may be initialised from directives to make them
available during the program lifetime, but some considerations are
necessary for saved states and threads. Saved states do not
store global variables, which implies they have to be declared with
initialization/1 to recreate them after loading the saved state. Each
thread has its own set of global variables, starting with an empty
set. Using thread_initialization/1 to define a global variable it will
be defined, restored after reloading a saved state and created in all
threads that are created _a_f_t_e_r the registration. Finally, global
variables can be initialised using the exception hook exception/3. The
latter technique is used by CHR (see chapter 8).
bb__sseettvvaall((_+_N_a_m_e_, _+_V_a_l_u_e))
Associate the term _V_a_l_u_e with the atom _N_a_m_e or replace the
currently associated value with _V_a_l_u_e. If _N_a_m_e does not refer
to an existing global variable, a variable with initial value []
is created (the empty list). On backtracking the assignment is
reversed.
bb__ggeettvvaall((_+_N_a_m_e_, _-_V_a_l_u_e))
Get the value associated with the global variable _N_a_m_e and unify it
with _V_a_l_u_e. Note that this unification may further instantiate the
value of the global variable. If this is undesirable the normal
precautions (double negation or copy_term/2) must be taken. The
b_getval/2 predicate generates errors if _N_a_m_e is not an atom or the
requested variable does not exist.
nnbb__sseettvvaall((_+_N_a_m_e_, _+_V_a_l_u_e))
Associates a copy of _V_a_l_u_e created with duplicate_term/2 with the
atom _N_a_m_e. Note that this can be used to set an initial value
other than [] prior to backtrackable assignment.
nnbb__ggeettvvaall((_+_N_a_m_e_, _-_V_a_l_u_e))
The nb_getval/2 predicate is a synonym for b_getval/2, introduced
for compatibility and symmetry. As most scenarios will use
a particular global variable using either non-backtrackable
or backtrackable assignment, using nb_getval/2 can be used
to document that the variable is non-backtrackable. Raises
existence_error(_v_a_r_i_a_b_l_e_, _N_a_m_e) if the variable does not exist.
nnbb__lliinnkkvvaall((_+_N_a_m_e_, _+_V_a_l_u_e))
Associates the term _V_a_l_u_e with the atom _N_a_m_e without copying it.
This is a fast special-purpose variation of nb_setval/2 intended
for expert users only because the semantics on backtracking
to a point before creating the link are poorly defined for
compound terms. The principal term is always left untouched,
but backtracking behaviour on arguments is undone if the original
assignment was _t_r_a_i_l_e_d and left alone otherwise, which implies
that the history that created the term affects the behaviour on
backtracking. Consider the following example:
____________________________________________________________________| |
| demo_nb_linkval :- |
| T = nice(N), |
| ( N = world, |
| nb_linkval(myvar, T), |
| fail |
| ; nb_getval(myvar, V), |
| writeln(V) |
||________).________________________________________________________ ||
nnbb__ccuurrrreenntt((_?_N_a_m_e_, _?_V_a_l_u_e))
Enumerate all defined variables with their value. The order of
enumeration is undefined. Note that nb_current/2 can be used as an
alternative for nb_getval/2 to request the value of a variable and
fail silently if the variable does not exists.
nnbb__ddeelleettee((_+_N_a_m_e))
Delete the named global variable. Succeeds also if the named
variable does not exist.
77..33..11 CCoommppaattiibbiilliittyy ooff SSWWII--PPrroolloogg GGlloobbaall VVaarriiaabblleess
Global variables have been introduced by various Prolog implementations
recently. The implementation of them in SWI-Prolog is based on hProlog
by Bart Demoen. In discussion with Bart it was decided that the
semantics of hProlog nb_setval/2, which is equivalent to nb_linkval/2,
is not acceptable for normal Prolog users as the behaviour is
influenced by how built-in predicates that construct terms (read/1,
=../2, etc.) are implemented.
GNU-Prolog provides a rich set of global variables, including arrays.
Arrays can be implemented easily in SWI-Prolog using functor/3 and
setarg/3 due to the unrestricted arity of compound terms.
CChhaapptteerr 88.. CCHHRR:: CCOONNSSTTRRAAIINNTT HHAANNDDLLIINNGG RRUULLEESS
This chapter is written by Tom Schrijvers, K.U. Leuven, and adjustments
by Jan Wielemaker.
The CHR system of SWI-Prolog is the _K_._U_._L_e_u_v_e_n _C_H_R _s_y_s_t_e_m. The runtime
environment is written by Christian Holzbaur and Tom Schrijvers while
the compiler is written by Tom Schrijvers. Both are integrated with
SWI-Prolog and licensed under compatible conditions with permission
from the authors.
The main reference for the K.U.Leuven CHR system is:
o T. Schrijvers, and B. Demoen, _T_h_e _K_._U_._L_e_u_v_e_n _C_H_R _S_y_s_t_e_m_:
_I_m_p_l_e_m_e_n_t_a_t_i_o_n _a_n_d _A_p_p_l_i_c_a_t_i_o_n, First Workshop on Constraint
Handling Rules: Selected Contributions (Fr"uhwirth, T. and Meister,
M., eds.), pp. 1--5, 2004.
On the K.U.Leuven CHR website (http://dtai.cs.kuleuven.be/CHR/) you can
find more related papers, references and example programs.
88..11 IInnttrroodduuccttiioonn
Constraint Handling Rules (CHR) is a committed-choice rule-based
language embedded in Prolog. It is designed for writing constraint
solvers and is particularly useful for providing application-specific
constraints. It has been used in many kinds of applications, like
scheduling, model checking, abduction, and type checking, among many
others.
CHR has previously been implemented in other Prolog systems (SICStus,
Eclipse, Yap), Haskell and Java. This CHR system is based on the
compilation scheme and runtime environment of CHR in SICStus.
In this documentation we restrict ourselves to giving a short overview
of CHR in general and mainly focus on elements specific to this
implementation. For a more thorough review of CHR we refer the
reader to [Fr"uhwirth, 2009]. More background on CHR can be found at
[Fr"uhwirth,].
In section 8.2 we present the syntax of CHR in Prolog and explain
informally its operational semantics. Next, section 8.3 deals with
practical issues of writing and compiling Prolog programs containing
CHR. Section 8.4 explains the (currently primitive) CHR debugging
facilities. Section 8.4.3 provides a few useful predicates to inspect
the constraint store, and section 8.5 illustrates CHR with two example
programs. Section 8.6 describes some compatibility issues with older
versions of this system and SICStus' CHR system. Finally, section 8.7
concludes with a few practical guidelines for using CHR.
88..22 SSyynnttaaxx aanndd SSeemmaannttiiccss
88..22..11 SSyynnttaaxx ooff CCHHRR rruulleess
________________________________________________________________________________________________________________________________________________|| ||
||rules --> rule, rules ; []. |
| |
|rule --> name, actual_rule, pragma, [atom('.')]. |
| |
|name --> atom, [atom('@')] ; []. |
| |
|actual_rule --> simplification_rule. |
|actual_rule --> propagation_rule. |
|actual_rule --> simpagation_rule. |
| |
|simplification_rule --> head, [atom('<=>')], guard, body. |
|propagation_rule --> head, [atom('==>')], guard, body. |
|simpagation_rule --> head, [atom('\')], head, [atom('<=>')], |
| guard, body. |
| |
|head --> constraints. |
| |
|constraints --> constraint, constraint_id. |
|constraints --> constraint, constraint_id, |
| [atom(',')], constraints. |
| |
|constraint --> compound_term. |
| |
|constraint_id --> []. |
|constraint_id --> [atom('#')], variable. |
|constraint_id --> [atom('#')], [atom('passive')] . |
| |
|guard --> [] ; goal, [atom('|')]. |
| |
|body --> goal. |
| |
|pragma --> []. |
|pragma --> [atom('pragma')], actual_pragmas. |
| |
|actual_pragmas --> actual_pragma. |
|actual_pragmas --> actual_pragma, [atom(',')], actual_pragmas. |
| |
|actual_pragma|-->_[atom('passive(')],_variable,_[atom(')')].___________ | |
Note that the guard of a rule may not contain any goal that binds a
variable in the head of the rule with a non-variable or with another
variable in the head of the rule. It may, however, bind variables
that do not appear in the head of the rule, e.g. an auxiliary variable
introduced in the guard.
88..22..22 SSeemmaannttiiccss
In this subsection the operational semantics of CHR in Prolog are
presented informally. They do not differ essentially from other CHR
systems.
When a constraint is called, it is considered an active constraint and
the system will try to apply the rules to it. Rules are tried and
executed sequentially in the order they are written.
A rule is conceptually tried for an active constraint in the following
way. The active constraint is matched with a constraint in the head of
the rule. If more constraints appear in the head, they are looked for
among the suspended constraints, which are called passive constraints
in this context. If the necessary passive constraints can be found and
all match with the head of the rule and the guard of the rule succeeds,
then the rule is committed and the body of the rule executed. If not
all the necessary passive constraints can be found, or the matching
or the guard fails, then the body is not executed and the process of
trying and executing simply continues with the following rules. If
for a rule there are multiple constraints in the head, the active
constraint will try the rule sequentially multiple times, each time
trying to match with another constraint.
This process ends either when the active constraint disappears, i.e. it
is removed by some rule, or after the last rule has been processed. In
the latter case the active constraint becomes suspended.
A suspended constraint is eligible as a passive constraint for an
active constraint. The other way it may interact again with the rules
is when a variable appearing in the constraint becomes bound to either
a non-variable or another variable involved in one or more constraints.
In that case the constraint is triggered, i.e. it becomes an active
constraint and all the rules are tried.
RRuullee TTyyppeess There are three different kinds of rules, each with its
specific semantics:
o _s_i_m_p_l_i_f_i_c_a_t_i_o_n
The simplification rule removes the constraints in its head and
calls its body.
o _p_r_o_p_a_g_a_t_i_o_n
The propagation rule calls its body exactly once for the
constraints in its head.
o _s_i_m_p_a_g_a_t_i_o_n
The simpagation rule removes the constraints in its head after the
\ and then calls its body. It is an optimization of simplification
rules of the form:
constraints1;constraints2<=> constraints1;body
Namely, in the simpagation form:
constraints1\constraints2<=> body
The constraints1constraints are not called in the body.
RRuullee NNaammeess
Naming a rule is optional and has no semantic meaning. It only
functions as documentation for the programmer.
PPrraaggmmaass The semantics of the pragmas are:
ppaassssiivvee((_I_d_e_n_t_i_f_i_e_r))
The constraint in the head of a rule _I_d_e_n_t_i_f_i_e_r can only match a
passive constraint in that rule. There is an abbreviated syntax
for this pragma. Instead of:
____________________________________________________________________| |
||________________...,_c_#_Id,_..._<=>_..._pragma_passive(Id)_______ ||
you can also write
____________________________________________________________________| |
||________________...,_c_#_passive,_..._<=>_..._____________________ ||
Additional pragmas may be released in the future.
::-- cchhrr__ooppttiioonn((_+_O_p_t_i_o_n_, _+_V_a_l_u_e))
It is possible to specify options that apply to all the CHR
rules in the module. Options are specified with the chr_option/2
declaration:
____________________________________________________________________| |
||:-_chr_option(Option,Value).______________________________________ ||
and may appear in the file anywhere after the first constraints
declaration.
Available options are:
cchheecckk__gguuaarrdd__bbiinnddiinnggss
This option controls whether guards should be checked for
(illegal) variable bindings or not. Possible values for this
option are on to enable the checks, and off to disable the
checks. If this option is on, any guard fails when it binds
a variable that appears in the head of the rule. When the
option is off (default), the behaviour of a binding in the
guard is undefined.
ooppttiimmiizzee
This option controls the degree of optimization. Possible
values are full to enable all available optimizations, and
off (default) to disable all optimizations. The default
is derived from the SWI-Prolog flag optimise, where true is
mapped to full. Therefore the command line option -O provides
full CHR optimization. If optimization is enabled, debugging
must be disabled.
ddeebbuugg
This option enables or disables the possibility to debug the
CHR code. Possible values are on (default) and off. See
section 8.4 for more details on debugging. The default is
derived from the Prolog flag generate_debug_info, which is
true by default. See -nodebug. If debugging is enabled,
optimization must be disabled.
88..33 CCHHRR iinn SSWWII--PPrroolloogg PPrrooggrraammss
88..33..11 EEmmbbeeddddiinngg iinn PPrroolloogg PPrrooggrraammss
The CHR constraints defined in a .pl file are associated with a module.
The default module is user. One should never load different .pl files
with the same CHR module name.
88..33..22 CCoonnssttrraaiinntt ddeeccllaarraattiioonn
::-- cchhrr__ccoonnssttrraaiinntt((_+_S_p_e_c_i_f_i_e_r))
Every constraint used in CHR rules has to be declared with a
chr_constraint/1 declaration by the _c_o_n_s_t_r_a_i_n_t _s_p_e_c_i_f_i_e_r. For
convenience multiple constraints may be declared at once with the
same chr_constraint/1 declaration followed by a comma-separated
list of constraint specifiers.
A constraint specifier is, in its compact form, F/A where F and
A are respectively the functor name and arity of the constraint,
e.g.:
____________________________________________________________________| |
| :- chr_constraint foo/1. |
||:-_chr_constraint_bar/2,_baz/3.___________________________________ ||
In its extended form, a constraint specifier is c(A1,...,An) where
c is the constraint's functor, n its arity and the Aiare argument
specifiers. An argument specifier is a mode, optionally followed
by a type. Example:
____________________________________________________________________| |
| :- chr_constraint get_value(+,?). |
| :- chr_constraint domain(?int, +list(int)), |
||__________________alldifferent(?list(int))._______________________ ||
MMooddeess
A mode is one of:
-
The corresponding argument of every occurrence of the constraint is
always unbound.
+
The corresponding argument of every occurrence of the constraint is
always ground.
?
The corresponding argument of every occurrence of the constraint
can have any instantiation, which may change over time. This is
the default value.
TTyyppeess
A type can be a user-defined type or one of the built-in types. A type
comprises a (possibly infinite) set of values. The type declaration
for a constraint argument means that for every instance of that
constraint the corresponding argument is only ever bound to values in
that set. It does not state that the argument necessarily has to be
bound to a value.
The built-in types are:
iinntt
The corresponding argument of every occurrence of the constraint is
an integer number.
ddeennssee__iinntt
The corresponding argument of every occurrence of the constraint is
an integer that can be used as an array index. Note that if this
argument takes values in [0; n], the array takes O(n) space.
ffllooaatt
...a floating point number.
nnuummbbeerr
...a number.
nnaattuurraall
...a positive integer.
aannyy
The corresponding argument of every occurrence of the constraint
can have any type. This is the default value.
::-- cchhrr__ttyyppee((_+_T_y_p_e_D_e_c_l_a_r_a_t_i_o_n))
User-defined types are algebraic data types, similar to those in
Haskell or the discriminated unions in Mercury. An algebraic data
type is defined using chr_type/1:
____________________________________________________________________| |
||:-_chr_type_type_--->_body._______________________________________ ||
If the type term is a functor of arity zero (i.e. one having zero
arguments), it names a monomorphic type. Otherwise, it names a
polymorphic type; the arguments of the functor must be distinct
type variables. The body term is defined as a sequence of
constructor definitions separated by semi-colons.
Each constructor definition must be a functor whose arguments
(if any) are types. Discriminated union definitions must be
transparent: all type variables occurring in the body must also
occur in the type.
Here are some examples of algebraic data type definitions:
____________________________________________________________________| |
| :- chr_type color ---> red ; blue ; yellow ; green. |
| |
| :- chr_type tree ---> empty ; leaf(int) ; branch(tree, tree). |
| |
| :- chr_type list(T) ---> [] ; [T | list(T)]. |
| |
||:-_chr_type_pair(T1,_T2)_--->_(T1_-_T2).__________________________ ||
Each algebraic data type definition introduces a distinct type.
Two algebraic data types that have the same bodies are considered
to be distinct types (name equivalence).
Constructors may be overloaded among different types: there may be
any number of constructors with a given name and arity, so long as
they all have different types.
Aliases can be defined using ==. For example, if your program uses
lists of lists of integers, you can define an alias as follows:
____________________________________________________________________| |
||:-_chr_type_lli_==_list(list(int))._______________________________ ||
TTyyppee CChheecckkiinngg
Currently two complementary forms of type checking are performed:
1. Static type checking is always performed by the compiler. It is
limited to CHR rule heads and CHR constraint calls in rule bodies.
Two kinds of type error are detected. The first is where a
variable has to belong to two types. For example, in the program:
____________________________________________________________________| |
| :-chr_type foo ---> foo. |
| :-chr_type bar ---> bar. |
| |
| :-chr_constraint abc(?foo). |
| :-chr_constraint def(?bar). |
| |
||foobar_@_abc(X)_<=>_def(X)._______________________________________ ||
the variable X has to be of both type foo and bar. This is
reported as a type clash error:
____________________________________________________________________| |
| CHR compiler ERROR: |
| `--> Type clash for variable _ in rule foobar: |
| expected type foo in body goal def(_, _) |
||________________expected_type_bar_in_head_def(_,__)_______________ ||
The second kind of error is where a functor is used that does not
belong to the declared type. For example in:
____________________________________________________________________| |
| :- chr_type foo ---> foo. |
| :- chr_type bar ---> bar. |
| |
| :- chr_constraint abc(?foo). |
| |
||foo_@_abc(bar)_<=>_true.__________________________________________ ||
bar appears in the head of the rule where something of type foo is
expected. This is reported as:
____________________________________________________________________| |
| CHR compiler ERROR: |
| `--> Invalid functor in head abc(bar) of rule foo: |
| found `bar', |
||________________expected_type_`foo'!______________________________ ||
No runtime overhead is incurred in static type checking.
2. Dynamic type checking checks at runtime, during program execution,
whether the arguments of CHR constraints respect their declared
types. The when/2 co-routining library is used to delay dynamic
type checks until variables are instantiated.
The kind of error detected by dynamic type checking is where a
functor is used that does not belong to the declared type. For
example, for the program:
____________________________________________________________________| |
| :-chr_type foo ---> foo. |
| |
||:-chr_constraint_abc(?foo)._______________________________________ ||
we get the following error in an erroneous query:
____________________________________________________________________| |
| ?- abc(bar). |
| ERROR: Type error: `foo' expected, found `bar' |
||_______(CHR_Runtime_Type_Error)___________________________________ ||
Dynamic type checking is weaker than static type checking in the
sense that it only checks the particular program execution at hand
rather than all possible executions. It is stronger in the sense
that it tracks types throughout the whole program.
Note that it is enabled only in debug mode, as it incurs some
(minor) runtime overhead.
88..33..33 CCoommppiillaattiioonn
The SWI-Prolog CHR compiler exploits term_expansion/2 rules to
translate the constraint handling rules to plain Prolog. These rules
are loaded from the library chr. They are activated if the compiled
file has the .chr extension or after finding a declaration in the
following format:
________________________________________________________________________| |
|:-|chr_constraint_...__________________________________________________ | |
It is advised to define CHR rules in a module file, where the module
declaration is immediately followed by including the library(chr)
library as exemplified below:
________________________________________________________________________| |
|:- module(zebra, [ zebra/0 ]). |
|:- use_module(library(chr)). |
| |
|:-|chr_constraint_...__________________________________________________ | |
Using this style, CHR rules can be defined in ordinary Prolog .pl files
and the operator definitions required by CHR do not leak into modules
where they might cause conflicts.
88..44 DDeebbuuggggiinngg
The CHR debugging facilities are currently rather limited. Only
tracing is currently available. To use the CHR debugging facilities
for a CHR file it must be compiled for debugging. Generating debug
info is controlled by the CHR option debug, whose default is derived
from the SWI-Prolog flag generate_debug_info. Therefore debug info is
provided unless the -nodebug is used.
88..44..11 PPoorrttss
For CHR constraints the four standard ports are defined:
ccaallll
A new constraint is called and becomes active.
eexxiitt
An active constraint exits: it has either been inserted in
the store after trying all rules or has been removed from the
constraint store.
ffaaiill
An active constraint fails.
rreeddoo
An active constraint starts looking for an alternative solution.
In addition to the above ports, CHR constraints have five additional
ports:
wwaakkee
A suspended constraint is woken and becomes active.
iinnsseerrtt
An active constraint has tried all rules and is suspended in the
constraint store.
rreemmoovvee
An active or passive constraint is removed from the constraint
store.
ttrryy
An active constraint tries a rule with possibly some passive
constraints. The try port is entered just before committing to the
rule.
aappppllyy
An active constraint commits to a rule with possibly some passive
constraints. The apply port is entered just after committing to
the rule.
88..44..22 TTrraacciinngg
Tracing is enabled with the chr_trace/0 predicate and disabled with the
chr_notrace/0 predicate.
When enabled the tracer will step through the call, exit, fail, wake
and apply ports, accepting debug commands, and simply write out the
other ports.
The following debug commands are currently supported:
CHR debug options:
<cr> creep c creep
s skip
g ancestors
n nodebug
b break
a abort
f fail
? help h help
Their meaning is:
ccrreeeepp
Step to the next port.
sskkiipp
Skip to exit port of this call or wake port.
aanncceessttoorrss
Print list of ancestor call and wake ports.
nnooddeebbuugg
Disable the tracer.
bbrreeaakk
Enter a recursive Prolog top level. See break/0.
aabboorrtt
Exit to the top level. See abort/0.
ffaaiill
Insert failure in execution.
hheellpp
Print the above available debug options.
88..44..33 CCHHRR DDeebbuuggggiinngg PPrreeddiiccaatteess
The chr module contains several predicates that allow inspecting and
printing the content of the constraint store.
cchhrr__ttrraaccee
Activate the CHR tracer. By default the CHR tracer is activated
and deactivated automatically by the Prolog predicates trace/0 and
notrace/0.
cchhrr__nnoottrraaccee
Deactivate the CHR tracer. By default the CHR tracer is activated
and deactivated automatically by the Prolog predicates trace/0 and
notrace/0.
cchhrr__lleeaasshh((_+_S_p_e_c))
Define the set of CHR ports on which the CHR tracer asks for user
intervention (i.e. stops). _S_p_e_c is either a list of ports as
defined in section 8.4.1 or a predefined `alias'. Defined aliases
are: full to stop at all ports, none or off to never stop, and
default to stop at the call, exit, fail, wake and apply ports. See
also leash/1.
cchhrr__sshhooww__ssttoorree((_+_M_o_d))
Prints all suspended constraints of module _M_o_d to the standard
output. This predicate is automatically called by the SWI-Prolog
top level at the end of each query for every CHR module currently
loaded. The Prolog flag chr_toplevel_show_store controls whether
the top level shows the constraint stores. The value true enables
it. Any other value disables it.
ffiinndd__cchhrr__ccoonnssttrraaiinntt((_-_C_o_n_s_t_r_a_i_n_t))
Returns a constraint in the constraint store. Via backtracking,
all constraints in the store can be enumerated.
88..55 EExxaammpplleess
Here are two example constraint solvers written in CHR.
o The program below defines a solver with one constraint, leq/2/,
which is a less-than-or-equal constraint, also known as a partial
order constraint.
____________________________________________________________________| |
| :- module(leq,[leq/2]). |
| :- use_module(library(chr)). |
| |
| :- chr_constraint leq/2. |
| reflexivity @ leq(X,X) <=> true. |
| antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y. |
| idempotence @ leq(X,Y) \ leq(X,Y) <=> true. |
||transitivity_@_leq(X,Y),_leq(Y,Z)_==>_leq(X,Z).___________________ ||
When the above program is saved in a file and loaded in SWI-Prolog,
you can call the leq/2 constraints in a query, e.g.:
____________________________________________________________________| |
| ?- leq(X,Y), leq(Y,Z). |
| leq(_G23837, _G23841) |
| leq(_G23838, _G23841) |
| leq(_G23837, _G23838) |
||true_.____________________________________________________________ ||
When the query succeeds, the SWI-Prolog top level prints the
content of the CHR constraint store and displays the bindings
generated during the query. Some of the query variables may
have been bound to attributed variables, as you see in the above
example.
o The program below implements a simple finite domain constraint
solver.
____________________________________________________________________| |
| :- module(dom,[dom/2]). |
| :- use_module(library(chr)). |
| |
| :- chr_constraint dom(?int,+list(int)). |
| :- chr_type list(T) ---> [] ; [T|list(T)]. |
| |
| dom(X,[]) <=> fail. |
| dom(X,[Y]) <=> X = Y. |
| dom(X,L) <=> nonvar(X) | memberchk(X,L). |
||dom(X,L1),_dom(X,L2)_<=>_intersection(L1,L2,L3),_dom(X,L3)._______ ||
When the above program is saved in a file and loaded in SWI-Prolog,
you can call the dom/2 constraints in a query, e.g.:
____________________________________________________________________| |
| ?- dom(A,[1,2,3]), dom(A,[3,4,5]). |
||A_=_3.____________________________________________________________ ||
88..66 BBaacckkwwaarrddss CCoommppaattiibbiilliittyy
88..66..11 TThhee OOlldd SSIICCSSttuuss CCHHRR iimmpplleemmeennaattiioonn
There are small differences between the current K.U.Leuven CHR system
in SWI-Prolog, older versions of the same system, and SICStus' CHR
system.
The current system maps old syntactic elements onto new ones and
ignores a number of no longer required elements. However, for each a
_d_e_p_r_e_c_a_t_e_d warning is issued. You are strongly urged to replace or
remove deprecated features.
Besides differences in available options and pragmas, the following
differences should be noted:
o _T_h_e constraints/1 _d_e_c_l_a_r_a_t_i_o_n
This declaration is deprecated. It has been replaced with the
chr_constraint/1 declaration.
o _T_h_e option/2 _d_e_c_l_a_r_a_t_i_o_n
This declaration is deprecated. It has been replaced with the
chr_option/2 declaration.
o _T_h_e handler/1 _d_e_c_l_a_r_a_t_i_o_n
In SICStus every CHR module requires a handler/1 declaration
declaring a unique handler name. This declaration is valid syntax
in SWI-Prolog, but will have no effect. A warning will be given
during compilation.
o _T_h_e rules/1 _d_e_c_l_a_r_a_t_i_o_n
In SICStus, for every CHR module it is possible to only enable a
subset of the available rules through the rules/1 declaration. The
declaration is valid syntax in SWI-Prolog, but has no effect. A
warning is given during compilation.
o _G_u_a_r_d _b_i_n_d_i_n_g_s
The check_guard_bindings option only turns invalid calls to
unification into failure. In SICStus this option does more: it
intercepts instantiation errors from Prolog built-ins such as is/2
and turns them into failure. In SWI-Prolog, we do not go this far,
as we like to separate concerns more. The CHR compiler is aware of
the CHR code, the Prolog system, and the programmer should be aware
of the appropriate meaning of the Prolog goals used in guards and
bodies of CHR rules.
88..66..22 TThhee OOlldd EECCLLiiPPSSee CCHHRR iimmpplleemmeennaattiioonn
The old ECLiPSe CHR implementation features a label_with/1 construct
for labeling variables in CHR constraints. This feature has long
since been abandoned. However, a simple transformation is all that is
required to port the functionality.
________________________________________________________________________| |
|label_with Constraint1 if Condition1. |
|... |
|label_with ConstraintN if ConditionN. |
|Constraint1 :- Body1. |
|... |
|ConstraintN|:-_BodyN.__________________________________________________ | |
is transformed into
________________________________________________________________________| |
|:- chr_constraint my_labeling/0. |
| |
|my_labeling \ Constraint1 <=> Condition1 | Body1. |
|... |
|my_labeling \ ConstraintN <=> ConditionN | BodyN. |
|my_labeling|<=>_true.__________________________________________________ | |
Be sure to put this code after all other rules in your program! With
my_labeling/0 (or another predicate name of your choosing) the labeling
is initiated, rather than ECLiPSe's chr_labeling/0.
88..77 PPrrooggrraammmmiinngg TTiippss aanndd TTrriicckkss
In this section we cover several guidelines on how to use CHR to write
constraint solvers and how to do so efficiently.
o _C_h_e_c_k _g_u_a_r_d _b_i_n_d_i_n_g_s _y_o_u_r_s_e_l_f
It is considered bad practice to write guards that bind variables
of the head and to rely on the system to detect this at runtime.
It is inefficient and obscures the working of the program.
o _S_e_t _s_e_m_a_n_t_i_c_s
The CHR system allows the presence of identical constraints, i.e.
multiple constraints with the same functor, arity and arguments.
For most constraint solvers, this is not desirable: it affects
efficiency and possibly termination. Hence appropriate simpagation
rules should be added of the form:
constraint\constraint <=>true
o _M_u_l_t_i_-_h_e_a_d_e_d _r_u_l_e_s
Multi-headed rules are executed more efficiently when the
constraints share one or more variables.
o _M_o_d_e _a_n_d _t_y_p_e _d_e_c_l_a_r_a_t_i_o_n_s
Provide mode and type declarations to get more efficient program
execution. Make sure to disable debug (-nodebug) and enable
optimization (-O).
o _C_o_m_p_i_l_e _o_n_c_e_, _r_u_n _m_a_n_y _t_i_m_e_s
Does consulting your CHR program take a long time in SWI-Prolog?
Probably it takes the CHR compiler a long time to compile the
CHR rules into Prolog code. When you disable optimizations the
CHR compiler will be a lot quicker, but you may lose performance.
Alternatively, you can just use SWI-Prolog's qcompile/1 to generate
a .qlf file once from your .pl file. This .qlf contains the
generated code of the CHR compiler (be it in a binary format).
When you consult the .qlf file, the CHR compiler is not invoked and
consultation is much faster.
o _F_i_n_d_i_n_g _C_o_n_s_t_r_a_i_n_t_s
The find_chr_constraint/1 predicate is fairly expensive. Avoid
it, if possible. If you must use it, try to use it with an
instantiated top-level constraint symbol.
88..88 CCoommppiilleerr EErrrroorrss aanndd WWaarrnniinnggss
In this section we summarize the most important error and warning
messages of the CHR compiler.
88..88..11 CCHHRR CCoommppiilleerr EErrrroorrss
TTyyppee ccllaasshh for variable ... in rule ...
This error indicates an inconsistency between declared types; a
variable can not belong to two types. See static type checking.
IInnvvaalliidd ffuunnccttoorr in head ... of rule ...
This error indicates an inconsistency between a declared type and
the use of a functor in a rule. See static type checking.
CCyycclliicc aalliiaass definition: ... == ...
You have defined a type alias in terms of itself, either directly
or indirectly.
AAmmbbiigguuoouuss ttyyppee aalliiaasseess You have defined two overlapping type aliases.
MMuullttiippllee ddeeffiinniittiioonnss for type
You have defined the same type multiple times.
NNoonn--ggrroouunndd ttyyppee in constraint definition: ...
You have declared a non-ground type for a constraint argument.
CCoouulldd nnoott ffiinndd ttyyppee ddeeffiinniittiioonn for ...
You have used an undefined type in a type declaration.
IIlllleeggaall mmooddee//ttyyppee ddeeccllaarraattiioonn You have used invalid syntax in a
constraint declaration.
CCoonnssttrraaiinntt mmuullttiippllyy ddeeffiinneedd There is more than one declaration for the
same constraint.
UUnnddeeccllaarreedd ccoonnssttrraaiinntt ... in head of ...
You have used an undeclared constraint in the head of a rule. This
often indicates a misspelled constraint name or wrong number of
arguments.
IInnvvaalliidd pprraaggmmaa ... in ... Pragma should not be a variable.
You have used a variable as a pragma in a rule. This is not
allowed.
IInnvvaalliidd iiddeennttiiffiieerr ... in pragma passive in ...
You have used an identifier in a passive pragma that does not
correspond to an identifier in the head of the rule. Likely the
identifier name is misspelled.
UUnnkknnoowwnn pprraaggmmaa ... in ...
You have used an unknown pragma in a rule. Likely the pragma is
misspelled or not supported.
SSoommeetthhiinngg uunneexxppeecctteedd happened in the CHR compiler
You have most likely bumped into a bug in the CHR compiler. Please
contact Tom Schrijvers to notify him of this error.
CChhaapptteerr 99.. MMUULLTTIITTHHRREEAADDEEDD AAPPPPLLIICCAATTIIOONNSS
SWI-Prolog multithreading is based on standard C language multithread-
ing support. It is not like _P_a_r_L_o_g or other parallel implementations
of the Prolog language. Prolog threads have their own stacks and only
share the Prolog _h_e_a_p: predicates, records, flags and other global
non-backtrackable data. SWI-Prolog thread support is designed with the
following goals in mind.
o _M_u_l_t_i_t_h_r_e_a_d_e_d _s_e_r_v_e_r _a_p_p_l_i_c_a_t_i_o_n_s
Today's computing services often focus on (internet) server
applications. Such applications often have need for communication
between services and/or fast non-blocking service to multiple
concurrent clients. The shared heap provides fast communication,
and thread creation is relatively cheap.
o _I_n_t_e_r_a_c_t_i_v_e _a_p_p_l_i_c_a_t_i_o_n_s
Interactive applications often need to perform extensive
computation. If such computations are executed in a new thread,
the main thread can process events and allow the user to cancel
the ongoing computation. User interfaces can also use multiple
threads, each thread dealing with input from a distinct group of
windows. See also section 9.7.
o _N_a_t_u_r_a_l _i_n_t_e_g_r_a_t_i_o_n _w_i_t_h _f_o_r_e_i_g_n _c_o_d_e
Each Prolog thread runs in a native thread of the operating system,
automatically making them cooperate with _M_T_-_s_a_f_e foreign code. In
addition, any foreign thread can create its own Prolog engine for
dealing with calling Prolog from C code.
SWI-Prolog multithreading is based on the POSIX thread standard
[Butenhof, 1997] used on most popular systems except for MS-Windows.
On Windows it uses the pthread-win32 emulation of POSIX threads mixed
with the Windows native API for smoother and faster operation. The
SWI-Prolog thread implementation has been discussed in the ISO WG17
working group and is largely addopted by YAP and XSB Prolog.
99..11 CCrreeaattiinngg aanndd ddeessttrrooyyiinngg PPrroolloogg tthhrreeaaddss
tthhrreeaadd__ccrreeaattee((_:_G_o_a_l_, _-_I_d_, _+_O_p_t_i_o_n_s))
Create a new Prolog thread (and underlying C thread) and start it
by executing _G_o_a_l. If the thread is created successfully, the
thread identifier of the created thread is unified to _I_d. _O_p_t_i_o_n_s
is a list of options. The currently defined options are below.
Stack size options can also take the value inf or infinite, which
is mapped to the maximum stack size supported by the platform.
aalliiaass((_A_l_i_a_s_N_a_m_e))
Associate an `alias name' with the thread. This name may be
used to refer to the thread and remains valid until the thread
is joined (see thread_join/2).
aatt__eexxiitt((_:_A_t_E_x_i_t))
Register _A_t_E_x_i_t as using thread_at_exit/1 before entering the
thread goal. Unlike calling thread_at_exit/1 as part of
the normal _G_o_a_l, this _e_n_s_u_r_e_s the _A_t_E_x_i_t is called. Using
thread_at_exit/1, the thread may be signalled or run out of
resources before thread_at_exit/1is reached.
ddeebbuugg((_+_B_o_o_l))
Enable/disable debugging the new thread. If false (default
true), the new thread is created with the property
debug(_f_a_l_s_e) and debugging is disabled before the new thread
is started. The thread debugging predicates such as tspy/1
and tdebug/0 do not signal threads with the debug property set
to false.
ddeettaacchheedd((_B_o_o_l))
If false (default), the thread can be waited for using
thread_join/2. thread_join/2 must be called on this thread
to reclaim all resources associated with the thread. If
true, the system will reclaim all associated resources
automatically after the thread finishes. Please note that
thread identifiers are freed for reuse after a detached thread
finishes or a normal thread has been joined. See also
thread_join/2 and thread_detach/1.
If a detached thread dies due to failure or exception
of the initial goal, the thread prints a message using
print_message/2. If such termination is considered normal, the
code must be wrapped using ignore/1 and/or catch/3 to ensure
successful completion.
iinnhheerriitt__ffrroomm((_+_T_h_r_e_a_d_I_d))
Inherit defaults from the given _T_h_r_e_a_d_I_d instead of the
calling thread. This option was added to ensure that the
__thread_pool_manager (see thread_create_in_pool/4), which is
created lazily, has a predictable state. The following
properties are inherited:
o The prompt (see prompt/2)
o The _t_y_p_e_i_n module (see module/1)
o The standard streams (user_input, etc.)
o The default encoding (see encoding)
o The default locale (see setlocale/1)
o All prolog flags
o The limits of Prolog stacks (see set_prolog_stack/2)
gglloobbaall((_K_-_B_y_t_e_s))
Set the limit to which the global stack of this thread may
grow. If omitted, the limit of the calling thread is used.
See also the -G command line option.
llooccaall((_K_-_B_y_t_e_s))
Set the limit to which the local stack of this thread may
grow. If omitted, the limit of the calling thread is used.
See also the -L command line option.
cc__ssttaacckk((_K_-_B_y_t_e_s))
Set the limit to which the system stack of this thread
may grow. The default, minimum and maximum values are
system-dependent.
ttrraaiill((_K_-_B_y_t_e_s))
Set the limit to which the trail stack of this thread may
grow. If omitted, the limit of the calling thread is used.
See also the -T command line option.
The _G_o_a_l argument is _c_o_p_i_e_d to the new Prolog engine. This implies
that further instantiation of this term in either thread does not
have consequences for the other thread: Prolog threads do not
share data from their stacks.
tthhrreeaadd__sseellff((_-_I_d))
Get the Prolog thread identifier of the running thread. If the
thread has an alias, the alias name is returned.
tthhrreeaadd__jjooiinn((_+_I_d_, _-_S_t_a_t_u_s))
Wait for the termination of the thread with the given _I_d. Then
unify the result status of the thread with _S_t_a_t_u_s. After this
call, _I_d becomes invalid and all resources associated with the
thread are reclaimed. Note that threads with the attribute
detached(_t_r_u_e) cannot be joined. See also thread_property/2.
A thread that has been completed without thread_join/2 being called
on it is partly reclaimed: the Prolog stacks are released and the
C thread is destroyed. A small data structure representing the
exit status of the thread is retained until thread_join/2 is called
on the thread. Defined values for _S_t_a_t_u_s are:
ttrruuee
The goal has been proven successfully.
ffaallssee
The goal has failed.
eexxcceeppttiioonn((_T_e_r_m))
The thread is terminated on an exception. See print_message/2
to turn system exceptions into readable messages.
eexxiitteedd((_T_e_r_m))
The thread is terminated on thread_exit/1 using the argument
_T_e_r_m.
tthhrreeaadd__ddeettaacchh((_+_I_d))
Switch thread into detached state (see detached(_B_o_o_l) option at
thread_create/3) at runtime. _I_d is the identifier of the thread
placed in detached state. This may be the result of thread_self/1.
One of the possible applications is to simplify debugging.
Threads that are created as _d_e_t_a_c_h_e_d leave no traces if they
crash. For non-detached threads the status can be inspected using
thread_property/2. Threads nobody is waiting for may be created
normally and detach themselves just before completion. This way
they leave no traces on normal completion and their reason for
failure can be inspected.
tthhrreeaadd__eexxiitt((_+_T_e_r_m)) _[_d_e_p_r_e_c_a_t_e_d_]
Terminates the thread immediately, leaving exited(_T_e_r_m) as result
state for thread_join/2. If the thread has the attribute
detached(_t_r_u_e) it terminates, but its exit status cannot be
retrieved using thread_join/2, making the value of _T_e_r_m irrelevant.
The Prolog stacks and C thread are reclaimed.
The current implementation does not guarantee proper releasing
of all mutexes and proper cleanup in setup_call_cleanup/3, etc.
Please use the exception mechanism (throw/1) to abort execution
using non-standard control.
tthhrreeaadd__iinniittiiaalliizzaattiioonn((_:_G_o_a_l))
Run _G_o_a_l when thread is started. This predicate is similar to
initialization/1, but is intended for initialization operations of
the runtime stacks, such as setting global variables as described
in section 7.3. _G_o_a_l is run on four occasions: at the call to
this predicate, after loading a saved state, on starting a new
thread and on creating a Prolog engine through the C interface.
On loading a saved state, _G_o_a_l is executed _a_f_t_e_r running the
initialization/1 hooks.
tthhrreeaadd__aatt__eexxiitt((_:_G_o_a_l))
Run _G_o_a_l just before releasing the thread resources. This is
to be compared to at_halt/1, but only for the current thread.
These hooks are run regardless of why the execution of the thread
has been completed. When these hooks are run, the return code
is already available through thread_property/2 using the result
of thread_self/1 as thread identifier. Note that there are
two scenarios for using exit hooks. Using thread_at_exit/1 is
typically used if the thread creates a side-effect that must be
reverted if the thread dies. Another scenario is where the creator
of the thread wants to be informed when the thread ends. That
cannot be guaranteed by means of thread_at_exit/1 because it is
possible that the thread cannot be created or dies almost instantly
due to a signal or resource error. The at_exit(_G_o_a_l) option of
thread_create/3 is designed to deal with this scenario.
tthhrreeaadd__sseettccoonnccuurrrreennccyy((_-_O_l_d_, _+_N_e_w))
Determine the concurrency of the process, which is defined as the
maximum number of concurrently active threads. `Active' here means
they are using CPU time. This option is provided if the thread
implementation provides pthread_setconcurrency(). Solaris is a
typical example of this family. On other systems this predicate
unifies _O_l_d to 0 (zero) and succeeds silently.
99..22 MMoonniittoorriinngg tthhrreeaaddss
Normal multithreaded applications should not need the predicates from
this section because almost any usage of these predicates is unsafe.
For example checking the existence of a thread before signalling it is
of no use as it may vanish between the two calls. Catching exceptions
using catch/3 is the only safe way to deal with thread-existence
errors.
These predicates are provided for diagnosis and monitoring tasks. See
also section 9.5, describing more high-level primitives.
tthhrreeaadd__pprrooppeerrttyy((_?_I_d_, _?_P_r_o_p_e_r_t_y))
True if thread _I_d has _P_r_o_p_e_r_t_y. Either or both arguments may
be unbound, enumerating all relations on backtracking. Calling
thread_property/2 does not influence any thread. See also
thread_join/2. For threads that have an alias name, this name is
returned in _I_d instead of the opaque thread identifier. Defined
properties are:
aalliiaass((_A_l_i_a_s))
_A_l_i_a_s is the alias name of thread _I_d.
ddeettaacchheedd((_B_o_o_l_e_a_n))
Current detached status of the thread.
ssttaattuuss((_S_t_a_t_u_s))
Current status of the thread. _S_t_a_t_u_s is one of:
rruunnnniinngg
The thread is running. This is the initial status of a
thread. Please note that threads waiting for something
are considered running too.
ffaallssee
The _G_o_a_l of the thread has been completed and failed.
ttrruuee
The _G_o_a_l of the thread has been completed and succeeded.
eexxiitteedd((_T_e_r_m))
The _G_o_a_l of the thread has been terminated using
thread_exit/1 with _T_e_r_m as argument. If the underlying
native thread has exited (using pthread_exit()) _T_e_r_m is
unbound.
eexxcceeppttiioonn((_T_e_r_m))
The _G_o_a_l of the thread has been terminated due to an
uncaught exception (see throw/1 and catch/3).
See also thread_statistics/3 to obtain resource usage information
and message_queue_property/2 to get the number of queued messages
for a thread.
tthhrreeaadd__ssttaattiissttiiccss((_+_I_d_, _+_K_e_y_, _-_V_a_l_u_e))
Obtains statistical information on thread _I_d as statistics/2 does
in single-threaded applications. This call supports all keys of
statistics/2, although only stack sizes, cputime, inferences and
epoch yield different values for each thread.
mmuutteexx__ssttaattiissttiiccss
Print usage statistics on internal mutexes and mutexes associated
with dynamic predicates. For each mutex two numbers are printed:
the number of times the mutex was acquired and the number of
_c_o_l_l_i_s_i_o_n_s: the number of times the calling thread has to wait
for the mutex. Generally collision count is close to zero on
single-CPU hardware.
99..33 TThhrreeaadd ccoommmmuunniiccaattiioonn
99..33..11 MMeessssaaggee qquueeuueess
Prolog threads can exchange data using dynamic predicates, database
records, and other globally shared data. These provide no suitable
means to wait for data or a condition as they can only be checked in an
expensive polling loop. _M_e_s_s_a_g_e _q_u_e_u_e_s provide a means for threads to
wait for data or conditions without using the CPU.
Each thread has a message queue attached to it that is identified by
the thread. Additional queues are created using message_queue_create/1.
Explicitly created queues come in two flavours. When given an _a_l_i_a_s,
they must be destroyed by the user. _A_n_o_n_y_m_o_u_s message queues are
identified by a _b_l_o_b (see section 10.4.7) and subject to garbage
collection.
tthhrreeaadd__sseenndd__mmeessssaaggee((_+_Q_u_e_u_e_O_r_T_h_r_e_a_d_I_d_, _+_T_e_r_m))
Place _T_e_r_m in the given queue or default queue of the indicated
thread (which can even be the message queue of itself, see
thread_self/1). Any term can be placed in a message queue, but
note that the term is copied to the receiving thread and variable
bindings are thus lost. This call returns immediately.
If more than one thread is waiting for messages on the given queue
and at least one of these is waiting with a partially instantiated
_T_e_r_m, the waiting threads are _a_l_l sent a wake-up signal, starting a
rush for the available messages in the queue. This behaviour can
seriously harm performance with many threads waiting on the same
queue as all-but-the-winner perform a useless scan of the queue.
If there is only one waiting thread or all waiting threads wait
with an unbound variable, an arbitrary thread is restarted to scan
the queue.
tthhrreeaadd__sseenndd__mmeessssaaggee((_+_Q_u_e_u_e_, _+_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_s_e_m_i_d_e_t_]
As thread_send_message/2, but providing additional _O_p_t_i_o_n_s. These
are to deal with the case that the queue has a finite maximum
size and is full: whereas thread_send_message/2 will block until
the queue has drained sufficiently to accept a new message,
thread_send_message/3 can accept a time-out or deadline analogously
to thread_get_message/3. The options are:
ddeeaaddlliinnee((_+_A_b_s_T_i_m_e))
The call fails (silently) if no space has become available
before _A_b_s_T_i_m_e. See get_time/1 for the representation of
absolute time. If _A_b_s_T_i_m_e is earlier then the current time,
thread_send_message/3 fails immediately. Both resolution and
maximum wait time is platform-dependent.
ttiimmeeoouutt((_+_T_i_m_e))
_T_i_m_e is a float or integer and specifies the maximum time to
wait in seconds. This is a relative-time version of the
deadline option. If both options are provided, the earlier
time is effective.
If _T_i_m_e is 0 or 0.0, thread_send_message/3 examines the queue
and sends the message if space is availabel, but does not
suspend if no space is available, failing immediately instead.
If _T_i_m_e < 0, thread_send_message/3 fails immediately without
sending the message.
tthhrreeaadd__ggeett__mmeessssaaggee((_?_T_e_r_m))
Examines the thread message queue and if necessary blocks execution
until a term that unifies to _T_e_r_m arrives in the queue. After a
term from the queue has been unified to _T_e_r_m, the term is deleted
from the queue.
Please note that non-unifying messages remain in the queue. After
the following has been executed, thread 1 has the term b(_g_n_u) in
its queue and continues execution using _A = gnat.
____________________________________________________________________| |
| <thread 1> |
| thread_get_message(a(A)), |
| |
| <thread 2> |
| thread_send_message(Thread_1, b(gnu)), |
||___thread_send_message(Thread_1,_a(gnat)),________________________ ||
See also thread_peek_message/1.
tthhrreeaadd__ppeeeekk__mmeessssaaggee((_?_T_e_r_m))
Examines the thread message queue and compares the queued terms
with _T_e_r_m until one unifies or the end of the queue has
been reached. In the first case the call succeeds, possibly
instantiating _T_e_r_m. If no term from the queue unifies, this call
fails. I.e., thread_peek_message/1never waits and does not remove
any term from the queue. See also thread_get_message/3.
mmeessssaaggee__qquueeuuee__ccrreeaattee((_?_Q_u_e_u_e))
Equivalent to message_queue_create(Queue,[]). For compatibil-
ity, calling message_queue_create(_+_A_t_o_m) is equivalent to
message_queue_create(_Q_u_e_u_e_, _[_a_l_i_a_s_(_A_t_o_m_)_]). New code should use
message_queue_create/2 to create a named queue.
mmeessssaaggee__qquueeuuee__ccrreeaattee((_-_Q_u_e_u_e_, _+_O_p_t_i_o_n_s))
Create a message queue from _O_p_t_i_o_n_s. Defined options are:
aalliiaass((_+_A_l_i_a_s))
Create a message queue that is identified by the atom
_A_l_i_a_s. Message queues created this way must be explicitly
destroyed by the user. If the alias option is omitted, an
_A_n_o_n_y_m_o_u_s queue is created that is indentified by a _b_l_o_b (see
section 10.4.7) and subject to garbage collection.
mmaaxx__ssiizzee((_+_S_i_z_e))
Maximum number of terms in the queue. If this number is
reached, thread_send_message/2 will suspend until the queue
is drained. The option can be used if the source, sending
messages to the queue, is faster than the drain, consuming the
messages.
mmeessssaaggee__qquueeuuee__ddeessttrrooyy((_+_Q_u_e_u_e)) _[_d_e_t_]
Destroy a message queue created with message_queue_create/1. A
permission error is raised if _Q_u_e_u_e refers to (the default queue
of) a thread. Other threads that are waiting for _Q_u_e_u_e using
thread_get_message/2 receive an existence error.
tthhrreeaadd__ggeett__mmeessssaaggee((_+_Q_u_e_u_e_, _?_T_e_r_m)) _[_d_e_t_]
As thread_get_message/1, operating on a given queue. It is allowed
(but not advised) to get messages from the queue of other threads.
This predicate raises an existence error exception if _Q_u_e_u_e doesn't
exist or is destroyed using message_queue_destroy/1 while this
predicate is waiting.
tthhrreeaadd__ggeett__mmeessssaaggee((_+_Q_u_e_u_e_, _?_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_s_e_m_i_d_e_t_]
As thread_get_message/2, but providing additional _O_p_t_i_o_n_s:
ddeeaaddlliinnee((_+_A_b_s_T_i_m_e))
The call fails (silently) if no message has arrived before
_A_b_s_T_i_m_e. See get_time/1 for the representation of absolute
time. If _A_b_s_T_i_m_e is earlier then the current time,
thread_get_message/3 fails immediately. Both resolution and
maximum wait time is platform-dependent.
ttiimmeeoouutt((_+_T_i_m_e))
_T_i_m_e is a float or integer and specifies the maximum time to
wait in seconds. This is a relative-time version of the
deadline option. If both options are provided, the earlier
time is effective.
If _T_i_m_e is 0 or 0.0, thread_get_message/3 examines the queue
but does not suspend if no matching term is available. Note
that unlike thread_peek_message/2, a matching term is removed
from the queue.
If _T_i_m_e < 0, thread_get_message/3 fails immediately without
removing any message from the queue.
tthhrreeaadd__ppeeeekk__mmeessssaaggee((_+_Q_u_e_u_e_, _?_T_e_r_m)) _[_s_e_m_i_d_e_t_]
As thread_peek_message/1, operating on a given queue. It is
allowed to peek into another thread's message queue, an operation
that can be used to check whether a thread has swallowed a message
sent to it.
mmeessssaaggee__qquueeuuee__pprrooppeerrttyy((_?_Q_u_e_u_e_, _?_P_r_o_p_e_r_t_y))
True if _P_r_o_p_e_r_t_y is a property of _Q_u_e_u_e. Defined properties are:
aalliiaass((_A_l_i_a_s))
Queue has the given alias name.
mmaaxx__ssiizzee((_S_i_z_e))
Maximum number of terms that can be in the queue. See
message_queue_create/2. This property is not present if there
is no limit (default).
ssiizzee((_S_i_z_e))
Queue currently contains _S_i_z_e terms. Note that due to
concurrent access the returned value may be outdated before it
is returned. It can be used for debugging purposes as well as
work distribution purposes.
The size(_S_i_z_e) property is always present and may be used to
enumerate the created message queues. Note that this predicate
does _n_o_t _e_n_u_m_e_r_a_t_e threads, but can be used to query the properties
of the default queue of a thread.
Explicit message queues are designed with the _w_o_r_k_e_r_-_p_o_o_l model in
mind, where multiple threads wait on a single queue and pick up
the first goal to execute. Below is a simple implementation where
the workers execute arbitrary Prolog goals. Note that this example
provides no means to tell when all work is done. This must be realised
using additional synchronisation.
________________________________________________________________________| |
|%% create_workers(?Id, +N) |
|% |
|% Create a pool with Id and number of workers. |
|% After the pool is created, post_job/1 can be used to |
|% send jobs to the pool. |
| |
|create_workers(Id, N) :- |
| message_queue_create(Id), |
| forall(between(1, N, _), |
| thread_create(do_work(Id), _, [])). |
| |
|do_work(Id) :- |
| repeat, |
| thread_get_message(Id, Goal), |
| ( catch(Goal, E, print_message(error, E)) |
| -> true |
| ; print_message(error, goal_failed(Goal, worker(Id))) |
| ), |
| fail. |
| |
|%% post_job(+Id, +Goal) |
|% |
|% Post a job to be executed by one of the pool's workers. |
| |
|post_job(Id, Goal) :- |
||_______thread_send_message(Id,_Goal)._________________________________ ||
99..33..22 SSiiggnnaalllliinngg tthhrreeaaddss
These predicates provide a mechanism to make another thread execute
some goal as an _i_n_t_e_r_r_u_p_t. Signalling threads is safe as these
interrupts are only checked at safe points in the virtual machine.
Nevertheless, signalling in multithreaded environments should be
handled with care as the receiving thread may hold a _m_u_t_e_x (see
with_mutex/2). Signalling probably only makes sense to start debugging
threads and to cancel no-longer-needed threads with throw/1, where the
receiving thread should be designed carefully to handle exceptions at
any point.
tthhrreeaadd__ssiiggnnaall((_+_T_h_r_e_a_d_I_d_, _:_G_o_a_l))
Make thread _T_h_r_e_a_d_I_d execute _G_o_a_l at the first opportunity. In the
current implementation, this implies at the first pass through the
_C_a_l_l _p_o_r_t. The predicate thread_signal/2 itself places _G_o_a_l into
the signalled thread's signal queue and returns immediately.
Signals (interrupts) do not cooperate well with the world of
multithreading, mainly because the status of mutexes cannot be
guaranteed easily. At the call port, the Prolog virtual machine
holds no locks and therefore the asynchronous execution is safe.
_G_o_a_l can be any valid Prolog goal, including throw/1 to make
the receiving thread generate an exception, and trace/0 to start
tracing the receiving thread.
In the Windows version, the receiving thread immediately executes
the signal if it reaches a Windows GetMessage() call, which
generally happens if the thread is waiting for (user) input.
99..33..33 TThhrreeaaddss aanndd ddyynnaammiicc pprreeddiiccaatteess
Besides queues (section 9.3.1) threads can share and exchange data
using dynamic predicates. The multithreaded version knows about two
types of dynamic predicates. By default, a predicate declared _d_y_n_a_m_i_c
(see dynamic/1) is shared by all threads. Each thread may assert,
retract and run the dynamic predicate. Synchronisation inside Prolog
guarantees the consistency of the predicate. Updates are _l_o_g_i_c_a_l:
visible clauses are not affected by assert/retract after a query
started on the predicate. In many cases primitives from section 9.4
should be used to ensure that application invariants on the predicate
are maintained.
Besides shared predicates, dynamic predicates can be declared with the
thread_local/1 directive. Such predicates share their attributes, but
the clause list is different in each thread.
tthhrreeaadd__llooccaall _+_F_u_n_c_t_o_r_/_+_A_r_i_t_y_, _._._.
This directive is related to the dynamic/1 directive. It tells
the system that the predicate may be modified using assert/1,
retract/1, etc., during execution of the program. Unlike normal
shared dynamic data, however, each thread has its own clause list
for the predicate. As a thread starts, this clause list is empty.
If there are still clauses when the thread terminates, these are
automatically reclaimed by the system (see also volatile/1). The
thread_local property implies the properties _d_y_n_a_m_i_c and _v_o_l_a_t_i_l_e.
Thread-local dynamic predicates are intended for maintaining
thread-specific state or intermediate results of a computation.
It is not recommended to put clauses for a thread-local predicate
into a file, as in the example below, because the clause is only
visible from the thread that loaded the source file. All other
threads start with an empty clause list.
____________________________________________________________________| |
| :- thread_local |
| foo/1. |
| |
||foo(gnat).________________________________________________________ ||
DDIISSCCLLAAIIMMEERR Whether or not this declaration is appropriate in the
sense of the proper mechanism to reach the goal is still debated.
If you have strong feelings in favour or against, please share them
in the SWI-Prolog mailing list.
99..44 TThhrreeaadd ssyynncchhrroonniissaattiioonn
All internal Prolog operations are thread-safe. This implies that
two Prolog threads can operate on the same dynamic predicate without
corrupting the consistency of the predicate. This section deals with
user-level _m_u_t_e_x_e_s (called _m_o_n_i_t_o_r_s in ADA or _c_r_i_t_i_c_a_l _s_e_c_t_i_o_n_s by
Microsoft). A mutex is a MMUUTTual EEXXclusive device, which implies that
at most one thread can _h_o_l_d a mutex.
Mutexes are used to realise related updates to the Prolog database.
With `related', we refer to the situation where a `transaction' implies
two or more changes to the Prolog database. For example, we have
a predicate address/2, representing the address of a person and we
want to change the address by retracting the old and asserting the
new address. Between these two operations the database is invalid:
this person has either no address or two addresses, depending on the
assert/retract order.
The code below provides a solution to this problem based on
with_mutex/2. It also illustrates the problem of mutexes. The
predicate with_mutex/2 behaves as once/1 with respect to the guarded
goal. This means that our predicate address/2 is no longer a nice
logical non-deterministic relation. This could be solved by explicit
locking and unlocking a mutex using setup_call_cleanup/2, but at the
risk of deadlocking the program if the choice point is left open by
accident.
________________________________________________________________________| |
|change_address(Id, Address) :- |
| with_mutex(addressbook, |
| ( retractall(address(Id, _)), |
| asserta(address_db(Id, Address)) |
| )). |
| |
|address(Id, Address) :- |
| with_mutex(addressbook, |
||__________________address_db(Id,_Address)).___________________________ ||
Message queues (see message_queue_create/3) often provide simpler and
more robust ways for threads to communicate. Still, mutexes can be a
sensible solution and are therefore provided.
mmuutteexx__ccrreeaattee((_?_M_u_t_e_x_I_d))
Create a mutex. If _M_u_t_e_x_I_d is an atom, a _n_a_m_e_d mutex is created.
If it is a variable, an anonymous mutex reference is returned.
Anonymous mutexes are subject to (atom) garbage collection.
mmuutteexx__ccrreeaattee((_-_M_u_t_e_x_I_d_, _+_O_p_t_i_o_n_s))
Create a mutex using options. Defined options are:
aalliiaass((_A_l_i_a_s))
Set the alias name. Using mutex_create(_X_, _[_a_l_i_a_s_(_n_a_m_e_)_]) is
preferred over the equivalent mutex_create(_n_a_m_e).
mmuutteexx__ddeessttrrooyy((_+_M_u_t_e_x_I_d))
Destroy a mutex. If the mutex is not locked, it is destroyed and
further access yields an existence_error exception. As of version
7.1.19, this behaviour is reliable. If the mutex is locked, the
mutex is sheduled for _d_e_l_a_y_e_d _d_e_s_t_r_u_c_t_i_o_n: it will be destroyed
when it becomes unlocked.
wwiitthh__mmuutteexx((_+_M_u_t_e_x_I_d_, _:_G_o_a_l))
Execute _G_o_a_l while holding _M_u_t_e_x_I_d. If _G_o_a_l leaves choice
points, these are destroyed (as in once/1). The mutex is
unlocked regardless of whether _G_o_a_l succeeds, fails or raises an
exception. An exception thrown by _G_o_a_l is re-thrown after the
mutex has been successfully unlocked. See also mutex_create/1 and
setup_call_cleanup/3.
Although described in the thread section, this predicate is also
available in the single-threaded version, where it behaves simply
as once/1.
mmuutteexx__lloocckk((_+_M_u_t_e_x_I_d))
Lock the mutex. Prolog mutexes are _r_e_c_u_r_s_i_v_e mutexes: they can be
locked multiple times by the same thread. Only after unlocking it
as many times as it is locked does the mutex become available for
locking by other threads. If another thread has locked the mutex
the calling thread is suspended until the mutex is unlocked.
If _M_u_t_e_x_I_d is an atom, and there is no current mutex with that
name, the mutex is created automatically using mutex_create/1.
This implies named mutexes need not be declared explicitly.
Please note that locking and unlocking mutexes should be paired
carefully. Especially make sure to unlock mutexes even if
the protected code fails or raises an exception. For most
common cases, use with_mutex/2, which provides a safer way for
handling Prolog-level mutexes. The predicate setup_call_cleanup/3
is another way to guarantee that the mutex is unlocked while
retaining non-determinism.
mmuutteexx__ttrryylloocckk((_+_M_u_t_e_x_I_d))
As mutex_lock/1, but if the mutex is held by another thread, this
predicates fails immediately.
mmuutteexx__uunnlloocckk((_+_M_u_t_e_x_I_d))
Unlock the mutex. This can only be called if the mutex is held by
the calling thread. If this is not the case, a permission_error
exception is raised.
mmuutteexx__uunnlloocckk__aallll _[_d_e_p_r_e_c_a_t_e_d_]
Unlock all mutexes held by the current thread. This predicate
should not be needed if mutex unlocking is guaranteed with
with_mutex/2 or setup_call_cleanup/3.
mmuutteexx__pprrooppeerrttyy((_?_M_u_t_e_x_I_d_, _?_P_r_o_p_e_r_t_y))
True if _P_r_o_p_e_r_t_y is a property of _M_u_t_e_x_I_d. Defined properties are:
aalliiaass((_A_l_i_a_s))
Mutex has the defined alias name. See mutex_create/2 using the
`alias' option.
ssttaattuuss((_S_t_a_t_u_s))
Current status of the mutex. One of unlocked if the mutex
is currently not locked, or locked(_O_w_n_e_r_, _C_o_u_n_t) if mutex is
locked _C_o_u_n_t times by thread _O_w_n_e_r. Note that unless _O_w_n_e_r is
the calling thread, the locked status can change at any time.
There is no useful application of this property, except for
diagnostic purposes.
99..55 TThhrreeaadd ssuuppppoorrtt lliibbrraarryy((tthhrreeaadduuttiill))
This library defines a couple of useful predicates for demonstrating
and debugging multithreaded applications. This library is certainly
not complete.
tthhrreeaaddss
Lists all current threads and their status.
jjooiinn__tthhrreeaaddss
Join all terminated threads. For normal applications, dealing with
terminated threads must be part of the application logic, either
detaching the thread before termination or making sure it will be
joined. The predicate join_threads/0 is intended for interactive
sessions to reclaim resources from threads that died unexpectedly
during development.
iinntteerraaccttoorr
Create a new console and run the Prolog top level in this new
console. See also attach_console/0. In the Windows version a new
interactor can also be created from the Run/New thread menu.
99..55..11 DDeebbuuggggiinngg tthhrreeaaddss
Support for debugging threads is still very limited. Debug and
trace mode are flags that are local to each thread. Individual
threads can be debugged either using the graphical debugger described
in section 3.5 (see tspy/1 and friends) or by attaching a console
to the thread and running the traditional command line debugger (see
attach_console/0). When using the graphical debugger, the debugger
must be _l_o_a_d_e_d from the main thread (for example using guitracer)
before gtrace/0 can be called from a thread.
aattttaacchh__ccoonnssoollee
If the current thread has no console attached yet, attach one
and redirect the user streams (input, output, and error) to the
new console window. On Unix systems the console is an xterm
application. On Windows systems this requires the GUI version
swipl-win.exe rather than the console-based swipl.exe.
This predicate has a couple of useful applications. One is to
separate (debugging) I/O of different threads. Another is to start
debugging a thread that is running in the background. If thread
10 is running, the following sequence starts the tracer on this
thread:
____________________________________________________________________| |
||?-_thread_signal(10,_(attach_console,_trace)).____________________ ||
ttddeebbuugg((_+_T_h_r_e_a_d_I_d))
Prepare _T_h_r_e_a_d_I_d for debugging using the graphical tracer. This
implies installing the tracer hooks in the thread and switching the
thread to debug mode using debug/0. The call is injected into
the thread using thread_signal/2. We refer to the documentation
of this predicate for asynchronous interaction with threads. New
threads created inherit their debug mode from the thread that
created them.
ttddeebbuugg
Call tdebug/1 in all running threads.
ttnnooddeebbuugg((_+_T_h_r_e_a_d_I_d))
Disable debugging thread _T_h_r_e_a_d_I_d.
ttnnooddeebbuugg
Disable debugging in all threads.
ttssppyy((_:_S_p_e_c_, _+_T_h_r_e_a_d_I_d))
Set a spy point as spy/1 and enable the thread for debugging using
tdebug/1. Note that a spy point is a global flag on a predicate
that is visible from all threads. Spy points are honoured in all
threads that are in debug mode and ignored in threads that are in
nodebug mode.
ttssppyy((_:_S_p_e_c))
Set a spy point as spy/1 and enable debugging in all threads
using tdebug/0. Note that removing spy points can be done using
nospy/1. Disabling spy points in a specific thread is achieved by
tnodebug/1.
99..55..22 PPrrooffiilliinngg tthhrreeaaddss
In the current implementation, at most one thread can be profiled at
any moment. Any thread can call profile/1 to profile the execution of
some part of its code. The predicate tprofile/1 allows for profiling
the execution of another thread until the user stops collecting profile
data.
ttpprrooffiillee((_+_T_h_r_e_a_d_I_d))
Start collecting profile data in _T_h_r_e_a_d_I_d and ask the user to hit
<_r_e_t_u_r_n> to stop the profiler. See section 4.39 for details on the
execution profiler.
99..66 MMuullttiitthhrreeaaddeedd mmiixxeedd CC aanndd PPrroolloogg aapppplliiccaattiioonnss
All foreign code linked to the multithreading version of SWI-Prolog
should be thread-safe (_r_e_e_n_t_r_a_n_t) or guarded in Prolog using
with_mutex/2 from simultaneous access from multiple Prolog threads.
If you want to write mixed multithreaded C and Prolog applications
you should first familiarise yourself with writing multithreaded
applications in C (C++).
If you are using SWI-Prolog as an embedded engine in a multithreaded
application you can access the Prolog engine from multiple threads by
creating an _e_n_g_i_n_e in each thread from which you call Prolog. Without
creating an engine, a thread can only use functions that do _n_o_t use the
term_t type (for example PL_new_atom()).
The system supports two models. Section 9.6.1 describes the original
one-to-one mapping. In this schema a native thread attaches a Prolog
thread if it needs to call Prolog and detaches it when finished, as
opposed to the model from section 9.6.2, where threads temporarily use
a Prolog engine.
99..66..11 AA PPrroolloogg tthhrreeaadd ffoorr eeaacchh nnaattiivvee tthhrreeaadd ((oonnee--ttoo--oonnee))
In the one-to-one model, the thread that called PL_initialise()
has a Prolog engine attached. If another C thread in the
system wishes to call Prolog it must first attach an engine using
PL_thread_attach_engine() and call PL_thread_destroy_engine()after all
Prolog work is finished. This model is especially suitable with
long running threads that need to do Prolog work regularly. See
section 9.6.2 for the alternative many-to-many model.
int PPLL__tthhrreeaadd__sseellff()
Returns the integer Prolog identifier of the engine or -1 if
the calling thread has no Prolog engine. This function is also
provided in the single-threaded version of SWI-Prolog, where it
returns -2.
int PPLL__uunniiffyy__tthhrreeaadd__iidd(_t_e_r_m___t _t_, _i_n_t _i)
Unify _t with the Prolog thread identifier for thread _i. Thread
identifiers are normally returned from PL_thread_self(). Returns
-1 if the thread does not exist or the unification fails.
int PPLL__tthhrreeaadd__aattttaacchh__eennggiinnee(_c_o_n_s_t _P_L___t_h_r_e_a_d___a_t_t_r___t _*_a_t_t_r)
Creates a new Prolog engine in the calling thread. If the calling
thread already has an engine the reference count of the engine is
incremented. The _a_t_t_r argument can be NULL to create a thread with
default attributes. Otherwise it is a pointer to a structure with
the definition below. For any field with value `0', the default
is used. The cancel field may be filled with a pointer to a
function that is called when PL_cleanup() terminates the running
Prolog engines. If this function is not present or returns FALSE
pthread_cancel() is used. The flags field defines the following
flags:
PPLL__TTHHRREEAADD__NNOO__DDEEBBUUGG
If this flag is present, the thread starts in normal no-debug
status. By default, the debug status is inherited from the
main thread.
____________________________________________________________________| |
| typedef struct |
| { unsigned long local_size; /* Stack sizes (Kbytes) */ |
| unsigned long global_size; |
| unsigned long trail_size; |
| unsigned long argument_size; |
| char * alias; /* alias name */ |
| int (*cancel)(int thread); |
| intptr_t flags; |
||}_PL_thread_attr_t;_______________________________________________ ||
The structure may be destroyed after PL_thread_attach_engine() has
returned. On success it returns the Prolog identifier for the
thread (as returned by PL_thread_self()). If an error occurs, -1
is returned. If this Prolog is not compiled for multithreading, -2
is returned.
int PPLL__tthhrreeaadd__ddeessttrrooyy__eennggiinnee()
Destroy the Prolog engine in the calling thread. Only takes
effect if PL_thread_destroy_engine() is called as many times as
PL_thread_attach_engine() in this thread. Returns TRUE on success
and FALSE if the calling thread has no engine or this Prolog does
not support threads.
Please note that construction and destruction of engines are
relatively expensive operations. Only destroy an engine if
performance is not critical and memory is a critical resource.
int PPLL__tthhrreeaadd__aatt__eexxiitt(_v_o_i_d _(_*_f_u_n_c_t_i_o_n_)_(_v_o_i_d _*_)_, _v_o_i_d _*_c_l_o_s_u_r_e_, _i_n_t _g_l_o_b_a_l)
Register a handle to be called as the Prolog engine is destroyed.
The handler function is called with one void * argument holding
_c_l_o_s_u_r_e. If _g_l_o_b_a_l is TRUE, the handler is installed _f_o_r _a_l_l
_t_h_r_e_a_d_s. Globally installed handlers are executed after the
thread-local handlers. If the handler is installed local for the
current thread only (_g_l_o_b_a_l == FALSE) it is stored in the same FIFO
queue as used by thread_at_exit/1.
99..66..22 PPoooolliinngg PPrroolloogg eennggiinneess ((mmaannyy--ttoo--mmaannyy))
In this model Prolog engines live as entities that are independent from
threads. If a thread needs to call Prolog it takes one of the engines
from the pool and returns the engine when done. This model is suitable
in the following identified cases:
o _C_o_m_p_a_t_i_b_i_l_i_t_y _w_i_t_h _t_h_e _s_i_n_g_l_e_-_t_h_r_e_a_d_e_d _v_e_r_s_i_o_n
In the single-threaded version, foreign threads must serialise
access to the one and only thread engine. Functions from this
section allow sharing one engine among multiple threads.
o _M_a_n_y _n_a_t_i_v_e _t_h_r_e_a_d_s _w_i_t_h _i_n_f_r_e_q_u_e_n_t _P_r_o_l_o_g _w_o_r_k
Prolog threads are expensive in terms of memory and time to create
and destroy them. For systems that use a large number of threads
that only infrequently need to call Prolog, it is better to take an
engine from a pool and return it there.
o _P_r_o_l_o_g _s_t_a_t_u_s _m_u_s_t _b_e _h_a_n_d_e_d _t_o _a_n_o_t_h_e_r _t_h_r_e_a_d
This situation has been identified by Uwe Lesta when creating
a .NET interface for SWI-Prolog. .NET distributes work for an
active internet connection over a pool of threads. If a Prolog
engine contains the state for a connection, it must be possible to
detach the engine from a thread and re-attach it to another thread
handling the same connection.
PL_engine_t PPLL__ccrreeaattee__eennggiinnee(_P_L___t_h_r_e_a_d___a_t_t_r___t _*_a_t_t_r_i_b_u_t_e_s)
Create a new Prolog engine. _a_t_t_r_i_b_u_t_e_s is described with
PL_thread_attach_engine(). Any thread can make this call after
PL_initialise() returns success. The returned engine is not
attached to any thread and lives until PL_destroy_engine()is used
on the returned handle.
In the single-threaded version this call always returns NULL,
indicating failure.
int PPLL__ddeessttrrooyy__eennggiinnee(_P_L___e_n_g_i_n_e___t _e)
Destroy the given engine. Destroying an engine is only allowed if
the engine is not attached to any thread or attached to the calling
thread. On success this function returns TRUE, on failure the
return value is FALSE.
int PPLL__sseett__eennggiinnee(_P_L___e_n_g_i_n_e___t _e_n_g_i_n_e_, _P_L___e_n_g_i_n_e___t _*_o_l_d)
Make the calling thread ready to use _e_n_g_i_n_e. If _o_l_d is non-NULL
the current engine associated with the calling thread is stored
at the given location. If _e_n_g_i_n_e equals PL_ENGINE_MAIN the
initial engine is attached to the calling thread. If _e_n_g_i_n_e is
PL_ENGINE_CURRENT the engine is not changed. This can be used
to query the current engine. This call returns PL_ENGINE_SET if
the engine was switched successfully, PL_ENGINE_INVAL if _e_n_g_i_n_e is
not a valid engine handle and PL_ENGINE_INUSE if the engine is
currently in use by another thread.
Engines can be changed at any time. For example, it is allowed
to select an engine to initiate a Prolog goal, detach it and at a
later moment execute the goal from another thread. Note, however,
that the term_t, qid_t and fid_t types are interpreted relative to
the engine for which they are created. Behaviour when passing one
of these types from one engine to another is undefined.
In the single-threaded version this call only succeeds if _e_n_g_i_n_e
refers to the main engine.
99..77 MMuullttiitthhrreeaaddiinngg aanndd tthhee XXPPCCEE ggrraapphhiiccss ssyysstteemm
GUI applications written in XPCE can benefit from Prolog threads if
they need to do expensive computations that would otherwise block the
UI. The XPCE message passing system is guarded with a single _m_u_t_e_x,
which synchronises both access from Prolog and activation through the
GUI. In MS-Windows, GUI events are processed by the thread that created
the window in which the event occurred, whereas in Unix/X11 they
are processed by the thread that dispatches messages. In practice,
the most feasible approach to graphical Prolog implementations is to
control XPCE from a single thread and deploy other threads for (long)
computations.
Traditionally, XPCE runs in the foreground (main) thread. We are
working towards a situation where XPCE can run comfortably in a
separate thread. A separate XPCE thread can be created using
pce_dispatch/1. It is also possible to create this thread as the (pce)
is loaded by setting the xpce_threaded to true.
Threads other than the thread in which XPCE runs are provided with two
predicates to communicate with XPCE.
iinn__ppccee__tthhrreeaadd((_:_G_o_a_l)) _[_d_e_t_]
Assuming XPCE is running in the foreground thread, this call gives
background threads the opportunity to make calls to the XPCE
thread. A call to in_pce_thread/1 succeeds immediately, copying
_G_o_a_l to the XPCE thread. _G_o_a_l is added to the XPCE event queue
and executed synchronous to normal user events like typing and
clicking.
iinn__ppccee__tthhrreeaadd__ssyynncc((_:_G_o_a_l)) _[_s_e_m_i_d_e_t_]
Same as in_pce_thread/1, but wait for _G_o_a_l to be completed.
Success depends on the success of executing _G_o_a_l. Variable
bindings inside _G_o_a_l are visible to the caller, but it should
be noted that the values are being _c_o_p_i_e_d. If _G_o_a_l throws an
exception, this exception is re-thrown by in_pce_thread/1. If the
calling thread is the `pce thread', in_pce_thread_sync/1 executes a
direct meta-call. See also pce_thread/1.
Note that in_pce_thread_sync/1 is expensive because it re-
quires copying and thread communication. For example,
in_pce_thread_synctrue runs at approximately 50,000 calls per second
(AMD Phenom 9600B, Ubuntu 11.04).
ppccee__ddiissppaattcchh((_+_O_p_t_i_o_n_s))
Create a Prolog thread with the alias name pce for XPCE event
handling. In the X11 version this call creates a thread that
executes the X11 event-dispatch loop. In MS-Windows it creates
a thread that executes a windows event-dispatch loop. The XPCE
event-handling thread has the alias pce. _O_p_t_i_o_n_s specifies the
thread attributes as thread_create/3.
CChhaapptteerr 1100.. FFOORREEIIGGNN LLAANNGGUUAAGGEE IINNTTEERRFFAACCEE
SWI-Prolog offers a powerful interface to C
[Kernighan & Ritchie, 1978]. The main design objectives of the
foreign language interface are flexibility and performance. A foreign
predicate is a C function that has the same number of arguments as
the predicate represented. C functions are provided to analyse the
passed terms, convert them to basic C types as well as to instantiate
arguments using unification. Non-deterministic foreign predicates are
supported, providing the foreign function with a handle to control
backtracking.
C can call Prolog predicates, providing both a query interface and an
interface to extract multiple solutions from a non-deterministic Prolog
predicate. There is no limit to the nesting of Prolog calling C,
calling Prolog, etc. It is also possible to write the `main' in C and
use Prolog as an embedded logical engine.
1100..11 OOvveerrvviieeww ooff tthhee IInntteerrffaaccee
A special include file called SWI-Prolog.h should be included with each
C source file that is to be loaded via the foreign interface. The
installation process installs this file in the directory include in the
SWI-Prolog home directory (?- current_prolog_flag(home, Home).). This C
header file defines various data types, macros and functions that can
be used to communicate with SWI-Prolog. Functions and macros can be
divided into the following categories:
o Analysing Prolog terms
o Constructing new terms
o Unifying terms
o Returning control information to Prolog
o Registering foreign predicates with Prolog
o Calling Prolog from C
o Recorded database interactions
o Global actions on Prolog (halt, break, abort, etc.)
1100..22 LLiinnkkiinngg FFoorreeiiggnn MMoodduulleess
Foreign modules may be linked to Prolog in two ways. Using _s_t_a_t_i_c
_l_i_n_k_i_n_g, the extensions, a (short) file defining main() which attaches
the extension calls to Prolog, and the SWI-Prolog kernel distributed
as a C library, are linked together to form a new executable. Using
_d_y_n_a_m_i_c _l_i_n_k_i_n_g, the extensions are linked to a shared library (.so
file on most Unix systems) or dynamic link library (.DLL file on
Microsoft platforms) and loaded into the running Prolog process.
1100..22..11 WWhhaatt lliinnkkiinngg iiss pprroovviiddeedd??
The _s_t_a_t_i_c _l_i_n_k_i_n_g schema can be used on all versions of SWI-Prolog.
Whether or not dynamic linking is supported can be deduced from the
Prolog flag open_shared_object (see current_prolog_flag/2). If this
Prolog flag yields true, open_shared_object/2 and related predicates are
defined. See section 10.2.3 for a suitable high-level interface to
these predicates.
1100..22..22 WWhhaatt kkiinndd ooff llooaaddiinngg sshhoouulldd II bbee uussiinngg??
All described approaches have their advantages and disadvantages.
Static linking is portable and allows for debugging on all platforms.
It is relatively cumbersome and the libraries you need to pass to the
linker may vary from system to system, though the utility program
swipl-ld described in section 10.5 often hides these problems from the
user.
Loading shared objects (DLL files on Windows) provides sharing and
protection and is generally the best choice. If a saved state is
created using qsave_program/[1,2], an initialization/1 directive may be
used to load the appropriate library at startup.
Note that the definition of the foreign predicates is the same,
regardless of the linking type used.
1100..22..33 lliibbrraarryy((sshhlliibb)):: UUttiilliittyy lliibbrraarryy ffoorr llooaaddiinngg ffoorreeiiggnn oobbjjeeccttss
((DDLLLLss,, sshhaarreedd oobbjjeeccttss))
This section discusses the functionality of the (autoload)
library(shlib), providing an interface to manage shared libraries. We
describe the procedure for using a foreign resource (DLL in Windows and
shared object in Unix) called mylib.
First, one must assemble the resource and make it compatible to
SWI-Prolog. The details for this vary between platforms. The
swipl-ld(1) utility can be used to deal with this in a portable manner.
The typical commandline is:
________________________________________________________________________| |
|swipl-ld|-o_mylib_file.{c,o,cc,C}_...__________________________________ | |
Make sure that one of the files provides a global function
install_mylib() that initialises the module using calls to
PL_register_foreign(). Here is a simple example file mylib.c, which
creates a Windows MessageBox:
________________________________________________________________________| |
|#include <windows.h> |
|#include <SWI-Prolog.h> |
| |
|static foreign_t |
|pl_say_hello(term_t to) |
|{ char *a; |
| |
| if ( PL_get_atom_chars(to, &a) ) |
| { MessageBox(NULL, a, "DLL test", MB_OK|MB_TASKMODAL); |
| |
| PL_succeed; |
| } |
| |
| PL_fail; |
|} |
| |
|install_t |
|install_mylib() |
|{ PL_register_foreign("say_hello", 1, pl_say_hello, 0); |
|}|_____________________________________________________________________ | |
Now write a file mylib.pl:
________________________________________________________________________| |
|:- module(mylib, [ say_hello/1 ]). |
|:-|use_foreign_library(foreign(mylib)).________________________________ | |
The file mylib.pl can be loaded as a normal Prolog file and provides
the predicate defined in C.
llooaadd__ffoorreeiiggnn__lliibbrraarryy((_:_F_i_l_e_S_p_e_c)) _[_d_e_t_]
llooaadd__ffoorreeiiggnn__lliibbrraarryy((_:_F_i_l_e_S_p_e_c_, _+_E_n_t_r_y_:_a_t_o_m)) _[_d_e_t_]
Load a _s_h_a_r_e_d _o_b_j_e_c_t or _D_L_L. After loading the _E_n_t_r_y function
is called without arguments. The default entry function is
composed from =install_=, followed by the file base-name. E.g.,
the load-call below calls the function install_mylib(). If the
platform prefixes extern functions with =_=, this prefix is added
before calling.
____________________________________________________________________| |
| ... |
| load_foreign_library(foreign(mylib)), |
||______..._________________________________________________________ ||
___________________________________________________________Arguments_
_F_i_l_e_S_p_e_c is a specification for absolute_file_name/3.
If searching the file fails, the plain name
is passed to the OS to try the default
method of the OS for locating foreign objects.
The default definition of file_search_path/2
searches <prolog home>/lib/<arch> on Unix and
<prolog home>/bin on Windows.
SSeeee aallssoo use_foreign_library/1,2 are intended for use in
directives.
uussee__ffoorreeiiggnn__lliibbrraarryy((_+_F_i_l_e_S_p_e_c)) _[_d_e_t_]
uussee__ffoorreeiiggnn__lliibbrraarryy((_+_F_i_l_e_S_p_e_c_, _+_E_n_t_r_y_:_a_t_o_m)) _[_d_e_t_]
Load and install a foreign library as load_foreign_library/1,2 and
register the installation using initialization/2 with the option
now. This is similar to using:
____________________________________________________________________| |
||:-_initialization(load_foreign_library(foreign(mylib))).__________ ||
but using the initialization/1 wrapper causes the library to be
loaded _a_f_t_e_r loading of the file in which it appears is completed,
while use_foreign_library/1 loads the library _i_m_m_e_d_i_a_t_e_l_y. I.e.
the difference is only relevant if the remainder of the file uses
functionality of the C-library.
uunnllooaadd__ffoorreeiiggnn__lliibbrraarryy((_+_F_i_l_e_S_p_e_c)) _[_d_e_t_]
uunnllooaadd__ffoorreeiiggnn__lliibbrraarryy((_+_F_i_l_e_S_p_e_c_, _+_E_x_i_t_:_a_t_o_m)) _[_d_e_t_]
Unload a _s_h_a_r_e_d _o_b_j_e_c_t or _D_L_L. After calling the _E_x_i_t function,
the shared object is removed from the process. The default
exit function is composed from =uninstall_=, followed by the file
base-name.
ccuurrrreenntt__ffoorreeiiggnn__lliibbrraarryy((_?_F_i_l_e_, _?_P_u_b_l_i_c))
Query currently loaded shared libraries.
rreellooaadd__ffoorreeiiggnn__lliibbrraarriieess
Reload all foreign libraries loaded (after restore of a state
created using qsave_program/2.
1100..22..44 LLooww--lleevveell ooppeerraattiioonnss oonn sshhaarreedd lliibbrraarriieess
The interface defined in this section allows the user to load shared
libraries (.so files on most Unix systems, .dll files on Windows).
This interface is portable to Windows as well as to Unix machines
providing dlopen(2) (Solaris, Linux, FreeBSD, Irix and many more)
or shl_open(2) (HP/UX). It is advised to use the predicates from
section 10.2.3 in your application.
ooppeenn__sshhaarreedd__oobbjjeecctt((_+_F_i_l_e_, _-_H_a_n_d_l_e))
_F_i_l_e is the name of a shared object file (DLL in MS-Windows).
This file is attached to the current process, and _H_a_n_d_l_e
is unified with a handle to the library. Equivalent to
open_shared_object(File, Handle, []). See also open_shared_object/3
and load_foreign_library/1.
On errors, an exception shared_object(_A_c_t_i_o_n_, _M_e_s_s_a_g_e) is raised.
_M_e_s_s_a_g_e is the return value from dlerror().
ooppeenn__sshhaarreedd__oobbjjeecctt((_+_F_i_l_e_, _-_H_a_n_d_l_e_, _+_O_p_t_i_o_n_s))
As open_shared_object/2, but allows for additional flags to be
passed. _O_p_t_i_o_n_s is a list of atoms. now implies the symbols are
resolved immediately rather than lazy (default). global implies
symbols of the loaded object are visible while loading other shared
objects (by default they are local). Note that these flags may not
be supported by your operating system. Check the documentation of
dlopen() or equivalent on your operating system. Unsupported flags
are silently ignored.
cclloossee__sshhaarreedd__oobbjjeecctt((_+_H_a_n_d_l_e))
Detach the shared object identified by _H_a_n_d_l_e.
ccaallll__sshhaarreedd__oobbjjeecctt__ffuunnccttiioonn((_+_H_a_n_d_l_e_, _+_F_u_n_c_t_i_o_n))
Call the named function in the loaded shared library. The function
is called without arguments and the return value is ignored.
Normally this function installs foreign language predicates using
calls to PL_register_foreign().
1100..22..55 SSttaattiicc LLiinnkkiinngg
Below is an outline of the file structure required for statically
linking SWI-Prolog with foreign extensions. .../swipl refers to the
SWI-Prolog home directory (see the Prolog flag home). <_a_r_c_h> refers to
the architecture identifier that may be obtained using the Prolog flag
arch.
.../swipl/runtime/<_a_r_c_h>/libswipl.a SWI-Library
.../swipl/include/SWI-Prolog.h Include file
.../swipl/include/SWI-Stream.h Stream I/O include file
.../swipl/include/SWI-Exports Export declarations (AIX only)
.../swipl/include/stub.c Extension stub
The definition of the foreign predicates is the same as for dynamic
linking. Unlike with dynamic linking, however, there is no
initialisation function. Instead, the file .../swipl/include/stub.c
may be copied to your project and modified to define the foreign
extensions. Below is stub.c, modified to link the lowercase example
described later in this chapter:
________________________________________________________________________| |
|#include <stdio.h> |
|#include <SWI-Prolog.h> |
| |
|extern foreign_t pl_lowercase(term, term); |
| |
|PL_extension predicates[] = |
|{ |
|/*{ "name", arity, function, PL_FA_<flags> },*/ |
| |
| { "lowercase", 2 pl_lowercase, 0 }, |
| { NULL, 0, NULL, 0 } /* terminating line */ |
|}; |
| |
| |
|int |
|main(int argc, char **argv) |
|{ PL_register_extensions(predicates); |
| |
| if ( !PL_initialise(argc, argv) ) |
| PL_halt(1); |
| |
| PL_install_readline(); /* delete if not required */ |
| |
| PL_halt(PL_toplevel() ? 0 : 1); |
|}|_____________________________________________________________________ | |
Now, a new executable may be created by compiling this file and
linking it to libpl.a from the runtime directory and the libraries
required by both the extensions and the SWI-Prolog kernel. This
may be done by hand, or by using the swipl-ld utility described in
section 10.5. If the linking is performed by hand, the command line
option -dump-runtime-variables (see section 2.4) can be used to obtain
the required paths, libraries and linking options to link the new
executable.
1100..33 IInntteerrffaaccee DDaattaa TTyyppeess
1100..33..11 TTyyppee term_t:: aa rreeffeerreennccee ttoo aa PPrroolloogg tteerrmm
The principal data type is term_t. Type term_t is what Quintus calls
QP_term_ref. This name indicates better what the type represents: it
is a _h_a_n_d_l_e for a term rather than the term itself. Terms can only be
represented and manipulated using this type, as this is the only safe
way to ensure the Prolog kernel is aware of all terms referenced by
foreign code and thus allows the kernel to perform garbage collection
and/or stack-shifts while foreign code is active, for example during a
callback from C.
A term reference is a C unsigned long, representing the offset of a
variable on the Prolog environment stack. A foreign function is passed
term references for the predicate arguments, one for each argument. If
references for intermediate results are needed, such references may be
created using PL_new_term_ref() or PL_new_term_refs(). These references
normally live till the foreign function returns control back to Prolog.
Their scope can be explicitly limited using PL_open_foreign_frame() and
PL_close_foreign_frame()/PL_discard_foreign_frame().
A term_t always refers to a valid Prolog term (variable, atom, integer,
float or compound term). A term lives either until backtracking
takes us back to a point before the term was created, the garbage
collector has collected the term, or the term was created after a
PL_open_foreign_frame()and PL_discard_foreign_frame()has been called.
The foreign interface functions can either _r_e_a_d, _u_n_i_f_y or _w_r_i_t_e to
term references. In this document we use the following notation for
arguments of type term_t:
term_t +t Accessed in read-mode. The `+' indicates the
argument is `input'.
term_t -t Accessed in write-mode.
term_t ?t Accessed in unify-mode.
Term references are obtained in any of the following ways:
o _P_a_s_s_e_d _a_s _a_r_g_u_m_e_n_t
The C functions implementing foreign predicates are passed their
arguments as term references. These references may be read or
unified. Writing to these variables causes undefined behaviour.
o _C_r_e_a_t_e_d _b_y PL_new_term_ref()
A term created by PL_new_term_ref() is normally used to build
temporary terms or to be written by one of the interface functions.
For example, PL_get_arg() writes a reference to the term argument
in its last argument.
o _C_r_e_a_t_e_d _b_y PL_new_term_refs(_i_n_t _n)
This function returns a set of term references with the same
characteristics as PL_new_term_ref(). See PL_open_query().
o _C_r_e_a_t_e_d _b_y PL_copy_term_ref(_t_e_r_m___t _t)
Creates a new term reference to the same term as the argument. The
term may be written to. See figure 10.2.
Term references can safely be copied to other C variables of type
term_t, but all copies will always refer to the same term.
term_t PPLL__nneeww__tteerrmm__rreeff()
Return a fresh reference to a term. The reference is allocated
on the _l_o_c_a_l stack. Allocating a term reference may trigger a
stack-shift on machines that cannot use sparse memory management
for allocation of the Prolog stacks. The returned reference
describes a variable.
term_t PPLL__nneeww__tteerrmm__rreeffss(_i_n_t _n)
Return _n new term references. The first term reference is
returned. The others are _t +1, _t +2, etc. There are two reasons
for using this function. PL_open_query()expects the arguments as
a set of consecutive term references, and _v_e_r_y time-critical code
requiring a number of term references can be written as:
____________________________________________________________________| |
| pl_mypredicate(term_t a0, term_t a1) |
| { term_t t0 = PL_new_term_refs(2); |
| term_t t1 = t0+1; |
| |
| ... |
||}_________________________________________________________________ ||
term_t PPLL__ccooppyy__tteerrmm__rreeff(_t_e_r_m___t _f_r_o_m)
Create a new term reference and make it point initially to the same
term as _f_r_o_m. This function is commonly used to copy a predicate
argument to a term reference that may be written.
void PPLL__rreesseett__tteerrmm__rreeffss(_t_e_r_m___t _a_f_t_e_r)
Destroy all term references that have been created after _a_f_t_e_r,
including _a_f_t_e_r itself. Any reference to the invalidated term
references after this call results in undefined behaviour.
Note that returning from the foreign context to Prolog will
reclaim all references used in the foreign context. This call
is only necessary if references are created inside a loop that
never exits back to Prolog. See also PL_open_foreign_frame(),
PL_close_foreign_frame() and PL_discard_foreign_frame().
1100..33..11..11 IInntteerraaccttiioonn wwiitthh tthhee ggaarrbbaaggee ccoolllleeccttoorr aanndd ssttaacckk--sshhiifftteerr
Prolog implements two mechanisms for avoiding stack overflow: garbage
collection and stack expansion. On machines that allow for it, Prolog
will use virtual memory management to detect stack overflow and expand
the runtime stacks. On other machines Prolog will reallocate the
stacks and update all pointers to them. To do so, Prolog needs to
know which data is referenced by C code. As all Prolog data known by
C is referenced through term references (term_t), Prolog has all the
information necessary to perform its memory management without special
precautions from the C programmer.
1100..33..22 OOtthheerr ffoorreeiiggnn iinntteerrffaaccee ttyyppeess
aattoomm__tt An atom in Prolog's internal representation. Atoms are pointers
to an opaque structure. They are a unique representation for
represented text, which implies that atom A represents the same
text as atom B if and only if A and B are the same pointer.
Atoms are the central representation for textual constants in
Prolog. The transformation of a character string C to an atom
implies a hash-table lookup. If the same atom is needed often, it
is advised to store its reference in a global variable to avoid
repeated lookup.
ffuunnccttoorr__tt A functor is the internal representation of a name/arity
pair. They are used to find the name and arity of a compound term
as well as to construct new compound terms. Like atoms they live
for the whole Prolog session and are unique.
pprreeddiiccaattee__tt Handle to a Prolog predicate. Predicate handles live
forever (although they can lose their definition).
qqiidd__tt Query identifier. Used by PL_open_query(), PL_next_solution() and
PL_close_query() to handle backtracking from C.
ffiidd__tt Frame identifier. Used by PL_open_foreign_frame() and
PL_close_foreign_frame().
mmoodduullee__tt A module is a unique handle to a Prolog module. Modules are
used only to call predicates in a specific module.
ffoorreeiiggnn__tt Return type for a C function implementing a Prolog predicate.
ccoonnttrrooll__tt Passed as additional argument to non-deterministic foreign
functions. See PL_retry*() and PL_foreign_context*().
iinnssttaallll__tt Type for the install() and uninstall() functions of shared or
dynamic link libraries. See section 10.2.3.
iinntt6644__tt Actually part of the C99 standard rather than Prolog. As
of version 5.5.6, Prolog integers are 64-bit on all hardware.
The C99 type int64_t is defined in the stdint.h standard header
and provides platform-independent 64-bit integers. Portable code
accessing Prolog should use this type to exchange integer values.
Please note that PL_get_long() can return FALSE on Prolog integers
that cannot be represented as a C long. Robust code should not
assume any of the integer fetching functions to succeed, _e_v_e_n if
the Prolog term is known to be an integer.
1100..44 TThhee FFoorreeiiggnn IInncclluuddee FFiillee
1100..44..11 AArrgguummeenntt PPaassssiinngg aanndd CCoonnttrrooll
If Prolog encounters a foreign predicate at run time it will call
a function specified in the predicate definition of the foreign
predicate. The arguments 1;:::; <_a_r_i_t_y>pass the Prolog arguments to the
goal as Prolog terms. Foreign functions should be declared of type
foreign_t. Deterministic foreign functions have two alternatives to
return control back to Prolog:
_(_r_e_t_u_r_n_) _f_o_r_e_i_g_n___t PPLL__ssuucccceeeedd(())
Succeed deterministically. PL_succeed is defined as return TRUE.
_(_r_e_t_u_r_n_) _f_o_r_e_i_g_n___t PPLL__ffaaiill(())
Fail and start Prolog backtracking. PL_fail is defined as
return FALSE.
1100..44..11..11 NNoonn--ddeetteerrmmiinniissttiicc FFoorreeiiggnn PPrreeddiiccaatteess
By default foreign predicates are deterministic. Using the
PL_FA_NONDETERMINISTIC attribute (see PL_register_foreign()) it is
possible to register a predicate as a non-deterministic predicate.
Writing non-deterministic foreign predicates is slightly more
complicated as the foreign function needs context information for
generating the next solution. Note that the same foreign function
should be prepared to be simultaneously active in more than one
goal. Suppose the natural_number_below_n/2 is a non-deterministic
foreign predicate, backtracking over all natural numbers lower than the
first argument. Now consider the following predicate:
________________________________________________________________________| |
|quotient_below_n(Q, N) :- |
| natural_number_below_n(N, N1), |
| natural_number_below_n(N, N2), |
||_______Q_=:=_N1_/_N2,_!.______________________________________________ ||
In this predicate the function natural_number_below_n/2 simultaneously
generates solutions for both its invocations.
Non-deterministic foreign functions should be prepared to handle three
different calls from Prolog:
o _I_n_i_t_i_a_l _c_a_l_l _(PL_FIRST_CALL_)
Prolog has just created a frame for the foreign function and asks
it to produce the first answer.
o _R_e_d_o _c_a_l_l _(PL_REDO_)
The previous invocation of the foreign function associated with the
current goal indicated it was possible to backtrack. The foreign
function should produce the next solution.
o _T_e_r_m_i_n_a_t_e _c_a_l_l _(PL_PRUNED_)
The choice point left by the foreign function has been destroyed by
a cut. The foreign function is given the opportunity to clean the
environment.
Both the context information and the type of call is provided
by an argument of type control_t appended to the argument list
for deterministic foreign functions. The macro PL_foreign_control()
extracts the type of call from the control argument. The
foreign function can pass a context handle using the PL_retry*()
macros and extract the handle from the extra argument using the
PL_foreign_context*() macro.
_(_r_e_t_u_r_n_) _f_o_r_e_i_g_n___t PPLL__rreettrryy((_i_n_t_p_t_r___t _v_a_l_u_e))
The foreign function succeeds while leaving a choice point. On
backtracking over this goal the foreign function will be called
again, but the control argument now indicates it is a `Redo'
call and the macro PL_foreign_context() returns the handle passed
via PL_retry(). This handle is a signed value two bits smaller
than a pointer, i.e., 30 or 62 bits (two bits are used for
status indication). Defined as return _PL_retry(_n). See also
PL_succeed().
_(_r_e_t_u_r_n_) _f_o_r_e_i_g_n___t PPLL__rreettrryy__aaddddrreessss((_v_o_i_d _*))
As PL_retry(), but ensures an address as returned by malloc() is
correctly recovered by PL_foreign_context_address(). Defined as
return _PL_retry_address(_n). See also PL_succeed().
_i_n_t PPLL__ffoorreeiiggnn__ccoonnttrrooll((_c_o_n_t_r_o_l___t))
Extracts the type of call from the control argument. The return
values are described above. Note that the function should be
prepared to handle the PL_PRUNED case and should be aware that the
other arguments are not valid in this case.
_i_n_t_p_t_r___t PPLL__ffoorreeiiggnn__ccoonntteexxtt((_c_o_n_t_r_o_l___t))
Extracts the context from the context argument. If the call type
is PL_FIRST_CALL the context value is 0L. Otherwise it is the value
returned by the last PL_retry() associated with this goal (both if
the call type is PL_REDO or PL_PRUNED).
_v_o_i_d _* PPLL__ffoorreeiiggnn__ccoonntteexxtt__aaddddrreessss((_c_o_n_t_r_o_l___t))
Extracts an address as passed in by PL_retry_address().
_p_r_e_d_i_c_a_t_e___t PPLL__ffoorreeiiggnn__ccoonntteexxtt__pprreeddiiccaattee((_c_o_n_t_r_o_l___t))
Fetch the Prolog predicate that is executing this function. Note
that if the predicate is imported, the returned predicate refers to
the final definition rather than the imported predicate, i.e., the
module reported by PL_predicate_info() is the module in which the
predicate is defined rather than the module where it was called.
See also PL_predicate_info().
Note: If a non-deterministic foreign function returns using
PL_succeed() or PL_fail(), Prolog assumes the foreign function has
cleaned its environment. NNoo call with control argument PL_PRUNED will
follow.
The code of figure 10.1 shows a skeleton for a non-deterministic
foreign predicate definition.
________________________________________________________________________| |
|typedef struct /* define a context structure */ |
|{ ... |
|} context; |
| |
|foreign_t |
|my_function(term_t a0, term_t a1, control_t handle) |
|{ struct context * ctxt; |
| |
| switch( PL_foreign_control(handle) ) |
| { case PL_FIRST_CALL: |
| ctxt = malloc(sizeof(struct context)); |
| ... |
| PL_retry_address(ctxt); |
| case PL_REDO: |
| ctxt = PL_foreign_context_address(handle); |
| ... |
| PL_retry_address(ctxt); |
| case PL_PRUNED: |
| ctxt = PL_foreign_context_address(handle); |
| ... |
| free(ctxt); |
| PL_succeed; |
| } |
|}|_____________________________________________________________________ | |
Figure 10.1: Skeleton for non-deterministic foreign functions
1100..44..22 AAttoommss aanndd ffuunnccttoorrss
The following functions provide for communication using atoms and
functors.
atom_t PPLL__nneeww__aattoomm(_c_o_n_s_t _c_h_a_r _*)
Return an atom handle for the given C-string. This function
always succeeds. The returned handle is valid as long as the
atom is referenced (see section 10.4.2.1). The following atoms
are provided as macros, giving access to the empty list symbol
and the name of the list constructor. Prior to version 7,
ATOM_nil is the same as PL_new_atom(_"_[_]_") and ATOM_dot is the same
as PL_new_atom(_"_._"). This is no long the case in SWI-Prolog
version 7.
_a_t_o_m___t AATTOOMM__nniill((_A))
tomic constant that represents the empty list. It is
adviced to use PL_get_nil(), PL_put_nil() or PL_unify_nil()
where applicable.
_a_t_o_m___t AATTOOMM__ddoott((_A))
tomic constant that represents the name of the list con-
structor. The list constructor itself is created using
PL_new_functor(_A_T_O_M___d_o_t_,_2). It is adviced to use PL_get_list(),
PL_put_list()or PL_unify_list() where applicable.
const char* PPLL__aattoomm__cchhaarrss(_a_t_o_m___t _a_t_o_m)
Return a C-string for the text represented by the given atom. The
returned text will not be changed by Prolog. It is not allowed
to modify the contents, not even `temporary' as the string may
reside in read-only memory. The returned string becomes invalid
if the atom is garbage collected (see section 10.4.2.1). Foreign
functions that require the text from an atom passed in a term_t
normally use PL_get_atom_chars() or PL_get_atom_nchars().
functor_t PPLL__nneeww__ffuunnccttoorr(_a_t_o_m___t _n_a_m_e_, _i_n_t _a_r_i_t_y)
Returns a _f_u_n_c_t_o_r _i_d_e_n_t_i_f_i_e_r, a handle for the name/arity pair.
The returned handle is valid for the entire Prolog session.
atom_t PPLL__ffuunnccttoorr__nnaammee(_f_u_n_c_t_o_r___t _f)
Return an atom representing the name of the given functor.
int PPLL__ffuunnccttoorr__aarriittyy(_f_u_n_c_t_o_r___t _f)
Return the arity of the given functor.
1100..44..22..11 AAttoommss aanndd aattoomm ggaarrbbaaggee ccoolllleeccttiioonn
With the introduction of atom garbage collection in version 3.3.0,
atoms no longer live as long as the process. Instead, their
lifetime is guaranteed only as long as they are referenced. In the
single-threaded version, atom garbage collections are only invoked at
the _c_a_l_l_-_p_o_r_t. In the multithreaded version (see chapter 9), they
appear asynchronously, except for the invoking thread.
For dealing with atom garbage collection, two additional functions are
provided:
void PPLL__rreeggiisstteerr__aattoomm(_a_t_o_m___t _a_t_o_m)
Increment the reference count of the atom by one. PL_new_atom()
performs this automatically, returning an atom with a reference
count of at least one.
void PPLL__uunnrreeggiisstteerr__aattoomm(_a_t_o_m___t _a_t_o_m)
Decrement the reference count of the atom. If the reference count
drops below zero, an assertion error is raised.
Please note that the following two calls are different with respect to
atom garbage collection:
________________________________________________________________________| |
|PL_unify_atom_chars(t, "text"); |
|PL_unify_atom(t,|PL_new_atom("text"));_________________________________ | |
The latter increments the reference count of the atom text, which
effectively ensures the atom will never be collected. It is advised to
use the *_chars() or *_nchars() functions whenever applicable.
1100..44..33 AAnnaallyyssiinngg TTeerrmmss vviiaa tthhee FFoorreeiiggnn IInntteerrffaaccee
Each argument of a foreign function (except for the control argument)
is of type term_t, an opaque handle to a Prolog term. Three groups of
functions are available for the analysis of terms. The first just
validates the type, like the Prolog predicates var/1, atom/1, etc.,
and are called PL_is_*(). The second group attempts to translate the
argument into a C primitive type. These predicates take a term_t and a
pointer to the appropriate C type and return TRUE or FALSE depending on
successful or unsuccessful translation. If the translation fails, the
pointed-to data is never modified.
1100..44..33..11 TTeessttiinngg tthhee ttyyppee ooff aa tteerrmm
int PPLL__tteerrmm__ttyyppee(_t_e_r_m___t)
Obtain the type of a term, which should be a term returned by
one of the other interface predicates or passed as an argument.
The function returns the type of the Prolog term. The type
identifiers are listed below. Note that the extraction functions
PL_get_*() also validate the type and thus the two sections below
are equivalent.
____________________________________________________________________| |
| if ( PL_is_atom(t) ) |
| { char *s; |
| |
| PL_get_atom_chars(t, &s); |
| ...; |
| } |
| |
| or |
| |
| char *s; |
| if ( PL_get_atom_chars(t, &s) ) |
| { ...; |
||________}_________________________________________________________ ||
VVeerrssiioonn 77 added PL_NIL, PL_BLOB, PL_LIST_PAIR and PL_DICT. Older
versions classify PL_NIL and PL_BLOB as PL_ATOM, PL_LIST_PAIR as
PL_TERM and do not have dicts.
_______________________________________________________________
| PL_VARIABLE |A variable or attributed variable |
| PL_ATOM |A Prolog atom |
| PL_NIL |The constant [] |
| PL_BLOB |A blob (see section 10.4.7.2) |
| PL_STRING |A string (see section 5.2) |
| PL_INTEGER |A integer |
| PL_FLOAT |A floating point number |
| PL_TERM |A compound term |
| PL_LIST_PAIR |A list cell ([H|T]) |
|_PL_DICT________________|A_dict_(see_section_5.4))____________|
The functions PL_is_<_t_y_p_e> are an alternative to PL_term_type(). The test
PL_is_variable(_t_e_r_m) is equivalent to PL_term_type(_t_e_r_m)== PL_VARIABLE,
but the first is considerably faster. On the other hand, using a
switch over PL_term_type() is faster and more readable then using an
if-then-else using the functions below. All these functions return
either TRUE or FALSE.
int PPLL__iiss__vvaarriiaabbllee(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a variable.
int PPLL__iiss__ggrroouunndd(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a ground term. See also ground/1.
This function is cycle-safe.
int PPLL__iiss__aattoomm(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is an atom.
int PPLL__iiss__ssttrriinngg(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a string.
int PPLL__iiss__iinntteeggeerr(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is an integer.
int PPLL__iiss__ffllooaatt(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a float.
int PPLL__iiss__ccaallllaabbllee(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a callable term. See callable/1 for
details.
int PPLL__iiss__ccoommppoouunndd(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a compound term.
int PPLL__iiss__ffuunnccttoorr(_t_e_r_m___t_, _f_u_n_c_t_o_r___t)
Returns non-zero if _t_e_r_m is compound and its functor is _f_u_n_c_t_o_r.
This test is equivalent to PL_get_functor(), followed by testing
the functor, but easier to write and faster.
int PPLL__iiss__lliisstt(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a compound term using the list
constructor or the list terminator. See also PL_is_pair() and
PL_skip_list().
int PPLL__iiss__ppaaiirr(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a compound term using the list
constructor. See also PL_is_list() and PL_skip_list().
int PPLL__iiss__aattoommiicc(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is atomic (not variable or compound).
int PPLL__iiss__nnuummbbeerr(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is an integer or float.
int PPLL__iiss__aaccyycclliicc(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is acyclic (i.e. a finite tree).
1100..44..33..22 RReeaaddiinngg ddaattaa ffrroomm aa tteerrmm
The functions PL_get_*() read information from a Prolog term. Most of
them take two arguments. The first is the input term and the second is
a pointer to the output value or a term reference.
int PPLL__ggeett__aattoomm(_t_e_r_m___t _+_t_, _a_t_o_m___t _*_a)
If _t is an atom, store the unique atom identifier over _a. See also
PL_atom_chars() and PL_new_atom(). If there is no need to access
the data (characters) of an atom, it is advised to manipulate atoms
using their handle. As the atom is referenced by _t, it will live
at least as long as _t does. If longer live-time is required, the
atom should be locked using PL_register_atom().
int PPLL__ggeett__aattoomm__cchhaarrss(_t_e_r_m___t _+_t_, _c_h_a_r _*_*_s)
If _t is an atom, store a pointer to a 0-terminated C-string in _s.
It is explicitly nnoott allowed to modify the contents of this string.
Some built-in atoms may have the string allocated in read-only
memory, so `temporary manipulation' can cause an error.
int PPLL__ggeett__ssttrriinngg__cchhaarrss(_t_e_r_m___t _+_t_, _c_h_a_r _*_*_s_, _i_n_t _*_l_e_n)
If _t is a string object, store a pointer to a 0-terminated
C-string in _s and the length of the string in _l_e_n. Note that
this pointer is invalidated by backtracking, garbage collection and
stack-shifts, so generally the only save operations are to pass it
immediately to a C function that doesn't involve Prolog.
int PPLL__ggeett__cchhaarrss(_t_e_r_m___t _+_t_, _c_h_a_r _*_*_s_, _u_n_s_i_g_n_e_d _f_l_a_g_s)
Convert the argument term _t to a 0-terminated C-string. _f_l_a_g_s is
a bitwise disjunction from two groups of constants. The first
specifies which term types should be converted and the second
how the argument is stored. Below is a specification of these
constants. BUF_RING implies, if the data is not static (as from an
atom), that the data is copied to the next buffer from a ring of 16
buffers. This is a convenient way of converting multiple arguments
passed to a foreign predicate to C-strings. If BUF_MALLOC is used,
the data must be freed using PL_free() when no longer needed.
With the introduction of wide characters (see section 2.18.1), not
all atoms can be converted into a char*. This function fails if _t
is of the wrong type, but also if the text cannot be represented.
See the REP_* flags below for details.
CCVVTT__AATTOOMM
Convert if term is an atom.
CCVVTT__SSTTRRIINNGG
Convert if term is a string.
CCVVTT__LLIISSTT
Convert if term is a list of of character codes.
CCVVTT__IINNTTEEGGEERR
Convert if term is an integer.
CCVVTT__FFLLOOAATT
Convert if term is a float. The characters returned are the
same as write/1 would write for the floating point number.
CCVVTT__NNUUMMBBEERR
Convert if term is an integer or float.
CCVVTT__AATTOOMMIICC
Convert if term is atomic.
CCVVTT__VVAARRIIAABBLLEE
Convert variable to print-name
CCVVTT__WWRRIITTEE
Convert any term that is not converted by any of the other
flags using write/1. If no BUF_* is provided, BUF_RING is
implied.
CCVVTT__WWRRIITTEE__CCAANNOONNIICCAALL
As CVT_WRITE, but using write_canonical/2.
CCVVTT__WWRRIITTEEQQ
As CVT_WRITE, but using writeq/2.
CCVVTT__AALLLL
Convert if term is any of the above, except for CVT_VARIABLE
and CVT_WRITE*.
CCVVTT__EEXXCCEEPPTTIIOONN
If conversion fails due to a type error, raise a Prolog type
error exception in addition to failure
BBUUFF__DDIISSCCAARRDDAABBLLEE
Data must copied immediately
BBUUFF__RRIINNGG
Data is stored in a ring of buffers
BBUUFF__MMAALLLLOOCC
Data is copied to a new buffer returned by PL_malloc(3). When
no longer needed the user must call PL_free() on the data.
RREEPP__IISSOO__LLAATTIINN__11
Text is in ISO Latin-1 encoding and the call fails if text
cannot be represented. This flag has the value 0 and is thus
the default.
RREEPP__UUTTFF88
Convert the text to a UTF-8 string. This works for all text.
RREEPP__MMBB
Convert to default locale-defined 8-bit string. Success
depends on the locale. Conversion is done using the wcrtomb()
C library function.
int PPLL__ggeett__lliisstt__cchhaarrss(_+_t_e_r_m___t _l_, _c_h_a_r _*_*_s_, _u_n_s_i_g_n_e_d _f_l_a_g_s)
Same as PL_get_chars(_l_, _s_, _C_V_T___L_I_S_T___f_l_a_g_s), provided _f_l_a_g_s contains
none of the CVT_* flags.
int PPLL__ggeett__iinntteeggeerr(_+_t_e_r_m___t _t_, _i_n_t _*_i)
If _t is a Prolog integer, assign its value over _i. On 32-bit
machines, this is the same as PL_get_long(), but avoids a warning
from the compiler. See also PL_get_long().
int PPLL__ggeett__lloonngg(_t_e_r_m___t _+_t_, _l_o_n_g _*_i)
If _t is a Prolog integer that can be represented as a long, assign
its value over _i. If _t is an integer that cannot be represented by
a C long, this function returns FALSE. If _t is a floating point
number that can be represented as a long, this function succeeds as
well. See also PL_get_int64().
int PPLL__ggeett__iinntt6644(_t_e_r_m___t _+_t_, _i_n_t_6_4___t _*_i)
If _t is a Prolog integer or float that can be represented as a
int64_t, assign its value over _i. Currently all Prolog integers
can be represented using this type, but this might change if
SWI-Prolog introduces unbounded integers.
int PPLL__ggeett__iinnttppttrr(_t_e_r_m___t _+_t_, _i_n_t_p_t_r___t _*_i)
Get an integer that is at least as wide as a pointer. On most
platforms this is the same as PL_get_long(), but on Win64 pointers
are 8 bytes and longs only 4. Unlike PL_get_pointer(), the value
is not modified.
int PPLL__ggeett__bbooooll(_t_e_r_m___t _+_t_, _i_n_t _*_v_a_l)
If _t has the value true or false, set _v_a_l to the C constant TRUE or
FALSE and return success, otherwise return failure.
int PPLL__ggeett__ppooiinntteerr(_t_e_r_m___t _+_t_, _v_o_i_d _*_*_p_t_r)
In the current system, pointers are represented by Prolog integers,
but need some manipulation to make sure they do not get truncated
due to the limited Prolog integer range. PL_put_pointer() and
PL_get_pointer() guarantee pointers in the range of malloc() are
handled without truncating.
int PPLL__ggeett__ffllooaatt(_t_e_r_m___t _+_t_, _d_o_u_b_l_e _*_f)
If _t is a float or integer, its value is assigned over _f.
int PPLL__ggeett__ffuunnccttoorr(_t_e_r_m___t _+_t_, _f_u_n_c_t_o_r___t _*_f)
If _t is compound or an atom, the Prolog representation of
the name-arity pair will be assigned over _f. See also
PL_get_name_arity() and PL_is_functor().
int PPLL__ggeett__nnaammee__aarriittyy(_t_e_r_m___t _+_t_, _a_t_o_m___t _*_n_a_m_e_, _i_n_t _*_a_r_i_t_y)
If _t is compound or an atom, the functor name will be assigned
over _n_a_m_e and the arity over _a_r_i_t_y. See also PL_get_functor() and
PL_is_functor().
int PPLL__ggeett__ccoommppoouunndd__nnaammee__aarriittyy(_t_e_r_m___t _+_t_, _a_t_o_m___t _*_n_a_m_e_, _i_n_t _*_a_r_i_t_y)
If _t is compound term, the functor name will be assigned over _n_a_m_e
and the arity over _a_r_i_t_y. This is the same as PL_get_name_arity(),
but this function fails if _t is an atom.
int PPLL__ggeett__mmoodduullee(_t_e_r_m___t _+_t_, _m_o_d_u_l_e___t _*_m_o_d_u_l_e)
If _t is an atom, the system will look up or create the
corresponding module and assign an opaque pointer to it over
_m_o_d_u_l_e.
int PPLL__ggeett__aarrgg(_i_n_t _i_n_d_e_x_, _t_e_r_m___t _+_t_, _t_e_r_m___t _-_a)
If _t is compound and index is between 1 and arity (inclusive),
assign _a with a term reference to the argument.
int _PPLL__ggeett__aarrgg(_i_n_t _i_n_d_e_x_, _t_e_r_m___t _+_t_, _t_e_r_m___t _-_a)
Same as PL_get_arg(), but no checking is performed, neither whether
_t is actually a term nor whether _i_n_d_e_x is a valid argument index.
1100..44..33..33 EExxcchhaannggiinngg tteexxtt uussiinngg lleennggtthh aanndd ssttrriinngg
All internal text representation in SWI-Prolog is represented using
char * plus length and allow for _0_-_b_y_t_e_s in them. The foreign library
supports this by implementing a *_nchars() function for each applicable
*_chars() function. Below we briefly present the signatures of these
functions. For full documentation consult the *_chars() function.
int PPLL__ggeett__aattoomm__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _*_l_e_n_, _c_h_a_r _*_*_s)
See PL_get_atom_chars().
int PPLL__ggeett__lliisstt__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _*_l_e_n_, _c_h_a_r _*_*_s)
See PL_get_list_chars().
int PPLL__ggeett__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _*_l_e_n_, _c_h_a_r _*_*_s_, _u_n_s_i_g_n_e_d _i_n_t _f_l_a_g_s)
See PL_get_chars().
int PPLL__ppuutt__aattoomm__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_put_atom_chars().
int PPLL__ppuutt__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_put_string_chars().
int PPLL__ppuutt__lliisstt__nnccooddeess(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_put_list_codes().
int PPLL__ppuutt__lliisstt__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_put_list_chars().
int PPLL__uunniiffyy__aattoomm__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_unify_atom_chars().
int PPLL__uunniiffyy__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_unify_string_chars().
int PPLL__uunniiffyy__lliisstt__nnccooddeess(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_unify_codes().
int PPLL__uunniiffyy__lliisstt__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_unify_list_chars().
In addition, the following functions are available for creating and
inspecting atoms:
atom_t PPLL__nneeww__aattoomm__nncchhaarrss(_s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
Create a new atom as PL_new_atom(), but using the given length and
characters. If _l_e_n is (size_t)-1, it is computed from _s using
strlen().
const char * PPLL__aattoomm__nncchhaarrss(_a_t_o_m___t _a_, _s_i_z_e___t _*_l_e_n)
Extract the text and length of an atom.
1100..44..33..44 WWiiddee--cchhaarraacctteerr vveerrssiioonnss
Support for exchange of wide-character strings is still under
consideration. The functions dealing with 8-bit character strings
return failure when operating on a wide-character atom or Prolog string
object. The functions below can extract and unify both 8-bit and wide
atoms and string objects. Wide character strings are represented as
C arrays of objects of the type pl_wchar_t, which is guaranteed to be
the same as wchar_t on platforms supporting this type. For example, on
MS-Windows, this represents 16-bit UCS2 characters, while using the GNU
C library (glibc) this represents 32-bit UCS4 characters.
atom_t PPLL__nneeww__aattoomm__wwcchhaarrss(_s_i_z_e___t _l_e_n_, _c_o_n_s_t _p_l___w_c_h_a_r___t _*_s)
Create atom from wide-character string as PL_new_atom_nchars() does
for ISO-Latin-1 strings. If _s only contains ISO-Latin-1 characters
a normal byte-array atom is created. If _l_e_n is (size_t)-1, it is
computed from _s using wcslen().
pl_wchar_t* PPLL__aattoomm__wwcchhaarrss(_a_t_o_m___t _a_t_o_m_, _i_n_t _*_l_e_n)
Extract characters from a wide-character atom. Succeeds on any
atom marked as `text'. If the underlying atom is a wide-character
atom, the returned pointer is a pointer into the atom structure.
If it is an ISO-Latin-1 character, the returned pointer comes from
Prolog's `buffer ring' (see PL_get_chars()).
int PPLL__ggeett__wwcchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _*_l_e_n_, _p_l___w_c_h_a_r___t _*_*_s_, _u_n_s_i_g_n_e_d _f_l_a_g_s)
Wide-character version of PL_get_chars(). The _f_l_a_g_s argument is
the same as for PL_get_chars().
int PPLL__uunniiffyy__wwcchhaarrss(_t_e_r_m___t _t_, _i_n_t _t_y_p_e_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _p_l___w_c_h_a_r___t _*_s)
Unify _t with a textual representation of the C wide-character array
_s. The _t_y_p_e argument defines the Prolog representation and is one
of PL_ATOM, PL_STRING, PL_CODE_LIST or PL_CHAR_LIST.
int PPLL__uunniiffyy__wwcchhaarrss__ddiiffff(_t_e_r_m___t _+_t_, _t_e_r_m___t _-_t_a_i_l_, _i_n_t _t_y_p_e_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _p_l___w_c_h_a_r___t _*_s)
Difference list version of PL_unify_wchars(), only supporting the
types PL_CODE_LIST and PL_CHAR_LIST. It serves two purposes. It
allows for returning very long lists from data read from a stream
without the need for a resizing buffer in C. Also, the use of
difference lists is often practical for further processing in
Prolog. Examples can be found in packages/clib/readutil.c from the
source distribution.
1100..44..33..55 RReeaaddiinngg aa lliisstt
The functions from this section are intended to read a Prolog list from
C. Suppose we expect a list of atoms; the following code will print the
atoms, each on a line:
________________________________________________________________________| |
|foreign_t |
|pl_write_atoms(term_t l) |
|{ term_t head = PL_new_term_ref(); /* the elements */ |
| term_t list = PL_copy_term_ref(l); /* copy (we modify list) */ |
| |
| while( PL_get_list(list, head, list) ) |
| { char *s; |
| |
| if ( PL_get_atom_chars(head, &s) ) |
| Sprintf("%s\n", s); |
| else |
| PL_fail; |
| } |
| |
| return PL_get_nil(list); /* test end for [] */ |
|}|_____________________________________________________________________ | |
Note that as of version 7, lists have a new representation unless the
option --traditional is used. see section 5.1.
int PPLL__ggeett__lliisstt(_t_e_r_m___t _+_l_, _t_e_r_m___t _-_h_, _t_e_r_m___t _-_t)
If _l is a list and not the empty list, assign a term reference to
the head to _h and to the tail to _t.
int PPLL__ggeett__hheeaadd(_t_e_r_m___t _+_l_, _t_e_r_m___t _-_h)
If _l is a list and not the empty list, assign a term reference to
the head to _h.
int PPLL__ggeett__ttaaiill(_t_e_r_m___t _+_l_, _t_e_r_m___t _-_t)
If _l is a list and not the empty list, assign a term reference to
the tail to _t.
int PPLL__ggeett__nniill(_t_e_r_m___t _+_l)
Succeeds if _l represents the list termination constant.
int PPLL__sskkiipp__lliisstt(_t_e_r_m___t _+_l_i_s_t_, _t_e_r_m___t _-_t_a_i_l_, _s_i_z_e___t _*_l_e_n)
This is a multi-purpose function to deal with lists. It allows for
finding the length of a list, checking whether something is a list,
etc. The reference _t_a_i_l is set to point to the end of the list,
_l_e_n is filled with the number of list-cells skipped, and the return
value indicates the status of the list:
PPLL__LLIISSTT
The list is a `proper' list: one that ends in the list
terminator constant and _t_a_i_l is filled with the terminator
constant.
PPLL__PPAARRTTIIAALL__LLIISSTT
The list is a `partial' list: one that ends in a variable and
_t_a_i_l is a reference to this variable.
PPLL__CCYYCCLLIICC__TTEERRMM
The list is cyclic (e.g. X = [a_X]). _t_a_i_l points to an
arbitrary cell of the list and _l_e_n is at most twice the cycle
length of the list.
PPLL__NNOOTT__AA__LLIISSTT
The term _l_i_s_t is not a list at all. _t_a_i_l is bound to
the non-list term and _l_e_n is set to the number of list-cells
skipped.
It is allowed to pass 0 for _t_a_i_l and NULL for _l_e_n.
1100..44..33..66 AAnn eexxaammppllee:: ddeeffiinniinngg write/1 iinn CC
Figure 10.2 shows a simplified definition of write/1 to illustrate
the described functions. This simplified version does not deal with
operators. It is called display/1, because it mimics closely the
behaviour of this Edinburgh predicate.
________________________________________________________________________| |
|foreign_t |
|pl_display(term_t t) |
|{ functor_t functor; |
| int arity, len, n; |
| char *s; |
| |
| switch( PL_term_type(t) ) |
| { case PL_VARIABLE: |
| case PL_ATOM: |
| case PL_INTEGER: |
| case PL_FLOAT: |
| PL_get_chars(t, &s, CVT_ALL); |
| Sprintf("%s", s); |
| break; |
| case PL_STRING: |
| PL_get_string_chars(t, &s, &len); |
| Sprintf("\"%s\"", s); |
| break; |
| case PL_TERM: |
| { term_t a = PL_new_term_ref(); |
| |
| PL_get_name_arity(t, &name, &arity); |
| Sprintf("%s(", PL_atom_chars(name)); |
| for(n=1; n<=arity; n++) |
| { PL_get_arg(n, t, a); |
| if ( n > 1 ) |
| Sprintf(", "); |
| pl_display(a); |
| } |
| Sprintf(")"); |
| break; |
| default: |
| PL_fail; /* should not happen */ |
| } |
| } |
| |
| PL_succeed; |
|}|_____________________________________________________________________ | |
Figure 10.2: A Foreign definition of display/1
1100..44..44 CCoonnssttrruuccttiinngg TTeerrmmss
Terms can be constructed using functions from the PL_put_*() and
PL_cons_*() families. This approach builds the term `inside-out',
starting at the leaves and subsequently creating compound terms.
Alternatively, terms may be created `top-down', first creating
a compound holding only variables and subsequently unifying the
arguments. This section discusses functions for the first approach.
This approach is generally used for creating arguments for PL_call()
and PL_open_query().
void PPLL__ppuutt__vvaarriiaabbllee(_t_e_r_m___t _-_t)
Put a fresh variable in the term, resetting the term reference to
its initial state.
void PPLL__ppuutt__aattoomm(_t_e_r_m___t _-_t_, _a_t_o_m___t _a)
Put an atom in the term reference from a handle. See also
PL_new_atom() and PL_atom_chars().
void PPLL__ppuutt__bbooooll(_t_e_r_m___t _-_t_, _i_n_t _v_a_l)
Put one of the atoms true or false in the term reference See also
PL_put_atom(), PL_unify_bool()and PL_get_bool().
int PPLL__ppuutt__aattoomm__cchhaarrss(_t_e_r_m___t _-_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put an atom in the term reference constructed from the zero-
terminated string. The string itself will never be referenced by
Prolog after this function.
int PPLL__ppuutt__ssttrriinngg__cchhaarrss(_t_e_r_m___t _-_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put a zero-terminated string in the term reference. The data will
be copied. See also PL_put_string_nchars().
int PPLL__ppuutt__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _-_t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put a string, represented by a length/start pointer pair in the
term reference. The data will be copied. This interface can deal
with 0-bytes in the string. See also section 10.4.20.
int PPLL__ppuutt__lliisstt__cchhaarrss(_t_e_r_m___t _-_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put a list of ASCII values in the term reference.
int PPLL__ppuutt__iinntteeggeerr(_t_e_r_m___t _-_t_, _l_o_n_g _i)
Put a Prolog integer in the term reference.
int PPLL__ppuutt__iinntt6644(_t_e_r_m___t _-_t_, _i_n_t_6_4___t _i)
Put a Prolog integer in the term reference.
int PPLL__ppuutt__ppooiinntteerr(_t_e_r_m___t _-_t_, _v_o_i_d _*_p_t_r)
Put a Prolog integer in the term reference. Provided _p_t_r is in the
`malloc()-area', PL_get_pointer() will get the pointer back.
int PPLL__ppuutt__ffllooaatt(_t_e_r_m___t _-_t_, _d_o_u_b_l_e _f)
Put a floating-point value in the term reference.
int PPLL__ppuutt__ffuunnccttoorr(_t_e_r_m___t _-_t_, _f_u_n_c_t_o_r___t _f_u_n_c_t_o_r)
Create a new compound term from _f_u_n_c_t_o_r and bind _t to this term.
All arguments of the term will be variables. To create a term with
instantiated arguments, either instantiate the arguments using the
PL_unify_*() functions or use PL_cons_functor().
int PPLL__ppuutt__lliisstt(_t_e_r_m___t _-_l)
As PL_put_functor(), using the list-cell functor. Note that
on classical Prolog systems or in SWI-Prolog using the option
--traditional, this is ./2, while on SWI-Prolog version 7 this is
[|]/2.
int PPLL__ppuutt__nniill(_t_e_r_m___t _-_l)
Put the list terminator constant in _l. Always returns TRUE. Note
that in classical Prolog systems or in SWI-Prolog using the option
--traditional, this is the same as PL_put_atom_chars(_"_[_]_"). See
section 5.1.
void PPLL__ppuutt__tteerrmm(_t_e_r_m___t _-_t_1_, _t_e_r_m___t _+_t_2)
Make _t_1 point to the same term as _t_2.
int PPLL__ccoonnss__ffuunnccttoorr(_t_e_r_m___t _-_h_, _f_u_n_c_t_o_r___t _f_, _._._.)
Create a term whose arguments are filled from a variable argument
list holding the same number of term_t objects as the arity of the
functor. To create the term animal(gnu, 50), use:
____________________________________________________________________| |
| { term_t a1 = PL_new_term_ref(); |
| term_t a2 = PL_new_term_ref(); |
| term_t t = PL_new_term_ref(); |
| functor_t animal2; |
| |
| /* animal2 is a constant that may be bound to a global |
| variable and re-used |
| */ |
| animal2 = PL_new_functor(PL_new_atom("animal"), 2); |
| |
| PL_put_atom_chars(a1, "gnu"); |
| PL_put_integer(a2, 50); |
| PL_cons_functor(t, animal2, a1, a2); |
||}_________________________________________________________________ ||
After this sequence, the term references _a_1 and _a_2 may be used for
other purposes.
int PPLL__ccoonnss__ffuunnccttoorr__vv(_t_e_r_m___t _-_h_, _f_u_n_c_t_o_r___t _f_, _t_e_r_m___t _a_0)
Create a compound term like PL_cons_functor(), but _a_0 is an array
of term references as returned by PL_new_term_refs(). The length
of this array should match the number of arguments required by the
functor.
int PPLL__ccoonnss__lliisstt(_t_e_r_m___t _-_l_, _t_e_r_m___t _+_h_, _t_e_r_m___t _+_t)
Create a list (cons-) cell in _l from the head _h and tail _t. The
code below creates a list of atoms from a char **. The list is
built tail-to-head. The PL_unify_*() functions can be used to
build a list head-to-tail.
____________________________________________________________________| |
| void |
| put_list(term_t l, int n, char **words) |
| { term_t a = PL_new_term_ref(); |
| |
| PL_put_nil(l); |
| while( --n >= 0 ) |
| { PL_put_atom_chars(a, words[n]); |
| PL_cons_list(l, a, l); |
| } |
||}_________________________________________________________________ ||
Note that _l can be redefined within a PL_cons_list call as shown
here because operationally its old value is consumed before its new
value is set.
1100..44..55 UUnniiffyyiinngg ddaattaa
The functions of this section _u_n_i_f_y terms with other terms or
translated C data structures. Except for PL_unify(), these functions
are specific to SWI-Prolog. They have been introduced because they
shorten the code for returning data to Prolog and at the same time make
this more efficient by avoiding the need to allocate temporary term
references and reduce the number of calls to the Prolog API. Consider
the case where we want a foreign function to return the host name of
the machine Prolog is running on. Using the PL_get_*() and PL_put_*()
functions, the code becomes:
________________________________________________________________________| |
|foreign_t |
|pl_hostname(term_t name) |
|{ char buf[100]; |
| |
| if ( gethostname(buf, sizeof(buf)) ) |
| { term_t tmp = PL_new_term_ref(); |
| |
| PL_put_atom_chars(tmp, buf); |
| return PL_unify(name, tmp); |
| } |
| |
| PL_fail; |
|}|_____________________________________________________________________ | |
Using PL_unify_atom_chars(), this becomes:
________________________________________________________________________| |
|foreign_t |
|pl_hostname(term_t name) |
|{ char buf[100]; |
| |
| if ( gethostname(buf, sizeof(buf)) ) |
| return PL_unify_atom_chars(name, buf); |
| |
| PL_fail; |
|}|_____________________________________________________________________ | |
Note that unification functions that perform multiple bindings may
leave part of the bindings in case of failure. See PL_unify() for
details.
int PPLL__uunniiffyy(_t_e_r_m___t _?_t_1_, _t_e_r_m___t _?_t_2)
Unify two Prolog terms and return TRUE on success.
Care is needed if PL_unify() returns FAIL and the foreign function
does not _i_m_m_e_d_i_a_t_e_l_y return to Prolog with FAIL. Unification may
perform multiple changes to either _t_1 or _t_2. A failing unification
may have created bindings before failure is detected. _A_l_r_e_a_d_y
_c_r_e_a_t_e_d _b_i_n_d_i_n_g_s _a_r_e _n_o_t _u_n_d_o_n_e. For example, calling PL_unify()
on a(_X_, _a) and a(_c_,_b) binds _X to c and fails when trying to unify a
to b. If control remains in C or even if we want to return success
to Prolog, we _m_u_s_t undo such bindings. This is achieved using
PL_open_foreign_frame() and PL_rewind_foreign_frame(), as shown in
the snippet below.
____________________________________________________________________| |
| { fid_t fid = PL_open_foreign_frame(); |
| |
| ... |
| if ( !PL_unify(t1, t2) ) |
| PL_rewind_foreign_frame(fid); |
| ... |
| |
| PL_close_foreign_frame(fid); |
||____}_____________________________________________________________ ||
In addition, PL_unify() may have failed on an eexxcceeppttiioonn,
typically a resource (stack) overflow. This can be tested
using PL_exception(), passing 0 (zero) for the query-id argument.
Foreign functions that encounter an exception must return FAIL to
Prolog as soon as possible or call PL_clear_exception() if they
wish to ignore the exception.
int PPLL__uunniiffyy__aattoomm(_t_e_r_m___t _?_t_, _a_t_o_m___t _a)
Unify _t with the atom _a and return non-zero on success.
int PPLL__uunniiffyy__bbooooll(_t_e_r_m___t _?_t_, _i_n_t _a)
Unify _t with either true or false.
int PPLL__uunniiffyy__cchhaarrss(_t_e_r_m___t _?_t_, _i_n_t _f_l_a_g_s_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
New function to deal with unification of char* with various
encodings to a Prolog representation. The _f_l_a_g_s argument is a
bitwise _o_r specifying the Prolog target type and the encoding of
_c_h_a_r_s. A Prolog type is one of PL_ATOM, PL_STRING, PL_CODE_LIST or
PL_CHAR_LIST. A representation is one of REP_ISO_LATIN_1, REP_UTF8
or REP_MB. See PL_get_chars() for a definition of the representation
types. If _l_e_n is -1 _c_h_a_r_s must be zero-terminated and the length
is computed from _c_h_a_r_s using strlen().
If _f_l_a_g_s includes PL_DIFF_LIST and type is one of PL_CODE_LIST or
PL_CHAR_LIST, the text is converted to a _d_i_f_f_e_r_e_n_c_e _l_i_s_t. The tail
of the difference list is t +1.
int PPLL__uunniiffyy__aattoomm__cchhaarrss(_t_e_r_m___t _?_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with an atom created from _c_h_a_r_s and return non-zero on
success.
int PPLL__uunniiffyy__lliisstt__cchhaarrss(_t_e_r_m___t _?_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with a list of ASCII characters constructed from _c_h_a_r_s.
void PPLL__uunniiffyy__ssttrriinngg__cchhaarrss(_t_e_r_m___t _?_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with a Prolog string object created from the zero-
terminated string _c_h_a_r_s. The data will be copied. See also
PL_unify_string_nchars().
void PPLL__uunniiffyy__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _?_t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with a Prolog string object created from the string created
from the _l_e_n/_c_h_a_r_s pair. The data will be copied. This interface
can deal with 0-bytes in the string. See also section 10.4.20.
int PPLL__uunniiffyy__iinntteeggeerr(_t_e_r_m___t _?_t_, _i_n_t_p_t_r___t _n)
Unify _t with a Prolog integer from _n.
int PPLL__uunniiffyy__iinntt6644(_t_e_r_m___t _?_t_, _i_n_t_6_4___t _n)
Unify _t with a Prolog integer from _n.
int PPLL__uunniiffyy__ffllooaatt(_t_e_r_m___t _?_t_, _d_o_u_b_l_e _f)
Unify _t with a Prolog float from _f.
int PPLL__uunniiffyy__ppooiinntteerr(_t_e_r_m___t _?_t_, _v_o_i_d _*_p_t_r)
Unify _t with a Prolog integer describing the pointer. See also
PL_put_pointer() and PL_get_pointer().
int PPLL__uunniiffyy__ffuunnccttoorr(_t_e_r_m___t _?_t_, _f_u_n_c_t_o_r___t _f)
If _t is a compound term with the given functor, just succeed. If
it is unbound, create a term and bind the variable, else fail.
Note that this function does not create a term if the argument is
already instantiated. If _f is a functor with arity 0, _t is unified
with an atom. See also PL_unify_compound().
int PPLL__uunniiffyy__ccoommppoouunndd(_t_e_r_m___t _?_t_, _f_u_n_c_t_o_r___t _f)
If _t is a compound term with the given functor, just succeed. If
it is unbound, create a term and bind the variable, else fail.
Note that this function does not create a term if the argument is
already instantiated. If _f is a functor with arity 0, _t is unified
with compound without arguments. See also PL_unify_functor().
int PPLL__uunniiffyy__lliisstt(_t_e_r_m___t _?_l_, _t_e_r_m___t _-_h_, _t_e_r_m___t _-_t)
Unify _l with a list-cell (./2). If successful, write a reference
to the head of the list into _h and a reference to the tail of the
list into _t. This reference may be used for subsequent calls to
this function. Suppose we want to return a list of atoms from
a char **. We could use the example described by PL_put_list(),
followed by a call to PL_unify(), or we can use the code below. If
the predicate argument is unbound, the difference is minimal (the
code based on PL_put_list() is probably slightly faster). If the
argument is bound, the code below may fail before reaching the end
of the word list, but even if the unification succeeds, this code
avoids a duplicate (garbage) list and a deep unification.
____________________________________________________________________| |
| foreign_t |
| pl_get_environ(term_t env) |
| { term_t l = PL_copy_term_ref(env); |
| term_t a = PL_new_term_ref(); |
| extern char **environ; |
| char **e; |
| |
| for(e = environ; *e; e++) |
| { if ( !PL_unify_list(l, a, l) || |
| !PL_unify_atom_chars(a, *e) ) |
| PL_fail; |
| } |
| |
| return PL_unify_nil(l); |
||}_________________________________________________________________ ||
int PPLL__uunniiffyy__nniill(_t_e_r_m___t _?_l)
Unify _l with the atom [].
int PPLL__uunniiffyy__aarrgg(_i_n_t _i_n_d_e_x_, _t_e_r_m___t _?_t_, _t_e_r_m___t _?_a)
Unifies the _i_n_d_e_x_-_t_h argument (1-based) of _t with _a.
int PPLL__uunniiffyy__tteerrmm(_t_e_r_m___t _?_t_, _._._.)
Unify _t with a (normally) compound term. The remaining arguments
are a sequence of a type identifier followed by the required
arguments. This predicate is an extension to the Quintus
and SICStus foreign interface from which the SWI-Prolog foreign
interface has been derived, but has proved to be a powerful and
comfortable way to create compound terms from C. Due to the vararg
packing/unpacking and the required type-switching this interface is
slightly slower than using the primitives. Please note that some
bad C compilers have fairly low limits on the number of arguments
that may be passed to a function.
Special attention is required when passing numbers. C `promotes'
any integral smaller than int to int. That is, the types char,
short and int are all passed as int. In addition, on most 32-bit
platforms int and long are the same. Up to version 4.0.5, only
PL_INTEGER could be specified, which was taken from the stack
as long. Such code fails when passing small integral types on
machines where int is smaller than long. It is advised to use
PL_SHORT, PL_INT or PL_LONG as appropriate. Similarly, C compilers
promote float to double and therefore PL_FLOAT and PL_DOUBLE are
synonyms.
The type identifiers are:
PL_VARIABLE _n_o_n_e
No op. Used in arguments of PL_FUNCTOR.
PL_BOOL _i_n_t
Unify the argument with true or false.
PL_ATOM _a_t_o_m___t
Unify the argument with an atom, as in PL_unify_atom().
PL_CHARS _c_o_n_s_t _c_h_a_r _*
Unify the argument with an atom constructed from the C char *,
as in PL_unify_atom_chars().
PL_NCHARS _s_i_z_e___t_, _c_o_n_s_t _c_h_a_r _*
Unify the argument with an atom constructed from length and
char* as in PL_unify_atom_nchars().
PL_UTF8_CHARS _c_o_n_s_t _c_h_a_r _*
Create an atom from a UTF-8 string.
PL_UTF8_STRING _c_o_n_s_t _c_h_a_r _*
Create a packed string object from a UTF-8 string.
PL_MBCHARS _c_o_n_s_t _c_h_a_r _*
Create an atom from a multi-byte string in the current locale.
PL_MBCODES _c_o_n_s_t _c_h_a_r _*
Create a list of character codes from a multi-byte string in
the current locale.
PL_MBSTRING _c_o_n_s_t _c_h_a_r _*
Create a packed string object from a multi-byte string in the
current locale.
PL_NWCHARS _s_i_z_e___t_, _c_o_n_s_t _w_c_h_a_r___t _*
Create an atom from a length and a wide character pointer.
PL_NWCODES _s_i_z_e___t_, _c_o_n_s_t _w_c_h_a_r___t _*
Create a list of character codes from a length and a wide
character pointer.
PL_NWSTRING _s_i_z_e___t_, _c_o_n_s_t _w_c_h_a_r___t _*
Create a packed string object from a length and a wide
character pointer.
PL_SHORT _s_h_o_r_t
Unify the argument with an integer, as in PL_unify_integer().
As short is promoted to int, PL_SHORT is a synonym for PL_INT.
PL_INTEGER _l_o_n_g
Unify the argument with an integer, as in PL_unify_integer().
PL_INT _i_n_t
Unify the argument with an integer, as in PL_unify_integer().
PL_LONG _l_o_n_g
Unify the argument with an integer, as in PL_unify_integer().
PL_INT64 _i_n_t_6_4___t
Unify the argument with a 64-bit integer, as in
PL_unify_int64().
PL_INTPTR _i_n_t_p_t_r___t
Unify the argument with an integer with the same width as a
pointer. On most machines this is the same as PL_LONG. but on
64-bit MS-Windows pointers are 64 bits while longs are only 32
bits.
PL_DOUBLE _d_o_u_b_l_e
Unify the argument with a float, as in PL_unify_float().
Note that, as the argument is passed using the C vararg
conventions, a float must be casted to a double explicitly.
PL_FLOAT _d_o_u_b_l_e
Unify the argument with a float, as in PL_unify_float().
PL_POINTER _v_o_i_d _*
Unify the argument with a pointer, as in PL_unify_pointer().
PL_STRING _c_o_n_s_t _c_h_a_r _*
Unify the argument with a string object, as in
PL_unify_string_chars().
PL_TERM _t_e_r_m___t
Unify a subterm. Note this may be the return value of a
PL_new_term_ref()call to get access to a variable.
PL_FUNCTOR _f_u_n_c_t_o_r___t_, _._._.
Unify the argument with a compound term. This specification
should be followed by exactly as many specifications as the
number of arguments of the compound term.
PL_FUNCTOR_CHARS _c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _._._.
Create a functor from the given name and arity and then behave
as PL_FUNCTOR.
PL_LIST _i_n_t _l_e_n_g_t_h_, _._._.
Create a list of the indicated length. The remaining
arguments contain the elements of the list.
For example, to unify an argument with the term language(dutch),
the following skeleton may be used:
____________________________________________________________________| |
| static functor_t FUNCTOR_language1; |
| |
| static void |
| init_constants() |
| { FUNCTOR_language1 = PL_new_functor(PL_new_atom("language"),1); |
| } |
| |
| foreign_t |
| pl_get_lang(term_t r) |
| { return PL_unify_term(r, |
| PL_FUNCTOR, FUNCTOR_language1, |
| PL_CHARS, "dutch"); |
| } |
| |
| install_t |
| install() |
| { PL_register_foreign("get_lang", 1, pl_get_lang, 0); |
| init_constants(); |
||}_________________________________________________________________ ||
int PPLL__cchhaarrss__ttoo__tteerrmm(_c_o_n_s_t _c_h_a_r _*_c_h_a_r_s_, _t_e_r_m___t _-_t)
Parse the string _c_h_a_r_s and put the resulting Prolog term into _t.
_c_h_a_r_s may or may not be closed using a Prolog full-stop (i.e., a
dot followed by a blank). Returns FALSE if a syntax error was
encountered and TRUE after successful completion. In addition to
returning FALSE, the exception-term is returned in _t on a syntax
error. See also term_to_atom/2.
The following example builds a goal term from a string and calls
it.
____________________________________________________________________| |
| int |
| call_chars(const char *goal) |
| { fid_t fid = PL_open_foreign_frame(); |
| term_t g = PL_new_term_ref(); |
| BOOL rval; |
| |
| if ( PL_chars_to_term(goal, g) ) |
| rval = PL_call(goal, NULL); |
| else |
| rval = FALSE; |
| |
| PL_discard_foreign_frame(fid); |
| return rval; |
| } |
| ... |
| call_chars("consult(load)"); |
||__..._____________________________________________________________ ||
int PPLL__wwcchhaarrss__ttoo__tteerrmm(_c_o_n_s_t _p_l___w_c_h_a_r___t _*_c_h_a_r_s_, _t_e_r_m___t _-_t)
Wide character version of PL_chars_to_term().
char * PPLL__qquuoottee(_i_n_t _c_h_r_, _c_o_n_s_t _c_h_a_r _*_s_t_r_i_n_g)
Return a quoted version of _s_t_r_i_n_g. If _c_h_r is '\'', the result is a
quoted atom. If _c_h_r is '"', the result is a string. The result
string is stored in the same ring of buffers as described with the
BUF_RING argument of PL_get_chars();
In the current implementation, the string is surrounded by _c_h_r and
any occurrence of _c_h_r is doubled. In the future the behaviour will
depend on the character_escapes Prolog flag.
1100..44..66 CCoonnvveenniieenntt ffuunnccttiioonnss ttoo ggeenneerraattee PPrroolloogg eexxcceeppttiioonnss
The typical implementation of a foreign predicate first uses the
PL_get_*() functions to extract C data types from the Prolog terms.
Failure of any of these functions is normally because the Prolog term
is of the wrong type. The *_ex() family of functions are wrappers
around (mostly) the PL_get_*() functions, such that we can write code
in the style below and get proper exceptions if an argument is
uninstantiated or of the wrong type.
________________________________________________________________________| |
|/** set_size(+Name:atom, +Width:int, +Height:int) is det. |
| |
|static foreign_t |
|set_size(term_t name, term_t width, term_t height) |
|{ char *n; |
| int w, h; |
| |
| if ( !PL_get_chars(name, &n, CVT_ATOM|CVT_EXCEPTION) || |
| !PL_get_integer_ex(with, &w) || |
| !PL_get_integer_ex(height, &h) ) |
| return FALSE; |
| |
| ... |
| |
|}|_____________________________________________________________________ | |
int PPLL__ggeett__aattoomm__eexx(_t_e_r_m___t _t_, _a_t_o_m___t _*_a)
As PL_get_atom(), but raises a type or instantiation error if _t is
not an atom.
int PPLL__ggeett__iinntteeggeerr__eexx(_t_e_r_m___t _t_, _i_n_t _*_i)
As PL_get_integer(), but raises a type or instantiation error if _t
is not an integer, or a representation error if the Prolog integer
does not fit in a C int.
int PPLL__ggeett__lloonngg__eexx(_t_e_r_m___t _t_, _l_o_n_g _*_i)
As PL_get_long(), but raises a type or instantiation error if _t is
not an atom, or a representation error if the Prolog integer does
not fit in a C long.
int PPLL__ggeett__iinntt6644__eexx(_t_e_r_m___t _t_, _i_n_t_6_4___t _*_i)
As PL_get_int64(), but raises a type or instantiation error if _t is
not an atom, or a representation error if the Prolog integer does
not fit in a C int64_t.
int PPLL__ggeett__iinnttppttrr__eexx(_t_e_r_m___t _t_, _i_n_t_p_t_r___t _*_i)
As PL_get_intptr(), but raises a type or instantiation error if _t
is not an atom, or a representation error if the Prolog integer
does not fit in a C intptr_t.
int PPLL__ggeett__ssiizzee__eexx(_t_e_r_m___t _t_, _s_i_z_e___t _*_i)
As PL_get_size(), but raises a type or instantiation error if _t is
not an atom, or a representation error if the Prolog integer does
not fit in a C size_t.
int PPLL__ggeett__bbooooll__eexx(_t_e_r_m___t _t_, _i_n_t _*_i)
As PL_get_bool(), but raises a type or instantiation error if _t is
not an boolean.
int PPLL__ggeett__ffllooaatt__eexx(_t_e_r_m___t _t_, _d_o_u_b_l_e _*_f)
As PL_get_float(), but raises a type or instantiation error if _t is
not a float.
int PPLL__ggeett__cchhaarr__eexx(_t_e_r_m___t _t_, _i_n_t _*_p_, _i_n_t _e_o_f)
Get a character code from _t, where _t is either an integer or an
atom with length one. If _e_o_f is TRUE and _t is -1, _p is filled with
-1. Raises an appropriate error if the conversion is not possible.
int PPLL__ggeett__ppooiinntteerr__eexx(_t_e_r_m___t _t_, _v_o_i_d _*_*_a_d_d_r_p)
As PL_get_pointer(), but raises a type or instantiation error if _t
is not a pointer.
int PPLL__ggeett__lliisstt__eexx(_t_e_r_m___t _l_, _t_e_r_m___t _h_, _t_e_r_m___t _t)
As PL_get_list(), but raises a type or instantiation error if _t is
not a list.
int PPLL__ggeett__nniill__eexx(_t_e_r_m___t _l)
As PL_get_nil(), but raises a type or instantiation error if _t is
not the empty list.
int PPLL__uunniiffyy__lliisstt__eexx(_t_e_r_m___t _l_, _t_e_r_m___t _h_, _t_e_r_m___t _t)
As PL_unify_list(), but raises a type error if _t is not a variable,
list-cell or the empty list.
int PPLL__uunniiffyy__nniill__eexx(_t_e_r_m___t _l)
As PL_unify_nil(), but raises a type error if _t is not a variable,
list-cell or the empty list.
int PPLL__uunniiffyy__bbooooll__eexx(_t_e_r_m___t _t_, _i_n_t _v_a_l)
As PL_unify_bool(), but raises a type error if _t is not a variable
or a boolean.
The second family of functions in this section simplifies the
generation of ISO compatible error terms. Any foreign function that
calls this function must return to Prolog with the return code of
the error function or the constant FALSE. If available, these error
functions add the name of the calling predicate to the error context.
See also PL_raise_exception().
int PPLL__iinnssttaannttiiaattiioonn__eerrrroorr(_t_e_r_m___t _c_u_l_p_r_i_t)
Raise instantiation_error. _C_u_l_p_r_i_t is ignored, but should be
bound to the term that is insufficiently instantiated. See
instantiation_error/1.
int PPLL__uunniinnssttaannttiiaattiioonn__eerrrroorr(_t_e_r_m___t _c_u_l_p_r_i_t)
Raise uninstantiation_error(culprit). This should be called if an
argument that must be unbound at entry is bound to _c_u_l_p_r_i_t. This
error is typically raised for a pure output arguments such as a
newly created stream handle (e.g., the third argument of open/3).
int PPLL__rreepprreesseennttaattiioonn__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_r_e_s_o_u_r_c_e)
Raise representation_error(resource). See representation_error/1.
int PPLL__ttyyppee__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_e_x_p_e_c_t_e_d_, _t_e_r_m___t _c_u_l_p_r_i_t)
Raise type_error(expected, culprit). See type_error/2.
int PPLL__ddoommaaiinn__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_e_x_p_e_c_t_e_d_, _t_e_r_m___t _c_u_l_p_r_i_t)
Raise domain_error(expected, culprit). See domain_error/2.
int PPLL__eexxiisstteennccee__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_t_y_p_e_, _t_e_r_m___t _c_u_l_p_r_i_t)
Raise existence_error(type, culprit). See type_error/2.
int PPLL__ppeerrmmiissssiioonn__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_o_p_e_r_a_t_i_o_n_, _c_o_n_s_t _c_h_a_r _*_t_y_p_e_, _t_e_r_m___t _c_u_l_p_r_i_t)
Raise permission_error(operation, type, culprit). See
permission_error/3.
int PPLL__rreessoouurrccee__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_r_e_s_o_u_r_c_e)
Raise resource_error(resource). See resource_error/1.
int PPLL__ssyynnttaaxx__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_m_e_s_s_a_g_e_, _I_O_S_T_R_E_A_M _*_i_n)
Raise syntax_error(message). If _a_r_g is not NULL, add information
about the current position of the input stream.
1100..44..77 BBLLOOBBSS:: UUssiinngg aattoommss ttoo ssttoorree aarrbbiittrraarryy bbiinnaarryy ddaattaa
SWI-Prolog atoms as well as strings can represent arbitrary binary data
of arbitrary length. This facility is attractive for storing foreign
data such as images in an atom. An atom is a unique handle to this
data and the atom garbage collector is able to destroy atoms that are
no longer referenced by the Prolog engine. This property of atoms
makes them attractive as a handle to foreign resources, such as Java
atoms, Microsoft's COM objects, etc., providing safe combined garbage
collection.
To exploit these features safely and in an organised manner,
the SWI-Prolog foreign interface allows for creating `atoms' with
additional type information. The type is represented by a structure
holding C function pointers that tell Prolog how to handle releasing
the atom, writing it, sorting it, etc. Two atoms created with
different types can represent the same sequence of bytes. Atoms are
first ordered on the rank number of the type and then on the result of
the compare() function. Rank numbers are assigned when the type is
registered.
1100..44..77..11 DDeeffiinniinngg aa BBLLOOBB ttyyppee
The type PL_blob_t represents a structure with the layout displayed
below. The structure contains additional fields at the ...for internal
bookkeeping as well as future extensions.
________________________________________________________________________| |
|typedef struct PL_blob_t |
|{ uintptr_t magic; /* PL_BLOB_MAGIC */ |
| uintptr_t flags; /* Bitwise or of PL_BLOB_* */ |
| char * name; /* name of the type */ |
| int (*release)(atom_t a); |
| int (*compare)(atom_t a, atom_t b); |
| int (*write)(IOSTREAM *s, atom_t a, int flags); |
| void (*acquire)(atom_t a); |
| ... |
|}|PL_blob_t;___________________________________________________________ | |
For each type, exactly one such structure should be allocated. Its
first field must be initialised to PL_BLOB_MAGIC. The _f_l_a_g_s is a bitwise
_o_r of the following constants:
PPLL__BBLLOOBB__TTEEXXTT
If specified the blob is assumed to contain text and is considered
a normal Prolog atom.
PPLL__BBLLOOBB__UUNNIIQQUUEE
If specified the system ensures that the blob-handle is a unique
reference for a blob with the given type, length and content. If
this flag is not specified, each lookup creates a new blob.
PPLL__BBLLOOBB__NNOOCCOOPPYY
By default the content of the blob is copied. Using this flag
the blob references the external data directly. The user must
ensure the provided pointer is valid as long as the atom lives.
If PL_BLOB_UNIQUE is also specified, uniqueness is determined by
comparing the pointer rather than the data pointed at.
The _n_a_m_e field represents the type name as available to Prolog. See
also current_blob/2. The other fields are function pointers that must
be initialised to proper functions or NULL to get the default behaviour
of built-in atoms. Below are the defined member functions:
void aaccqquuiirree(_a_t_o_m___t _a)
Called if a new blob of this type is created through PL_put_blob()
or PL_unify_blob(). This callback may be used together with the
release hook to deal with reference-counted external objects.
int rreelleeaassee(_a_t_o_m___t _a)
The blob (atom) _a is about to be released. This function can
retrieve the data of the blob using PL_blob_data(). If it returns
FALSE the atom garbage collector will _n_o_t reclaim the atom.
int ccoommppaarree(_a_t_o_m___t _a_, _a_t_o_m___t _b)
Compare the blobs _a and _b, both of which are of the type associated
to this blob type. Return values are, as memcmp(), < 0 if _a is
less than _b, = 0 if both are equal, and >0 otherwise.
int wwrriittee(_I_O_S_T_R_E_A_M _*_s_, _a_t_o_m___t _a_, _i_n_t _f_l_a_g_s)
Write the content of the blob _a to the stream _s respecting the
_f_l_a_g_s. The _f_l_a_g_s are a bitwise _o_r _o_f _z_e_r_o _o_r _m_o_r_e _o_f _t_h_e PL_WRT_*
_f_l_a_g_s _d_e_f_i_n_e_d _i_n SWI-Prolog.h_. _T_h_i_s _p_r_o_t_o_t_y_p_e _i_s _a_v_a_i_l_a_b_l_e _i_f _t_h_e
_u_n_d_o_c_u_m_e_n_t_e_d SWI-Stream.h _i_s _i_n_c_l_u_d_e_d _b_e_f_o_r_e SWI-Prolog.h_.
_I_f _t_h_i_s _f_u_n_c_t_i_o_n _i_s _n_o_t _p_r_o_v_i_d_e_d_, write/1 _e_m_i_t_s _t_h_e _c_o_n_t_e_n_t _o_f _t_h_e
_b_l_o_b _f_o_r _b_l_o_b_s _o_f _t_y_p_e PL_BLOB_TEXT _o_r _a _s_t_r_i_n_g _o_f _t_h_e _f_o_r_m_a_t <#_h_e_x
_d_a_t_a> _f_o_r _b_i_n_a_r_y _b_l_o_b_s_.
If a blob type is registered from a loadable object (shared object
or DLL) the blob type must be deregistered before the object may be
released.
int PPLL__uunnrreeggiisstteerr__bblloobb__ttyyppee(_P_L___b_l_o_b___t _*_t_y_p_e)
Unlink the blob type from the registered type and transform the
type of possible living blobs to unregistered, avoiding further
reference to the type structure, functions referred by it, as well
as the data. This function returns TRUE if no blobs of this type
existed and FALSE otherwise. PL_unregister_blob_type() is intended
for the uninstall() hook of foreign modules, avoiding further
references to the module.
1100..44..77..22 AAcccceessssiinngg bblloobbss
The blob access functions are similar to the atom accessing functions.
Blobs being atoms, the atom functions operate on blobs and vice versa.
For clarity and possible future compatibility issues, however, it is
not advised to rely on this.
int PPLL__iiss__bblloobb(_t_e_r_m___t _t_, _P_L___b_l_o_b___t _*_*_t_y_p_e)
Succeeds if _t refers to a blob, in which case _t_y_p_e is filled with
the type of the blob.
int PPLL__uunniiffyy__bblloobb(_t_e_r_m___t _t_, _v_o_i_d _*_b_l_o_b_, _s_i_z_e___t _l_e_n_, _P_L___b_l_o_b___t _*_t_y_p_e)
Unify _t to a new blob constructed from the given data and
associated to the given type. See also PL_unify_atom_nchars().
int PPLL__ppuutt__bblloobb(_t_e_r_m___t _t_, _v_o_i_d _*_b_l_o_b_, _s_i_z_e___t _l_e_n_, _P_L___b_l_o_b___t _*_t_y_p_e)
Store the described blob in _t. The return value indicates whether
a new blob was allocated (FALSE) or the blob is a reference to
an existing blob (TRUE). Reporting new/existing can be used to
deal with external objects having their own reference counts. If
the return is TRUE this reference count must be incremented, and
it must be decremented on blob destruction callback. See also
PL_put_atom_nchars().
int PPLL__ggeett__bblloobb(_t_e_r_m___t _t_, _v_o_i_d _*_*_b_l_o_b_, _s_i_z_e___t _*_l_e_n_, _P_L___b_l_o_b___t _*_*_t_y_p_e)
If _t holds a blob or atom, get the data and type and return TRUE.
Otherwise return FALSE. Each result pointer may be NULL, in which
case the requested information is ignored.
void * PPLL__bblloobb__ddaattaa(_a_t_o_m___t _a_, _s_i_z_e___t _*_l_e_n_, _P_L___b_l_o_b___t _*_*_t_y_p_e)
Get the data and type associated to a blob. This function
is mainly used from the callback functions described in
section 10.4.7.1.
1100..44..88 EExxcchhaannggiinngg GGMMPP nnuummbbeerrss
If SWI-Prolog is linked with the GNU Multiple Precision Arithmetic
Library (GMP, used by default), the foreign interface provides
functions for exchanging numeric values to GMP types. To
access these functions the header <gmp.h> must be included _b_e_f_o_r_e
<SWI-Prolog.h>. Foreign code using GMP linked to SWI-Prolog asks for
some considerations.
o SWI-Prolog normally rebinds the GMP allocation functions us-
ing mp_set_memory_functions(). This means SWI-Prolog must be
initialised before the foreign code touches any GMP function.
You can call \cfuncref{PL_action}{PL_GMP_SET_ALLOC_FUNCTIONS, TRUE}
to force Prolog's GMP initialization without doing the
rest of the Prolog initialization. If you do
not want Prolog rebinding the GMP allocation, call
\cfuncref{PL_action}{PL_GMP_SET_ALLOC_FUNCTIONS, FALSE} _b_e_f_o_r_e ini-
tializing Prolog.
o On Windows, each DLL has its own memory pool. To make exchange
of GMP numbers between Prolog and foreign code possible you must
either let Prolog rebind the allocation functions (default) or you
must recompile SWI-Prolog to link to a DLL version of the GMP
library.
Here is an example exploiting the function mpz_nextprime():
________________________________________________________________________| |
|#include <gmp.h> |
|#include <SWI-Prolog.h> |
| |
|static foreign_t |
|next_prime(term_t n, term_t prime) |
|{ mpz_t mpz; |
| int rc; |
| |
| mpz_init(mpz); |
| if ( PL_get_mpz(n, mpz) ) |
| { mpz_nextprime(mpz, mpz); |
| |
| rc = PL_unify_mpz(prime, mpz); |
| } else |
| rc = FALSE; |
| |
| mpz_clear(mpz); |
| return rc; |
|} |
| |
|install_t |
|install() |
|{ PL_register_foreign("next_prime", 2, next_prime, 0); |
|}|_____________________________________________________________________ | |
int PPLL__ggeett__mmppzz(_t_e_r_m___t _t_, _m_p_z___t _m_p_z)
If _t represents an integer, _m_p_z is filled with the value and the
function returns TRUE. Otherwise _m_p_z is untouched and the function
returns FALSE. Note that _m_p_z must have been initialised before
calling this function and must be cleared using mpz_clear() to
reclaim any storage associated with it.
int PPLL__ggeett__mmppqq(_t_e_r_m___t _t_, _m_p_q___t _m_p_q)
If _t is an integer or rational number (term rdiv/2), _m_p_q is filled
with the _n_o_r_m_a_l_i_s_e_d rational number and the function returns TRUE.
Otherwise _m_p_q is untouched and the function returns FALSE. Note
that _m_p_q must have been initialised before calling this function
and must be cleared using mpq_clear() to reclaim any storage
associated with it.
int PPLL__uunniiffyy__mmppzz(_t_e_r_m___t _t_, _m_p_z___t _m_p_z)
Unify _t with the integer value represented by _m_p_z and return TRUE
on success. The _m_p_z argument is not changed.
int PPLL__uunniiffyy__mmppqq(_t_e_r_m___t _t_, _m_p_q___t _m_p_q)
Unify _t with a rational number represented by _m_p_q and return TRUE
on success. Note that _t is unified with an integer if the
denominator is 1. The _m_p_q argument is not changed.
1100..44..99 CCaalllliinngg PPrroolloogg ffrroomm CC
The Prolog engine can be called from C. There are two interfaces
for this. For the first, a term is created that could be used as
an argument to call/1, and then PL_call() is used to call Prolog.
This system is simple, but does not allow to inspect the different
answers to a non-deterministic goal and is relatively slow as the
runtime system needs to find the predicate. The other interface
is based on PL_open_query(), PL_next_solution() and PL_cut_query() or
PL_close_query(). This mechanism is more powerful, but also more
complicated to use.
1100..44..99..11 PPrreeddiiccaattee rreeffeerreenncceess
This section discusses the functions used to communicate about
predicates. Though a Prolog predicate may be defined or not,
redefined, etc., a Prolog predicate has a handle that is neither
destroyed nor moved. This handle is known by the type predicate_t.
predicate_t PPLL__pprreedd(_f_u_n_c_t_o_r___t _f_, _m_o_d_u_l_e___t _m)
Return a handle to a predicate for the specified name/arity in the
given module. This function always succeeds, creating a handle for
an undefined predicate if no handle was available. If the module
argument _m is NULL, the current context module is used.
predicate_t PPLL__pprreeddiiccaattee(_c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _c_o_n_s_t _c_h_a_r_* _m_o_d_u_l_e)
Same as PL_pred(), but provides a more convenient interface to the
C programmer.
void PPLL__pprreeddiiccaattee__iinnffoo(_p_r_e_d_i_c_a_t_e___t _p_, _a_t_o_m___t _*_n_, _i_n_t _*_a_, _m_o_d_u_l_e___t _*_m)
Return information on the predicate _p. The name is stored over
_n, the arity over _a, while _m receives the definition module.
Note that the latter need not be the same as specified with
PL_predicate(). If the predicate is imported into the module given
to PL_predicate(), this function will return the module where the
predicate is defined. Any of the arguments _n, _a and _m can be NULL.
1100..44..99..22 IInniittiiaattiinngg aa qquueerryy ffrroomm CC
This section discusses the functions for creating and manipulating
queries from C. Note that a foreign context can have at most one active
query. This implies that it is allowed to make strictly nested calls
between C and Prolog (Prolog calls C, calls Prolog, calls C, etc.),
but it is nnoott allowed to open multiple queries and start generating
solutions for each of them by calling PL_next_solution(). Be sure to
call PL_cut_query() or PL_close_query() on any query you opened before
opening the next or returning control back to Prolog.
qid_t PPLL__ooppeenn__qquueerryy(_m_o_d_u_l_e___t _c_t_x_, _i_n_t _f_l_a_g_s_, _p_r_e_d_i_c_a_t_e___t _p_, _t_e_r_m___t _+_t_0)
Opens a query and returns an identifier for it. _c_t_x is the
_c_o_n_t_e_x_t _m_o_d_u_l_e of the goal. When NULL, the context module
of the calling context will be used, or user if there is no
calling context (as may happen in embedded systems). Note
that the context module only matters for _m_e_t_a_-_p_r_e_d_i_c_a_t_e_s. See
meta_predicate/1, context_module/1 and module_transparent/1. The _p
argument specifies the predicate, and should be the result of a
call to PL_pred() or PL_predicate(). Note that it is allowed to
store this handle as global data and reuse it for future queries.
The term reference _t_0 is the first of a vector of term references
as returned by PL_new_term_refs(_n).
The _f_l_a_g_s arguments provides some additional options concerning
debugging and exception handling. It is a bitwise _o_r of the
following values:
PL_Q_NORMAL
Normal operation. The debugger inherits its settings from the
environment. If an exception occurs that is not handled in
Prolog, a message is printed and the tracer is started to
debug the error.
PL_Q_NODEBUG
Switch off the debugger while executing the goal. This option
is used by many calls to hook-predicates to avoid tracing the
hooks. An example is print/1 calling portray/1 from foreign
code.
PL_Q_CATCH_EXCEPTION
If an exception is raised while executing the goal, do not
report it, but make it available for PL_exception().
PL_Q_PASS_EXCEPTION
As PL_Q_CATCH_EXCEPTION, but do not invalidate the exception-
term while calling PL_close_query(). This option is
experimental.
PL_open_query() can return the query identifier `0' if there is not
enough space on the environment stack. This function succeeds,
even if the referenced predicate is not defined. In this
case, running the query using PL_next_solution() will return an
existence_error. See PL_exception().
The example below opens a query to the predicate is_a/2 to find the
ancestor of `me'. The reference to the predicate is valid for the
duration of the process and may be cached by the client.
____________________________________________________________________| |
| char * |
| ancestor(const char *me) |
| { term_t a0 = PL_new_term_refs(2); |
| static predicate_t p; |
| |
| if ( !p ) |
| p = PL_predicate("is_a", 2, "database"); |
| |
| PL_put_atom_chars(a0, me); |
| PL_open_query(NULL, PL_Q_NORMAL, p, a0); |
| ... |
||}_________________________________________________________________ ||
int PPLL__nneexxtt__ssoolluuttiioonn(_q_i_d___t _q_i_d)
Generate the first (next) solution for the given query. The return
value is TRUE if a solution was found, or FALSE to indicate the
query could not be proven. This function may be called repeatedly
until it fails to generate all solutions to the query.
void PPLL__ccuutt__qquueerryy(_q_i_d___t _q_i_d)
Discards the query, but does not delete any of the data created by
the query. It just invalidates _q_i_d, allowing for a new call to
PL_open_query() in this context.
void PPLL__cclloossee__qquueerryy(_q_i_d___t _q_i_d)
As PL_cut_query(), but all data and bindings created by the query
are destroyed.
int PPLL__ccaallll__pprreeddiiccaattee(_m_o_d_u_l_e___t _m_, _i_n_t _f_l_a_g_s_, _p_r_e_d_i_c_a_t_e___t _p_r_e_d_, _t_e_r_m___t _+_t_0)
Shorthand for PL_open_query(), PL_next_solution(), PL_cut_query(),
generating a single solution. The arguments are the same as for
PL_open_query(), the return value is the same as PL_next_solution().
int PPLL__ccaallll(_t_e_r_m___t _t_, _m_o_d_u_l_e___t _m)
Call term _t just like the Prolog predicate once/1. _t is called
in the module _m, or in the context module if _m == NULL. Returns
TRUE if the call succeeds, FALSE otherwise. Figure 10.3 shows an
example to obtain the number of defined atoms. All checks are
omitted to improve readability.
1100..44..1100 DDiissccaarrddiinngg DDaattaa
The Prolog data created and term references needed to set up the call
and/or analyse the result can in most cases be discarded right after
the call. PL_close_query() allows for destroying the data, while
leaving the term references. The calls below may be used to destroy
term references and data. See figure 10.3 for an example.
fid_t PPLL__ooppeenn__ffoorreeiiggnn__ffrraammee()
Create a foreign frame, holding a mark that allows the system
to undo bindings and destroy data created after it, as well as
providing the environment for creating term references. This
function is called by the kernel before calling a foreign
predicate.
void PPLL__cclloossee__ffoorreeiiggnn__ffrraammee(_f_i_d___t _i_d)
Discard all term references created after the frame was opened.
All other Prolog data is retained. This function is called by the
kernel whenever a foreign function returns control back to Prolog.
void PPLL__ddiissccaarrdd__ffoorreeiiggnn__ffrraammee(_f_i_d___t _i_d)
Same as PL_close_foreign_frame(), but also undo all bindings made
since the open and destroy all Prolog data.
void PPLL__rreewwiinndd__ffoorreeiiggnn__ffrraammee(_f_i_d___t _i_d)
Undo all bindings and discard all term references created since the
frame was created, but do not pop the frame. That is, the same
frame can be rewound multiple times, and must eventually be closed
or discarded.
It is obligatory to call either of the two closing functions to discard
a foreign frame. Foreign frames may be nested.
________________________________________________________________________| |
|int |
|count_atoms() |
|{ fid_t fid = PL_open_foreign_frame(); |
| term_t goal = PL_new_term_ref(); |
| term_t a1 = PL_new_term_ref(); |
| term_t a2 = PL_new_term_ref(); |
| functor_t s2 = PL_new_functor(PL_new_atom("statistics"), 2); |
| int atoms; |
| |
| PL_put_atom_chars(a1, "atoms"); |
| PL_cons_functor(goal, s2, a1, a2); |
| PL_call(goal, NULL); /* call it in current module */ |
| |
| PL_get_integer(a2, &atoms); |
| PL_discard_foreign_frame(fid); |
| |
| return atoms; |
|}|_____________________________________________________________________ | |
Figure 10.3: Calling Prolog
1100..44..1111 FFoorreeiiggnn CCooddee aanndd MMoodduulleess
Modules are identified via a unique handle. The following functions
are available to query and manipulate modules.
module_t PPLL__ccoonntteexxtt()
Return the module identifier of the context module of the currently
active foreign predicate.
int PPLL__ssttrriipp__mmoodduullee(_t_e_r_m___t _+_r_a_w_, _m_o_d_u_l_e___t _*_m_, _t_e_r_m___t _-_p_l_a_i_n)
Utility function. If _r_a_w is a term, possibly holding the module
construct <_m_o_d_u_l_e>:<_r_e_s_t>, this function will make _p_l_a_i_n a reference
to <_r_e_s_t> and fill _m_o_d_u_l_e _* with <_m_o_d_u_l_e>. For further nested
module constructs the innermost module is returned via _m_o_d_u_l_e _*.
If _r_a_w is not a module construct, _r_a_w will simply be put in _p_l_a_i_n.
The value pointed to by _m must be initialized before calling
PL_strip_module(), either to the default module or to NULL. A NULL
value is replaced by the current context module if _r_a_w carries no
module. The following example shows how to obtain the plain term
and module if the default module is the user module:
____________________________________________________________________| |
| { module m = PL_new_module(PL_new_atom("user")); |
| term_t plain = PL_new_term_ref(); |
| |
| PL_strip_module(term, &m, plain); |
| ... |
||}_________________________________________________________________ ||
atom_t PPLL__mmoodduullee__nnaammee(_m_o_d_u_l_e___t _m_o_d_u_l_e)
Return the name of _m_o_d_u_l_e as an atom.
module_t PPLL__nneeww__mmoodduullee(_a_t_o_m___t _n_a_m_e)
Find an existing module or create a new module with the name _n_a_m_e.
1100..44..1122 PPrroolloogg eexxcceeppttiioonnss iinn ffoorreeiiggnn ccooddee
This section discusses PL_exception(), PL_throw() and
PL_raise_exception(), the interface functions to detect and generate
Prolog exceptions from C code. PL_throw() and PL_raise_exception() from
the C interface raise an exception from foreign code. PL_throw()
exploits the C function longjmp() to return immediately to the
innermost PL_next_solution(). PL_raise_exception() registers the
exception term and returns FALSE. If a foreign predicate returns FALSE,
while an exception term is registered, a Prolog exception will be
raised by the virtual machine.
Calling these functions outside the context of a function implementing
a foreign predicate results in undefined behaviour.
PL_exception() may be used after a call to PL_next_solution() fails,
and returns a term reference to an exception term if an exception was
raised, and 0 otherwise.
If a C function implementing a predicate calls Prolog and detects
an exception using PL_exception(), it can handle this exception or
return with the exception. Some caution is required though. It
is nnoott allowed to call PL_close_query() or PL_discard_foreign_frame()
afterwards, as this will invalidate the exception term. Below
is the code that calls a Prolog-defined arithmetic function (see
arithmetic_function/1).
If PL_next_solution() succeeds, the result is analysed and translated
to a number, after which the query is closed and all Prolog data
created after PL_open_foreign_frame() is destroyed. On the other
hand, if PL_next_solution() fails and if an exception was raised,
just pass it. Otherwise generate an exception (PL_error() is an
internal call for building the standard error terms and calling
PL_raise_exception()). After this, the Prolog environment should be
discarded using PL_cut_query() and PL_close_foreign_frame() to avoid
invalidating the exception term.
________________________________________________________________________| |
|static int |
|prologFunction(ArithFunction f, term_t av, Number r) |
|{ int arity = f->proc->definition->functor->arity; |
| fid_t fid = PL_open_foreign_frame(); |
| qid_t qid; |
| int rval; |
| |
| qid = PL_open_query(NULL, PL_Q_NORMAL, f->proc, av); |
| |
| if ( PL_next_solution(qid) ) |
| { rval = valueExpression(av+arity-1, r); |
| PL_close_query(qid); |
| PL_discard_foreign_frame(fid); |
| } else |
| { term_t except; |
| |
| if ( (except = PL_exception(qid)) ) |
| { rval = PL_throw(except); /* pass exception */ |
| } else |
| { char *name = stringAtom(f->proc->definition->functor->name); |
| |
| /* generate exception */ |
| rval = PL_error(name, arity-1, NULL, ERR_FAILED, f->proc); |
| } |
| |
| PL_cut_query(qid); /* donot destroy data */ |
| PL_close_foreign_frame(fid); /* same */ |
| } |
| |
| return rval; |
|}|_____________________________________________________________________ | |
int PPLL__rraaiissee__eexxcceeppttiioonn(_t_e_r_m___t _e_x_c_e_p_t_i_o_n)
Generate an exception (as throw/1) and return FALSE. Below is an
example returning an exception from a foreign predicate:
____________________________________________________________________| |
| foreign_t |
| pl_hello(term_t to) |
| { char *s; |
| |
| if ( PL_get_atom_chars(to, &s) ) |
| { Sprintf("Hello \"%s\"\n", s); |
| |
| PL_succeed; |
| } else |
| { term_t except = PL_new_term_ref(); |
| |
| PL_unify_term(except, |
| PL_FUNCTOR_CHARS, "type_error", 2, |
| PL_CHARS, "atom", |
| PL_TERM, to); |
| |
| return PL_raise_exception(except); |
| } |
||}_________________________________________________________________ ||
int PPLL__tthhrrooww(_t_e_r_m___t _e_x_c_e_p_t_i_o_n)
Similar to PL_raise_exception(), but returns using the C longjmp()
function to the innermost PL_next_solution().
term_t PPLL__eexxcceeppttiioonn(_q_i_d___t _q_i_d)
If PL_next_solution() fails, this can be due to normal failure
of the Prolog call, or because an exception was raised using
throw/1. This function returns a handle to the exception term if
an exception was raised, or 0 if the Prolog goal simply failed. If
there is an exception, PL_exception()allocates a term-handle using
PL_new_term_ref() that is used to return the exception term.
Additionally, \cfuncref{PL_exception}{0} returns the pending
exception in the current query or 0 if no exception is pending.
This can be used to check the error status after a failing call to,
e.g., one of the unification functions.
void PPLL__cclleeaarr__eexxcceeppttiioonn(_v_o_i_d)
Tells Prolog that the encountered exception must be ignored. This
function must be called if control remains in C after a previous
API call fails with an exception.
1100..44..1133 CCaattcchhiinngg SSiiggnnaallss ((SSooffttwwaarree IInntteerrrruuppttss))
SWI-Prolog offers both a C and Prolog interface to deal with software
interrupts (signals). The Prolog mapping is defined in section 4.11.
This subsection deals with handling signals from C.
If a signal is not used by Prolog and the handler does not call Prolog
in any way, the native signal interface routines may be used.
Any handler that wishes to call one of the Prolog interface functions
should call PL_signal() for its installation.
void (*)() PPLL__ssiiggnnaall(_s_i_g_, _f_u_n_c)
This function is equivalent to the BSD-Unix signal() function,
regardless of the platform used. The signal handler is blocked
while the signal routine is active, and automatically reactivated
after the handler returns.
After a signal handler is registered using this function, the
native signal interface redirects the signal to a generic signal
handler inside SWI-Prolog. This generic handler validates the
environment, creates a suitable environment for calling the
interface functions described in this chapter and finally calls the
registered user-handler.
By default, signals are handled asynchronously (i.e., at the time
they arrive). It is inherently dangerous to call extensive code
fragments, and especially exception related code from asynchronous
handlers. The interface allows for _s_y_n_c_h_r_o_n_o_u_s handling of
signals. In this case the native OS handler just schedules the
signal using PL_raise(), which is checked by PL_handle_signals() at
the call- and redo-port. This behaviour is realised by _o_r-ing _s_i_g
with the constant PL_SIGSYNC.
Signal handling routines may raise exceptions using
PL_raise_exception(). The use of PL_throw() is not safe.
If a synchronous handler raises an exception, the exception is
delayed to the next call to PL_handle_signals();
int PPLL__rraaiissee(_i_n_t _s_i_g)
Register _s_i_g for _s_y_n_c_h_r_o_n_o_u_s handling by Prolog. Synchronous
signals are handled at the call-port or if foreign code calls
PL_handle_signals(). See also thread_signal/2.
int PPLL__hhaannddllee__ssiiggnnaallss(_v_o_i_d)
Handle any signals pending from PL_raise(). PL_handle_signals()
is called at each pass through the call- and redo-port at a safe
point. Exceptions raised by the handler using PL_raise_exception()
are properly passed to the environment.
The user may call this function inside long-running foreign
functions to handle scheduled interrupts. This routine returns the
number of signals handled. If a handler raises an exception, the
return value is -1 and the calling routine should return with FALSE
as soon as possible.
int PPLL__ggeett__ssiiggnnuumm__eexx(_t_e_r_m___t _t_, _i_n_t _*_s_i_g)
Extract a signal specification from a Prolog term and store as an
integer signal number in _s_i_g. The specification is an integer, a
lowercase signal name without SIG or the full signal name. These
refer to the same: 9, kill and SIGKILL. Leaves a typed, domain or
instantiation error if the conversion fails.
1100..44..1144 MMiisscceellllaanneeoouuss
1100..44..1144..11 TTeerrmm CCoommppaarriissoonn
int PPLL__ccoommppaarree(_t_e_r_m___t _t_1_, _t_e_r_m___t _t_2)
Compares two terms using the standard order of terms and returns
-1, 0 or 1. See also compare/3.
int PPLL__ssaammee__ccoommppoouunndd(_t_e_r_m___t _t_1_, _t_e_r_m___t _t_2)
Yields TRUE if _t_1 and _t_2 refer to physically the same compound term
and FALSE otherwise.
1100..44..1144..22 RReeccoorrddeedd ddaattaabbaassee
In some applications it is useful to store and retrieve Prolog terms
from C code. For example, the XPCE graphical environment does this for
storing arbitrary Prolog data as slot-data of XPCE objects.
Please note that the returned handles have no meaning at the Prolog
level and the recorded terms are not visible from Prolog. The
functions PL_recorded() and PL_erase() are the only functions that can
operate on the stored term.
Two groups of functions are provided. The first group (PL_record() and
friends) store Prolog terms on the Prolog heap for retrieval during the
same session. These functions are also used by recorda/3 and friends.
The recorded database may be used to communicate Prolog terms between
threads.
record_t PPLL__rreeccoorrdd(_t_e_r_m___t _+_t)
Record the term _t into the Prolog database as recorda/3 and return
an opaque handle to the term. The returned handle remains valid
until PL_erase() is called on it. PL_recorded() is used to copy
recorded terms back to the Prolog stack.
int PPLL__rreeccoorrddeedd(_r_e_c_o_r_d___t _r_e_c_o_r_d_, _t_e_r_m___t _-_t)
Copy a recorded term back to the Prolog stack. The same record may
be used to copy multiple instances at any time to the Prolog stack.
Returns TRUE on success, and FALSE if there is not enough space
on the stack to accommodate the term. See also PL_record() and
PL_erase().
void PPLL__eerraassee(_r_e_c_o_r_d___t _r_e_c_o_r_d)
Remove the recorded term from the Prolog database, reclaiming all
associated memory resources.
The second group (headed by PL_record_external()) provides the same
functionality, but the returned data has properties that enable storing
the data on an external device. It has been designed to make
it possible to store Prolog terms fast and compact in an external
database. Here are the main features:
o _I_n_d_e_p_e_n_d_e_n_t _o_f _s_e_s_s_i_o_n
Records can be communicated to another Prolog session and made
visible using PL_recorded_external().
o _B_i_n_a_r_y
The representation is binary for maximum performance. The returned
data may contain zero bytes.
o _B_y_t_e_-_o_r_d_e_r _i_n_d_e_p_e_n_d_e_n_t
The representation can be transferred between machines with
different byte order.
o _N_o _a_l_i_g_n_m_e_n_t _r_e_s_t_r_i_c_t_i_o_n_s
There are no memory alignment restrictions and copies of the record
can thus be moved freely. For example, it is possible to use
this representation to exchange terms using shared memory between
different Prolog processes.
o _C_o_m_p_a_c_t
It is assumed that a smaller memory footprint will eventually
outperform slightly faster representations.
o _S_t_a_b_l_e
The format is designed for future enhancements without breaking
compatibility with older records.
char * PPLL__rreeccoorrdd__eexxtteerrnnaall(_t_e_r_m___t _+_t_, _s_i_z_e___t _*_l_e_n)
Record the term _t into the Prolog database as recorda/3 and return
an opaque handle to the term. The returned handle remains valid
until PL_erase_external() is called on it.
It is allowed to copy the data and use PL_recorded_external() on
the copy. The user is responsible for the memory management of
the copy. After copying, the original may be discarded using
PL_erase_external().
PL_recorded_external() is used to copy such recorded terms back to
the Prolog stack.
int PPLL__rreeccoorrddeedd__eexxtteerrnnaall(_c_o_n_s_t _c_h_a_r _*_r_e_c_o_r_d_, _t_e_r_m___t _-_t)
Copy a recorded term back to the Prolog stack. The same record may
be used to copy multiple instances at any time to the Prolog stack.
See also PL_record_external() and PL_erase_external().
int PPLL__eerraassee__eexxtteerrnnaall(_c_h_a_r _*_r_e_c_o_r_d)
Remove the recorded term from the Prolog database, reclaiming all
associated memory resources.
1100..44..1144..33 GGeettttiinngg ffiillee nnaammeess
The function PL_get_file_name() provides access to Prolog filenames and
its file-search mechanism described with absolute_file_name/3. Its
existence is motivated to realise a uniform interface to deal with file
properties, search, naming conventions, etc., from foreign code.
int PPLL__ggeett__ffiillee__nnaammee(_t_e_r_m___t _s_p_e_c_, _c_h_a_r _*_*_n_a_m_e_, _i_n_t _f_l_a_g_s)
Translate a Prolog term into a file name. The name is stored
in the static buffer ring described with th PL_get_chars() option
BUF_RING. Conversion from the internal UNICODE encoding is done
using standard C library functions. _f_l_a_g_s is a bit-mask
controlling the conversion process. Options are:
PL_FILE_ABSOLUTE
Return an absolute path to the requested file.
PL_FILE_OSPATH
Return the name using the hosting OS conventions. On
MS-Windows, \ is used to separate directories rather than the
canonical /.
PL_FILE_SEARCH
Invoke absolute_file_name/3. This implies rules from
file_search_path/2are used.
PL_FILE_EXIST
Demand the path to refer to an existing entity.
PL_FILE_READ
Demand read-access on the result.
PL_FILE_WRITE
Demand write-access on the result.
PL_FILE_EXECUTE
Demand execute-access on the result.
PL_FILE_NOERRORS
Do not raise any exceptions.
int PPLL__ggeett__ffiillee__nnaammeeWW(_t_e_r_m___t _s_p_e_c_, _w_c_h_a_r___t _*_*_n_a_m_e_, _i_n_t _f_l_a_g_s)
Same as PL_get_file_name(), but returns the filename as a wide-
character string. This is intended for Windows to access the
Unicode version of the Win32 API. Note that the flag PL_FILE_OSPATH
must be provided to fetch a filename in OS native (e.g., C:\x\y)
notation.
1100..44..1144..44 DDeeaalliinngg wwiitthh PPrroolloogg ffllaaggss ffrroomm CC
Foreign code can set or create Prolog flags using PL_set_prolog_flag().
See set_prolog_flag/2and create_prolog_flag/3.
int PPLL__sseett__pprroolloogg__ffllaagg(_c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _t_y_p_e_, _._._.)
Set/create a Prolog flag from C. _n_a_m_e is the name of the affected
flag. _t_y_p_e is one of the values below, which also dictates
the type of the final argument. The function returns TRUE on
success and FALSE on failure. This function can be called _b_e_f_o_r_e
PL_initialise(), making the flag available to the Prolog startup
code.
PL_BOOL
Create a boolean (true or false) flag. The argument must be
an int.
PL_ATOM
Create a flag with an atom as value. The argument must be of
type const char *.
PL_INTEGER
Create a flag with an integer as value. The argument must be
of type intptr_t *.
1100..44..1155 EErrrroorrss aanndd wwaarrnniinnggss
PL_warning() prints a standard Prolog warning message to the standard
error (user_error) stream. Please note that new code should consider
using PL_raise_exception() to raise a Prolog exception. See also
section 4.10.
int PPLL__wwaarrnniinngg(_f_o_r_m_a_t_, _a_1_, _._._.)
Print an error message starting with `[WARNING: ', followed by
the output from _f_o_r_m_a_t, followed by a `]' and a newline. Then
start the tracer. _f_o_r_m_a_t and the arguments are the same as for
printf(2). Always returns FALSE.
1100..44..1166 EEnnvviirroonnmmeenntt CCoonnttrrooll ffrroomm FFoorreeiiggnn CCooddee
int PPLL__aaccttiioonn(_i_n_t_, _._._.)
Perform some action on the Prolog system. _i_n_t describes the
action. Remaining arguments depend on the requested action. The
actions are listed below:
PPLL__AACCTTIIOONN__TTRRAACCEE
Start Prolog tracer (trace/0). Requires no arguments.
PPLL__AACCTTIIOONN__DDEEBBUUGG
Switch on Prolog debug mode (debug/0). Requires no arguments.
PPLL__AACCTTIIOONN__BBAACCKKTTRRAACCEE
Print backtrace on current output stream. The argument (an
int) is the number of frames printed.
PPLL__AACCTTIIOONN__HHAALLTT
Halt Prolog execution. This action should be called rather
than Unix exit() to give Prolog the opportunity to clean up.
This call does not return. The argument (an int) is the exit
code. See halt/1.
PPLL__AACCTTIIOONN__AABBOORRTT
Generate a Prolog abort (abort/0). This call does not return.
Requires no arguments.
PPLL__AACCTTIIOONN__BBRREEAAKK
Create a standard Prolog break environment (break/0). Returns
after the user types the end-of-file character. Requires no
arguments.
PPLL__AACCTTIIOONN__GGUUIIAAPPPP
Windows: Used to indicate to the kernel that the application
is a GUI application if the argument is not 0, and a console
application if the argument is 0. If a fatal error occurs,
the system uses a windows messagebox to report this on a GUI
application, and otherwise simply prints the error and exits.
PPLL__AACCTTIIOONN__TTRRAADDIITTIIOONNAALL
Same effect as using --traditional. Must be called _b_e_f_o_r_e
PL_initialise().
PPLL__AACCTTIIOONN__WWRRIITTEE
Write the argument, a char * to the current output stream.
PPLL__AACCTTIIOONN__FFLLUUSSHH
Flush the current output stream. Requires no arguments.
PPLL__AACCTTIIOONN__AATTTTAACCHH__CCOONNSSOOLLEE
Attach a console to a thread if it does not have one. See
attach_console/0.
PPLL__GGMMPP__SSEETT__AALLLLOOCC__FFUUNNCCTTIIOONNSS
Takes an integer argument. If TRUE, the GMP allocations
are immediately bound to the Prolog functions. If FALSE,
SWI-Prolog will never rebind the GMP allocation functions.
See mp_set_memory_functions() in the GMP documentation. The
action returns FALSE if there is no GMP support or GMP is
already initialised.
int PPLL__bbaacckkttrraaccee(_i_n_t _d_e_p_t_h_, _i_n_t _f_l_a_g_s)
Print a Prolog backtrace to the standard error stream. The _d_e_p_t_h
argument specifies the maximum number of frames to print. The
_f_l_a_g_s argument is a bitwise or of the constants PL_BT_SAFE (0x1)
and PL_BT_USER (0x2). PL_BT_SAFE causes frames not to be printed
as normal Prolog goals, but using the predicate, program counter
and clause-number. For example, the dump below indicates the frame
is executing the 2nd clause of $autoload:load_library_index_p/0 at
program pointer 25. This can be interpreted by dumping the virtual
machine code using vm_list/1.
____________________________________________________________________| |
||__[34]_$autoload:load_library_index_p/0_[PC=19_in_clause_2]_______ ||
If the constant PL_BT_USER is specified, `no-debug' frames are
ignored. This predicate may be used from the C-debugger (e.g.,
gdb) to get the Prolog stack at a crash location. Here is an
example dumping the top 20 frames of the Prolog stack.
____________________________________________________________________| |
||(gdb)_call_PL_backtrace(20,0)_____________________________________ ||
1100..44..1177 QQuueerryyiinngg PPrroolloogg
long PPLL__qquueerryy(_i_n_t)
Obtain status information on the Prolog system. The actual
argument type depends on the information required. _i_n_t describes
what information is wanted. The options are given in table 10.1.
__________________________________________________________
| PL_QUERY_ARGC |Return an integer holding the|
| |number of arguments given to|
| |Prolog from Unix. |
| PL_QUERY_ARGV |Return a char ** holding the|
| |argument vector given to Prolog|
| |from Unix. |
| PL_QUERY_SYMBOLFILE |Return a char * holding the|
| |current symbol file of the|
| |running process. |
| PL_MAX_INTEGER |Return a long, representing the|
| |maximal integer value repre-|
| |sented by a Prolog integer. |
| PL_MIN_INTEGER |Return a long, representing the|
| |minimal integer value. |
| PL_QUERY_VERSION |Return a long, representing the|
| |version as 10;000M* +100m* +p,|
| |where M is the major, m the |
| |minor version number and p the|
| |patch level. For example, 20717|
| |means 2.7.17. |
| PL_QUERY_ENCODING |Return the default stream encod-|
| |ing of Prolog (of type IOENC). |
| PL_QUERY_USER_CPU |Get amount of user CPU time of|
|________________________|the_process_in_milliseconds.____|
Table 10.1: PL_query() options
1100..44..1188 RReeggiisstteerriinngg FFoorreeiiggnn PPrreeddiiccaatteess
int PPLL__rreeggiisstteerr__ffoorreeiiggnn__iinn__mmoodduullee(_c_h_a_r _*_m_o_d_, _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _f_o_r_e_i_g_n___t _(_*_f_)_(_)_, _i_n_t _f_l_a_g_s_, _._._.)
Register the C function _f to implement a Prolog predicate. After
this call returns successfully a predicate with name _n_a_m_e (a char
*) and arity _a_r_i_t_y (a C int) is created in module _m_o_d. If _m_o_d
is NULL, the predicate is created in the module of the calling
context, or if no context is present in the module user.
When called in Prolog, Prolog will call _f_u_n_c_t_i_o_n. _f_l_a_g_s form a
bitwise _o_r'ed list of options for the installation. These are:
_______________________________________________________________
| PL_FA_META |Provide meta-predicate info (see|
| |below) |
| PL_FA_TRANSPARENT |Predicate is module transparent|
| |(deprecated) |
| PL_FA_NONDETERMINISTIC |Predicate is non-deterministic. See|
| |also PL_retry(). |
| PL_FA_NOTRACE |Predicate cannot be seen in the|
| |tracer |
|_PL_FA_VARARGS__________|Use_alternative_calling_convention.__|
If PL_FA_META is provided, PL_register_foreign_in_module()takes one
extra argument. This argument is of type const char*. This
string must be exactly as long as the number of arguments of
the predicate and filled with characters from the set 0-9:^-+?.
See meta_predicate/1 for details. PL_FA_TRANSPARENT is implied
if at least one meta-argument is provided (0-9:^). Note that
meta-arguments are _n_o_t _a_l_w_a_y_s passed as <_m_o_d_u_l_e>:<_t_e_r_m>. Always
use PL_strip_module()to extract the module and plain term from a
meta-argument.
Predicates may be registered either before or after
PL_initialise(). When registered before initialisation the
registration is recorded and executed after installing the system
predicates and before loading the saved state.
Default calling (i.e. without PL_FA_VARARGS) _f_u_n_c_t_i_o_n is passed the
same number of term_t arguments as the arity of the predicate and,
if the predicate is non-deterministic, an extra argument of type
control_t (see section 10.4.1.1). If PL_FA_VARARGS is provided,
_f_u_n_c_t_i_o_n is called with three arguments. The first argument is
a term_t handle to the first argument. Further arguments can be
reached by adding the offset (see also PL_new_term_refs()). The
second argument is the arity, which defines the number of valid
term references in the argument vector. The last argument is used
for non-deterministic calls. It is currently undocumented and
should be defined of type void*. Here is an example:
____________________________________________________________________| |
| static foreign_t |
| atom_checksum(term_t a0, int arity, void* context) |
| { char *s; |
| |
| if ( PL_get_atom_chars(a0, &s) ) |
| { int sum; |
| |
| for(sum=0; *s; s++) |
| sum += *s&0xff; |
| |
| return PL_unify_integer(a0+1, sum&0xff); |
| } |
| |
| return FALSE; |
| } |
| |
| install_t |
| install() |
| { PL_register_foreign("atom_checksum", 2, |
| atom_checksum, PL_FA_VARARGS); |
||}_________________________________________________________________ ||
int PPLL__rreeggiisstteerr__ffoorreeiiggnn(_c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _f_o_r_e_i_g_n___t _(_*_f_u_n_c_t_i_o_n_)_(_)_, _i_n_t _f_l_a_g_s_, _._._.)
Same as PL_register_foreign_in_module(), passing NULL for the
_m_o_d_u_l_e.
void PPLL__rreeggiisstteerr__eexxtteennssiioonnss__iinn__mmoodduullee(_c_o_n_s_t _c_h_a_r _*_m_o_d_u_l_e_, _P_L___e_x_t_e_n_s_i_o_n _*_e)
Register a series of predicates from an array of definitions of the
type PL_extension in the given _m_o_d_u_l_e. If _m_o_d_u_l_e is NULL, the
predicate is created in the module of the calling context, or if no
context is present in the module user. The PL_extension type is
defined as
____________________________________________________________________| |
| typedef struct PL_extension |
| { char *predicate_name; /* Name of the predicate */ |
| short arity; /* Arity of the predicate */ |
| pl_function_t function; /* Implementing functions */ |
| short flags; /* Or of PL_FA_... */ |
||}_PL_extension;___________________________________________________ ||
For details, see PL_register_foreign_in_module(). Here is an
example of its usage:
____________________________________________________________________| |
| static PL_extension predicates[] = { |
| { "foo", 1, pl_foo, 0 }, |
| { "bar", 2, pl_bar, PL_FA_NONDETERMINISTIC }, |
| { NULL, 0, NULL, 0 } |
| }; |
| |
| main(int argc, char **argv) |
| { PL_register_extensions_in_module("user", predicates); |
| |
| if ( !PL_initialise(argc, argv) ) |
| PL_halt(1); |
| |
| ... |
||}_________________________________________________________________ ||
void PPLL__rreeggiisstteerr__eexxtteennssiioonnss( _P_L___e_x_t_e_n_s_i_o_n _*_e)
Same as PL_register_extensions_in_module()using NULL for the _m_o_d_u_l_e
argument.
1100..44..1199 FFoorreeiiggnn CCooddee HHooookkss
For various specific applications some hooks are provided.
PL_dispatch_hook_t PPLL__ddiissppaattcchh__hhooookk(_P_L___d_i_s_p_a_t_c_h___h_o_o_k___t)
If this hook is not NULL, this function is called when reading from
the terminal. It is supposed to dispatch events when SWI-Prolog
is connected to a window environment. It can return two values:
PL_DISPATCH_INPUT indicates Prolog input is available on file
descriptor 0 or PL_DISPATCH_TIMEOUT to indicate a timeout. The old
hook is returned. The type PL_dispatch_hook_t is defined as:
____________________________________________________________________| |
||typedef_int__(*PL_dispatch_hook_t)(void);_________________________ ||
void PPLL__aabboorrtt__hhooookk(_P_L___a_b_o_r_t___h_o_o_k___t)
Install a hook when abort/0 is executed. SWI-Prolog abort/0 is
implemented using C setjmp()/longjmp() construct. The hooks are
executed in the reverse order of their registration after the
longjmp() took place and before the Prolog top level is reinvoked.
The type PL_abort_hook_t is defined as:
____________________________________________________________________| |
||typedef_void_(*PL_abort_hook_t)(void);____________________________ ||
int PPLL__aabboorrtt__uunnhhooookk(_P_L___a_b_o_r_t___h_o_o_k___t)
Remove a hook installed with PL_abort_hook(). Returns FALSE if no
such hook is found, TRUE otherwise.
void PPLL__oonn__hhaalltt(_i_n_t _(_*_f_)_(_i_n_t_, _v_o_i_d _*_)_, _v_o_i_d _*_c_l_o_s_u_r_e)
Register the function _f to be called if SWI-Prolog is halted. The
function is called with two arguments: the exit code of the
process (0 if this cannot be determined) and the _c_l_o_s_u_r_e argument
passed to the PL_on_halt() call. Handlers _m_u_s_t return 0. Other
return values are reserved for future use. See also at_halt/1.
These handlers are called _b_e_f_o_r_e system cleanup and can therefore
access all normal Prolog resources. See also PL_exit_hook().
void PPLL__eexxiitt__hhooookk(_i_n_t _(_*_f_)_(_i_n_t_, _v_o_i_d _*_)_, _v_o_i_d _*_c_l_o_s_u_r_e)
Similar to PL_on_halt(), but the hooks are executed by PL_halt()
instead of PL_cleanup() just before calling exit().
PL_agc_hook_t PPLL__aaggcc__hhooookk(_P_L___a_g_c___h_o_o_k___t _n_e_w)
Register a hook with the atom-garbage collector (see
garbage_collect_atoms/0) that is called on any atom that is
reclaimed. The old hook is returned. If no hook is currently
defined, NULL is returned. The argument of the called hook is the
atom that is to be garbage collected. The return value is an int.
If the return value is zero, the atom is nnoott reclaimed. The hook
may invoke any Prolog predicate.
The example below defines a foreign library for printing the
garbage collected atoms for debugging purposes.
____________________________________________________________________| |
| #include <SWI-Stream.h> |
| #include <SWI-Prolog.h> |
| |
| static int |
| atom_hook(atom_t a) |
| { Sdprintf("AGC: deleting %s\n", PL_atom_chars(a)); |
| |
| return TRUE; |
| } |
| |
| static PL_agc_hook_t old; |
| |
| install_t |
| install() |
| { old = PL_agc_hook(atom_hook); |
| } |
| |
| install_t |
| uninstall() |
| { PL_agc_hook(old); |
||}_________________________________________________________________ ||
1100..44..2200 SSttoorriinngg ffoorreeiiggnn ddaattaa
When combining foreign code with Prolog, it can be necessary to make
data represented in the foreign language available to Prolog. For
example, to pass it to another foreign function. At the end of this
section, there is a partial implementation of using foreign functions
to manage bit-vectors. Another example is the SGML/XML library that
manages a `parser' object, an object that represents the current state
of the parser and that can be directed to perform actions such as
parsing a document or make queries about the document content.
This section provides some hints for handling foreign data in Prolog.
There are four options for storing such data:
o _N_a_t_u_r_a_l _P_r_o_l_o_g _d_a_t_a
Uses the representation one would choose if no foreign interface
was required. For example, a bitvector representing a list of
small integers can be represented as a Prolog list of integers.
o _O_p_a_q_u_e _p_a_c_k_e_d _d_a_t_a _o_n _t_h_e _s_t_a_c_k_s
It is possible to represent the raw binary representation of the
foreign object as a Prolog string (see section 5.2). Strings
may be created from foreign data using PL_put_string_nchars() and
retrieved using PL_get_string_chars(). It is good practice to wrap
the string in a compound term with arity 1, so Prolog can identify
the type. The hook portray/1 rules may be used to streamline
printing such terms during development.
o _O_p_a_q_u_e _p_a_c_k_e_d _d_a_t_a _i_n _a _b_l_o_b
Similar to the above solution, binary data can be stored in an
atom. The blob interface (section 10.4.7) provides additional
facilities to assign a type and hook-functions that act on creation
and destruction of the underlying atom.
o _N_a_t_u_r_a_l _f_o_r_e_i_g_n _d_a_t_a_, _p_a_s_s_e_d _a_s _a _p_o_i_n_t_e_r
An alternative is to pass a pointer to the foreign data. Again,
the pointer is often wrapped in a compound term.
The choice may be guided using the following distinctions
o _I_s _t_h_e _d_a_t_a _o_p_a_q_u_e _t_o _P_r_o_l_o_g
With `opaque' data, we refer to data handled in foreign functions,
passed around in Prolog, but where Prolog never examines the
contents of the data itself. If the data is opaque to Prolog, the
selection will be driven solely by simplicity of the interface and
performance.
o _W_h_a_t _i_s _t_h_e _l_i_f_e_t_i_m_e _o_f _t_h_e _d_a_t_a
With `lifetime' we refer to how it is decided that the object is
(or can be) destroyed. We can distinguish three cases:
1. The object must be destroyed on backtracking and normal Prolog
garbage collection (i.e., it acts as a normal Prolog term).
In this case, representing the object as a Prolog string
(second option above) is the only feasible solution.
2. The data must survive Prolog backtracking. This leaves two
options. One is to represent the object using a pointer and
use explicit creation and destruction, making the programmer
responsible. The alternative is to use the blob-interface,
leaving destruction to the (atom) garbage collector.
3. The data lives as during the lifetime of a foreign
function that implements a predicate. If the predicate
is deterministic, foreign automatic variables are suitable.
If the predicate is non-deterministic, the data may be
allocated using malloc() and a pointer may be passed. See
section 10.4.1.1.
1100..44..2200..11 EExxaammpplleess ffoorr ssttoorriinngg ffoorreeiiggnn ddaattaa
In this section, we outline some examples, covering typical cases.
In the first example, we will deal with extending Prolog's data
representation with integer sets, represented as bit-vectors. Then, we
discuss the outline of the DDE interface.
IInntteeggeerr sseettss with not-too-far-apart upper- and lower-bounds can be
represented using bit-vectors. Common set operations, such as union,
intersection, etc., are reduced to simple _a_n_d'ing and _o_r'ing the
bit-vectors. This can be done using Prolog's unbounded integers.
For really demanding applications, foreign representation will perform
better, especially time-wise. Bit-vectors are naturally expressed
using string objects. If the string is wrapped in bitvector/1, the
lower-bound of the vector is 0 and the upper-bound is not defined; an
implementation for getting and putting the sets as well as the union
predicate for it is below.
________________________________________________________________________| |
|#include <SWI-Prolog.h> |
| |
|#define max(a, b) ((a) > (b) ? (a) : (b)) |
|#define min(a, b) ((a) < (b) ? (a) : (b)) |
| |
|static functor_t FUNCTOR_bitvector1; |
| |
|static int |
|get_bitvector(term_t in, int *len, unsigned char **data) |
|{ if ( PL_is_functor(in, FUNCTOR_bitvector1) ) |
| { term_t a = PL_new_term_ref(); |
| |
| PL_get_arg(1, in, a); |
| return PL_get_string(a, (char **)data, len); |
| } |
| |
| PL_fail; |
|} |
| |
|static int |
|unify_bitvector(term_t out, int len, const unsigned char *data) |
|{ if ( PL_unify_functor(out, FUNCTOR_bitvector1) ) |
| { term_t a = PL_new_term_ref(); |
| |
| PL_get_arg(1, out, a); |
| |
| return PL_unify_string_nchars(a, len, (const char *)data); |
| } |
| |
| PL_fail; |
|} |
| |
|static foreign_t |
|pl_bitvector_union(term_t t1, term_t t2, term_t u) |
|{ unsigned char *s1, *s2; |
| int l1, l2; |
| |
| if ( get_bitvector(t1, &l1, &s1) && |
| get_bitvector(t2, &l2, &s2) ) |
| { int l = max(l1, l2); |
| unsigned char *s3 = alloca(l); |
| |
| if ( s3 ) |
| { int n; |
| int ml = min(l1, l2); |
| |
| for(n=0; n<ml; n++) |
| s3[n] = s1[n] | s2[n]; |
| for( ; n < l1; n++) |
| s3[n] = s1[n]; |
| for( ; n < l2; n++) |
| s3[n] = s2[n]; |
| |
| return unify_bitvector(u, l, s3); |
| } |
| |
| return PL_warning("Not enough memory"); |
| } |
| |
| PL_fail; |
|} |
| |
| |
|install_t |
|install() |
|{ PL_register_foreign("bitvector_union", 3, pl_bitvector_union, 0); |
| |
| FUNCTOR_bitvector1 = PL_new_functor(PL_new_atom("bitvector"), 1); |
|}|_____________________________________________________________________ | |
TThhee DDDDEE iinntteerrffaaccee (see section 4.41) represents another common usage
of the foreign interface: providing communication to new operating
system features. The DDE interface requires knowledge about active DDE
server and client channels. These channels contains various foreign
data types. Such an interface is normally achieved using an open/close
protocol that creates and destroys a _h_a_n_d_l_e. The handle is a reference
to a foreign data structure containing the relevant information.
There are a couple of possibilities for representing the handle. The
choice depends on responsibilities and debugging facilities. The
simplest approach is to use PL_unify_pointer() and PL_get_pointer().
This approach is fast and easy, but has the drawbacks of (untyped)
pointers: there is no reliable way to detect the validity of the
pointer, nor to verify that it is pointing to a structure of the
desired type. The pointer may be wrapped into a compound term with
arity 1 (i.e., dde_channel(<_P_o_i_n_t_e_r>)), making the type-problem less
serious.
Alternatively (used in the DDE interface), the interface code can
maintain a (preferably variable length) array of pointers and return
the index in this array. This provides better protection. Especially
for debugging purposes, wrapping the handle in a compound is a good
suggestion.
1100..44..2211 EEmmbbeeddddiinngg SSWWII--PPrroolloogg iinn ootthheerr aapppplliiccaattiioonnss
With embedded Prolog we refer to the situation where the `main' program
is not the Prolog application. Prolog is sometimes embedded in C, C++,
Java or other languages to provide logic based services in a larger
application. Embedding loads the Prolog engine as a library to the
external language. Prolog itself only provides for embedding in the C
language (compatible with C++). Embedding in Java is achieved using
JPL using a C-glue between the Java and Prolog C interfaces.
The most simple embedded program is below. The interface
function PL_initialise() mmuusstt be called before any of the other
SWI-Prolog foreign language functions described in this chapter,
except for PL_initialise_hook(), PL_new_atom(), PL_new_functor() and
PL_register_foreign(). PL_initialise() interprets all the command line
arguments, except for the -t toplevel flag that is interpreted by
PL_toplevel().
________________________________________________________________________| |
|int |
|main(int argc, char **argv) |
|{ |
|#ifdef READLINE /* Remove if you don't want readline */ |
| PL_initialise_hook(install_readline); |
|#endif |
| |
| if ( !PL_initialise(argc, argv) ) |
| PL_halt(1); |
| |
| PL_halt(PL_toplevel() ? 0 : 1); |
|}|_____________________________________________________________________ | |
int PPLL__iinniittiiaalliissee(_i_n_t _a_r_g_c_, _c_h_a_r _*_*_a_r_g_v)
Initialises the SWI-Prolog heap and stacks, restores the Prolog
state, loads the system and personal initialisation files, runs the
initialization/1 hooks and finally runs the -g goal hook.
Special consideration is required for argv[0]. On UUnniixx, this
argument passes the part of the command line that is used to locate
the executable. Prolog uses this to find the file holding the
running executable. The WWiinnddoowwss version uses this to find a _m_o_d_u_l_e
of the running executable. If the specified module cannot be
found, it tries the module libpl.dll, containing the Prolog runtime
kernel. In all these cases, the resulting file is used for two
purposes:
o See whether a Prolog saved state is appended to the file. If
this is the case, this state will be loaded instead of the
default boot.prc file from the SWI-Prolog home directory. See
also qsave_program/[1,2] and section 10.5.
o Find the Prolog home directory. This process is described in
detail in section 10.6.
PL_initialise() returns 1 if all initialisation succeeded and 0
otherwise.
In most cases, _a_r_g_c and _a_r_g_v will be passed from the main program.
It is allowed to create your own argument vector, provided argv[0]
is constructed according to the rules above. For example:
____________________________________________________________________| |
| int |
| main(int argc, char **argv) |
| { char *av[10]; |
| int ac = 0; |
| |
| av[ac++] = argv[0]; |
| av[ac++] = "-x"; |
| av[ac++] = "mystate"; |
| av[ac] = NULL; |
| |
| if ( !PL_initialise(ac, av) ) |
| PL_halt(1); |
| ... |
||}_________________________________________________________________ ||
Please note that the passed argument vector may be referred from
Prolog at any time and should therefore be valid as long as the
Prolog engine is used.
A good setup in Windows is to add SWI-Prolog's bin directory to
your PATH and either pass a module holding a saved state, or
"libpl.dll" as argv[0]. If the Prolog state is attached to a DLL
(see the -dll option of swipl-ld), pass the name of this DLL.
int PPLL__iiss__iinniittiiaalliisseedd(_i_n_t _*_a_r_g_c_, _c_h_a_r _*_*_*_a_r_g_v)
Test whether the Prolog engine is already initialised. Returns
FALSE if Prolog is not initialised and TRUE otherwise. If the
engine is initialised and _a_r_g_c is not NULL, the argument count used
with PL_initialise() is stored in _a_r_g_c. Same for the argument
vector _a_r_g_v.
void PPLL__iinnssttaallll__rreeaaddlliinnee()
Installs the GNU readline line editor. Embedded applications that
do not use the Prolog top level should normally delete this line,
shrinking the Prolog kernel significantly. Note that the Windows
version does not use GNU readline.
int PPLL__ttoopplleevveell()
Runs the goal of the -t toplevel switch (default prolog/0) and
returns 1 if successful, 0 otherwise.
int PPLL__cclleeaannuupp(_i_n_t _s_t_a_t_u_s)
This function performs the reverse of PL_initialise(). It runs the
PL_on_halt() and at_halt/1 handlers, closes all streams (except for
the `standard I/O' streams which are flushed only), deallocates
all memory and restores all signal handlers. The _s_t_a_t_u_s argument
is passed to the various termination hooks and indicates the
_e_x_i_t_-_s_t_a_t_u_s.
The function returns TRUE if successful and FALSE otherwise.
Currently, FALSE is returned when an attempt is made to call
PL_cleanup() recursively or if one of the exit handlers cancels the
termination using cancel_halt/1. Exit handlers may only cancel
termination if _s_t_a_t_u_s is 0.
In theory, this function allows deleting and restarting the Prolog
system in the same process. In practice, SWI-Prolog's cleanup
process is far from complete, and trying to revive the system using
PL_initialise() will leak memory in the best case. It can also
crash the appliction.
In this state, there is little practical use for this function.
If you want to use Prolog temporarily, consider running it in a
separate process. If you want to be able to reset Prolog, your
options are (again) a separate process, modules or threads.
void PPLL__cclleeaannuupp__ffoorrkk()
Stop intervaltimer that may be running on behalf of profile/1. The
call is intended to be used in combination with fork():
____________________________________________________________________| |
| if ( (pid=fork()) == 0 ) |
| { PL_cleanup_fork(); |
| <some exec variation> |
||____}_____________________________________________________________ ||
The call behaves the same on Windows, though there is probably no
meaningful application.
int PPLL__hhaalltt(_i_n_t _s_t_a_t_u_s)
Clean up the Prolog environment using PL_cleanup() and if success-
ful call exit() with the status argument. Returns FALSE if exit
was cancelled by PL_cleanup().
1100..44..2211..11 TThhrreeaaddiinngg,, SSiiggnnaallss aanndd eemmbbeeddddeedd PPrroolloogg
This section applies to Unix-based environments that have signals or
multithreading. The Windows version is compiled for multithreading,
and Windows lacks proper signals.
We can distinguish two classes of embedded executables. There are
small C/C++ programs that act as an interfacing layer around Prolog.
Most of these programs can be replaced using the normal Prolog
executable extended with a dynamically loaded foreign extension and in
most cases this is the preferred route. In other cases, Prolog is
embedded in a complex application that---like Prolog---wants to control
the process environment. A good example is Java. Embedding Prolog
is generally the only way to get these environments together in one
process image. Java applications, however, are by nature multithreaded
and appear to do signal handling (software interrupts).
On Unix systems, SWI-Prolog uses three signals:
SSIIGGUUSSRR11 is used to sychronise atom and clause garbage collection.
The handler is installed at the start of garbage collection and
reverted to the old setting after completion.
SSIIGGUUSSRR22 has an empty signal handler. This signal is sent to a thread
after sending a thread-signal (see thread_signal/2). It causes
blocking system calls to return with EINTR, which gives them the
opportunity to react to thread-signals.
SSIIGGIINNTT is used by the top level to activate the tracer (typically bound
to control-C). The first control-C posts a request for starting the
tracer in a safe, synchronous fashion. If control-C is hit again
before the safe route is executed, it prompts the user whether or
not a forced interrupt is desired.
The --nosignals option can be used to inhibit processing of SIGINT. The
other signals are vital for the functioning of SWI-Prolog. If they
conflict with other applications, signal handling of either component
must be modified. The SWI-Prolog signals are defined in pl-thread.h of
the source distribution.
1100..55 LLiinnkkiinngg eemmbbeeddddeedd aapppplliiccaattiioonnss uussiinngg sswwiippll--lldd
The utility program swipl-ld (Win32: swipl-ld.exe) may be used to
link a combination of C files and Prolog files into a stand-alone
executable. swipl-ld automates most of what is described in the
previous sections.
In normal usage, a copy is made of the default embedding template
.../swipl/include/stub.c. The main() routine is modified to suit
your application. PL_initialise() mmuusstt be passed the program name
(_a_r_g_v_[_0_]) (Win32: the executing program can be obtained using
GetModuleFileName()). The other elements of the command line may be
modified. Next, swipl-ld is typically invoked as:
________________________________________________________________________| |
|swipl-ld|-o_output_stubfile.c_[other-c-or-o-files]_[plfiles]___________ | |
swipl-ld will first split the options into various groups for both the
C compiler and the Prolog compiler. Next, it will add various default
options to the C compiler and call it to create an executable holding
the user's C code and the Prolog kernel. Then, it will call the
SWI-Prolog compiler to create a saved state from the provided Prolog
files and finally, it will attach this saved state to the created
emulator to create the requested executable.
Below, it is described how the options are split and which additional
options are passed.
-help
Print brief synopsis.
-pl _p_r_o_l_o_g
Select the Prolog to use. This Prolog is used for two purposes:
get the home directory as well as the compiler/linker options and
create a saved state of the Prolog code.
-ld _l_i_n_k_e_r
Linker used to link the raw executable. Default is to use the C
compiler (Win32: link.exe).
-cc _C _c_o_m_p_i_l_e_r
Compiler for .c files found on the command line. Default is the
compiler used to build SWI-Prolog accessible through the Prolog
flag c_cc (Win32: cl.exe).
-c++ _C_+_+_-_c_o_m_p_i_l_e_r
Compiler for C++ source file (extensions .cpp, .cxx, .cc or .C)
found on the command line. Default is c++ or g++ if the C compiler
is gcc (Win32: cl.exe).
-nostate
Just relink the kernel, do not add any Prolog code to the
new kernel. This is used to create a new kernel holding
additional foreign predicates on machines that do not support
the shared-library (DLL) interface, or if building the state
cannot be handled by the default procedure used by swipl-ld.
In the latter case the state is created separately and
appended to the kernel using cat <_k_e_r_n_e_l> <_s_t_a_t_e> > <_o_u_t>(Win32:
copy /b <_k_e_r_n_e_l>+<_s_t_a_t_e> <_o_u_t>).
-shared
Link C, C++ or object files into a shared object (DLL) that can be
loaded by the load_foreign_library/1predicate. If used with -c
it sets the proper options to compile a C or C++ file ready for
linking into a shared object.
-dll
_W_i_n_d_o_w_s _o_n_l_y. Embed SWI-Prolog into a DLL rather than an
executable.
-c
Compile C or C++ source files into object files. This turns
swipl-ld into a replacement for the C or C++ compiler, where proper
options such as the location of the include directory are passed
automatically to the compiler.
-E
Invoke the C preprocessor. Used to make swipl-ld a replacement for
the C or C++ compiler.
-pl-options _,_._._.
Additional options passed to Prolog when creating the saved state.
The first character immediately following pl-options is used as
separator and translated to spaces when the argument is built.
Example: -pl-options,-F,xpce passes -F xpce as additional flags to
Prolog.
-ld-options _,_._._.
Passes options to the linker, similar to -pl-options.
-cc-options _,_._._.
Passes options to the C/C++ compiler, similar to -pl-options.
-v
Select verbose operation, showing the various programs and their
options.
-o _o_u_t_f_i_l_e
Reserved to specify the final output file.
-l_l_i_b_r_a_r_y
Specifies a library for the C compiler. By default, -lswipl
(Win32: libpl.lib) and the libraries needed by the Prolog kernel
are given.
-L_l_i_b_r_a_r_y_-_d_i_r_e_c_t_o_r_y
Specifies a library directory for the C compiler. By default
the directory containing the Prolog C library for the current
architecture is passed.
-g | -I_i_n_c_l_u_d_e_-_d_i_r_e_c_t_o_r_y | -D_d_e_f_i_n_i_t_i_o_n
These options are passed to the C compiler. By default, the
include directory containing SWI-Prolog.h is passed. swipl-ld adds
two additional * -Ddef flags:
-D__SWI_PROLOG__
Indicates the code is to be connected to SWI-Prolog.
-D__SWI_EMBEDDED__
Indicates the creation of an embedded program.
_*_._o | _*_._c | _*_._C | _*_._c_x_x | _*_._c_p_p
Passed as input files to the C compiler.
_*_._p_l |_*_._q_l_f
Passed as input files to the Prolog compiler to create the saved
state.
*
All other options. These are passed as linker options to the C
compiler.
1100..55..11 AA ssiimmppllee eexxaammppllee
The following is a very simple example going through all the steps
outlined above. It provides an arithmetic expression evaluator. We
will call the application calc and define it in the files calc.c and
calc.pl. The Prolog file is simple:
________________________________________________________________________| |
|calc(Atom) :- |
| term_to_atom(Expr, Atom), |
| A is Expr, |
| write(A), |
||_______nl.____________________________________________________________ ||
The C part of the application parses the command line options,
initialises the Prolog engine, locates the calc/1 predicate and calls
it. The coder is in figure 10.4.
________________________________________________________________________| |
|#include <stdio.h> |
|#include <SWI-Prolog.h> |
| |
|#define MAXLINE 1024 |
| |
|int |
|main(int argc, char **argv) |
|{ char expression[MAXLINE]; |
| char *e = expression; |
| char *program = argv[0]; |
| char *plav[2]; |
| int n; |
| |
| /* combine all the arguments in a single string */ |
| |
| for(n=1; n<argc; n++) |
| { if ( n != 1 ) |
| *e++ = ' '; |
| strcpy(e, argv[n]); |
| e += strlen(e); |
| } |
| |
| /* make the argument vector for Prolog */ |
| |
| plav[0] = program; |
| plav[1] = NULL; |
| |
| /* initialise Prolog */ |
| |
| if ( !PL_initialise(1, plav) ) |
| PL_halt(1); |
| |
| /* Lookup calc/1 and make the arguments and call */ |
| |
| { predicate_t pred = PL_predicate("calc", 1, "user"); |
| term_t h0 = PL_new_term_refs(1); |
| int rval; |
| |
| PL_put_atom_chars(h0, expression); |
| rval = PL_call_predicate(NULL, PL_Q_NORMAL, pred, h0); |
| |
| PL_halt(rval ? 0 : 1); |
| } |
| |
| return 0; |
|}|_____________________________________________________________________ | |
Figure 10.4: C source for the calc application
The application is now created using the following command line:
________________________________________________________________________| |
|%|swipl-ld_-o_calc_calc.c_calc.pl______________________________________ | |
The following indicates the usage of the application:
________________________________________________________________________| |
|% calc pi/2 |
|1.5708|________________________________________________________________ | |
1100..66 TThhee PPrroolloogg ``hhoommee'' ddiirreeccttoorryy
Executables embedding SWI-Prolog should be able to find the `home'
directory of the development environment unless a self-contained saved
state has been added to the executable (see qsave_program/[1,2] and
section 10.5).
If Prolog starts up, it will try to locate the development environment.
To do so, it will try the following steps until one succeeds:
1. If the --home=DIR is provided, use this.
2. If the environment variable SWI_HOME_DIRis defined and points to
an existing directory, use this.
3. If the environment variable SWIPL is defined and points to an
existing directory, use this.
4. Locate the primary executable or (Windows only) a component
(_m_o_d_u_l_e) thereof and check whether the parent directory of the
directory holding this file contains the file swipl. If so, this
file contains the (relative) path to the home directory. If this
directory exists, use this. This is the normal mechanism used by
the binary distribution.
5. If the precompiled path exists, use it. This is only useful for a
source installation.
If all fails and there is no state attached to the executable or
provided Windows module (see PL_initialise()), SWI-Prolog gives up. If
a state is attached, the current working directory is used.
The file_search_path/2 alias swi is set to point to the home directory
located.
1100..77 EExxaammppllee ooff UUssiinngg tthhee FFoorreeiiggnn IInntteerrffaaccee
Below is an example showing all stages of the declaration of a foreign
predicate that transforms atoms possibly holding uppercase letters into
an atom only holding lowercase letters. Figure 10.5 shows the C source
file, figure 10.6 illustrates compiling and loading of foreign code.
________________________________________________________________________| |
|/* Include file depends on local installation */ |
|#include <SWI-Prolog.h> |
|#include <stdlib.h> |
|#include <string.h> |
|#include <ctype.h> |
| |
|foreign_t |
|pl_lowercase(term_t u, term_t l) |
|{ char *copy; |
| char *s, *q; |
| int rval; |
| |
| if ( !PL_get_atom_chars(u, &s) ) |
| return PL_warning("lowercase/2: instantiation fault"); |
| copy = malloc(strlen(s)+1); |
| |
| for( q=copy; *s; q++, s++) |
| *q = (isupper(*s) ? tolower(*s) : *s); |
| *q = '\0'; |
| |
| rval = PL_unify_atom_chars(l, copy); |
| free(copy); |
| |
| return rval; |
|} |
| |
|install_t |
|install() |
|{ PL_register_foreign("lowercase", 2, pl_lowercase, 0); |
|}|_____________________________________________________________________ | |
Figure 10.5: Lowercase source file
________________________________________________________________________| |
|% gcc -I/usr/local/lib/swipl-\plversion/include -fpic -c lowercase.c |
|% gcc -shared -o lowercase.so lowercase.o |
|% swipl |
|Welcome to SWI-Prolog (Version \plversion) |
|... |
| |
|1 ?- load_foreign_library(lowercase). |
|true. |
| |
|2 ?- lowercase('Hello World!', L). |
|L|=_'hello_world!'.____________________________________________________ | |
Figure 10.6: Compiling the C source and loading the object file
1100..88 NNootteess oonn UUssiinngg FFoorreeiiggnn CCooddee
1100..88..11 MMeemmoorryy AAllllooccaattiioonn
SWI-Prolog's heap memory allocation is based on the malloc(3) library
routines. SWI-Prolog provides the functions below as a wrapper around
malloc(). Allocation errors in these functions trap SWI-Prolog's
fatal-error handler, in which case PL_malloc() or PL_realloc() do not
return.
Portable applications must use PL_free() to release strings returned by
PL_get_chars()using the BUF_MALLOC argument. Portable applications may
use both PL_malloc() and friends or malloc() and friends but should not
mix these two sets of functions on the same memory.
void * PPLL__mmaalllloocc(_s_i_z_e___t _b_y_t_e_s)
Allocate _b_y_t_e_s of memory. On failure SWI-Prolog's fatal-error
handler is called and PL_malloc() does not return. Memory
allocated using these functions must use PL_realloc() and PL_free()
rather than realloc() and free().
void * PPLL__rreeaalllloocc(_v_o_i_d _*_m_e_m_, _s_i_z_e___t _s_i_z_e)
Change the size of the allocated chunk, possibly moving it. The
_m_e_m argument must be obtained from a previous PL_malloc() or
PL_realloc() call.
void PPLL__ffrreeee(_v_o_i_d _*_m_e_m)
Release memory. The _m_e_m argument must be obtained from a previous
PL_malloc() or PL_realloc() call.
1100..88..11..11 BBooeehhmm--GGCC ssuuppppoorrtt
To accommodate future use of the Boehm garbage collector for heap
memory allocation, the interface provides the functions described
below. Foreign extensions that wish to use the Boehm-GC facilities can
use these wrappers. Please note that if SWI-Prolog is not compiled to
use Boehm-GC (default), the user is responsible for calling PL_free()
to reclaim memory.
void* PPLL__mmaalllloocc__aattoommiicc(_s_i_z_e___t _b_y_t_e_s)
void* PPLL__mmaalllloocc__uunnccoolllleeccttaabbllee(_s_i_z_e___t _b_y_t_e_s)
void* PPLL__mmaalllloocc__aattoommiicc__uunnccoolllleeccttaabbllee(_s_i_z_e___t _b_y_t_e_s)
If Boehm-GC is not used, these are all the same as PL_malloc().
With Boehm-GC, these map to the corresponding Boehm-GC functions.
_A_t_o_m_i_c means that the content should not be scanned for pointers,
and _u_n_c_o_l_l_e_c_t_a_b_l_e means that the object should never be garbage
collected.
void* PPLL__mmaalllloocc__ssttuubbbboorrnn(_s_i_z_e___t _b_y_t_e_s)
void PPLL__eenndd__ssttuubbbboorrnn__cchhaannggee(_v_o_i_d _*_m_e_m_o_r_y)
These functions allow creating objects, promising GC that the
content will not change after PL_end_stubborn_change().
1100..88..22 CCoommppaattiibbiilliittyy bbeettwweeeenn PPrroolloogg vveerrssiioonnss
Great care is taken to ensure binary compatibility of foreign
extensions between different Prolog versions. Only the much less
frequently used stream interface has been responsible for binary
incompatibilities.
Source code that relies on new features of the foreign interface
can use the macro PLVERSION to find the version of SWI-Prolog.h and
PL_query() using the option PL_QUERY_VERSION to find the version of
the attached Prolog system. Both follow the same numbering schema
explained with PL_query().
1100..88..33 DDeebbuuggggiinngg aanndd pprrooffiilliinngg ffoorreeiiggnn ccooddee ((vvaallggrriinndd))
This section is only relevant for Unix users on platforms supported by
valgrind. Valgrind is an excellent binary instrumentation platform.
Unlike many other instrumentation platforms, valgrind can deal with
code loaded through dlopen().
The callgrind tool can be used to profile foreign code loaded under
SWI-Prolog. Compile the foreign library adding -g option to gcc
or swipl-ld. By setting the environment variable VALGRIND to yes,
SWI-Prolog will _n_o_t release loaded shared objects using dlclose().
This trick is required to get source information on the loaded library.
Without, valgrind claims that the shared object has no debugging
information. Here is the complete sequence using bash as login shell:
________________________________________________________________________| |
|% VALGRIND=yes valgrind --tool=callgrind pl <args> |
|<prolog interaction> |
|%|kcachegrind_callgrind.out.<pid>______________________________________ | |
1100..88..44 NNaammee CCoonnfflliiccttss iinn CC mmoodduulleess
In the current version of the system all public C functions of
SWI-Prolog are in the symbol table. This can lead to name clashes with
foreign code. Someday I should write a program to strip all these
symbols from the symbol table (why does Unix not have that?). For now
I can only suggest you give your function another name. You can do
this using the C preprocessor. If---for example---your foreign package
uses a function warning(), which happens to exist in SWI-Prolog as
well, the following macro should fix the problem:
________________________________________________________________________| |
|#define|warning_warning________________________________________________ | |
Note that shared libraries do not have this problem as the shared
library loader will only look for symbols in the main executable for
symbols that are not defined in the library itself.
1100..88..55 CCoommppaattiibbiilliittyy ooff tthhee FFoorreeiiggnn IInntteerrffaaccee
The term reference mechanism was first used by Quintus Prolog
version 3. SICStus Prolog version 3 is strongly based on the Quintus
interface. The described SWI-Prolog interface is similar to using the
Quintus or SICStus interfaces, defining all foreign-predicate arguments
of type +term. SWI-Prolog explicitly uses type functor_t, while
Quintus and SICStus use <_n_a_m_e> and <_a_r_i_t_y>. As the names of the
functions differ from Prolog to Prolog, a simple macro layer dealing
with the names can also deal with this detail. For example:
________________________________________________________________________| |
|#define QP_put_functor(t, n, a) \ |
||_______PL_put_functor(t,_PL_new_functor(n,_a))________________________ ||
The PL_unify_*() functions are lacking from the Quintus and SICStus
interface. They can easily be emulated, or the put/unify approach
should be used to write compatible code.
The PL_open_foreign_frame()/PL_close_foreign_frame() combination is lack-
ing from both other Prologs. SICStus has PL_new_term_refs(_0), followed
by PL_reset_term_refs(), that allows for discarding term references.
The Prolog interface for the graphical user interface package XPCE
shares about 90% of the code using a simple macro layer to deal with
different naming and calling conventions of the interfaces.
CChhaapptteerr 1111.. GGEENNEERRAATTIINNGG RRUUNNTTIIMMEE AAPPPPLLIICCAATTIIOONNSS
This chapter describes the features of SWI-Prolog for delivering
applications that can run without the development version of the system
installed.
A SWI-Prolog runtime executable is a file consisting of two parts. The
first part is the _e_m_u_l_a_t_o_r, which is machine-dependent. The second
part is the _r_e_s_o_u_r_c_e _a_r_c_h_i_v_e, which contains the compiled program in a
machine-independent format, startup options and possibly user-defined
_r_e_s_o_u_r_c_e_s; see resource/3 and open_resource/3.
These two parts can be connected in various ways. The most common way
for distributed runtime applications is to _c_o_n_c_a_t_e_n_a_t_e the two parts.
This can be achieved using external commands (Unix: cat, Windows:
copy), or using the stand_alone option to qsave_program/2. The second
option is to attach a startup script in front of the resource that
starts the emulator with the proper options. This is the default under
Unix. Finally, an emulator can be told to use a specified resource
file using the -x command line switch.
qqssaavvee__pprrooggrraamm((_+_F_i_l_e_, _+_O_p_t_i_o_n_s))
Saves the current state of the program to the file _F_i_l_e. The
result is a resource archive containing a saved state that
expresses all Prolog data from the running program and all
user-defined resources. Depending on the stand_alone option, the
resource is headed by the emulator, a Unix shell script or nothing.
_O_p_t_i_o_n_s is a list of additional options:
llooccaall((_+_K_B_y_t_e_s))
Limit for the local stack. See section 2.4.3.
gglloobbaall((_+_K_B_y_t_e_s))
Limit for the global stack. See section 2.4.3.
ttrraaiill((_+_K_B_y_t_e_s))
Limit for the trail stack. See section 2.4.3.
ggooaall((_:_C_a_l_l_a_b_l_e))
Initialization goal for the new executable (see -g).
ttoopplleevveell((_:_C_a_l_l_a_b_l_e))
Top-level goal for the new executable (see -t).
iinniitt__ffiillee((_+_A_t_o_m))
Default initialization file for the new executable. See -f.
ccllaassss((_+_C_l_a_s_s))
If runtime, only read resources from the state (default).
If kernel, lock all predicates as system predicates. If
development, save the predicates in their current state and
keep reading resources from their source (if present). See
also resource/3.
aauuttoollooaadd((_+_B_o_o_l_e_a_n))
If true (default), run autoload/0 first.
mmaapp((_+_F_i_l_e))
Dump a human-readable trace of what has been saved in _F_i_l_e.
oopp((_+_A_c_t_i_o_n))
One of save (default) to save the current operator table or
standard to use the initial table of the emulator.
ssttaanndd__aalloonnee((_+_B_o_o_l_e_a_n))
If true, the emulator is the first part of the state. If
the emulator is started it will test whether a boot file
(state) is attached to the emulator itself and load this
state. Provided the application has all libraries loaded,
the resulting executable is completely independent of the
runtime environment or location where it was built. See also
section 2.10.2.4.
eemmuullaattoorr((_+_F_i_l_e))
File to use for the emulator. Default is the running Prolog
image.
ffoorreeiiggnn((_+_A_c_t_i_o_n))
If save, include shared objects (DLLs) into the saved state.
See current_foreign_library/2. If the program strip is
available, this is first used to reduce the size of the shared
object. If a state is started, use_foreign_library/1 first
tries to locate the foreign resource in the executable. When
found it copies the content of the resource to a temporary
file and loads it. If possible (Unix), the temporary object
is deleted immediately after opening.
qqssaavvee__pprrooggrraamm((_+_F_i_l_e))
Equivalent to qsave_program(File, []).
aauuttoollooaadd
Check the current Prolog program for predicates that are referred
to, are undefined and have a definition in the Prolog library.
Load the appropriate libraries.
This predicate is used by qsave_program/[1,2] to ensure the saved
state does not depend on availability of the libraries. The
predicate autoload/0 examines all clauses of the loaded program
(obtained with clause/2) and analyzes the body for referenced
goals. Such an analysis cannot be complete in Prolog, which allows
for the creation of arbitrary terms at runtime and the use of them
as a goal. The current analysis is limited to the following:
o Direct goals appearing in the body
o Arguments of declared meta-predicates that are marked with an
integer (0..9). See meta_predicate/1.
The analysis of meta-predicate arguments is limited to cases where
the argument appears literally in the clause or is assigned using
=/2 before the meta-call. That is, the following fragment is
processed correctly:
____________________________________________________________________| |
| ..., |
| Goal = prove(Theory), |
| forall(current_theory(Theory), |
||_______________Goal)),____________________________________________ ||
But, the calls to prove_simple/1 and prove_complex/1 in the example
below are _n_o_t discovered by the analysis and therefore the modules
that define these predicates must be loaded explicitly using
use_module/1,2.
____________________________________________________________________| |
| ..., |
| member(Goal, [ prove_simple(Theory), |
| prove_complex(Theory) |
| ]), |
| forall(current_theory(Theory), |
||_______________Goal)),____________________________________________ ||
It is good practice to use gxref/0 to make sure that the program
has sufficient declarations such that the analaysis tools can
verify that all required predicates can be resolved and that all
code is called. See meta_predicate/1, dynamic/1, public/1 and
prolog:called_by/2.
vvoollaattiillee _+_N_a_m_e_/_A_r_i_t_y_, _._._.
Declare that the clauses of specified predicates should nnoott be
saved to the program. The volatile declaration is normally used to
prevent the clauses of dynamic predicates that represent data for
the current session from being saved in the state file.
1111..11 LLiimmiittaattiioonnss ooff qqssaavvee__pprrooggrraamm
There are three areas that require special attention when using
qsave_program/[1,2].
o If the program is an embedded Prolog application or uses the
foreign language interface, care has to be taken to restore the
appropriate foreign context. See section 11.2 for details.
o If the program uses directives (:- goal. lines) that perform other
actions than setting predicate attributes (dynamic, volatile, etc.)
or loading files (consult, etc.), the directive may need to be
prefixed with initialization/1.
o Database references as returned by clause/3, recorded/3, etc., are
not preserved and may thus not be part of the database when saved.
1111..22 RRuunnttiimmeess aanndd FFoorreeiiggnn CCooddee
Some applications may need to use the foreign language interface.
Object code is by definition machine-dependent and thus cannot be part
of the saved program file.
To complicate the matter even further there are various ways of loading
foreign code:
o _U_s_i_n_g _t_h_e _l_i_b_r_a_r_y_(_s_h_l_i_b_) _p_r_e_d_i_c_a_t_e_s
This is the preferred way of dealing with foreign code. It loads
quickly and ensures an acceptable level of independence between the
versions of the emulator and the foreign code loaded. It works on
Unix machines supporting shared libraries and library functions to
load them. Most modern Unixes, as well as Win32 (Windows 95/NT),
satisfy this constraint.
o _S_t_a_t_i_c _l_i_n_k_i_n_g
This mechanism works on all machines, but generally requires the
same C compiler and linker to be used for the external code as is
used to build SWI-Prolog itself.
To make a runtime executable that can run on multiple platforms one
must make runtime checks to find the correct way of linking. Suppose
we have a source file myextension.c defining the installation function
install().
If this file is compiled into a shared library, load_foreign_library/1
will load this library and call the installation function to initialise
the foreign code. If it is loaded as a static extension, define
install() as the predicate install/0:
________________________________________________________________________| |
|static foreign_t |
|pl_install() |
|{ install(); |
| |
| PL_succeed; |
|} |
| |
|PL_extension PL_extensions [] = |
|{ |
|/*{ "name", arity, function, PL_FA_<flags> },*/ |
| |
| { "install", 0, pl_install, 0 }, |
| { NULL, 0, NULL, 0 } /* terminating line */ |
|};|____________________________________________________________________ | |
Now, use the following Prolog code to load the foreign library:
________________________________________________________________________| |
|load_foreign_extensions :- |
| current_predicate(install, install), !, % static loaded |
| install. |
|load_foreign_extensions :- % shared library |
| load_foreign_library(foreign(myextension)). |
| |
|:-|initialization_load_foreign_extensions._____________________________ | |
The path alias foreign is defined by file_search_path/2. By default
it searches the directories <_h_o_m_e>/lib/<_a_r_c_h> and <_h_o_m_e>/lib. The
application can specify additional rules for file_search_path/2.
1111..33 UUssiinngg pprrooggrraamm rreessoouurrcceess
A _r_e_s_o_u_r_c_e is very similar to a file. Resources, however, can be
represented in two different formats: on files, as well as part of the
resource _a_r_c_h_i_v_e of a saved state (see qsave_program/2).
A resource has a _n_a_m_e and a _c_l_a_s_s. The _s_o_u_r_c_e data of the resource is
a file. Resources are declared by declaring the predicate resource/3.
They are accessed using the predicate open_resource/3.
Before going into details, let us start with an example. Short
texts can easily be expressed in Prolog source code, but long texts
are cumbersome. Assume our application defines a command `help' that
prints a helptext to the screen. We put the content of the helptext
into a file called help.txt. The following code implements our help
command such that help.txt is incorporated into the runtime executable.
________________________________________________________________________| |
|resource(help, text, 'help.txt'). |
| |
|help :- |
| open_resource(help, text, In), |
| call_cleanup(copy_stream_data(In, user_output), |
||____________________close(In))._______________________________________ ||
The predicate help/0 opens the resource as a Prolog stream. If we
are executing this from the development environment, this will actually
return a stream to the file help.txt itself. When executed from the
saved state, the stream will actually be a stream opened on the program
resource file, taking care of the offset and length of the resource.
1111..33..11 RReessoouurrccee mmaanniippuullaattiioonn pprreeddiiccaatteess
rreessoouurrccee((_+_N_a_m_e_, _+_C_l_a_s_s_, _+_F_i_l_e_S_p_e_c))
This predicate is defined as a dynamic predicate in the module
user. Clauses for it may be defined in any module, including
the user module. _N_a_m_e is the name of the resource (an atom).
A resource name may contain any character, except for $ and :,
which are reserved for internal usage by the resource library.
_C_l_a_s_s describes the kind of object stored in the resource. In
the current implementation, it is just an atom. _F_i_l_e_S_p_e_c is
a file specification that may exploit file_search_path/2 (see
absolute_file_name/2).
Normally, resources are defined as unit clauses (facts), but the
definition of this predicate also allows for rules. For proper
generation of the saved state, it must be possible to enumerate
the available resources by calling this predicate with all its
arguments unbound.
Dynamic rules are useful to turn all files in a certain directory
into resources, without specifying a resource for each file. For
example, assume the file_search_path/2icons refers to the resource
directory containing icon files. The following definition makes
all these images available as resources:
____________________________________________________________________| |
| resource(Name, image, icons(XpmName)) :- |
| atom(Name), !, |
| file_name_extension(Name, xpm, XpmName). |
| resource(Name, image, XpmFile) :- |
| var(Name), |
| absolute_file_name(icons(.), [type(directory)], Dir) |
| concat(Dir, '/*.xpm', Pattern), |
| expand_file_name(Pattern, XpmFiles), |
||________member(XpmFile,_XpmFiles).________________________________ ||
ooppeenn__rreessoouurrccee((_+_N_a_m_e_, _?_C_l_a_s_s_, _-_S_t_r_e_a_m))
Opens the resource specified by _N_a_m_e and _C_l_a_s_s. If the latter is a
variable, it will be unified to the class of the first resource
found that has the specified _N_a_m_e. If successful, _S_t_r_e_a_m becomes a
handle to a binary input stream, providing access to the content of
the resource.
The predicate open_resource/3 first checks resource/3. When
successful it will open the returned resource source file.
Otherwise it will look in the program's resource database. When
creating a saved state, the system normally saves the resource
contents into the resource archive, but does not save the resource
clauses.
This way, the development environment uses the files (and
modifications) to the resource/3 declarations and/or files
containing resource info, thus immediately affecting the running
environment, while the runtime system quickly accesses the system
resources.
1111..33..22 TThhee swipl-rc pprrooggrraamm
The utility program swipl-rc can be used to examine and manipulate the
contents of a SWI-Prolog resource file. The options are inspired by
the Unix ar program. The basic command is:
________________________________________________________________________| |
|%|swipl-rc_option_resource-file_member_..._____________________________ | |
The options are described below.
l
List contents of the archive.
x
Extract named (or all) members of the archive into the current
directory.
a
Add files to the archive. If the archive already contains a
member with the same name, the contents are replaced. Anywhere
in the sequence of members, the options --class=_c_l_a_s_s and
--encoding=_e_n_c_o_d_i_n_g may appear. They affect the class and encoding
of subsequent files. The initial class is data and encoding none.
d
Delete named members from the archive.
This command is also described in the pl(1) Unix manual page.
1111..44 FFiinnddiinngg AApppplliiccaattiioonn ffiilleess
If your application uses files that are not part of the saved program
such as database files, configuration files, etc., the runtime version
has to be able to locate these files. The file_search_path/2 mechanism
in combination with the -palias command line argument is the preferred
way to locate runtime files. The first step is to define an alias
for the top-level directory of your application. We will call this
directory gnatdir in our examples.
A good place for storing data associated with SWI-Prolog runtime
systems is below the emulator's home directory. swi is a predefined
alias for this directory. The following is a useful default definition
for the search path.
________________________________________________________________________| |
|user:file_search_path(gnatdir,|swi(gnat))._____________________________ | |
The application should locate all files using absolute_file_name.
Suppose gnatdir contains a file config.pl to define the local
configuration. Then use the code below to load this file:
________________________________________________________________________| |
|configure_gnat :- |
| ( absolute_file_name(gnatdir('config.pl'), ConfigFile) |
| -> consult(ConfigFile) |
| ; format(user_error, 'gnat: Cannot locate config.pl~n'), |
| halt(1) |
||__).__________________________________________________________________ ||
1111..44..11 SSppeecciiffyyiinngg aa ffiillee sseeaarrcchh ppaatthh ffrroomm tthhee ccoommmmaanndd lliinnee
Suppose the system administrator has installed the SWI-Prolog
runtime environment in /usr/local/lib/rt-pl-3.2.0. A user wants
to install gnat, but gnat will look for its configuration in
/usr/local/lib/rt-pl-3.2.0/gnat where the user cannot write.
The user decides to install the gnat runtime files in /users/bob/lib/
gnat. For one-time usage, the user may decide to start gnat using the
command:
________________________________________________________________________| |
|%|gnat_-p_gnatdir=/users/bob/lib/gnat__________________________________ | |
CChhaapptteerr 1122.. TTHHEE SSWWII--PPRROOLLOOGG LLIIBBRRAARRYY
This chapter documents the SWI-Prolog library. As SWI-Prolog provides
auto-loading, there is little difference between library predicates
and built-in predicates. Part of the library is therefore documented
in the rest of the manual. Library predicates differ from built-in
predicates in the following ways:
o User definition of a built-in leads to a permission error, while
using the name of a library predicate is allowed.
o If autoloading is disabled explicitly or because trapping unknown
predicates is disabled (see unknown/2 and current_prolog_flag/2),
library predicates must be loaded explicitly.
o Using libraries reduces the footprint of applications that don't
need them.
_T_h_e _d_o_c_u_m_e_n_t_a_t_i_o_n _o_f _t_h_e _l_i_b_r_a_r_y _h_a_s _j_u_s_t _s_t_a_r_t_e_d_. _M_a_t_e_r_i_a_l
_f_r_o_m _t_h_e _s_t_a_n_d_a_r_d _p_a_c_k_a_g_e_s _s_h_o_u_l_d _b_e _m_o_v_e_d _h_e_r_e_, _s_o_m_e _m_a_t_e_r_i_a_l
_f_r_o_m _o_t_h_e_r _p_a_r_t_s _o_f _t_h_e _m_a_n_u_a_l _s_h_o_u_l_d _b_e _m_o_v_e_d _t_o_o _a_n_d _v_a_r_i_o_u_s
_l_i_b_r_a_r_i_e_s _a_r_e _n_o_t _d_o_c_u_m_e_n_t_e_d _a_t _a_l_l_.
1122..11 lliibbrraarryy((aaggggrreeggaattee)):: AAggggrreeggaattiioonn ooppeerraattoorrss oonn bbaacckkttrraacckkaabbllee
pprreeddiiccaatteess
CCoommppaattiibbiilliittyy Quintus, SICStus 4. The forall/2 is a
SWI-Prolog built-in and term_variables/3 is a SWI-Prolog
with a ddiiffffeerreenntt ddeeffiinniittiioonn.
TToo bbee ddoonnee
- Analysing the aggregation template and compiling a
predicate for the list aggregation can be done at compile
time.
- aggregate_all/3 can be rewritten to run in constant
space using non-backtrackable assignment on a term.
This library provides aggregating operators over the solutions of a
predicate. The operations are a generalisation of the bagof/3, setof/3
and findall/3 built-in predicates. The defined aggregation operations
are counting, computing the sum, minimum, maximum, a bag of solutions
and a set of solutions. We first give a simple example, computing the
country with the smallest area:
________________________________________________________________________| |
|smallest_country(Name, Area) :- |
||_______aggregate(min(A,_N),_country(N,_A),_min(Area,_Name)).__________ ||
There are four aggregation predicates (aggregate/3, aggregate/4,
aggregate_all/3 and aggregate/4), distinguished on two properties.
aaggggrreeggaattee vvss.. aaggggrreeggaattee__aallll The aggregate predicates use setof/3
(aggregate/4) or bagof/3 (aggregate/3), dealing with existential
qualified variables (Var^Goal) and providing multiple solutions
for the remaining free variables in Goal. The aggregate_all/3
predicate uses findall/3, implicitly qualifying all free variables
and providing exactly one solution, while aggregate_all/4 uses
sort/2 over solutions that Discriminator (see below) generated
using findall/3.
TThhee DDiissccrriimmiinnaattoorr aarrgguummeenntt The versions with 4 arguments deduplicate
redundant solutions of Goal. Solutions for which both the template
variables and Discriminator are identical will be treated as one
solution. For example, if we wish to compute the total population
of all countries, and for some reason country(belgium, 11000000)
may succeed twice, we can use the following to avoid counting the
population of Belgium twice:
____________________________________________________________________| |
||____aggregate(sum(P),_Name,_country(Name,_P),_Total)______________ ||
All aggregation predicates support the following operators below in
Template. In addition, they allow for an arbitrary named compound
term, where each of the arguments is a term from the list below.
For example, the term r(min(X), max(X)) computes both the minimum and
maximum binding for X.
ccoouunntt
Count number of solutions. Same as sum(1).
ssuumm((_E_x_p_r))
Sum of _E_x_p_r for all solutions.
mmiinn((_E_x_p_r))
Minimum of _E_x_p_r for all solutions.
mmiinn((_E_x_p_r_, _W_i_t_n_e_s_s))
A term min(Min, Witness), where Min is the minimal version of _E_x_p_r
over all solutions, and _W_i_t_n_e_s_s is any other template applied to
solutions that produced Min. If multiple solutions provide the
same minimum, _W_i_t_n_e_s_s corresponds to the first solution.
mmaaxx((_E_x_p_r))
Maximum of _E_x_p_r for all solutions.
mmaaxx((_E_x_p_r_, _W_i_t_n_e_s_s))
As min(Expr, Witness), but producing the maximum result.
sseett((_X))
An ordered set with all solutions for _X.
bbaagg((_X))
A list of all solutions for _X.
AAcckknnoowwlleeddggeemmeennttss
_T_h_e _d_e_v_e_l_o_p_m_e_n_t _o_f _t_h_i_s _l_i_b_r_a_r_y _w_a_s _s_p_o_n_s_o_r_e_d _b_y _S_e_c_u_r_i_t_E_a_s_e_,
http://www.securitease.com
aaggggrreeggaattee((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_R_e_s_u_l_t)) _[_n_o_n_d_e_t_]
Aggregate bindings in _G_o_a_l according to _T_e_m_p_l_a_t_e. The aggregate/3
version performs bagof/3 on _G_o_a_l.
aaggggrreeggaattee((_+_T_e_m_p_l_a_t_e_, _+_D_i_s_c_r_i_m_i_n_a_t_o_r_, _:_G_o_a_l_, _-_R_e_s_u_l_t)) _[_n_o_n_d_e_t_]
Aggregate bindings in _G_o_a_l according to _T_e_m_p_l_a_t_e. The aggregate/4
version performs setof/3 on _G_o_a_l.
aaggggrreeggaattee__aallll((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_R_e_s_u_l_t)) _[_s_e_m_i_d_e_t_]
Aggregate bindings in _G_o_a_l according to _T_e_m_p_l_a_t_e. The
aggregate_all/3 version performs findall/3 on _G_o_a_l. Note that this
predicate fails if _T_e_m_p_l_a_t_e contains one or more of min(X), max(X),
min(X,Witness) or max(X,Witness) and _G_o_a_l has no solutions, i.e.,
the minumum and maximum of an empty set is undefined.
aaggggrreeggaattee__aallll((_+_T_e_m_p_l_a_t_e_, _+_D_i_s_c_r_i_m_i_n_a_t_o_r_, _:_G_o_a_l_, _-_R_e_s_u_l_t)) _[_s_e_m_i_d_e_t_]
Aggregate bindings in _G_o_a_l according to _T_e_m_p_l_a_t_e. The
aggregate_all/4 version performs findall/3 followed by sort/2 on
_G_o_a_l. See aggregate_all/3 to understand why this predicate can
fail.
ffoorreeaacchh((_:_G_e_n_e_r_a_t_o_r_, _:_G_o_a_l))
True if conjunction of results is true. Unlike forall/2, which
runs a failure-driven loop that proves _G_o_a_l for each solution of
_G_e_n_e_r_a_t_o_r, foreach/2 creates a conjunction. Each member of the
conjunction is a copy of _G_o_a_l, where the variables it shares
with _G_e_n_e_r_a_t_o_r are filled with the values from the corresponding
solution.
The implementation executes forall/2 if _G_o_a_l does not contain any
variables that are not shared with _G_e_n_e_r_a_t_o_r.
Here is an example:
____________________________________________________________________| |
| ?- foreach(between(1,4,X), dif(X,Y)), Y = 5. |
| Y = 5. |
| ?- foreach(between(1,4,X), dif(X,Y)), Y = 3. |
||false.____________________________________________________________ ||
bbuugg _G_o_a_l is copied repeatedly, which may cause problems
if attributed variables are involved.
ffrreeee__vvaarriiaabblleess((_:_G_e_n_e_r_a_t_o_r_, _+_T_e_m_p_l_a_t_e_, _+_V_a_r_L_i_s_t_0_, _-_V_a_r_L_i_s_t)) _[_d_e_t_]
Find free variables in bagof/setof template. In order to handle
variables properly, we have to find all the universally quantified
variables in the _G_e_n_e_r_a_t_o_r. All variables as yet unbound are
universally quantified, unless
1. they occur in the template
2. they are bound by X^P, setof/3, or bagof/3
free_variables(Generator, Template, OldList, NewList) finds this
set using OldList as an accumulator.
aauutthhoorr
- Richard O'Keefe
- Jan Wielemaker (made some SWI-Prolog enhancements)
lliicceennssee Public domain (from DEC10 library).
TToo bbee ddoonnee
- Distinguish between control-structures and data
terms.
- Exploit our built-in term_variables/2 at some
places?
ssaannddbbooxx::ssaaffee__mmeettaa((_+_G_o_a_l_, _-_C_a_l_l_e_d)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Declare the aggregate meta-calls safe. This cannot be proven due
to the manipulations of the argument _G_o_a_l.
1122..22 lliibbrraarryy((aappppllyy)):: AAppppllyy pprreeddiiccaatteess oonn aa lliisstt
SSeeee aallssoo
- apply_macros.pl provides compile-time expansion for part
of this library.
- http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm
TToo bbee ddoonnee Add include/4, include/5, exclude/4, exclude/5
This module defines meta-predicates that apply a predicate on all
members of a list.
iinncclluuddee((_:_G_o_a_l_, _+_L_i_s_t_1_, _?_L_i_s_t_2)) _[_d_e_t_]
Filter elements for which _G_o_a_l succeeds. True if _L_i_s_t_2 contains
those elements Xi of _L_i_s_t_1 for which call(Goal, Xi) succeeds.
SSeeee aallssoo Older versions of SWI-Prolog had sublist/3 with
the same arguments and semantics.
eexxcclluuddee((_:_G_o_a_l_, _+_L_i_s_t_1_, _?_L_i_s_t_2)) _[_d_e_t_]
Filter elements for which _G_o_a_l fails. True if _L_i_s_t_2 contains those
elements Xi of _L_i_s_t_1 for which call(Goal, Xi) fails.
ppaarrttiittiioonn((_:_P_r_e_d_, _+_L_i_s_t_, _?_I_n_c_l_u_d_e_d_, _?_E_x_c_l_u_d_e_d)) _[_d_e_t_]
Filter elements of _L_i_s_t according to _P_r_e_d. True if _I_n_c_l_u_d_e_d
contains all elements for which call(Pred, X) succeeds and _E_x_c_l_u_d_e_d
contains the remaining elements.
ppaarrttiittiioonn((_:_P_r_e_d_, _+_L_i_s_t_, _?_L_e_s_s_, _?_E_q_u_a_l_, _?_G_r_e_a_t_e_r)) _[_s_e_m_i_d_e_t_]
Filter _L_i_s_t according to _P_r_e_d in three sets. For each element Xi
of _L_i_s_t, its destination is determined by call(Pred, Xi, Place),
where Place must be unified to one of <, = or >. _P_r_e_d must be
deterministic.
mmaapplliisstt((_:_G_o_a_l_, _?_L_i_s_t))
True if _G_o_a_l can successfully be applied on all elements of _L_i_s_t.
Arguments are reordered to gain performance as well as to make the
predicate deterministic under normal circumstances.
mmaapplliisstt((_:_G_o_a_l_, _?_L_i_s_t_1_, _?_L_i_s_t_2))
As maplist/2, operating on pairs of elements from two lists.
mmaapplliisstt((_:_G_o_a_l_, _?_L_i_s_t_1_, _?_L_i_s_t_2_, _?_L_i_s_t_3))
As maplist/2, operating on triples of elements from three lists.
mmaapplliisstt((_:_G_o_a_l_, _?_L_i_s_t_1_, _?_L_i_s_t_2_, _?_L_i_s_t_3_, _?_L_i_s_t_4))
As maplist/2, operating on quadruples of elements from four lists.
ffoollddll((_:_G_o_a_l_, _+_L_i_s_t_, _+_V_0_, _-_V))
ffoollddll((_:_G_o_a_l_, _+_L_i_s_t_1_, _+_L_i_s_t_2_, _+_V_0_, _-_V))
ffoollddll((_:_G_o_a_l_, _+_L_i_s_t_1_, _+_L_i_s_t_2_, _+_L_i_s_t_3_, _+_V_0_, _-_V))
ffoollddll((_:_G_o_a_l_, _+_L_i_s_t_1_, _+_L_i_s_t_2_, _+_L_i_s_t_3_, _+_L_i_s_t_4_, _+_V_0_, _-_V))
Fold a list, using arguments of the list as left argument. The
foldl family of predicates is defined by:
____________________________________________________________________| |
| foldl(P, [X11,...,X1n], ..., [Xm1,...,Xmn], V0, Vn) :- |
| P(X11, ..., Xm1, V0, V1), |
| ... |
||______P(X1n,_...,_Xmn,_V',_Vn).___________________________________ ||
ssccaannll((_:_G_o_a_l_, _+_L_i_s_t_, _+_V_0_, _-_V_a_l_u_e_s))
ssccaannll((_:_G_o_a_l_, _+_L_i_s_t_1_, _+_L_i_s_t_2_, _+_V_0_, _-_V_a_l_u_e_s))
ssccaannll((_:_G_o_a_l_, _+_L_i_s_t_1_, _+_L_i_s_t_2_, _+_L_i_s_t_3_, _+_V_0_, _-_V_a_l_u_e_s))
ssccaannll((_:_G_o_a_l_, _+_L_i_s_t_1_, _+_L_i_s_t_2_, _+_L_i_s_t_3_, _+_L_i_s_t_4_, _+_V_0_, _-_V_a_l_u_e_s))
Left scan of list. The scanl family of higher order list
operations is defined by:
____________________________________________________________________| |
| scanl(P, [X11,...,X1n], ..., [Xm1,...,Xmn], V0, |
| [V0,V1,...,Vn]) :- |
| P(X11, ..., Xmn, V0, V1), |
| ... |
||______P(X1n,_...,_Xmn,_V',_Vn).___________________________________ ||
1122..33 lliibbrraarryy((aassssoocc)):: AAssssoocciiaattiioonn lliissttss
Authors: _R_i_c_h_a_r_d _A_. _O_'_K_e_e_f_e_, _L_._D_a_m_a_s_, _V_._S_._C_o_s_t_a _a_n_d _M_a_r_k_u_s _T_r_i_s_k_a
Elements of an association list have 2 components: A (unique) _k_e_y and
a _v_a_l_u_e. Keys should be ground, values need not be. An association
list can be used to fetch elements via their keys and to enumerate its
elements in ascending order of their keys. The assoc module uses AVL
trees to implement association lists. This makes inserting, changing
and fetching a single element an O(log(N)) (where N denotes the number
of elements in the list) expected time (and worst-case time) operation.
aassssoocc__ttoo__lliisstt((_+_A_s_s_o_c_, _-_L_i_s_t))
_L_i_s_t is a list of Key-Value pairs corresponding to the associations
in _A_s_s_o_c in ascending order of keys.
aassssoocc__ttoo__kkeeyyss((_+_A_s_s_o_c_, _-_L_i_s_t))
_L_i_s_t is a list of Keys corresponding to the associations in _A_s_s_o_c
in ascending order.
aassssoocc__ttoo__vvaalluueess((_+_A_s_s_o_c_, _-_L_i_s_t))
_L_i_s_t is a list of Values corresponding to the associations in _A_s_s_o_c
in ascending order of the keys they are associated to.
eemmppttyy__aassssoocc((_?_A_s_s_o_c))
_A_s_s_o_c is unified with an empty association list.
ggeenn__aassssoocc((_?_K_e_y_, _+_A_s_s_o_c_, _?_V_a_l_u_e))
Enumerate matching elements of _A_s_s_o_c in ascending order of their
keys via backtracking.
ggeett__aassssoocc((_+_K_e_y_, _+_A_s_s_o_c_, _?_V_a_l_u_e))
_V_a_l_u_e is the value associated with _K_e_y in the association list
_A_s_s_o_c.
ggeett__aassssoocc((_+_K_e_y_, _+_A_s_s_o_c_, _?_O_l_d_, _?_N_e_w_A_s_s_o_c_, _?_N_e_w))
_N_e_w_A_s_s_o_c is an association list identical to _A_s_s_o_c except that the
value associated with _K_e_y is _N_e_w instead of _O_l_d.
lliisstt__ttoo__aassssoocc((_+_L_i_s_t_, _-_A_s_s_o_c))
_A_s_s_o_c is an association list corresponding to the Key-Value pairs
in _L_i_s_t. _L_i_s_t must not contain duplicate keys.
mmaapp__aassssoocc((_:_G_o_a_l_, _+_A_s_s_o_c))
_G_o_a_l_(_V_) is true for every value V in _A_s_s_o_c.
mmaapp__aassssoocc((_:_G_o_a_l_, _+_A_s_s_o_c_I_n_, _?_A_s_s_o_c_O_u_t))
_A_s_s_o_c_O_u_t is _A_s_s_o_c_I_n with _G_o_a_l applied to all corresponding pairs of
values.
mmaaxx__aassssoocc((_+_A_s_s_o_c_, _?_K_e_y_, _?_V_a_l_u_e))
_K_e_y and _V_a_l_u_e are key and value of the element with the largest key
in _A_s_s_o_c.
mmiinn__aassssoocc((_+_A_s_s_o_c_, _?_K_e_y_, _?_V_a_l_u_e))
_K_e_y and _V_a_l_u_e are key and value of the element with the smallest
key in _A_s_s_o_c.
oorrdd__lliisstt__ttoo__aassssoocc((_+_L_i_s_t_, _-_A_s_s_o_c))
_A_s_s_o_c is an association list correspond to the Key-Value pairs in
_L_i_s_t, which must occur in strictly ascending order of their keys.
ppuutt__aassssoocc((_+_K_e_y_, _+_A_s_s_o_c_, _+_V_a_l_u_e_, _?_N_e_w_A_s_s_o_c))
_N_e_w_A_s_s_o_c is an association list identical to _A_s_s_o_c except that _K_e_y
is associated with _V_a_l_u_e. This can be used to insert and change
associations.
iiss__aassssoocc((_+_A_s_s_o_c))
True if Assoc is a valid association list. This predicate verifies
the validity of each node in the AVL tree.
1122..44 lliibbrraarryy((bbrrooaaddccaasstt)):: BBrrooaaddccaasstt aanndd rreecceeiivvee eevveenntt nnoottiiffiiccaattiioonnss
The broadcast library was invented to realise GUI applications
consisting of stand-alone components that use the Prolog database for
storing the application data. Figure ???? illustrates the flow of
information using this design
The broadcasting service provides two services. Using the `shout'
service, an unknown number of agents may listen to the message and act.
The broadcaster is not (directly) aware of the implications. Using the
`request' service, listening agents are asked for an answer one-by-one
and the broadcaster is allowed to reject answers using normal Prolog
failure.
Shouting is often used to inform about changes made to a common
database. Other messages can be ``save yourself'' or ``show this''.
Requesting is used to get information while the broadcaster is not
aware who might be able to answer the question. For example ``who is
showing X?''.
bbrrooaaddccaasstt((_+_T_e_r_m))
Broadcast _T_e_r_m. There are no limitations to _T_e_r_m, though being
a global service, it is good practice to use a descriptive and
unique principal functor. All associated goals are started
and regardless of their success or failure, broadcast/1 always
succeeds. Exceptions are passed.
bbrrooaaddccaasstt__rreeqquueesstt((_+_T_e_r_m))
Unlike broadcast/1, this predicate stops if an associated goal
succeeds. Backtracking causes it to try other listeners. A
broadcast request is used to fetch information without knowing the
identity of the agent providing it. C.f. ``Is there someone who
knows the age of John?'' could be asked using
____________________________________________________________________| |
| ..., |
||________broadcast_request(age_of('John',_Age)),___________________ ||
If there is an agent (_l_i_s_t_e_n_e_r) that registered an `age-of' service
and knows about the age of `John' this question will be answered.
lliisstteenn((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l))
Register a _l_i_s_t_e_n channel. Whenever a term unifying _T_e_m_p_l_a_t_e
is broadcasted, call _G_o_a_l. The following example traps all
broadcasted messages as a variable unifies to any message. It is
commonly used to debug usage of the library.
____________________________________________________________________| |
| ?- listen(Term, (writeln(Term),fail)). |
| ?- broadcast(hello(world)). |
| hello(world) |
||true._____________________________________________________________ ||
lliisstteenn((_+_L_i_s_t_e_n_e_r_, _+_T_e_m_p_l_a_t_e_, _:_G_o_a_l))
Declare _L_i_s_t_e_n_e_r as the owner of the channel. Unlike a channel
opened using listen/2, channels that have an owner can terminate
the channel. This is commonly used if an object is listening to
broadcast messages. In the example below we define a `name-item'
displaying the name of an identifier represented by the predicate
name_of/2.
____________________________________________________________________| |
| :- pce_begin_class(name_item, text_item). |
| |
| variable(id, any, get, "Id visualised"). |
| |
| initialise(NI, Id:any) :-> |
| name_of(Id, Name), |
| send_super(NI, initialise, name, Name, |
| message(NI, set_name, @arg1)), |
| send(NI, slot, id, Id), |
| listen(NI, name_of(Id, Name), |
| send(NI, selection, Name)). |
| |
| unlink(NI) :-> |
| unlisten(NI), |
| send_super(NI, unlink). |
| |
| set_name(NI, Name:name) :-> |
| get(NI, id, Id), |
| retractall(name_of(Id, _)), |
| assert(name_of(Id, Name)), |
| broadcast(name_of(Id, Name)). |
| |
||:-_pce_end_class._________________________________________________ ||
uunnlliisstteenn((_+_L_i_s_t_e_n_e_r))
Deregister all entries created with listen/3 whose _L_i_s_t_e_n_e_r unify.
uunnlliisstteenn((_+_L_i_s_t_e_n_e_r_, _+_T_e_m_p_l_a_t_e))
Deregister all entries created with listen/3 whose _L_i_s_t_e_n_e_r and
_T_e_m_p_l_a_t_e unify.
uunnlliisstteenn((_+_L_i_s_t_e_n_e_r_, _+_T_e_m_p_l_a_t_e_, _:_G_o_a_l))
Deregister all entries created with listen/3 whose _L_i_s_t_e_n_e_r,
_T_e_m_p_l_a_t_e and _G_o_a_l unify.
lliisstteenniinngg((_?_L_i_s_t_e_n_e_r_, _?_T_e_m_p_l_a_t_e_, _?_G_o_a_l))
Examine the current listeners. This predicate is useful for
debugging purposes.
1122..55 lliibbrraarryy((cchhaarrssiioo)):: II//OO oonn LLiissttss ooff CChhaarraacctteerr CCooddeess
CCoommppaattiibbiilliittyy The naming of this library is not in line
with the ISO standard. We believe that the SWI-Prolog
native predicates form a more elegant alternative for this
library.
This module emulates the Quintus/SICStus library charsio.pl for reading
and writing from/to lists of character codes. Most of these predicates
are straight calls into similar SWI-Prolog primitives. Some can even
be replaced by ISO standard predicates.
ffoorrmmaatt__ttoo__cchhaarrss((_+_F_o_r_m_a_t_, _+_A_r_g_s_, _-_C_o_d_e_s)) _[_d_e_t_]
Use format/2 to write to a list of character codes.
ffoorrmmaatt__ttoo__cchhaarrss((_+_F_o_r_m_a_t_, _+_A_r_g_s_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Use format/2 to write to a difference list of character codes.
wwrriittee__ttoo__cchhaarrss((_+_T_e_r_m_, _-_C_o_d_e_s))
Write a term to a code list. True when _C_o_d_e_s is a list of
character codes written by write/1 on _T_e_r_m.
wwrriittee__ttoo__cchhaarrss((_+_T_e_r_m_, _-_C_o_d_e_s_, _?_T_a_i_l))
Write a term to a code list. _C_o_d_e_s\_T_a_i_l is a difference list of
character codes produced by write/1 on _T_e_r_m.
aattoomm__ttoo__cchhaarrss((_+_A_t_o_m_, _-_C_o_d_e_s)) _[_d_e_t_]
Convert _A_t_o_m into a list of character codes.
ddeepprreeccaatteedd Use ISO atom_codes/2.
aattoomm__ttoo__cchhaarrss((_+_A_t_o_m_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Convert _A_t_o_m into a difference list of character codes.
nnuummbbeerr__ttoo__cchhaarrss((_+_N_u_m_b_e_r_, _-_C_o_d_e_s)) _[_d_e_t_]
Convert Atom into a list of character codes.
ddeepprreeccaatteedd Use ISO number_codes/2.
nnuummbbeerr__ttoo__cchhaarrss((_+_N_u_m_b_e_r_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Convert _N_u_m_b_e_r into a difference list of character codes.
rreeaadd__ffrroomm__cchhaarrss((_+_C_o_d_e_s_, _-_T_e_r_m)) _[_d_e_t_]
Read _C_o_d_e_s into _T_e_r_m.
CCoommppaattiibbiilliittyy The SWI-Prolog version does not require
_C_o_d_e_s to end in a full-stop.
rreeaadd__tteerrmm__ffrroomm__cchhaarrss((_+_C_o_d_e_s_, _-_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Read _C_o_d_e_s into _T_e_r_m. _O_p_t_i_o_n_s are processed by read_term/3.
CCoommppaattiibbiilliittyy sicstus
ooppeenn__cchhaarrss__ssttrreeaamm((_+_C_o_d_e_s_, _-_S_t_r_e_a_m)) _[_d_e_t_]
Open _C_o_d_e_s as an input stream.
SSeeee aallssoo open_string/2.
wwiitthh__oouuttppuutt__ttoo__cchhaarrss((_:_G_o_a_l_, _-_C_o_d_e_s)) _[_d_e_t_]
Run _G_o_a_l as with once/1. Output written to current_output is
collected in _C_o_d_e_s.
wwiitthh__oouuttppuutt__ttoo__cchhaarrss((_:_G_o_a_l_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Run _G_o_a_l as with once/1. Output written to current_output is
collected in _C_o_d_e_s\_T_a_i_l.
wwiitthh__oouuttppuutt__ttoo__cchhaarrss((_:_G_o_a_l_, _-_S_t_r_e_a_m_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Same as with_output_to_chars/3 using an explicit stream. The
difference list _C_o_d_e_s\_T_a_i_l contains the character codes that _G_o_a_l
has written to _S_t_r_e_a_m.
1122..66 lliibbrraarryy((cchheecckk)):: CCoonnssiisstteennccyy cchheecckkiinngg
SSeeee aallssoo
- gxref/0 provides a graphical cross referencer
- PceEmacs performs real time consistency checks while you
edit
- library(prolog_xref) implements `offline' cross-
referencing
- library(prolog_codewalk) implements `online' analysis
This library provides some consistency checks for the loaded Prolog
program. The predicate make/0 runs list_undefined/0 to find undefined
predicates in `user' modules.
cchheecckk _[_d_e_t_]
Run all consistency checks defined by checker/2. Checks enabled by
default are:
o list_undefined/0 reports undefined predicates
o list_trivial_fails/0 reports calls for which there is no
matching clause.
o list_redefined/0 reports predicates that have a local
definition and a global definition. Note that these are nnoott
errors.
o list_autoload/0 lists predicates that will be defined at
runtime using the autoloader.
lliisstt__uunnddeeffiinneedd _[_d_e_t_]
lliisstt__uunnddeeffiinneedd((_+_O_p_t_i_o_n_s)) _[_d_e_t_]
Report undefined predicates. This predicate finds undefined
predciates by decompiling and analyzing the body of all clauses.
_O_p_t_i_o_n_s:
mmoodduullee__ccllaassss((_+_C_l_a_s_s_e_s))
Process modules of the given _C_l_a_s_s_e_s. The default for classes
is [user]. For example, to include the libraries into the
examination, use [user,library].
SSeeee aallssoo
- gxref/0 provides a graphical cross-referencer.
- make/0 calls list_undefined/0
lliisstt__aauuttoollooaadd _[_d_e_t_]
Report predicates that may be auto-loaded. These are predicates
that are not defined, but will be loaded on demand if referenced.
SSeeee aallssoo autoload/0
TToo bbee ddoonnee This predicate uses an older mechanism for
finding undefined predicates. Should be synchronized
with list undefined.
lliisstt__rreeddeeffiinneedd
Lists predicates that are defined in the global module user as well
as in a normal module; that is, predicates for which the local
definition overrules the global default definition.
lliisstt__vvooiidd__ddeeccllaarraattiioonnss _[_d_e_t_]
List predicates that have declared attributes, but no clauses.
lliisstt__ttrriivviiaall__ffaaiillss _[_d_e_t_]
lliisstt__ttrriivviiaall__ffaaiillss((_+_O_p_t_i_o_n_s)) _[_d_e_t_]
List goals that trivially fail because there is no matching clause.
_O_p_t_i_o_n_s:
mmoodduullee__ccllaassss((_+_C_l_a_s_s_e_s))
Process modules of the given _C_l_a_s_s_e_s. The default for classes
is [user]. For example, to include the libraries into the
examination, use [user,library].
ttrriivviiaall__ffaaiill__ggooaall((_:_G_o_a_l)) _[_m_u_l_t_i_f_i_l_e_]
Multifile hook that tells list_trivial_fails/0 to accept _G_o_a_l as
valid.
lliisstt__ssttrriinnggss _[_d_e_t_]
lliisstt__ssttrriinnggss((_+_O_p_t_i_o_n_s)) _[_d_e_t_]
List strings that appear in clauses. This predicate is used to
find portability issues for changing the Prolog flag double_quotes
from codes to string, creating packed string objects. Warnings may
be suppressed using the following multifile hooks:
o string_predicate/1 to stop checking certain predicates
o valid_string_goal/1to tell the checker that a goal is safe.
SSeeee aallssoo Prolog flag double_quotes.
ssttrriinngg__pprreeddiiccaattee((_:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r)) _[_m_u_l_t_i_f_i_l_e_]
Multifile hook to disable list_strings/0 on the given predicate.
This is typically used for facts that store strings.
vvaalliidd__ssttrriinngg__ggooaall((_+_G_o_a_l)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Multifile hook that qualifies _G_o_a_l as valid for list_strings/0.
For example, format("Hello world~n") is considered proper use of
string constants.
cchheecckkeerr((_:_G_o_a_l_, _+_M_e_s_s_a_g_e_:_t_e_x_t)) _[_m_u_l_t_i_f_i_l_e_]
Register code validation routines. Each clause defines a _G_o_a_l
which performs a consistency check executed by check/0. _M_e_s_s_a_g_e
is a short description of the check. For example, assuming the
my_checks module defines a predicate list_format_mistakes/0:
____________________________________________________________________| |
| :- multifile check:checker/2. |
| check:checker(my_checks:list_format_mistakes, |
||______________"errors_with_format/2_arguments").__________________ ||
The predicate is dynamic, so you can disable checks with retract/1.
For example, to stop reporting redefined predicates:
____________________________________________________________________| |
||retract(check:checker(list_redefined,_))._________________________ ||
1122..77 lliibbrraarryy((ccllppbb)):: CCoonnssttrraaiinntt LLooggiicc PPrrooggrraammmmiinngg oovveerr BBoooolleeaann
VVaarriiaabblleess
aauutthhoorr Markus Triska
1122..77..00..11 IInnttrroodduuccttiioonn
Constraint programming is a declarative formalism that lets you state
relations between terms. This library provides CLP(B), Constraint
Logic Programming over Boolean Variables. It can be used to model
and solve combinatorial problems such as verification, allocation and
covering tasks.
The implementation is based on reduced and ordered Binary Decision
Diagrams (BDDs).
1122..77..00..22 BBoooolleeaann eexxpprreessssiioonnss
A _B_o_o_l_e_a_n _e_x_p_r_e_s_s_i_o_n is one of:
______________________________________________
| 0 |false |
| 1 |true |
| _v_a_r_i_a_b_l_e _|unknown truth value |
| ~ _E_x_p_r _|logical NOT |
| _E_x_p_r + _E_x_p_r _|logical OR |
| _E_x_p_r * _E_x_p_r _|logical AND |
| _E_x_p_r # _E_x_p_r _|exclusive OR |
| _V_a_r ^ _E_x_p_r _|existential quantification |
| _E_x_p_r =:= _E_x_p_r _|equality |
| _E_x_p_r =\= _E_x_p_r _|disequality (same as #) |
| _E_x_p_r =< _E_x_p_r _|less or equal (implication) |
| _E_x_p_r >= _E_x_p_r _|greater or equal |
| _E_x_p_r < _E_x_p_r _|less than |
| _E_x_p_r > _E_x_p_r _|greater than |
| card(Is,Exprs) |_s_e_e _b_e_l_o_w _|
_| +(Exprs) |_s_e_e _b_e_l_o_w _|
_|__*(Exprs)______________|_s_e_e___b_e_l_o_w_______________________________________|
where _E_x_p_r again denotes a Boolean expression.
The Boolean expression card(Is,Exprs) is true iff the number of true
expressions in the list _E_x_p_r_s is a member of the list _I_s of integers
and integer ranges of the form From-To.
+(Exprs) and *(Exprs) denote, respectively, the disjunction and
conjunction of all elements in the list _E_x_p_r_s of Boolean expressions.
1122..77..00..33 IInntteerrffaaccee pprreeddiiccaatteess
Important interface predicates of CLP(B) are:
ssaatt((_+_E_x_p_r))
True iff the Boolean expression _E_x_p_r is satisfiable.
ttaauutt((_+_E_x_p_r_, _-_T))
If _E_x_p_r is a tautology with respect to the posted constraints,
succeeds with _T == 11. If _E_x_p_r cannot be satisfied, succeeds with _T
== 00. Otherwise, it fails.
llaabbeelliinngg((_+_V_s))
Assigns truth values to the variables _V_s such that all constraints
are satisfied.
The unification of a CLP(B) variable _X with a term _T is equivalent to
posting the constraint sat(X=:=T).
1122..77..00..44 EExxaammpplleess
Here is an example session with a few queries and their answers:
________________________________________________________________________| |
|?- use_module(library(clpb)). |
|true. |
| |
|?- sat(X*Y). |
|X = Y, Y = 1. |
| |
|?- sat(X * ~X). |
|false. |
| |
|?- taut(X * ~X, T). |
|T = 0, |
|sat(X=:=X). |
| |
|?- sat(X^Y^(X+Y)). |
|sat(X=:=X), |
|sat(Y=:=Y). |
| |
|?- sat(X*Y + X*Z), labeling([X,Y,Z]). |
|X = Z, Z = 1, Y = 0 ; |
|X = Y, Y = 1, Z = 0 ; |
|X = Y, Y = Z, Z = 1. |
| |
|?- sat(X =< Y), sat(Y =< Z), taut(X =< Z, T). |
|T = 1, |
|sat(1#X#X*Y), |
|sat(1#Y#Y*Z).|_________________________________________________________ | |
The pending residual goals constrain remaining variables to Boolean
expressions and are declaratively equivalent to the original query.
ssaatt((_+_E_x_p_r)) _[_s_e_m_i_d_e_t_]
True iff _E_x_p_r is a satisfiable Boolean expression.
ttaauutt((_+_E_x_p_r_, _-_T)) _[_s_e_m_i_d_e_t_]
Succeeds with _T = 0 if the Boolean expression _E_x_p_r cannot be
satisfied, and with _T = 1 if _E_x_p_r is always true with respect to
the current constraints. Fails otherwise.
llaabbeelliinngg((_+_V_s)) _[_m_u_l_t_i_]
Assigns truth values to the Boolean variables _V_s such that all
stated constraints are satisfied.
ssaatt__ccoouunntt((_+_E_x_p_r_, _-_N)) _[_d_e_t_]
_N is the number of different assignments of truth values to the
variables in the Boolean expression _E_x_p_r, such that _E_x_p_r is true
and all posted constraints are satisfiable.
Example:
____________________________________________________________________| |
| ?- length(Vs, 120), sat_count(+Vs, CountOr), sat_count(*(Vs), CountAnd).|
| Vs = [...], |
| CountOr = 1329227995784915872903807060280344575, |
||CountAnd_=_1._____________________________________________________ ||
1122..88 lliibbrraarryy((ccllppffdd)):: CCoonnssttrraaiinntt LLooggiicc PPrrooggrraammmmiinngg oovveerr FFiinniittee DDoommaaiinnss
aauutthhoorr Markus Triska
1122..88..00..55 IInnttrroodduuccttiioonn
Constraint programming is a declarative formalism that lets you state
relations between terms. This library provides CLP(FD), Constraint
Logic Programming over Finite Domains.
There are two major use cases of this library:
1. CLP(FD) constraints provide _d_e_c_l_a_r_a_t_i_v_e _i_n_t_e_g_e_r _a_r_i_t_h_m_e_t_i_c: They
implement pure _r_e_l_a_t_i_o_n_s between integer expressions and can be
used in all directions, also if parts of expressions are variables.
2. In connection with enumeration predicates and more complex
constraints, CLP(FD) is often used to model and solve combinatorial
problems such as planning, scheduling and allocation tasks.
When teaching Prolog, we _s_t_r_o_n_g_l_y _r_e_c_o_m_m_e_n_d that you introduce CLP(FD)
constraints _b_e_f_o_r_e explaining lower-level arithmetic predicates and
their procedural idiosyncrasies. This is because constraints are easy
to explain, understand and use due to their purely relational nature.
In contrast, the modedness and directionality of low-level arithmetic
primitives are non-declarative limitations that are better deferred to
more advanced lectures.
If you are used to the complicated operational considerations that
low-level arithmetic primitives necessitate, then moving to CLP(FD)
constraints may, due to their power and convenience, at first feel to
you excessive and almost like cheating. It _i_s_n_'_t. Constraints are
an integral part of many Prolog systems and are available to help you
eliminate and avoid, as far as possible, the use of lower-level and
less general primitives by providing declarative alternatives that are
meant to be used instead.
For satisfactory performance, arithmetic constraints are implicitly
rewritten at compilation time so that lower-level fallback predicates
are automatically used whenever possible.
We recommend the following reference to cite this library in scientific
publications:
________________________________________________________________________| |
|@inproceedings{Triska12, |
| author = {Markus Triska}, |
| title = {The Finite Domain Constraint Solver of {SWI-Prolog}}, |
| booktitle = {FLOPS}, |
| series = {LNCS}, |
| volume = {7294}, |
| year = {2012}, |
| pages = {307-316} |
|}|_____________________________________________________________________ | |
and the following URL to link to its documentation:
________________________________________________________________________| |
|http://www.swi-prolog.org/man/clpfd.html|______________________________ | |
1122..88..00..66 AArriitthhmmeettiicc ccoonnssttrraaiinnttss
A finite domain _a_r_i_t_h_m_e_t_i_c _e_x_p_r_e_s_s_i_o_n is one of:
_______________________________________________________
| _i_n_t_e_g_e_r _|Given value |
| _v_a_r_i_a_b_l_e _|Unknown integer |
| ?(_v_a_r_i_a_b_l_e) |Unknown integer |
| -Expr |Unary minus |
| Expr + Expr |Addition |
| Expr * Expr |Multiplication |
| Expr - Expr |Subtraction |
| Expr ^ Expr |Exponentiation |
| min(Expr,Expr) |Minimum of two expressions |
| max(Expr,Expr) |Maximum of two expressions |
| Expr mod Expr |Modulo induced by floored division |
| Expr rem Expr |Modulo induced by truncated division |
| abs(Expr) |Absolute value |
|_Expr_//_Expr___|Truncated_integer_division___________|
Arithmetic _c_o_n_s_t_r_a_i_n_t_s are relations between arithmetic expressions.
The most important arithmetic constraints are:
___________________________________________________________
| Expr1 #>= Expr2 |Expr1 is greater than or equal to Expr2 |
| Expr1 #=< Expr2 |Expr1 is less than or equal to Expr2 |
| Expr1 #= Expr2 |Expr1 equals Expr2 |
| Expr1 #\= Expr2 |Expr1 is not equal to Expr2 |
| Expr1 #> Expr2 |Expr1 is greater than Expr2 |
|_Expr1_#<_Expr2__|Expr1_is_less_than_Expr2________________|
1122..88..00..77 DDeeccllaarraattiivvee iinntteeggeerr aarriitthhmmeettiicc
CLP(FD) constraints let you declaratively express integer arithmetic.
The CLP(FD) constraints #=/2, #>/2 etc. are meant to be used instead
of the corresponding primitives is/2, =:=/2, >/2 etc. over integers.
An important advantage of arithmetic constraints is their purely
relational nature. They are therefore easy to explain and use, and
well suited for beginners and experienced Prolog programmers alike.
Consider for example the query:
________________________________________________________________________| |
|?- X #> 3, X #= 5 + 2. |
|X|=_7._________________________________________________________________ | |
In contrast, when using low-level integer arithmetic, we get:
________________________________________________________________________| |
|?- X > 3, X is 5 + 2. |
|ERROR:|>/2:_Arguments_are_not_sufficiently_instantiated________________ | |
Due to the necessary operational considerations, the use of these
low-level arithmetic predicates is considerably harder to understand
and should therefore be deferred to more advanced lectures.
For supported expressions, CLP(FD) constraints are drop-in replacements
of these low-level arithmetic predicates, often yielding more general
programs.
Here is an example:
________________________________________________________________________| |
|:- use_module(library(clpfd)). |
| |
|n_factorial(0, 1). |
|n_factorial(N, F) :- |
| N #> 0, N1 #= N - 1, F #= N * F1, |
||_______n_factorial(N1,_F1).___________________________________________ ||
This predicate can be used in all directions. For example:
________________________________________________________________________| |
|?- n_factorial(47, F). |
|F = 258623241511168180642964355153611979969197632389120000000000 ; |
|false. |
| |
|?- n_factorial(N, 1). |
|N = 0 ; |
|N = 1 ; |
|false. |
| |
|?- n_factorial(N, 3). |
|false.|________________________________________________________________ | |
To make the predicate terminate if any argument is instantiated, add
the (implied) constraint F #\= 0 before the recursive call. Otherwise,
the query n_factorial(N, 0) is the only non-terminating case of this
kind.
This library uses goal_expansion/2 to automatically rewrite arithmetic
constraints at compilation time. The expansion's aim is to bring
the performance of arithmetic constraints close to that of lower-level
arithmetic predicates whenever possible. To disable the expansion, set
the flag clpfd_goal_expansion to false.
1122..88..00..88 RReeiiffiiccaattiioonn
The constraints in/2, #=/2, #\=/2, #</2, #>/2, #=</2, and #>=/2 can be
_r_e_i_f_i_e_d, which means reflecting their truth values into Boolean values
represented by the integers 0 and 1. Let P and Q denote reifiable
constraints or Boolean variables, then:
__________________________________________________
| #\ Q |True iff Q is false |
| P #\/ Q |True iff either P or Q |
| P #/\ Q |True iff both P and Q |
| P #\ Q |True iff either P or Q, but not both |
| P #<==> Q |True iff P and Q are equivalent |
| P #==> Q |True iff P implies Q |
|_P_#<==_Q___|True_iff_Q_implies_P________________ |
The constraints of this table are reifiable as well.
When reasoning over Boolean variables, also consider using
library(clpb) and its dedicated CLP(B) constraints.
1122..88..00..99 DDoommaaiinnss
Each CLP(FD) variable has an associated set of admissible integers
which we call the variable's _d_o_m_a_i_n. Initially, the domain of each
CLP(FD) variable is the set of all integers. The constraints in/2 and
ins/2 are the primary means to specify tighter domains of variables.
Here are example queries and the system's declaratively equivalent
answers:
________________________________________________________________________| |
|?- X in 100..sup. |
|X in 100..sup. |
| |
|?- X in 1..5 \/ 3..12. |
|X in 1..12. |
| |
|?- [X,Y,Z] ins 0..3. |
|X in 0..3, |
|Y in 0..3, |
|Z|in_0..3._____________________________________________________________ | |
Domains are taken into account when further constraints are stated, and
by enumeration predicates like labeling/2.
1122..88..00..1100 EExxaammpplleess
Here is an example session with a few queries and their answers:
________________________________________________________________________| |
|?- use_module(library(clpfd)). |
|% library(clpfd) compiled into clpfd 0.06 sec, 633,732 bytes |
|true. |
| |
|?- X #> 3. |
|X in 4..sup. |
| |
|?- X #\= 20. |
|X in inf..19\/21..sup. |
| |
|?- 2*X #= 10. |
|X = 5. |
| |
|?- X*X #= 144. |
|X in -12\/12. |
| |
|?- 4*X + 2*Y #= 24, X + Y #= 9, [X,Y] ins 0..sup. |
|X = 3, |
|Y = 6. |
| |
|?- X #= Y #<==> B, X in 0..3, Y in 4..5. |
|B = 0, |
|X in 0..3, |
|Y|in_4..5._____________________________________________________________ | |
In each case, and as for all pure programs, the answer is declaratively
equivalent to the original query, and in many cases the constraint
solver has deduced additional domain restrictions.
1122..88..00..1111 EEnnuummeerraattiioonn pprreeddiiccaatteess aanndd sseeaarrcchh
In addition to being declarative replacements for low-level arithmetic
predicates, CLP(FD) constraints are also often used to solve
combinatorial problems such as planning, scheduling and allocation
tasks. To let you conveniently model and solve such problems, this
library provides several constraints beyond typical integer arithmetic,
such as all_distinct/1, global_cardinality/2and cumulative/1.
Using CLP(FD) constraints to solve combinatorial tasks typically
consists of two phases:
1. First, all relevant constraints are stated.
2. Second, if the domain of each involved variable is _f_i_n_i_t_e,
then _e_n_u_m_e_r_a_t_i_o_n _p_r_e_d_i_c_a_t_e_s can be used to search for concrete
solutions.
It is good practice to keep the modeling part, via a dedicated
predicate called the ccoorree rreellaattiioonn, separate from the actual search
for solutions. This lets you observe termination and determinism
properties of the core relation in isolation from the search, and more
easily try different search strategies.
As an example of a constraint satisfaction problem, consider the
cryptoarithmetic puzzle SEND + MORE = MONEY, where different letters
denote distinct integers between 0 and 9. It can be modeled in CLP(FD)
as follows:
________________________________________________________________________| |
|:- use_module(library(clpfd)). |
| |
|puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :- |
| Vars = [S,E,N,D,M,O,R,Y], |
| Vars ins 0..9, |
| all_different(Vars), |
| S*1000 + E*100 + N*10 + D + |
| M*1000 + O*100 + R*10 + E #= |
| M*10000 + O*1000 + N*100 + E*10 + Y, |
||_______M_#\=_0,_S_#\=_0.______________________________________________ ||
Notice that we are _n_o_t using labeling/2 in this predicate, so that we
can first execute and observe the modeling part in isolation. Sample
query and its result (actual variables replaced for readability):
________________________________________________________________________| |
|?- puzzle(As+Bs=Cs). |
|As = [9, A2, A3, A4], |
|Bs = [1, 0, B3, A2], |
|Cs = [1, 0, A3, A2, C5], |
|A2 in 4..7, |
|all_different([9, A2, A3, A4, 1, 0, B3, C5]), |
|91*A2+A4+10*B3#=90*A3+C5, |
|A3 in 5..8, |
|A4 in 2..8, |
|B3 in 2..8, |
|C5|in_2..8.____________________________________________________________ | |
From this answer, we see that this core relation _t_e_r_m_i_n_a_t_e_s and is in
fact _d_e_t_e_r_m_i_n_i_s_t_i_c. Moreover, we see from the residual goals that the
constraint solver has deduced more stringent bounds for all variables.
Such observations are only possible if modeling and search parts are
cleanly separated.
Labeling can then be used to search for solutions in a separate
predicate or goal:
________________________________________________________________________| |
|?- puzzle(As+Bs=Cs), label(As). |
|As = [9, 5, 6, 7], |
|Bs = [1, 0, 8, 5], |
|Cs = [1, 0, 6, 5, 2] ; |
|false.|________________________________________________________________ | |
In this case, it suffices to label a subset of variables to find the
puzzle's unique solution, since the constraint solver is strong enough
to reduce the domains of remaining variables to singleton sets. In
general though, it is necessary to label all variables to obtain ground
solutions.
1122..88..00..1122 OOppttiimmiissaattiioonn
You can use labeling/2 to minimize or maximize the value of a CLP(FD)
expression, and generate solutions in increasing or decreasing order
of the value. See the labeling options min(Expr) and max(Expr),
respectively.
Again, to easily try different labeling options in connection with
optimisation, we recommend to introduce a dedicated predicate for
posting constraints, and to use labeling/2 in a separate goal. This
way, you can observe properties of the core relation in isolation, and
try different labeling options without recompiling your code.
If necessary, you can use once/1 to commit to the first optimal
solution. However, it is often very valuable to see alternative
solutions that are _a_l_s_o optimal, so that you can choose among optimal
solutions by other criteria. For the sake of purity and completeness,
we recommend to avoid once/1 and other constructs that lead to
impurities in CLP(FD) programs.
1122..88..00..1133 AAddvvaanncceedd ttooppiiccss
If you set the flag clpfd_monotonic to true, then CLP(FD) is monotonic:
Adding new constraints cannot yield new solutions. When this flag is
true, you must wrap variables that occur in arithmetic expressions with
the functor (?)/1. For example, ?(X) #= ?(Y) + ?(Z). The wrapper can
be omitted for variables that are already constrained to integers.
Use call_residue_vars/2 and copy_term/3 to inspect residual goals and
the constraints in which a variable is involved. This library also
provides _r_e_f_l_e_c_t_i_o_n predicates (like fd_dom/2, fd_size/2 etc.) with
which you can inspect a variable's current domain. These predicates
can be useful if you want to implement your own labeling strategies.
You can also define custom constraints. The mechanism to do this is
not yet finalised, and we welcome suggestions and descriptions of use
cases that are important to you. As an example of how it can be
done currently, let us define a new custom constraint oneground(X,Y,Z),
where Z shall be 1 if at least one of X and Y is instantiated:
________________________________________________________________________| |
|:- use_module(library(clpfd)). |
| |
|:- multifile clpfd:run_propagator/2. |
| |
|oneground(X, Y, Z) :- |
| clpfd:make_propagator(oneground(X, Y, Z), Prop), |
| clpfd:init_propagator(X, Prop), |
| clpfd:init_propagator(Y, Prop), |
| clpfd:trigger_once(Prop). |
| |
|clpfd:run_propagator(oneground(X, Y, Z), MState) :- |
| ( integer(X) -> clpfd:kill(MState), Z = 1 |
| ; integer(Y) -> clpfd:kill(MState), Z = 1 |
| ; true |
||_______)._____________________________________________________________ ||
First, clpfd:make_propagator/2 is used to transform a user-defined
representation of the new constraint to an internal form. With
clpfd:init_propagator/2, this internal form is then attached to X and
Y. From now on, the propagator will be invoked whenever the domains of
X or Y are changed. Then, clpfd:trigger_once/1 is used to give the
propagator its first chance for propagation even though the variables'
domains have not yet changed. Finally, clpfd:run_propagator/2 is
extended to define the actual propagator. As explained, this predicate
is automatically called by the constraint solver. The first argument
is the user-defined representation of the constraint as used in
clpfd:make_propagator/2, and the second argument is a mutable state
that can be used to prevent further invocations of the propagator when
the constraint has become entailed, by using clpfd:kill/1. An example
of using the new constraint:
________________________________________________________________________| |
|?- oneground(X, Y, Z), Y = 5. |
|Y = 5, |
|Z = 1, |
|X|in_inf..sup._________________________________________________________ | |
_?_V_a_r iinn _+_D_o_m_a_i_n
_V_a_r is an element of _D_o_m_a_i_n. _D_o_m_a_i_n is one of:
_I_n_t_e_g_e_r
Singleton set consisting only of _I_n_t_e_g_e_r.
_L_o_w_e_r .... _U_p_p_e_r
All integers _I such that _L_o_w_e_r =< _I =< _U_p_p_e_r. _L_o_w_e_r must be
an integer or the atom iinnff, which denotes negative infinity.
_U_p_p_e_r must be an integer or the atom ssuupp, which denotes
positive infinity.
_D_o_m_a_i_n_1 \/ _D_o_m_a_i_n_2
The union of _D_o_m_a_i_n_1 and _D_o_m_a_i_n_2.
_+_V_a_r_s iinnss _+_D_o_m_a_i_n
The variables in the list _V_a_r_s are elements of _D_o_m_a_i_n.
iinnddoommaaiinn((_?_V_a_r))
Bind _V_a_r to all feasible values of its domain on backtracking. The
domain of _V_a_r must be finite.
llaabbeell((_+_V_a_r_s))
Equivalent to labeling([], Vars).
llaabbeelliinngg((_+_O_p_t_i_o_n_s_, _+_V_a_r_s))
Assign a value to each variable in _V_a_r_s. Labeling means
systematically trying out values for the finite domain variables
_V_a_r_s until all of them are ground. The domain of each variable in
_V_a_r_s must be finite. _O_p_t_i_o_n_s is a list of options that let you
exhibit some control over the search process. Several categories
of options exist:
The variable selection strategy lets you specify which variable of
_V_a_r_s is labeled next and is one of:
lleeffttmmoosstt
Label the variables in the order they occur in _V_a_r_s. This is
the default.
ffff
_F_i_r_s_t _f_a_i_l. Label the leftmost variable with smallest domain
next, in order to detect infeasibility early. This is often a
good strategy.
ffffcc
Of the variables with smallest domains, the leftmost one
participating in most constraints is labeled next.
mmiinn
Label the leftmost variable whose lower bound is the lowest
next.
mmaaxx
Label the leftmost variable whose upper bound is the highest
next.
The value order is one of:
uupp
Try the elements of the chosen variable's domain in ascending
order. This is the default.
ddoowwnn
Try the domain elements in descending order.
The branching strategy is one of:
sstteepp
For each variable X, a choice is made between X = V and X #\=
V, where V is determined by the value ordering options. This
is the default.
eennuumm
For each variable X, a choice is made between X = V_1, X = V_2
etc., for all values V_i of the domain of X. The order is
determined by the value ordering options.
bbiisseecctt
For each variable X, a choice is made between X #=< M and X #>
M, where M is the midpoint of the domain of X.
At most one option of each category can be specified, and an option
must not occur repeatedly.
The order of solutions can be influenced with:
o min(Expr)
o max(Expr)
This generates solutions in ascending/descending order with respect
to the evaluation of the arithmetic expression Expr. Labeling _V_a_r_s
must make Expr ground. If several such options are specified, they
are interpreted from left to right, e.g.:
____________________________________________________________________| |
||?-_[X,Y]_ins_10..20,_labeling([max(X),min(Y)],[X,Y])._____________ ||
This generates solutions in descending order of X, and for each
binding of X, solutions are generated in ascending order of Y. To
obtain the incomplete behaviour that other systems exhibit with
"maximize(Expr)" and "minimize(Expr)", use once/1, e.g.:
____________________________________________________________________| |
||once(labeling([max(Expr)],_Vars))_________________________________ ||
Labeling is always complete, always terminates, and yields no
redundant solutions.
aallll__ddiiffffeerreenntt((_+_V_a_r_s))
_V_a_r_s are pairwise distinct.
aallll__ddiissttiinncctt((_+_L_s))
Like all_different/1, with stronger propagation. For example,
all_distinct/1 can detect that not all variables can assume
distinct values given the following domains:
____________________________________________________________________| |
| ?- maplist(in, Vs, |
| [1\/3..4, 1..2\/4, 1..2\/4, 1..3, 1..3, 1..6]), |
| all_distinct(Vs). |
||false.____________________________________________________________ ||
ssuumm((_+_V_a_r_s_, _+_R_e_l_, _?_E_x_p_r))
The sum of elements of the list _V_a_r_s is in relation _R_e_l to _E_x_p_r.
_R_e_l is one of #=, #\=, #<, #>, #=< or #>=. For example:
____________________________________________________________________| |
| ?- [A,B,C] ins 0..sup, sum([A,B,C], #=, 100). |
| A in 0..100, |
| A+B+C#=100, |
| B in 0..100, |
||C_in_0..100.______________________________________________________ ||
ssccaallaarr__pprroodduucctt((_+_C_s_, _+_V_s_, _+_R_e_l_, _?_E_x_p_r))
True iff the scalar product of _C_s and _V_s is in relation _R_e_l to
_E_x_p_r. _C_s is a list of integers, _V_s is a list of variables and
integers. _R_e_l is #=, #\=, #<, #>, #=< or #>=.
_?_X #>= _?_Y
_X is greater than or equal to _Y.
_?_X #=< _?_Y
_X is less than or equal to _Y.
_?_X #= _?_Y
_X equals _Y.
_?_X #\= _?_Y
_X is not _Y.
_?_X #> _?_Y
_X is greater than _Y.
_?_X #< _?_Y
_X is less than _Y. In addition to its regular use in problems
that require it, this constraint can also be useful to eliminate
uninteresting symmetries from a problem. For example, all possible
matches between pairs built from four players in total:
____________________________________________________________________| |
| ?- Vs = [A,B,C,D], Vs ins 1..4, |
| all_different(Vs), |
| A #< B, C #< D, A #< C, |
| findall(pair(A,B)-pair(C,D), label(Vs), Ms). |
| Ms = [ pair(1, 2)-pair(3, 4), |
| pair(1, 3)-pair(2, 4), |
||_______pair(1,_4)-pair(2,_3)].____________________________________ ||
#\ _+_Q
The reifiable constraint _Q does _n_o_t hold. For example, to obtain
the complement of a domain:
____________________________________________________________________| |
| ?- #\ X in -3..0\/10..80. |
||X_in_inf.._-4\/1..9\/81..sup._____________________________________ ||
_?_P #<==> _?_Q
_P and _Q are equivalent. For example:
____________________________________________________________________| |
| ?- X #= 4 #<==> B, X #\= 4. |
| B = 0, |
||X_in_inf..3\/5..sup.______________________________________________ ||
The following example uses reified constraints to relate a list of
finite domain variables to the number of occurrences of a given
value:
____________________________________________________________________| |
| :- use_module(library(clpfd)). |
| |
| vs_n_num(Vs, N, Num) :- |
| maplist(eq_b(N), Vs, Bs), |
| sum(Bs, #=, Num). |
| |
||eq_b(X,_Y,_B)_:-_X_#=_Y_#<==>_B.__________________________________ ||
Sample queries and their results:
____________________________________________________________________| |
| ?- Vs = [X,Y,Z], Vs ins 0..1, vs_n_num(Vs, 4, Num). |
| Vs = [X, Y, Z], |
| Num = 0, |
| X in 0..1, |
| Y in 0..1, |
| Z in 0..1. |
| |
| ?- vs_n_num([X,Y,Z], 2, 3). |
| X = 2, |
| Y = 2, |
||Z_=_2.____________________________________________________________ ||
_?_P #==> _?_Q
_P implies _Q.
_?_P #<== _?_Q
_Q implies _P.
_?_P #/\ _?_Q
_P and _Q hold.
_?_P #\/ _?_Q
_P or _Q holds. For example, the sum of natural numbers below 1000
that are multiples of 3 or 5:
____________________________________________________________________| |
| ?- findall(N, (N mod 3 #= 0 #\/ N mod 5 #= 0, N in 0..999, |
| indomain(N)), |
| Ns), |
| sum(Ns, #=, Sum). |
| Ns = [0, 3, 5, 6, 9, 10, 12, 15, 18|...], |
||Sum_=_233168._____________________________________________________ ||
_?_P #\ _?_Q
Either _P holds or _Q holds, but not both.
lleexx__cchhaaiinn((_+_L_i_s_t_s))
_L_i_s_t_s are lexicographically non-decreasing.
ttuupplleess__iinn((_+_T_u_p_l_e_s_, _+_R_e_l_a_t_i_o_n))
True iff all _T_u_p_l_e_s are elements of _R_e_l_a_t_i_o_n. Each element of
the list _T_u_p_l_e_s is a list of integers or finite domain variables.
_R_e_l_a_t_i_o_n is a list of lists of integers. Arbitrary finite
relations, such as compatibility tables, can be modeled in this
way. For example, if 1 is compatible with 2 and 5, and 4 is
compatible with 0 and 3:
____________________________________________________________________| |
| ?- tuples_in([[X,Y]], [[1,2],[1,5],[4,0],[4,3]]), X = 4. |
| X = 4, |
||Y_in_0\/3.________________________________________________________ ||
As another example, consider a train schedule represented as a list
of quadruples, denoting departure and arrival places and times for
each train. In the following program, Ps is a feasible journey
of length 3 from A to D via trains that are part of the given
schedule.
____________________________________________________________________| |
| :- use_module(library(clpfd)). |
| |
| trains([[1,2,0,1], |
| [2,3,4,5], |
| [2,3,0,1], |
| [3,4,5,6], |
| [3,4,2,3], |
| [3,4,8,9]]). |
| |
| threepath(A, D, Ps) :- |
| Ps = [[A,B,_T0,T1],[B,C,T2,T3],[C,D,T4,_T5]], |
| T2 #> T1, |
| T4 #> T3, |
| trains(Ts), |
||________tuples_in(Ps,_Ts).________________________________________ ||
In this example, the unique solution is found without labeling:
____________________________________________________________________| |
| ?- threepath(1, 4, Ps). |
||Ps_=_[[1,_2,_0,_1],_[2,_3,_4,_5],_[3,_4,_8,_9]].__________________ ||
sseerriiaalliizzeedd((_+_S_t_a_r_t_s_, _+_D_u_r_a_t_i_o_n_s))
Describes a set of non-overlapping tasks. _S_t_a_r_t_s = [S_1,...,S_n],
is a list of variables or integers, _D_u_r_a_t_i_o_n_s = [D_1,...,D_n] is a
list of non-negative integers. Constrains _S_t_a_r_t_s and _D_u_r_a_t_i_o_n_s to
denote a set of non-overlapping tasks, i.e.: S_i + D_i =< S_j or S_j
+ D_j =< S_i for all 1 =< i < j =< n. Example:
____________________________________________________________________| |
| ?- length(Vs, 3), |
| Vs ins 0..3, |
| serialized(Vs, [1,2,3]), |
| label(Vs). |
| Vs = [0, 1, 3] ; |
| Vs = [2, 0, 3] ; |
||false.____________________________________________________________ ||
SSeeee aallssoo Dorndorf et al. 2000, "Constraint Propagation
Techniques for the Disjunctive Scheduling Problem"
eelleemmeenntt((_?_N_, _+_V_s_, _?_V))
The _N-th element of the list of finite domain variables _V_s is _V.
Analogous to nth1/3.
gglloobbaall__ccaarrddiinnaalliittyy((_+_V_s_, _+_P_a_i_r_s))
Global Cardinality constraint. Equivalent to
global_cardinality(Vs, Pairs, []). Example:
____________________________________________________________________| |
| ?- Vs = [_,_,_], global_cardinality(Vs, [1-2,3-_]), label(Vs). |
| Vs = [1, 1, 3] ; |
| Vs = [1, 3, 1] ; |
||Vs_=_[3,_1,_1].___________________________________________________ ||
gglloobbaall__ccaarrddiinnaalliittyy((_+_V_s_, _+_P_a_i_r_s_, _+_O_p_t_i_o_n_s))
Global Cardinality constraint. _V_s is a list of finite domain
variables, _P_a_i_r_s is a list of Key-Num pairs, where Key is an
integer and Num is a finite domain variable. The constraint holds
iff each V in _V_s is equal to some key, and for each Key-Num pair in
_P_a_i_r_s, the number of occurrences of Key in _V_s is Num. _O_p_t_i_o_n_s is a
list of options. Supported options are:
ccoonnssiisstteennccyy((_v_a_l_u_e))
A weaker form of consistency is used.
ccoosstt((_C_o_s_t_, _M_a_t_r_i_x))
_M_a_t_r_i_x is a list of rows, one for each variable, in the order
they occur in _V_s. Each of these rows is a list of integers,
one for each key, in the order these keys occur in _P_a_i_r_s.
When variable v_i is assigned the value of key k_j, then the
associated cost is _M_a_t_r_i_x__{ij}. _C_o_s_t is the sum of all costs.
cciirrccuuiitt((_+_V_s))
True iff the list _V_s of finite domain variables induces a
Hamiltonian circuit. The k-th element of _V_s denotes the successor
of node k. Node indexing starts with 1. Examples:
____________________________________________________________________| |
| ?- length(Vs, _), circuit(Vs), label(Vs). |
| Vs = [] ; |
| Vs = [1] ; |
| Vs = [2, 1] ; |
| Vs = [2, 3, 1] ; |
| Vs = [3, 1, 2] ; |
||Vs_=_[2,_3,_4,_1]_._______________________________________________ ||
ccuummuullaattiivvee((_+_T_a_s_k_s))
Equivalent to cumulative(Tasks, [limit(1)]).
ccuummuullaattiivvee((_+_T_a_s_k_s_, _+_O_p_t_i_o_n_s))
Schedule with a limited resource. _T_a_s_k_s is a list of tasks,
each of the form task(S_i, D_i, E_i, C_i, T_i). S_i denotes the
start time, D_i the positive duration, E_i the end time, C_i the
non-negative resource consumption, and T_i the task identifier.
Each of these arguments must be a finite domain variable with
bounded domain, or an integer. The constraint holds iff at each
time slot during the start and end of each task, the total resource
consumption of all tasks running at that time does not exceed the
global resource limit. _O_p_t_i_o_n_s is a list of options. Currently,
the only supported option is:
lliimmiitt((_L))
The integer _L is the global resource limit. Default is 1.
For example, given the following predicate that relates three tasks
of durations 2 and 3 to a list containing their starting times:
____________________________________________________________________| |
| tasks_starts(Tasks, [S1,S2,S3]) :- |
| Tasks = [task(S1,3,_,1,_), |
| task(S2,2,_,1,_), |
||_________________task(S3,2,_,1,_)]._______________________________ ||
We can use cumulative/2 as follows, and obtain a schedule:
____________________________________________________________________| |
| ?- tasks_starts(Tasks, Starts), Starts ins 0..10, |
| cumulative(Tasks, [limit(2)]), label(Starts). |
| Tasks = [task(0, 3, 3, 1, _G36), task(0, 2, 2, 1, _G45), ...], |
||Starts_=_[0,_0,_2]_.______________________________________________ ||
ddiissjjooiinntt22((_+_R_e_c_t_a_n_g_l_e_s))
True iff _R_e_c_t_a_n_g_l_e_s are not overlapping. _R_e_c_t_a_n_g_l_e_s is a list of
terms of the form F(X_i, W_i, Y_i, H_i), where F is any functor, and
the arguments are finite domain variables or integers that denote,
respectively, the X coordinate, width, Y coordinate and height of
each rectangle.
aauuttoommaattoonn((_+_S_i_g_n_a_t_u_r_e_, _+_N_o_d_e_s_, _+_A_r_c_s))
Describes a list of finite domain variables
with a finite automaton. Equivalent to
automaton(_, _, Signature, Nodes, Arcs, [], [], _), a common
use case of automaton/8. In the following example, a list of
binary finite domain variables is constrained to contain at least
two consecutive ones:
____________________________________________________________________| |
| :- use_module(library(clpfd)). |
| |
| two_consecutive_ones(Vs) :- |
| automaton(Vs, [source(a),sink(c)], |
| [arc(a,0,a), arc(a,1,b), |
| arc(b,0,a), arc(b,1,c), |
||___________________arc(c,0,c),_arc(c,1,c)]).______________________ ||
Example query:
____________________________________________________________________| |
| ?- length(Vs, 3), two_consecutive_ones(Vs), label(Vs). |
| Vs = [0, 1, 1] ; |
| Vs = [1, 1, 0] ; |
||Vs_=_[1,_1,_1].___________________________________________________ ||
aauuttoommaattoonn((_?_S_e_q_u_e_n_c_e_, _?_T_e_m_p_l_a_t_e_, _+_S_i_g_n_a_t_u_r_e_, _+_N_o_d_e_s_, _+_A_r_c_s_, _+_C_o_u_n_t_e_r_s_, _+_I_n_i_t_i_a_l_s_, _?_F_i_n_a_l_s))
Describes a list of finite domain variables with a finite
automaton. True iff the finite automaton induced by _N_o_d_e_s and
_A_r_c_s (extended with _C_o_u_n_t_e_r_s) accepts _S_i_g_n_a_t_u_r_e. _S_e_q_u_e_n_c_e is a
list of terms, all of the same shape. Additional constraints
must link _S_e_q_u_e_n_c_e to _S_i_g_n_a_t_u_r_e, if necessary. _N_o_d_e_s is a
list of source(Node) and sink(Node) terms. _A_r_c_s is a list of
arc(Node,Integer,Node) and arc(Node,Integer,Node,Exprs) terms that
denote the automaton's transitions. Each node is represented
by an arbitrary term. Transitions that are not mentioned go
to an implicit failure node. _E_x_p_r_s is a list of arithmetic
expressions, of the same length as _C_o_u_n_t_e_r_s. In each expression,
variables occurring in _C_o_u_n_t_e_r_s correspond to old counter values,
and variables occurring in _T_e_m_p_l_a_t_e correspond to the current
element of _S_e_q_u_e_n_c_e. When a transition containing expressions is
taken, each counter is updated as stated by the result of the
corresponding arithmetic expression. By default, counters remain
unchanged. _C_o_u_n_t_e_r_s is a list of variables that must not occur
anywhere outside of the constraint goal. _I_n_i_t_i_a_l_s is a list of
the same length as _C_o_u_n_t_e_r_s. Counter arithmetic on the transitions
relates the counter values in _I_n_i_t_i_a_l_s to _F_i_n_a_l_s.
The following example is taken from Beldiceanu, Carlsson, Debruyne
and Petit: "Reformulation of Global Constraints Based on
Constraints Checkers", Constraints 10(4), pp 339-362 (2005). It
relates a sequence of integers and finite domain variables to its
number of inflexions, which are switches between strictly ascending
and strictly descending subsequences:
____________________________________________________________________| |
| :- use_module(library(clpfd)). |
| |
| sequence_inflexions(Vs, N) :- |
| variables_signature(Vs, Sigs), |
| automaton(_, _, Sigs, |
| [source(s),sink(i),sink(j),sink(s)], |
| [arc(s,0,s), arc(s,1,j), arc(s,2,i), |
| arc(i,0,i), arc(i,1,j,[C+1]), arc(i,2,i), |
| arc(j,0,j), arc(j,1,j), |
| arc(j,2,i,[C+1])], |
| [C], [0], [N]). |
| |
| variables_signature([], []). |
| variables_signature([V|Vs], Sigs) :- |
| variables_signature_(Vs, V, Sigs). |
| |
| variables_signature_([], _, []). |
| variables_signature_([V|Vs], Prev, [S|Sigs]) :- |
| V #= Prev #<==> S #= 0, |
| Prev #< V #<==> S #= 1, |
| Prev #> V #<==> S #= 2, |
||________variables_signature_(Vs,_V,_Sigs).________________________ ||
Example queries:
____________________________________________________________________| |
| ?- sequence_inflexions([1,2,3,3,2,1,3,0], N). |
| N = 3. |
| |
| ?- length(Ls, 5), Ls ins 0..1, |
| sequence_inflexions(Ls, 3), label(Ls). |
| Ls = [0, 1, 0, 1, 0] ; |
||Ls_=_[1,_0,_1,_0,_1]._____________________________________________ ||
ttrraannssppoossee((_+_M_a_t_r_i_x_, _?_T_r_a_n_s_p_o_s_e))
_T_r_a_n_s_p_o_s_e a list of lists of the same length. Example:
____________________________________________________________________| |
| ?- transpose([[1,2,3],[4,5,6],[7,8,9]], Ts). |
||Ts_=_[[1,_4,_7],_[2,_5,_8],_[3,_6,_9]].___________________________ ||
This predicate is useful in many constraint programs. Consider for
instance Sudoku:
____________________________________________________________________| |
| :- use_module(library(clpfd)). |
| |
| sudoku(Rows) :- |
| length(Rows, 9), maplist(same_length(Rows), Rows), |
| append(Rows, Vs), Vs ins 1..9, |
| maplist(all_distinct, Rows), |
| transpose(Rows, Columns), |
| maplist(all_distinct, Columns), |
| Rows = [A,B,C,D,E,F,G,H,I], |
| blocks(A, B, C), blocks(D, E, F), blocks(G, H, I). |
| |
| blocks([], [], []). |
| blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :- |
| all_distinct([A,B,C,D,E,F,G,H,I]), |
| blocks(Bs1, Bs2, Bs3). |
| |
| problem(1, [[_,_,_,_,_,_,_,_,_], |
| [_,_,_,_,_,3,_,8,5], |
| [_,_,1,_,2,_,_,_,_], |
| [_,_,_,5,_,7,_,_,_], |
| [_,_,4,_,_,_,1,_,_], |
| [_,9,_,_,_,_,_,_,_], |
| [5,_,_,_,_,_,_,7,3], |
| [_,_,2,_,1,_,_,_,_], |
||____________[_,_,_,_,4,_,_,_,9]]).________________________________ ||
Sample query:
____________________________________________________________________| |
| ?- problem(1, Rows), sudoku(Rows), maplist(writeln, Rows). |
| [9,8,7,6,5,4,3,2,1] |
| [2,4,6,1,7,3,9,8,5] |
| [3,5,1,9,2,8,7,4,6] |
| [1,2,8,5,3,7,6,9,4] |
| [6,3,4,8,9,2,1,5,7] |
| [7,9,5,4,6,1,8,3,2] |
| [5,1,9,2,8,6,4,7,3] |
| [4,7,2,3,1,9,5,6,8] |
| [8,6,3,7,4,5,2,1,9] |
||Rows_=_[[9,_8,_7,_6,_5,_4,_3,_2|...],_..._,_[...|...]].___________ ||
zzccoommppaarree((_?_O_r_d_e_r_, _?_A_, _?_B))
Analogous to compare/3, with finite domain variables _A and _B.
Example:
____________________________________________________________________| |
| :- use_module(library(clpfd)). |
| |
| n_factorial(N, F) :- |
| zcompare(C, N, 0), |
| n_factorial_(C, N, F). |
| |
| n_factorial_(=, _, 1). |
| n_factorial_(>, N, F) :- |
| F #= F0*N, N1 #= N - 1, |
||________n_factorial(N1,_F0).______________________________________ ||
This version is deterministic if the first argument is
instantiated:
____________________________________________________________________| |
| ?- n_factorial(30, F). |
||F_=_265252859812191058636308480000000.____________________________ ||
cchhaaiinn((_+_Z_s_, _+_R_e_l_a_t_i_o_n))
_Z_s form a chain with respect to _R_e_l_a_t_i_o_n. _Z_s is a list of finite
domain variables that are a chain with respect to the partial order
_R_e_l_a_t_i_o_n, in the order they appear in the list. _R_e_l_a_t_i_o_n must be
#=, #=<, #>=, #< or #>. For example:
____________________________________________________________________| |
| ?- chain([X,Y,Z], #>=). |
| X#>=Y, |
||Y#>=Z.____________________________________________________________ ||
ffdd__vvaarr((_+_V_a_r))
True iff _V_a_r is a CLP(FD) variable.
ffdd__iinnff((_+_V_a_r_, _-_I_n_f))
_I_n_f is the infimum of the current domain of _V_a_r.
ffdd__ssuupp((_+_V_a_r_, _-_S_u_p))
_S_u_p is the supremum of the current domain of _V_a_r.
ffdd__ssiizzee((_+_V_a_r_, _-_S_i_z_e))
_S_i_z_e is the number of elements of the current domain of _V_a_r, or the
atom ssuupp if the domain is unbounded.
ffdd__ddoomm((_+_V_a_r_, _-_D_o_m))
_D_o_m is the current domain (see in/2) of _V_a_r. This predicate is
useful if you want to reason about domains. It is _n_o_t needed
if you only want to display remaining domains; instead, separate
your model from the search part and let the toplevel display this
information via residual goals.
For example, to implement a custom labeling strategy, you may need
to inspect the current domain of a finite domain variable. With
the following code, you can convert a _f_i_n_i_t_e domain to a list of
integers:
____________________________________________________________________| |
| dom_integers(D, Is) :- phrase(dom_integers_(D), Is). |
| |
| dom_integers_(I) --> { integer(I) }, [I]. |
| dom_integers_(L..U) --> { numlist(L, U, Is) }, Is. |
||dom_integers_(D1\/D2)_-->_dom_integers_(D1),_dom_integers_(D2).___ ||
Example:
____________________________________________________________________| |
| ?- X in 1..5, X #\= 4, fd_dom(X, D), dom_integers(D, Is). |
| D = 1..3\/5, |
| Is = [1,2,3,5], |
||X_in_1..3\/5._____________________________________________________ ||
1122..99 lliibbrraarryy((ccllppqqrr)):: CCoonnssttrraaiinntt LLooggiicc PPrrooggrraammmmiinngg oovveerr RRaattiioonnaallss aanndd
RReeaallss
Author: _C_h_r_i_s_t_i_a_n _H_o_l_z_b_a_u_r, ported to SWI-Prolog by _L_e_s_l_i_e _D_e
_K_o_n_i_n_c_k, K.U. Leuven
This CLP(Q,R) system is a port of the CLP(Q,R) system of Sicstus Prolog
by Christian Holzbaur: Holzbaur C.: OFAI clp(q,r) Manual, Edition
1.3.3, Austrian Research Institute for Artificial Intelligence, Vienna,
TR-95-09, 1995. This manual is roughly based on the manual of the
above mentioned CLP(Q,R) implementation.
The CLP(Q,R) system consists of two components: the CLP(Q) library for
handling constraints over the rational numbers and the CLP(R) library
for handling constraints over the real numbers (using floating point
numbers as representation). Both libraries offer the same predicates
(with exception of bb_inf/4 in CLP(Q) and bb_inf/5 in CLP(R)). It is
allowed to use both libraries in one program, but using both CLP(Q) and
CLP(R) constraints on the same variable will result in an exception.
Please note that the clpqr library is _n_o_t an _a_u_t_o_l_o_a_d library and
therefore this library must be loaded explicitly before using it:
________________________________________________________________________| |
|:-|use_module(library(clpq)).__________________________________________ | |
or
________________________________________________________________________| |
|:-|use_module(library(clpr)).__________________________________________ | |
1122..99..11 SSoollvveerr pprreeddiiccaatteess
The following predicates are provided to work with constraints:
{}((_+_C_o_n_s_t_r_a_i_n_t_s))
Adds the constraints given by _C_o_n_s_t_r_a_i_n_t_s to the constraint store.
eennttaaiilleedd((_+_C_o_n_s_t_r_a_i_n_t))
Succeeds if _C_o_n_s_t_r_a_i_n_t is necessarily true within the current
constraint store. This means that adding the negation of the
constraint to the store results in failure.
iinnff((_+_E_x_p_r_e_s_s_i_o_n_, _-_I_n_f))
Computes the infimum of _E_x_p_r_e_s_s_i_o_n within the current state of the
constraint store and returns that infimum in _I_n_f. This predicate
does not change the constraint store.
ssuupp((_+_E_x_p_r_e_s_s_i_o_n_, _-_S_u_p))
Computes the supremum of _E_x_p_r_e_s_s_i_o_n within the current state of the
constraint store and returns that supremum in _S_u_p. This predicate
does not change the constraint store.
mmiinniimmiizzee((_+_E_x_p_r_e_s_s_i_o_n))
Minimizes _E_x_p_r_e_s_s_i_o_n within the current constraint store. This is
the same as computing the infimum and equating the expression to
that infimum.
mmaaxxiimmiizzee((_+_E_x_p_r_e_s_s_i_o_n))
Maximizes _E_x_p_r_e_s_s_i_o_n within the current constraint store. This is
the same as computing the supremum and equating the expression to
that supremum.
bbbb__iinnff((_+_I_n_t_s_, _+_E_x_p_r_e_s_s_i_o_n_, _-_I_n_f_, _-_V_e_r_t_e_x_, _+_E_p_s))
This predicate is offered in CLP(R) only. It computes the
infimum of _E_x_p_r_e_s_s_i_o_n within the current constraint store, with the
additional constraint that in that infimum, all variables in _I_n_t_s
have integral values. _V_e_r_t_e_x will contain the values of _I_n_t_s in
the infimum. _E_p_s denotes how much a value may differ from an
integer to be considered an integer. E.g. when _E_p_s = 0.001, then X
= 4.999 will be considered as an integer (5 in this case). _E_p_s
should be between 0 and 0.5.
bbbb__iinnff((_+_I_n_t_s_, _+_E_x_p_r_e_s_s_i_o_n_, _-_I_n_f_, _-_V_e_r_t_e_x))
This predicate is offered in CLP(Q) only. It behaves the same as
bb_inf/5 but does not use an error margin.
bbbb__iinnff((_+_I_n_t_s_, _+_E_x_p_r_e_s_s_i_o_n_, _-_I_n_f))
The same as bb_inf/5 or bb_inf/4 but without returning the values
of the integers. In CLP(R), an error margin of 0.001 is used.
dduummpp((_+_T_a_r_g_e_t_, _+_N_e_w_v_a_r_s_, _-_C_o_d_e_d_A_n_s_w_e_r))
Returns the constraints on _T_a_r_g_e_t in the list _C_o_d_e_d_A_n_s_w_e_r where all
variables of _T_a_r_g_e_t have been replaced by _N_e_w_V_a_r_s. This operation
does not change the constraint store. E.g. in
____________________________________________________________________| |
||dump([X,Y,Z],[x,y,z],Cons)________________________________________ ||
Cons will contain the constraints on X, Y and Z, where these
variables have been replaced by atoms x, y and z.
1122..99..22 SSyynnttaaxx ooff tthhee pprreeddiiccaattee aarrgguummeennttss
The arguments of the predicates defined in the subsection above are
defined in table 12.1. Failing to meet the syntax rules will result in
an exception.
_______________________________________________________________________
| <_C_o_n_s_t_r_a_i_n_t_s>::= <_C_o_n_s_t_r_a_i_n_t> |single constraint |
| | <_C_o_n_s_t_r_a_i_n_t> , <_C_o_n_s_t_r_a_i_n_t_s> |conjunction |
| | <_C_o_n_s_t_r_a_i_n_t> ; <_C_o_n_s_t_r_a_i_n_t_s> |disjunction |
| <_C_o_n_s_t_r_a_i_n_t> ::= <_E_x_p_r_e_s_s_i_o_n> < <_E_x_p_r_e_s_s_i_o_n> |less than |
| | <_E_x_p_r_e_s_s_i_o_n> > <_E_x_p_r_e_s_s_i_o_n> |greater than |
| | <_E_x_p_r_e_s_s_i_o_n> =< <_E_x_p_r_e_s_s_i_o_n> |less or equal |
| | <=(<_E_x_p_r_e_s_s_i_o_n>, <_E_x_p_r_e_s_s_i_o_n>) |less or equal |
| | <_E_x_p_r_e_s_s_i_o_n> >= <_E_x_p_r_e_s_s_i_o_n> |greater or equal |
| | <_E_x_p_r_e_s_s_i_o_n> =\= <_E_x_p_r_e_s_s_i_o_n> |not equal |
| | <_E_x_p_r_e_s_s_i_o_n> =:= <_E_x_p_r_e_s_s_i_o_n> |equal |
| | <_E_x_p_r_e_s_s_i_o_n> = <_E_x_p_r_e_s_s_i_o_n> |equal |
| <_E_x_p_r_e_s_s_i_o_n> ::= <_V_a_r_i_a_b_l_e> |Prolog variable |
| | <_N_u_m_b_e_r> |Prolog number |
| | +<_E_x_p_r_e_s_s_i_o_n> |unary plus |
| | -<_E_x_p_r_e_s_s_i_o_n> |unary minus |
| | <_E_x_p_r_e_s_s_i_o_n> + <_E_x_p_r_e_s_s_i_o_n> |addition |
| | <_E_x_p_r_e_s_s_i_o_n> - <_E_x_p_r_e_s_s_i_o_n> |substraction |
| | <_E_x_p_r_e_s_s_i_o_n> * <_E_x_p_r_e_s_s_i_o_n> |multiplication |
| | <_E_x_p_r_e_s_s_i_o_n> / <_E_x_p_r_e_s_s_i_o_n> |division |
| | abs(<_E_x_p_r_e_s_s_i_o_n>) |absolute value |
| | sin(<_E_x_p_r_e_s_s_i_o_n>) |sine |
| | cos(<_E_x_p_r_e_s_s_i_o_n>) |cosine |
| | tan(<_E_x_p_r_e_s_s_i_o_n>) |tangent |
| | exp(<_E_x_p_r_e_s_s_i_o_n>) |exponent |
| | pow(<_E_x_p_r_e_s_s_i_o_n>) |exponent |
| | <_E_x_p_r_e_s_s_i_o_n> ^ <_E_x_p_r_e_s_s_i_o_n> |exponent |
| | min(<_E_x_p_r_e_s_s_i_o_n>, <_E_x_p_r_e_s_s_i_o_n>) |minimum |
|_________________|_max(<_E_x_p_r_e_s_s_i_o_n>,_<_E_x_p_r_e_s_s_i_o_n>)_|maximum___________|
Table 12.1: CLP(Q,R) constraint BNF
1122..99..33 UUssee ooff uunniiffiiccaattiioonn
Instead of using the {}/1 predicate, you can also use the standard
unification mechanism to store constraints. The following code samples
are equivalent:
____________________________________________________________________| |
o _U_n_i_f_i_c_a_t_i_o_n_|_w_i_t_h{_aX_v_a_r_i_a_b_l_e=:= Y} |
| {X = Y} |
||X_=_Y_____________________________________________________________ ||
____________________________________________________________________| |
o _U_n_i_f_i_c_a_t_i_o_n_|_w_i_t_h{_aX_n_u_m_b_e_r=:= 5.0} |
| {X = 5.0} |
||X_=_5.0___________________________________________________________ ||
1122..99..44 NNoonn--lliinneeaarr ccoonnssttrraaiinnttss
The CLP(Q,R) system deals only passively with non-linear constraints.
They remain in a passive state until certain conditions are satisfied.
These conditions, which are called the isolation axioms, are given in
table 12.2.
______________________________________________________________
| A =B *C |B or C is ground |A = 5 * C or A = B * |
| | |4 |
| |A and (B or C) are|20 = 5 * C or 20 = B |
|______________|ground________________|*_4___________________|_
| A =B=C |C is ground |A = B / 3 |
|______________|A_and_B_are_ground____|4_=_12_/_C____________|_
| X =min(Y; Z) |Y and Z are ground |X = min(4,3) |
| X =max(Y; Z) |Y and Z are ground |X = max(4,3) |
|_X_=abs(Y_)___|Y_is_ground___________|X_=_abs(-7)___________|_
| X =pow(Y; Z) |X and Y are ground |8 = 2 ^ Z |
| X =exp(Y; Z) |X and Z are ground |8 = Y ^ 3 |
|_X_=Y__^_Z___|Y_and_Z_are_ground_____|X_=_2_^_3_____________|_
| X =sin(Y ) X|is ground |1 = sin(Y) |
| X =cos(Y ) Y|is ground |X = sin(1.5707) |
|_X_=tan(Y_)___|______________________|______________________|_
Table 12.2: CLP(Q,R) isolating axioms
1122..99..55 SSttaattuuss aanndd kknnoowwnn pprroobblleemmss
The clpq and clpr libraries are `orphaned', i.e., they currently have
no maintainer.
o _T_o_p_-_l_e_v_e_l _o_u_t_p_u_t
The top-level output may contain variables not present in the
original query:
____________________________________________________________________| |
| ?- {X+Y>=1}. |
| {Y=1-X+_G2160, _G2160>=0}. |
| |
||?-________________________________________________________________ ||
Nonetheless, for linear constraints this kind of answer means
unconditional satisfiability.
o _D_u_m_p_i_n_g _c_o_n_s_t_r_a_i_n_t_s
The first argument of dump/3 has to be a list of free variables at
call-time:
____________________________________________________________________| |
| ?- {X=1},dump([X],[Y],L). |
| ERROR: Unhandled exception: Unknown message: |
| instantiation_error(dump([1],[_G11],_G6),1) |
||?-________________________________________________________________ ||
1122..1100 lliibbrraarryy((ccssvv)):: PPrroocceessss CCSSVV ((CCoommmmaa--SSeeppaarraatteedd VVaalluueess)) ddaattaa
SSeeee aallssoo RFC 4180
TToo bbee ddoonnee
- Implement immediate assert of the data to avoid possible
stack overflows.
- Writing creates an intermediate code-list, possibly
overflowing resources. This waits for pure output!
This library parses and generates CSV data. CSV data is represented in
Prolog as a list of rows. Each row is a compound term, where all rows
have the same name and arity.
ccssvv__rreeaadd__ffiillee((_+_F_i_l_e_, _-_R_o_w_s)) _[_d_e_t_]
ccssvv__rreeaadd__ffiillee((_+_F_i_l_e_, _-_R_o_w_s_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Read a CSV file into a list of rows. Each row is a Prolog term
with the same arity. _O_p_t_i_o_n_s is handed to csv//2. Remaining
options are processed by phrase_from_file/3. The default separator
depends on the file name extension and is \t for .tsv files and ,
otherwise.
Suppose we want to create a predicate table/6 from a CSV file that
we know contains 6 fields per record. This can be done using the
code below. Without the option arity(6), this would generate a
predicate table/N, where N is the number of fields per record in
the data.
____________________________________________________________________| |
| ?- csv_read_file(File, Rows, [functor(table), arity(6)]), |
||___maplist(assert,_Rows)._________________________________________ ||
ccssvv((_?_R_o_w_s)) // _[_d_e_t_]
ccssvv((_?_R_o_w_s_, _+_O_p_t_i_o_n_s)) // _[_d_e_t_]
Prolog DCG to `read/write' CSV data. _O_p_t_i_o_n_s:
sseeppaarraattoorr((_+_C_o_d_e))
The comma-separator. Must be a character code. Default is
(of course) the comma. Character codes can be specified using
the 0' notion. E.g., using separator(0';) parses a semicolon
separated file.
iiggnnoorree__qquuootteess((_+_B_o_o_l_e_a_n))
If true (default false), threat double quotes as a normal
character.
ssttrriipp((_+_B_o_o_l_e_a_n))
If true (default false), strip leading and trailing blank
space. RFC4180 says that blank space is part of the data.
ccoonnvveerrtt((_+_B_o_o_l_e_a_n))
If true (default), use name/2 on the field data. This
translates the field into a number if possible.
ffuunnccttoorr((_+_A_t_o_m))
Functor to use for creating row terms. Default is row.
aarriittyy((_?_A_r_i_t_y))
Number of fields in each row. This predicate raises a
domain_error(row_arity(Expected), Found) if a row is found
with different arity.
mmaattcchh__aarriittyy((_+_B_o_o_l_e_a_n))
If false (default true), do not reject CSV files where lines
provide a varying number of fields (columns). This can be a
work-around to use some incorrect CSV files.
ccssvv__rreeaadd__ffiillee__rrooww((_+_F_i_l_e_, _-_R_o_w_, _+_O_p_t_i_o_n_s)) _[_n_o_n_d_e_t_]
True when _R_o_w is a row in _F_i_l_e. First unifies _R_o_w with the first
row in _F_i_l_e. Backtracking yields the second, ... row. This
interface is an alternative to csv_read_file/3that avoids loading
all rows in memory. Note that this interface does not guarantee
that all rows in _F_i_l_e have the same arity.
In addition to the options of csv_read_file/3, this predicate
processes the option:
lliinnee((_-_L_i_n_e))
_L_i_n_e is unified with the 1-based line-number from which _R_o_w is
read. Note that _L_i_n_e is not the physical line, but rather the
_l_o_g_i_c_a_l record number.
TToo bbee ddoonnee Input is read line by line. If a record
separator is embedded in a quoted field, parsing the
record fails and another line is added to the input.
This does not nicely deal with other reasons why
parsing the row may fail.
ccssvv__wwrriittee__ffiillee((_+_F_i_l_e_, _+_D_a_t_a)) _[_d_e_t_]
ccssvv__wwrriittee__ffiillee((_+_F_i_l_e_, _+_D_a_t_a_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Write a list of Prolog terms to a CSV file. _O_p_t_i_o_n_s are given
to csv//2. Remaining options are given to open/4. The default
separator depends on the file name extension and is \t for .tsv
files and , otherwise.
ccssvv__wwrriittee__ssttrreeaamm((_+_S_t_r_e_a_m_, _+_D_a_t_a_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Write the rows in _D_a_t_a to _S_t_r_e_a_m. This is similar to
csv_write_file/3, but can deal with data that is produced
incrementally. The example below saves all answers from the
predicate data/3 to File.
____________________________________________________________________| |
| save_data(File) :- |
| setup_call_cleanup( |
| open(File, write, Out), |
| forall(data(C1,C2,C3), |
| csv_write_stream(Out, [row(C1,C2,C3)], [])), |
||_______close(Out)),_______________________________________________ ||
1122..1111 lliibbrraarryy((ddeebbuugg)):: PPrriinntt ddeebbuugg mmeessssaaggeess aanndd tteesstt aasssseerrttiioonnss
aauutthhoorr Jan Wielemaker
This library is a replacement for format/3 for printing debug messages.
Messages are assigned a _t_o_p_i_c. By dynamically enabling or disabling
topics the user can select desired messages. Debug statements are
removed when the code is compiled for optimization.
See manual for details. With XPCE, you can use the call below to start
a graphical monitoring tool.
________________________________________________________________________| |
|?-|prolog_ide(debug_monitor).__________________________________________ | |
Using the predicate assertion/1 you can make assumptions about your
program explicit, trapping the debugger if the condition does not hold.
ddeebbuuggggiinngg((_+_T_o_p_i_c)) _[_s_e_m_i_d_e_t_]
ddeebbuuggggiinngg((_-_T_o_p_i_c)) _[_n_o_n_d_e_t_]
ddeebbuuggggiinngg((_?_T_o_p_i_c_, _?_B_o_o_l)) _[_n_o_n_d_e_t_]
Examine debug topics. The form debugging(+Topic) may be used to
perform more complex debugging tasks. A typical usage skeleton is:
____________________________________________________________________| |
| ( debugging(mytopic) |
| -> <perform debugging actions> |
| ; true |
| ), |
||______..._________________________________________________________ ||
The other two calls are intended to examine existing and enabled
debugging tokens and are typically not used in user programs.
ddeebbuugg((_+_T_o_p_i_c)) _[_d_e_t_]
nnooddeebbuugg((_+_T_o_p_i_c)) _[_d_e_t_]
Add/remove a topic from being printed. nodebug(_) removes all
topics. Gives a warning if the topic is not defined unless it is
used from a directive. The latter allows placing debug topics at
the start of a (load-)file without warnings.
For debug/1, _T_o_p_i_c can be a term _T_o_p_i_c > Out, where Out is either
a stream or stream-alias or a filename (atom). This redirects
debug information on this topic to the given output.
lliisstt__ddeebbuugg__ttooppiiccss _[_d_e_t_]
List currently known debug topics and their setting.
ddeebbuugg__mmeessssaaggee__ccoonntteexxtt((_+_W_h_a_t)) _[_d_e_t_]
Specify additional context for debug messages. _W_h_a_t is one
of +Context or -Context, and Context is one of thread, time
or time(Format), where Format is a format specification for
format_time/3 (default is %T.%3f). Initially, debug/3 shows only
thread information.
ddeebbuugg((_+_T_o_p_i_c_, _+_F_o_r_m_a_t_, _:_A_r_g_s)) _[_d_e_t_]
_F_o_r_m_a_t a message if debug topic is enabled. Similar to format/3 to
user_error, but only prints if _T_o_p_i_c is activated through debug/1.
_A_r_g_s is a meta-argument to deal with goal for the @-command.
Output is first handed to the hook prolog:debug_print_hook/3. If
this fails, _F_o_r_m_a_t+_A_r_g_s is translated to text using the message-
translation (see print_message/2) for the term debug(Format, Args)
and then printed to every matching destination (controlled by
debug/1) using print_message_lines/3.
The message is preceded by '% ' and terminated with a newline.
SSeeee aallssoo format/3.
pprroolloogg::ddeebbuugg__pprriinntt__hhooookk((_+_T_o_p_i_c_, _+_F_o_r_m_a_t_, _+_A_r_g_s)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Hook called by debug/3. This hook is used by the graphical
frontend that can be activated using prolog_ide/1:
____________________________________________________________________| |
||?-_prolog_ide(debug_monitor)._____________________________________ ||
aasssseerrttiioonn((_:_G_o_a_l)) _[_d_e_t_]
Acts similar to C assert() macro. It has no effect if _G_o_a_l
succeeds. If _G_o_a_l fails or throws an exception, the following
steps are taken:
o call prolog:assertion_failed/2. If prolog:assertion_failed/2
fails, then:
{{ If this is an interactive toplevel thread, print a
message, the stack-trace, and finally trap the debugger.
{{ Otherwise, throw error(assertion_error(Reason, G),_) where
Reason is one of fail or the exception raised.
pprroolloogg::aasssseerrttiioonn__ffaaiilleedd((_+_R_e_a_s_o_n_, _+_G_o_a_l)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
This hook is called if the _G_o_a_l of assertion/1 fails. _R_e_a_s_o_n is
unified with either fail if _G_o_a_l simply failed or an exception call
otherwise. If this hook fails, the default behaviour is activated.
If the hooks throws an exception it will be propagated into the
caller of assertion/1.
1122..1122 lliibbrraarryy((ggeennssyymm)):: GGeenneerraattee uunniiqquuee iiddeennttiiffiieerrss
Gensym (GGeennerate SSyymmbols) is an old library for generating unique
symbols (atoms). Such symbols are generated from a base atom which
gets a sequence number appended. Of course there is no guarantee that
`catch22' is not an already defined atom and therefore one must be
aware these atoms are only unique in an isolated context.
The SWI-Prolog gensym library is thread-safe. The sequence numbers are
global over all threads and therefore generated atoms are unique over
all threads.
ggeennssyymm((_+_B_a_s_e_, _-_U_n_i_q_u_e))
Generate a unique atom from base _B_a_s_e and unify it with _U_n_i_q_u_e.
_B_a_s_e should be an atom. The first call will return <_b_a_s_e>1, the
next <_b_a_s_e>2, etc. Note that this is no guarantee that the atom is
unique in the system.
rreesseett__ggeennssyymm((_+_B_a_s_e))
Restart generation of identifiers from _B_a_s_e at <_B_a_s_e>1. Used to
make sure a program produces the same results on subsequent runs.
Use with care.
rreesseett__ggeennssyymm
Reset gensym for all registered keys. This predicate is available
for compatibility only. New code is strongly advised to avoid the
use of reset_gensym or at least to reset only the keys used by your
program to avoid unexpected side effects on other components.
1122..1133 lliibbrraarryy((iioossttrreeaamm)):: UUttiilliittiieess ttoo ddeeaall wwiitthh ssttrreeaammss
SSeeee aallssoo library(archive), library(process), library(zlib),
library(http/http_stream)
This library contains utilities that deal with streams, notably
originating from non-built-in sources such as URLs, archives, windows,
processes, etc.
The predicate open_any/5 acts as a _b_r_o_k_e_r between applications that can
process data from a stream and libraries that can create streams from
diverse sources. Without this predicate, processing data inevitally
follows the pattern below. As _c_a_l_l___s_o_m_e___o_p_e_n___v_a_r_i_a_t_i_o_n can be anything,
this blocks us from writing predicates such as load_xml(From, DOM) that
can operate on arbitrary input sources.
________________________________________________________________________| |
|setup_call_cleanup( |
| call_some_open_variation(Spec, In), |
| process(In), |
||___close(In)).________________________________________________________ ||
Libraries that can open streams can install the hook
iostream:open_hook/6 to make their functionality available through
open_any/5.
ooppeenn__aannyy((_+_S_p_e_c_i_f_i_c_a_t_i_o_n_, _+_M_o_d_e_, _-_S_t_r_e_a_m_, _-_C_l_o_s_e_, _+_O_p_t_i_o_n_s))
Establish a stream from _S_p_e_c_i_f_i_c_a_t_i_o_n that should be closed using
_C_l_o_s_e, which can either be called or passed to close_any/5.
_O_p_t_i_o_n_s processed:
eennccooddiinngg((_E_n_c))
Set stream to encoding _E_n_c.
Without loaded plugins, the open_any/5 processes the following
values for _S_p_e_c_i_f_i_c_a_t_i_o_n. If no rule matches, open_any/5 processes
_S_p_e_c_i_f_i_c_a_t_i_o_n as file(Specification).
_S_t_r_e_a_m
A plain stream handle. Possisible post-processing options
such as encoding are applied. _C_l_o_s_e does _n_o_t close the
stream, but resets other side-effects such as the encoding.
ssttrreeaamm((_S_t_r_e_a_m))
Same as a plain _S_t_r_e_a_m.
_F_i_l_e_U_R_L
If _S_p_e_c_i_f_i_c_a_t_i_o_n is of the form =file://...=, the pointed to
file is opened using open/4. Requires library(uri) to be
installed.
ffiillee((_P_a_t_h))
Explicitly open the file _P_a_t_h. _P_a_t_h can be an _P_a_t_h(File) term
as accepted by absolute_file_name/3.
ssttrriinngg((_S_t_r_i_n_g))
Open a Prolog string, atom, list of characters or codes as an
_i_n_p_u_t stream.
The typical usage scenario is given in the code below, where
<process> processes the input.
____________________________________________________________________| |
| setup_call_cleanup( |
| open_any(Spec, read, In, Close, Options), |
| <process>(In), |
||____Close)._______________________________________________________ ||
Currently, the following libraries extend this predicate:
lliibbrraarryy((_h_t_t_p_/_h_t_t_p___o_p_e_n))
Adds support for URLs using the http and https schemes.
cclloossee__aannyy((_+_G_o_a_l))
Execute the _C_l_o_s_e closure returned by open_any/5. The closure
can also be called directly. Using close_any/1 can be considered
better style and enhances tractability of the source code.
ooppeenn__hhooookk((_+_S_p_e_c_, _+_M_o_d_e_, _-_S_t_r_e_a_m_, _-_C_l_o_s_e_, _+_O_p_t_i_o_n_s_0_, _-_O_p_t_i_o_n_s))_[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Open _S_p_e_c in _M_o_d_e, producing _S_t_r_e_a_m.
___________________________________________________________Arguments_
_C_l_o_s_e is unified to a goal that must be called to
undo the side-effects of the action, e.g.,
typically the term close(Stream)
_O_p_t_i_o_n_s_0 are the options passed to open_any/5
_O_p_t_i_o_n_s are passed to the post processing filters that
may be installed by open_any/5.
1122..1144 lliibbrraarryy((lliissttss)):: LLiisstt MMaanniippuullaattiioonn
CCoommppaattiibbiilliittyy Virtually every Prolog system has
library(lists), but the set of provided predicates
is diverse. There is a fair agreement on the semantics
of most of these predicates, although error handling may
vary.
This library provides commonly accepted basic predicates for list
manipulation in the Prolog community. Some additional list
manipulations are built-in. See e.g., memberchk/2, length/2.
The implementation of this library is copied from many places. These
include: "The Craft of Prolog", the DEC-10 Prolog library (LISTRO.PL)
and the YAP lists library. Some predicates are reimplemented based on
their specification by Quintus and SICStus.
mmeemmbbeerr((_?_E_l_e_m_, _?_L_i_s_t))
True if _E_l_e_m is a member of _L_i_s_t. The SWI-Prolog definition
differs from the classical one. Our definition avoids unpacking
each list element twice and provides determinism on the last
element. E.g. this is deterministic:
____________________________________________________________________| |
||____member(X,_[One])._____________________________________________ ||
aauutthhoorr Gertjan van Noord
aappppeenndd((_?_L_i_s_t_1_, _?_L_i_s_t_2_, _?_L_i_s_t_1_A_n_d_L_i_s_t_2))
_L_i_s_t_1_A_n_d_L_i_s_t_2 is the concatenation of _L_i_s_t_1 and _L_i_s_t_2
aappppeenndd((_+_L_i_s_t_O_f_L_i_s_t_s_, _?_L_i_s_t))
Concatenate a list of lists. Is true if _L_i_s_t_O_f_L_i_s_t_s is a list of
lists, and _L_i_s_t is the concatenation of these lists.
___________________________________________________________Arguments_
_L_i_s_t_O_f_L_i_s_t_s must be a list of _p_o_s_s_i_b_l_y partial lists
pprreeffiixx((_?_P_a_r_t_, _?_W_h_o_l_e))
True iff _P_a_r_t is a leading substring of _W_h_o_l_e. This is the same as
append(Part, _, Whole).
sseelleecctt((_?_E_l_e_m_, _?_L_i_s_t_1_, _?_L_i_s_t_2))
Is true when _L_i_s_t_1, with _E_l_e_m removed, results in _L_i_s_t_2.
sseelleeccttcchhkk((_+_E_l_e_m_, _+_L_i_s_t_, _-_R_e_s_t)) _[_s_e_m_i_d_e_t_]
Semi-deterministic removal of first element in _L_i_s_t that unifies
with _E_l_e_m.
sseelleecctt((_?_X_, _?_X_L_i_s_t_, _?_Y_, _?_Y_L_i_s_t)) _[_n_o_n_d_e_t_]
Select from two lists at the same positon. True if _X_L_i_s_t is
unifiable with _Y_L_i_s_t apart a single element at the same position
that is unified with _X in _X_L_i_s_t and with _Y in _Y_L_i_s_t. A typical
use for this predicate is to _r_e_p_l_a_c_e an element, as shown in
the example below. All possible substitutions are performed on
backtracking.
____________________________________________________________________| |
| ?- select(b, [a,b,c,b], 2, X). |
| X = [a, 2, c, b] ; |
| X = [a, b, c, 2] ; |
||false.____________________________________________________________ ||
SSeeee aallssoo selectchk/4 provides a semidet version.
sseelleeccttcchhkk((_?_X_, _?_X_L_i_s_t_, _?_Y_, _?_Y_L_i_s_t)) _[_s_e_m_i_d_e_t_]
Semi-deterministic version of select/4.
nneexxttttoo((_?_X_, _?_Y_, _?_L_i_s_t))
True if _Y follows _X in _L_i_s_t.
ddeelleettee((_+_L_i_s_t_1_, _@_E_l_e_m_, _-_L_i_s_t_2)) _[_d_e_t_]
Delete matching elements from a list. True when _L_i_s_t_2 is a list
with all elements from _L_i_s_t_1 except for those that unify with _E_l_e_m.
Matching _E_l_e_m with elements of _L_i_s_t_1 is uses \+ Elem \= H, which
implies that _E_l_e_m is not changed.
SSeeee aallssoo select/3, subtract/3.
ddeepprreeccaatteedd There are too many ways in which one might
want to delete elements from a list to justify the
name. Think of matching (= vs. ==), delete
first/all, be deterministic or not.
nntthh00((_?_I_n_d_e_x_, _?_L_i_s_t_, _?_E_l_e_m))
True when _E_l_e_m is the _I_n_d_e_x'th element of _L_i_s_t. Counting starts at
0.
EErrrroorrss type_error(integer, Index) if _I_n_d_e_x is not an
integer or unbound.
SSeeee aallssoo nth1/3.
nntthh11((_?_I_n_d_e_x_, _?_L_i_s_t_, _?_E_l_e_m))
Is true when _E_l_e_m is the _I_n_d_e_x'th element of _L_i_s_t. Counting starts
at 1.
SSeeee aallssoo nth0/3.
nntthh00((_?_N_, _?_L_i_s_t_, _?_E_l_e_m_, _?_R_e_s_t)) _[_d_e_t_]
Select/insert element at index. True when _E_l_e_m is the _N'th
(0-based) element of _L_i_s_t and _R_e_s_t is the remainder (as in by
select/3) of _L_i_s_t. For example:
____________________________________________________________________| |
| ?- nth0(I, [a,b,c], E, R). |
| I = 0, E = a, R = [b, c] ; |
| I = 1, E = b, R = [a, c] ; |
| I = 2, E = c, R = [a, b] ; |
||false.____________________________________________________________ ||
____________________________________________________________________| |
| ?- nth0(1, L, a1, [a,b]). |
||L_=_[a,_a1,_b].___________________________________________________ ||
nntthh11((_?_N_, _?_L_i_s_t_, _?_E_l_e_m_, _?_R_e_s_t)) _[_d_e_t_]
As nth0/4, but counting starts at 1.
llaasstt((_?_L_i_s_t_, _?_L_a_s_t))
Succeeds when _L_a_s_t is the last element of _L_i_s_t. This predicate is
semidet if _L_i_s_t is a list and multi if _L_i_s_t is a partial list.
CCoommppaattiibbiilliittyy There is no de-facto standard for the
argument order of last/2. Be careful when porting
code or use append(_, [Last], List) as a portable
alternative.
pprrooppeerr__lleennggtthh((_@_L_i_s_t_, _-_L_e_n_g_t_h)) _[_s_e_m_i_d_e_t_]
True when _L_e_n_g_t_h is the number of elements in the proper list _L_i_s_t.
This is equivalent to
____________________________________________________________________| |
| proper_length(List, Length) :- |
| is_list(List), |
||______length(List,_Length)._______________________________________ ||
ssaammee__lleennggtthh((_?_L_i_s_t_1_, _?_L_i_s_t_2))
Is true when _L_i_s_t_1 and _L_i_s_t_2 are lists with the same number of
elements. The predicate is deterministic if at least one of the
arguments is a proper list. It is non-deterministic if both
arguments are partial lists.
SSeeee aallssoo length/2
rreevveerrssee((_?_L_i_s_t_1_, _?_L_i_s_t_2))
Is true when the elements of _L_i_s_t_2 are in reverse order compared to
_L_i_s_t_1.
ppeerrmmuuttaattiioonn((_?_X_s_, _?_Y_s)) _[_n_o_n_d_e_t_]
True when _X_s is a permutation of _Y_s. This can solve for
_Y_s given _X_s or _X_s given _Y_s, or even enumerate _X_s and _Y_s
together. The predicate permutation/2 is primarily intended
to generate permutations. Note that a list of length N has
N! permutations, and unbounded permutation generation becomes
prohibitively expensive, even for rather short lists (10! =
3,628,800).
If both _X_s and _Y_s are provided and both lists have equal length the
order is |_X_s|^2. Simply testing whether _X_s is a permutation of _Y_s
can be achieved in order log(|_X_s|) using msort/2 as illustrated
below with the semidet predicate is_permutation/2:
____________________________________________________________________| |
| is_permutation(Xs, Ys) :- |
| msort(Xs, Sorted), |
||__msort(Ys,_Sorted).______________________________________________ ||
The example below illustrates that _X_s and _Y_s being proper lists is
not a sufficient condition to use the above replacement.
____________________________________________________________________| |
| ?- permutation([1,2], [X,Y]). |
| X = 1, Y = 2 ; |
| X = 2, Y = 1 ; |
||false.____________________________________________________________ ||
EErrrroorrss type_error(list, Arg) if either argument is not a
proper or partial list.
ffllaatttteenn((_+_N_e_s_t_e_d_L_i_s_t_, _-_F_l_a_t_L_i_s_t)) _[_d_e_t_]
Is true if _F_l_a_t_L_i_s_t is a non-nested version of _N_e_s_t_e_d_L_i_s_t. Note
that empty lists are removed. In standard Prolog, this implies
that the atom '[]' is removed too. In SWI7, [] is distinct from
'[]'.
Ending up needing flatten/3 often indicates, like append/3 for
appending two lists, a bad design. Efficient code that generates
lists from generated small lists must use difference lists, often
possible through grammar rules for optimal readability.
SSeeee aallssoo append/2
mmaaxx__mmeemmbbeerr((_-_M_a_x_, _+_L_i_s_t)) _[_s_e_m_i_d_e_t_]
True when _M_a_x is the largest member in the standard order of terms.
Fails if _L_i_s_t is empty.
SSeeee aallssoo
- compare/3
- max_list/2 for the maximum of a list of numbers.
mmiinn__mmeemmbbeerr((_-_M_i_n_, _+_L_i_s_t)) _[_s_e_m_i_d_e_t_]
True when _M_i_n is the smallest member in the standard order of
terms. Fails if _L_i_s_t is empty.
SSeeee aallssoo
- compare/3
- min_list/2 for the minimum of a list of numbers.
ssuumm__lliisstt((_+_L_i_s_t_, _-_S_u_m)) _[_d_e_t_]
_S_u_m is the result of adding all numbers in _L_i_s_t.
mmaaxx__lliisstt((_+_L_i_s_t_:_l_i_s_t_(_n_u_m_b_e_r_)_, _-_M_a_x_:_n_u_m_b_e_r)) _[_s_e_m_i_d_e_t_]
True if _M_a_x is the largest number in _L_i_s_t. Fails if _L_i_s_t is empty.
SSeeee aallssoo max_member/2.
mmiinn__lliisstt((_+_L_i_s_t_:_l_i_s_t_(_n_u_m_b_e_r_)_, _-_M_i_n_:_n_u_m_b_e_r)) _[_s_e_m_i_d_e_t_]
True if _M_i_n is the smallest number in _L_i_s_t. Fails if _L_i_s_t is
empty.
SSeeee aallssoo min_member/2.
nnuummlliisstt((_+_L_o_w_, _+_H_i_g_h_, _-_L_i_s_t)) _[_s_e_m_i_d_e_t_]
_L_i_s_t is a list [_L_o_w, _L_o_w+1, ... _H_i_g_h]. Fails if _H_i_g_h < _L_o_w.
EErrrroorrss
- type_error(integer, Low)
- type_error(integer, High)
iiss__sseett((_@_S_e_t)) _[_d_e_t_]
True if _S_e_t is a proper list without duplicates. Equivalence is
based on ==/2. The implementation uses sort/2, which implies
that the complexity is N*log(N) and the predicate may cause a
resource-error. There are no other error conditions.
lliisstt__ttoo__sseett((_+_L_i_s_t_, _?_S_e_t)) _[_d_e_t_]
True when _S_e_t has the same elements as _L_i_s_t in the same order. The
left-most copy of duplicate elements is retained. _L_i_s_t may contain
variables. Elements _E_1 and _E_2 are considered duplicates iff _E_1 ==
_E_2 holds. The complexity of the implementation is N*log(N).
EErrrroorrss _L_i_s_t is type-checked.
aauutthhoorr Ulrich Neumerkel
SSeeee aallssoo sort/2 can be used to create an ordered set.
Many set operations on ordered sets are order N
rather than order N**2. The list_to_set/2 predicate
is more expensive than sort/2 because it involves, in
addition to a sort, three linear scans of the list.
CCoommppaattiibbiilliittyy Up to version 6.3.11, list_to_set/2 had
complexity N**2 and equality was tested using =/2.
iinntteerrsseeccttiioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_S_e_t_3)) _[_d_e_t_]
True if _S_e_t_3 unifies with the intersection of _S_e_t_1 and _S_e_t_2. The
complexity of this predicate is |_S_e_t_1|*|_S_e_t_2|
SSeeee aallssoo ord_intersection/3.
uunniioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_S_e_t_3)) _[_d_e_t_]
True if _S_e_t_3 unifies with the union of _S_e_t_1 and _S_e_t_2. The
complexity of this predicate is |_S_e_t_1|*|_S_e_t_2|
SSeeee aallssoo ord_union/3.
ssuubbsseett((_+_S_u_b_S_e_t_, _+_S_e_t)) _[_s_e_m_i_d_e_t_]
True if all elements of _S_u_b_S_e_t belong to _S_e_t as well. Membership
test is based on memberchk/2. The complexity is |_S_u_b_S_e_t|*|_S_e_t|.
SSeeee aallssoo ord_subset/2.
ssuubbttrraacctt((_+_S_e_t_, _+_D_e_l_e_t_e_, _-_R_e_s_u_l_t)) _[_d_e_t_]
_D_e_l_e_t_e all elements in _D_e_l_e_t_e from _S_e_t. Deletion is based on
unification using memberchk/2. The complexity is |_D_e_l_e_t_e|*|_S_e_t|.
SSeeee aallssoo ord_subtract/3.
1122..1155 lliibbrraarryy((nnbb__sseett)):: NNoonn--bbaacckkttrraacckkaabbllee sseett
The library nb_set defines _n_o_n_-_b_a_c_k_t_r_a_c_k_a_b_l_e _s_e_t_s, implemented as
binary trees. The sets are represented as compound terms and
manipulated using nb_setarg/3. Non-backtrackable manipulation of
datastructures is not supported by a large number of Prolog
implementations, but it has several advantages over using the database.
It produces less garbage, is thread-safe, reentrant and deals with
exceptions without leaking data.
Similar to the assoc library, keys can be any Prolog term, but it is
not allowed to instantiate or modify a term.
One of the ways to use this library is to generate unique values on
backtracking _w_i_t_h_o_u_t generating _a_l_l solutions first, for example to
act as a filter between a generator producing many duplicates and an
expensive test routine, as outlined below:
________________________________________________________________________| |
|generate_and_test(Solution) :- |
| empty_nb_set(Set), |
| generate(Solution), |
| add_nb_set(Solution, Set, true), |
||_______test(Solution).________________________________________________ ||
eemmppttyy__nnbb__sseett((_?_S_e_t))
True if _S_e_t is a non-backtrackable empty set.
aadddd__nnbb__sseett((_+_K_e_y_, _!_S_e_t))
Add _K_e_y to _S_e_t. If _K_e_y is already a member of _S_e_t, add_nb_set/3
succeeds without modifying _S_e_t.
aadddd__nnbb__sseett((_+_K_e_y_, _!_S_e_t_, _?_N_e_w))
If _K_e_y is not in _S_e_t and _N_e_w is unified to true, _K_e_y is added to
_S_e_t. If _K_e_y is in _S_e_t, _N_e_w is unified to false. It can be used
for many purposes:
add_nb_set(+, +, false) Test membership
add_nb_set(+, +, true) Succeed only if new member
add_nb_set(+, +, Var) Succeed, binding _V_a_r
ggeenn__nnbb__sseett((_+_S_e_t_, _-_K_e_y))
Generate all members of _S_e_t on backtracking in the standard order
of terms. To test membership, use add_nb_set/3.
ssiizzee__nnbb__sseett((_+_S_e_t_, _-_S_i_z_e))
Unify _S_i_z_e with the number of elements in _S_e_t.
nnbb__sseett__ttoo__lliisstt((_+_S_e_t_, _-_L_i_s_t))
Unify _L_i_s_t with a list of all elements in _S_e_t in the standard order
of terms (i.e., an _o_r_d_e_r_e_d _l_i_s_t).
1122..1166 lliibbrraarryy((wwwwww__bbrroowwsseerr)):: AAccttiivvaattiinngg yyoouurr WWeebb--bbrroowwsseerr
This library deals with the very system-dependent task of opening a web
page in a browser. See also url and the HTTP package.
wwwwww__ooppeenn__uurrll((_+_U_R_L))
Open _U_R_L in an external web browser. The reason to place this
in the library is to centralise the maintenance on this highly
platform- and browser-specific task. It distinguishes between the
following cases:
o _M_S_-_W_i_n_d_o_w_s
If it detects MS-Windows it uses win_shell/2 to open the _U_R_L.
The behaviour and browser started depends on the version of
Windows and Windows-shell configuration, but in general it
should be the behaviour expected by the user.
o _O_t_h_e_r _p_l_a_t_f_o_r_m_s
On other platforms it tests the environment variable (see
getenv/2) named BROWSER or uses netscape if this variable is
not set. If the browser is either mozilla or netscape,
www_open_url/1 first tries to open a new window on a running
browser using the -remote option of Netscape. If this fails
or the browser is not mozilla or netscape the system simply
passes the URL as first argument to the program.
1122..1177 lliibbrraarryy((ooppttiioonn)):: OOppttiioonn lliisstt pprroocceessssiinngg
SSeeee aallssoo
- library(record)
- Option processing capabilities may be declared using the
directive predicate_options/3.
TToo bbee ddoonnee We should consider putting many options in an assoc
or record with appropriate preprocessing to achieve better
performance.
The library(option) provides some utilities for processing option
lists. Option lists are commonly used as an alternative for
many arguments. Examples of built-in predicates are open/4 and
write_term/3. Naming the arguments results in more readable code, and
the list nature makes it easy to extend the list of options accepted
by a predicate. Option lists come in two styles, both of which are
handled by this library.
NNaammee((VVaalluuee)) This is the preferred style.
NNaammee == VVaalluuee This is often used, but deprecated.
Processing options inside time-critical code (loops) can cause serious
overhead. One possibility is to define a record using library(record)
and initialise this using make_<record>/2. In addition to providing
good performance, this also provides type-checking and central
declaration of defaults.
________________________________________________________________________| |
|:- record atts(width:integer=100, shape:oneof([box,circle])=box). |
| |
|process(Data, Options) :- |
| make_atts(Options, Attributes), |
| action(Data, Attributes). |
| |
|action(Data, Attributes) :- |
| atts_shape(Attributes, Shape), |
||_______...____________________________________________________________ ||
Options typically have exactly one argument. The library does
support options with 0 or more than one argument with the following
restrictions:
o The predicate option/3 and select_option/4, involving default
are meaningless. They perform an arg(1, Option, Default),
causing failure without arguments and filling only the first
option-argument otherwise.
o meta_options/3 can only qualify options with exactly one argument.
ooppttiioonn((_?_O_p_t_i_o_n_, _+_O_p_t_i_o_n_L_i_s_t_, _+_D_e_f_a_u_l_t)) _[_s_e_m_i_d_e_t_]
Get an _O_p_t_i_o_n Qfrom _O_p_t_i_o_n_L_i_s_t. _O_p_t_i_o_n_L_i_s_t can use the Name=Value
as well as the Name(Value) convention.
___________________________________________________________Arguments_
_O_p_t_i_o_n Term of the form Name(?Value).
ooppttiioonn((_?_O_p_t_i_o_n_, _+_O_p_t_i_o_n_L_i_s_t)) _[_s_e_m_i_d_e_t_]
Get an _O_p_t_i_o_n from _O_p_t_i_o_n_L_i_s_t. _O_p_t_i_o_n_L_i_s_t can use the Name=Value
as well as the Name(Value) convention. Fails silently if the
option does not appear in _O_p_t_i_o_n_L_i_s_t.
___________________________________________________________Arguments_
_O_p_t_i_o_n Term of the form Name(?Value).
sseelleecctt__ooppttiioonn((_?_O_p_t_i_o_n_, _+_O_p_t_i_o_n_s_, _-_R_e_s_t_O_p_t_i_o_n_s)) _[_s_e_m_i_d_e_t_]
Get and remove _O_p_t_i_o_n from an option list. As option/2, removing
the matching option from _O_p_t_i_o_n_s and unifying the remaining options
with _R_e_s_t_O_p_t_i_o_n_s.
sseelleecctt__ooppttiioonn((_?_O_p_t_i_o_n_, _+_O_p_t_i_o_n_s_, _-_R_e_s_t_O_p_t_i_o_n_s_, _+_D_e_f_a_u_l_t)) _[_d_e_t_]
Get and remove _O_p_t_i_o_n with default value. As select_option/3, but
if _O_p_t_i_o_n is not in _O_p_t_i_o_n_s, its value is unified with _D_e_f_a_u_l_t and
_R_e_s_t_O_p_t_i_o_n_s with _O_p_t_i_o_n_s.
mmeerrggee__ooppttiioonnss((_+_N_e_w_, _+_O_l_d_, _-_M_e_r_g_e_d)) _[_d_e_t_]
Merge two option lists. _M_e_r_g_e_d is a sorted list of options using
the canonical format Name(Value) holding all options from _N_e_w and
_O_l_d, after removing conflicting options from _O_l_d.
Multi-values options (e.g., proxy(Host, Port)) are allowed, where
both option-name and arity define the identity of the option.
mmeettaa__ooppttiioonnss((_+_I_s_M_e_t_a_, _:_O_p_t_i_o_n_s_0_, _-_O_p_t_i_o_n_s)) _[_d_e_t_]
Perform meta-expansion on options that are module-sensitive.
Whether an option name is module-sensitive is determined by calling
call(IsMeta, Name). Here is an example:
____________________________________________________________________| |
| meta_options(is_meta, OptionsIn, Options), |
| ... |
| |
||is_meta(callback).________________________________________________ ||
Meta-options must have exactly one argument. This argument will be
qualified.
TToo bbee ddoonnee Should be integrated with declarations from
predicate_options/3.
ddiicctt__ooppttiioonnss((_?_D_i_c_t_, _?_O_p_t_i_o_n_s)) _[_d_e_t_]
Convert between an option list and a dictionary. One of the
arguments must be instantiated. If the option list is created, it
is created in canonical form, i.e., using Option(Value) with the
_O_p_t_i_o_n_s sorted in the standard order of terms. Note that the
conversion is not always possible due to different constraints and
convertion may thus lead to (type) errors.
o _D_i_c_t keys can be integers. This is not allowed in canonical
option lists.
o _O_p_t_i_o_n_s can hold multiple options with the same key. This is
not allowed in dicts.
o _O_p_t_i_o_n_s can have more than one value (name(V1,V2)). This is
not allowed in dicts.
Also note that most system predicates and predicates using this
library for processing the option argument can both work with
classical Prolog options and dicts objects.
1122..1188 lliibbrraarryy((ooppttppaarrssee)):: ccoommmmaanndd lliinnee ppaarrssiinngg
aauutthhoorr Marcus Uneson
vveerrssiioonn 0.20 (2011-04-27)
TToo bbee ddoonnee : validation? e.g, numbers; file path existence;
one-out-of-a-set-of-atoms
This module helps in building a command-line interface to an
application. In particular, it provides functions that take an option
specification and a list of atoms, probably given to the program on
the command line, and return a parsed representation (a list of the
customary Key(Val) by default; or optionally, a list of Func(Key, Val)
terms in the style of current_prolog_flag/2). It can also synthesize a
simple help text from the options specification.
The terminology in the following is partly borrowed from python,
see http://docs.python.org/library/optparse.html#terminology . Very
briefly, _a_r_g_u_m_e_n_t_s is what you provide on the command line
and for many prologs show up as a list of atoms Args in
current_prolog_flag(argv, Args). For a typical prolog incantation,
they can be divided into
o _r_u_n_t_i_m_e _a_r_g_u_m_e_n_t_s, which controls the prolog runtime; convention-
ally, they are ended by '--';
o _o_p_t_i_o_n_s, which are key-value pairs (with a boolean value possibly
implicit) intended to control your program in one way or another;
and
o _p_o_s_i_t_i_o_n_a_l _a_r_g_u_m_e_n_t_s, which is what remains after all runtime
arguments and options have been removed (with implicit arguments --
true/false for booleans -- filled in).
Positional arguments are in particular used for mandatory arguments
without which your program won't work and for which there are no
sensible defaults (e.g,, input file names). Options, by contrast,
offer flexibility by letting you change a default setting. Options
are optional not only by etymology: this library has no notion of
mandatory or required options (see the python docs for other rationales
than laziness).
The command-line arguments enter your program as a list of atoms, but
the programs perhaps expects booleans, integers, floats or even prolog
terms. You tell the parser so by providing an _o_p_t_i_o_n_s _s_p_e_c_i_f_i_c_a_t_i_o_n.
This is just a list of individual option specifications. One of those,
in turn, is a list of ground prolog terms in the customary Name(Value)
format. The following terms are recognized (any others raise error).
oopptt((_K_e_y))
_K_e_y is what the option later will be accessed by, just like for
current_prolog_flag(Key, Value). This term is mandatory (an error
is thrown if missing).
sshhoorrttffllaaggss((_L_i_s_t_O_f_F_l_a_g_s))
_L_i_s_t_O_f_F_l_a_g_s denotes any single-dashed, single letter args specify-
ing the current option (-s , -K, etc). Uppercase letters must
be quoted. Usually _L_i_s_t_O_f_F_l_a_g_s will be a singleton list, but
sometimes aliased flags may be convenient.
lloonnggffllaaggss((_L_i_s_t_O_f_F_l_a_g_s))
_L_i_s_t_O_f_F_l_a_g_s denotes any double-dashed arguments specifying the
current option (--verbose, --no-debug, etc). They are basically a
more readable alternative to short flags, except
1. long flags can be specified as --flag value or --flag=value (but
not as --flagvalue); short flags as -f val or -fval (but not
-f=val)
2. boolean long flags can be specified as --bool-flag or
--bool-flag=true or --bool-flag true; and they can be negated as
--no-bool-flag or --bool-flag=false or --bool-flag false.
Except that shortflags must be single characters, the distinction
between long and short is in calling convention, not in namespaces.
Thus, if you have shortflags([v]), you can use it as -v2 or -v 2 or
--v=2 or --v 2 (but not -v=2 or --v2).
Shortflags and longflags both default to []. It can be useful to
have flagless options -- see example below.
mmeettaa((_M_e_t_a))
_M_e_t_a is optional and only relevant for the synthesized usage
message and is the name (an atom) of the metasyntactic variable
(possibly) appearing in it together with type and default value
(e.g, x:integer=3, interest:float=0.11). It may be useful to have
named variables (x, interest) in case you wish to mention them
again in the help text. If not given the Meta: part is suppressed
-- see example below.
ttyyppee((_T_y_p_e))
_T_y_p_e is one of boolean, atom, integer, float, term. The corre-
sponding argument will be parsed appropriately. This term is
optional; if not given, defaults to term.
ddeeffaauulltt((_D_e_f_a_u_l_t))
_D_e_f_a_u_l_t value. This term is optional; if not given, or if given
the special value '_', an uninstantiated variable is created (and
any type declaration is ignored).
hheellpp((_H_e_l_p))
_H_e_l_p is (usually) an atom of text describing the option in the help
text. This term is optional (but obviously strongly recommended
for all options which have flags).
Long lines are subject to basic word wrapping -- split on white
space, reindent, rejoin. However, you can get more control by
supplying the line breaking yourself: rather than a single line
of text, you can provide a list of lines (as atoms). If you do,
they will be joined with the appropriate indent but otherwise left
untouched (see the option mode in the example below).
Absence of mandatory option specs or the presence of more than one for
a particular option throws an error, as do unknown or incompatible
types.
As a concrete example from a fictive application, suppose we want the
following options to be read from the command line (long flag(s), short
flag(s), meta:type=default, help)
________________________________________________________________________| |
|--mode -m atom=SCAN data gathering mode, |
| one of |
| SCAN: do this |
| READ: do that |
| MAKE: make numbers |
| WAIT: do nothing |
|--rebuild-cache -r boolean=true rebuild cache in |
| each iteration |
|--heisenberg-threshold -t,-h float=0.1 heisenberg threshold |
|--depths, --iters -i,-d K:integer=3 stop after K |
| iterations |
|--distances term=[1,2,3,5] initial prolog term |
|--output-file -o FILE:atom=_ write output to FILE |
|--label -l atom=REPORT report label |
|--verbosity -v V:integer=2 verbosity level, |
||______________________________________________1_<=_V_<=_3_____________ ||
We may also have some configuration parameters which we currently
think not needs to be controlled from the command line, say
path('/some/file/path').
This interface is described by the following options specification
(order between the specifications of a particular option is
irrelevant).
________________________________________________________________________| |
|ExampleOptsSpec = |
| [ [opt(mode ), type(atom), default('SCAN'), |
| shortflags([m]), longflags(['mode'] ), |
| help([ 'data gathering mode, one of' |
| , ' SCAN: do this' |
| , ' READ: do that' |
| , ' MAKE: fabricate some numbers' |
| , ' WAIT: don''t do anything'])] |
| |
| , [opt(cache), type(boolean), default(true), |
| shortflags([r]), longflags(['rebuild-cache']), |
| help('rebuild cache in each iteration')] |
| |
| , [opt(threshold), type(float), default(0.1), |
| shortflags([t,h]), longflags(['heisenberg-threshold']), |
| help('heisenberg threshold')] |
| |
| , [opt(depth), meta('K'), type(integer), default(3), |
| shortflags([i,d]),longflags([depths,iters]), |
| help('stop after K iterations')] |
| |
| , [opt(distances), default([1,2,3,5]), |
| longflags([distances]), |
| help('initial prolog term')] |
| |
| , [opt(outfile), meta('FILE'), type(atom), |
| shortflags([o]), longflags(['output-file']), |
| help('write output to FILE')] |
| |
| , [opt(label), type(atom), default('REPORT'), |
| shortflags([l]), longflags([label]), |
| help('report label')] |
| |
| , [opt(verbose), meta('V'), type(integer), default(2), |
| shortflags([v]), longflags([verbosity]), |
| help('verbosity level, 1 <= V <= 3')] |
| |
| , [opt(path), default('/some/file/path/')] |
||___]._________________________________________________________________ ||
The help text above was accessed by
opt_help(ExamplesOptsSpec, HelpText). The options appear in the
same order as in the OptsSpec.
Given ExampleOptsSpec, a command line (somewhat syntactically
inconsistent, in order to demonstrate different calling conventions)
may look as follows
________________________________________________________________________| |
|ExampleArgs = [ '-d5' |
| , '--heisenberg-threshold', '0.14' |
| , '--distances=[1,1,2,3,5,8]' |
| , '--iters', '7' |
| , '-ooutput.txt' |
| , '--rebuild-cache', 'true' |
| , 'input.txt' |
| , '--verbosity=2' |
||_____________]._______________________________________________________ ||
opt_parse(ExampleOptsSpec, ExampleArgs, Opts, PositionalArgs) would
then succeed with
________________________________________________________________________| |
|Opts = [ mode('SCAN') |
| , label('REPORT') |
| , path('/some/file/path') |
| , threshold(0.14) |
| , distances([1,1,2,3,5,8]) |
| , depth(7) |
| , outfile('output.txt') |
| , cache(true) |
| , verbose(2) |
| ], |
|PositionalArgs|=_['input.txt'].________________________________________ | |
Note that path('/some/file/path') showing up in Opts has a default
value (of the implicit type 'term'), but no corresponding flags
in OptsSpec. Thus it can't be set from the command line.
The rest of your program doesn't need to know that, of course.
This provides an alternative to the common practice of asserting
such hard-coded parameters under a single predicate (for instance
setting(path, '/some/file/path')), with the advantage that you may
seamlessly upgrade them to command-line options, should you one day
find this a good idea. Just add an appropriate flag or two and a
line of help text. Similarly, suppressing an option in a cluttered
interface amounts to commenting out the flags.
opt_parse/5 allows more control through an additional argument list as
shown in the example below.
________________________________________________________________________| |
|?- opt_parse(ExampleOptsSpec, ExampleArgs, Opts, PositionalArgs, |
| [ output_functor(appl_config) |
| ]). |
| |
|Opts = [ appl_config(verbose, 2), |
| , appl_config(label, 'REPORT') |
| ... |
||_________]____________________________________________________________ ||
This representation may be preferable with the empty-flag configuration
parameter style above (perhaps with asserting appl_config/2).
1122..1188..11 NNootteess aanndd ttiippss
o In the example we were mostly explicit about the types. Since
the default is term, which subsumes integer, float, atom, it may
be possible to get away cheaper (e.g., by only giving booleans).
However, it is recommended practice to always specify types:
parsing becomes more reliable and error messages will be easier to
interpret.
o Note that -sbar is taken to mean -s bar, not -s -b -a -r, that is,
there is no clustering of flags.
o -s=foo is disallowed. The rationale is that although some
command-line parsers will silently interpret this as -s =foo, this
is very seldom what you want. To have an option argument start
with '=' (very un-recommended), say so explicitly.
o The example specifies the option depth twice: once as -d5 and
once as --iters 7. The default when encountering duplicated flags
is to keeplast (this behaviour can be controlled, by ParseOption
duplicated_flags).
o The order of the options returned by the parsing functions is the
same as given on the command line, with non-overridden defaults
prepended and duplicates removed as in previous item. You should
not rely on this, however.
o Unknown flags (not appearing in OptsSpec) will throw errors. This
is usually a Good Thing. Sometimes, however, you may wish to pass
along flags to an external program (say, one called by shell/2),
and it means duplicated effort and a maintenance headache to have
to specify all possible flags for the external program explicitly
(if it even can be done). On the other hand, simply taking all
unknown flags as valid makes error checking much less efficient
and identification of positional arguments uncertain. A better
solution is to collect all arguments intended for passing along to
an indirectly called program as a single argument, probably as an
atom (if you don't need to inspect them first) or as a prolog term
(if you do).
oopptt__aarrgguummeennttss((_+_O_p_t_s_S_p_e_c_, _-_O_p_t_s_, _-_P_o_s_i_t_i_o_n_a_l_A_r_g_s)) _[_d_e_t_]
Extract commandline options according to a specification. Con-
venience predicate, assuming that command-line arguments can be
accessed by current_prolog_flag/2 (as in swi-prolog). For other
access mechanisms and/or more control, get the args and pass them
as a list of atoms to opt_parse/4 or opt_parse/5 instead.
_O_p_t_s is a list of parsed options in the form Key(Value). Dashed
args not in _O_p_t_s_S_p_e_c are not permitted and will raise error (see
tip on how to pass unknown flags in the module description).
_P_o_s_i_t_i_o_n_a_l_A_r_g_s are the remaining non-dashed args after each flag
has taken its argument (filling in true or false for booleans).
There are no restrictions on non-dashed arguments and they may go
anywhere (although it is good practice to put them last). Any
leading arguments for the runtime (up to and including '--') are
discarded.
oopptt__ppaarrssee((_+_O_p_t_s_S_p_e_c_, _+_A_p_p_l_A_r_g_s_, _-_O_p_t_s_, _-_P_o_s_i_t_i_o_n_a_l_A_r_g_s)) _[_d_e_t_]
Equivalent to opt_parse(OptsSpec, ApplArgs, Opts, PositionalArgs, []).
oopptt__ppaarrssee((_+_O_p_t_s_S_p_e_c_, _+_A_p_p_l_A_r_g_s_, _-_O_p_t_s_, _-_P_o_s_i_t_i_o_n_a_l_A_r_g_s_, _+_P_a_r_s_e_O_p_t_i_o_n_s))_[_d_e_t_]
Parse the arguments Args (as list of atoms) according to _O_p_t_s_S_p_e_c.
Any runtime arguments (typically terminated by '--') are assumed to
be removed already.
_O_p_t_s is a list of parsed options in the form Key(Value), or (with
the option functor(Func) given) in the form Func(Key, Value).
Dashed args not in _O_p_t_s_S_p_e_c are not permitted and will raise error
(see tip on how to pass unknown flags in the module description).
_P_o_s_i_t_i_o_n_a_l_A_r_g_s are the remaining non-dashed args after each flag
has taken its argument (filling in true or false for booleans).
There are no restrictions on non-dashed arguments and they may
go anywhere (although it is good practice to put them last).
_P_a_r_s_e_O_p_t_i_o_n_s are
oouuttppuutt__ffuunnccttoorr((_F_u_n_c))
Set the functor _F_u_n_c of the returned options _F_u_n_c(Key,Value).
Default is the special value 'OPTION' (upper-case), which
makes the returned options have form Key(Value).
dduupplliiccaatteedd__ffllaaggss((_K_e_e_p))
Controls how to handle options given more than once on the
commad line. _K_e_e_p is one of keepfirst, keeplast, keepall with
the obvious meaning. Default is keeplast.
aallllooww__eemmppttyy__ffllaagg__ssppeecc((_B_o_o_l))
If true (default), a flag specification is not required (it
is allowed that both shortflags and longflags be either []
or absent). Flagless options cannot be manipulated from the
command line and will not show up in the generated help.
This is useful when you have (also) general configuration
parameters in your _O_p_t_s_S_p_e_c, especially if you think they one
day might need to be controlled externally. See example in
the module overview. allow_empty_flag_spec(false) gives the
more customary behaviour of raising error on empty flags.
oopptt__hheellpp((_+_O_p_t_s_S_p_e_c_, _-_H_e_l_p_:_a_t_o_m)) _[_d_e_t_]
True when _H_e_l_p is a help string synthesized from _O_p_t_s_S_p_e_c.
ppaarrssee__ttyyppee((_+_T_y_p_e_, _+_C_o_d_e_s_:_l_i_s_t_(_c_o_d_e_)_, _-_R_e_s_u_l_t)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Hook to parse option text _C_o_d_e_s to an object of type _T_y_p_e.
1122..1199 lliibbrraarryy((oorrddsseettss)):: OOrrddeerreedd sseett mmaanniippuullaattiioonn
Ordered sets are lists with unique elements sorted to the standard
order of terms (see sort/2). Exploiting ordering, many of the set
operations can be expressed in order N rather than N^2 when dealing
with unordered sets that may contain duplicates. The library(ordsets)
is available in a number of Prolog implementations. Our predicates are
designed to be compatible with common practice in the Prolog community.
The implementation is incomplete and relies partly on library(oset),
an older ordered set library distributed with SWI-Prolog. New
applications are advised to use library(ordsets).
Some of these predicates match directly to corresponding list
operations. It is advised to use the versions from this library
to make clear you are operating on ordered sets. An exception is
member/2. See ord_memberchk/2.
The ordsets library is based on the standard order of terms. This
implies it can handle all Prolog terms, including variables. Note
however, that the ordering is not stable if a term inside the set is
further instantiated. Also note that variable ordering changes if
variables in the set are unified with each other or a variable in the
set is unified with a variable that is `older' than the newest variable
in the set. In practice, this implies that it is allowed to use
member(X, OrdSet) on an ordered set that holds variables only if X is a
fresh variable. In other cases one should cease using it as an ordset
because the order it relies on may have been changed.
iiss__oorrddsseett((_@_T_e_r_m)) _[_s_e_m_i_d_e_t_]
True if _T_e_r_m is an ordered set. All predicates in this library
expect ordered sets as input arguments. Failing to fullfil this
assumption results in undefined behaviour. Typically, ordered sets
are created by predicates from this library, sort/2 or setof/3.
oorrdd__eemmppttyy((_?_L_i_s_t)) _[_s_e_m_i_d_e_t_]
True when _L_i_s_t is the empty ordered set. Simply unifies list with
the empty list. Not part of Quintus.
oorrdd__sseetteeqq((_+_S_e_t_1_, _+_S_e_t_2)) _[_s_e_m_i_d_e_t_]
True if _S_e_t_1 and _S_e_t_2 have the same elements. As both are
canonical sorted lists, this is the same as ==/2.
CCoommppaattiibbiilliittyy sicstus
lliisstt__ttoo__oorrdd__sseett((_+_L_i_s_t_, _-_O_r_d_S_e_t)) _[_d_e_t_]
Transform a list into an ordered set. This is the same as sorting
the list.
oorrdd__iinntteerrsseecctt((_+_S_e_t_1_, _+_S_e_t_2)) _[_s_e_m_i_d_e_t_]
True if both ordered sets have a non-empty intersection.
oorrdd__ddiissjjooiinntt((_+_S_e_t_1_, _+_S_e_t_2)) _[_s_e_m_i_d_e_t_]
True if _S_e_t_1 and _S_e_t_2 have no common elements. This is the
negation of ord_intersect/2.
oorrdd__iinntteerrsseecctt((_+_S_e_t_1_, _+_S_e_t_2_, _-_I_n_t_e_r_s_e_c_t_i_o_n))
_I_n_t_e_r_s_e_c_t_i_o_n holds the common elements of _S_e_t_1 and _S_e_t_2.
ddeepprreeccaatteedd Use ord_intersection/3
oorrdd__iinntteerrsseeccttiioonn((_+_P_o_w_e_r_S_e_t_, _-_I_n_t_e_r_s_e_c_t_i_o_n))
_I_n_t_e_r_s_e_c_t_i_o_n of a powerset. True when _I_n_t_e_r_s_e_c_t_i_o_n is an ordered
set holding all elements common to all sets in _P_o_w_e_r_S_e_t.
CCoommppaattiibbiilliittyy sicstus
oorrdd__iinntteerrsseeccttiioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_I_n_t_e_r_s_e_c_t_i_o_n)) _[_d_e_t_]
_I_n_t_e_r_s_e_c_t_i_o_n holds the common elements of _S_e_t_1 and _S_e_t_2.
oorrdd__iinntteerrsseeccttiioonn((_+_S_e_t_1_, _+_S_e_t_2_, _?_I_n_t_e_r_s_e_c_t_i_o_n_, _?_D_i_f_f_e_r_e_n_c_e)) _[_d_e_t_]
_I_n_t_e_r_s_e_c_t_i_o_n and difference between two ordered sets. _I_n_t_e_r_s_e_c_t_i_o_n
is the intersection between _S_e_t_1 and _S_e_t_2, while _D_i_f_f_e_r_e_n_c_e is
defined by ord_subtract(Set2, Set1, Difference).
SSeeee aallssoo ord_intersection/3 and ord_subtract/3.
oorrdd__aadddd__eelleemmeenntt((_+_S_e_t_1_, _+_E_l_e_m_e_n_t_, _?_S_e_t_2)) _[_d_e_t_]
Insert an element into the set. This is the same as
ord_union(Set1, [Element], Set2).
oorrdd__ddeell__eelleemmeenntt((_+_S_e_t_, _+_E_l_e_m_e_n_t_, _-_N_e_w_S_e_t)) _[_d_e_t_]
Delete an element from an ordered set. This is the same as
ord_subtract(Set, [Element], NewSet).
oorrdd__sseelleeccttcchhkk((_+_I_t_e_m_, _?_S_e_t_1_, _?_S_e_t_2)) _[_s_e_m_i_d_e_t_]
Selectchk/3, specialised for ordered sets. Is true when
select(Item, Set1, Set2) and _S_e_t_1, _S_e_t_2 are both sorted lists
without duplicates. This implementation is only expected to work
for _I_t_e_m ground and either _S_e_t_1 or _S_e_t_2 ground. The "chk"
suffix is meant to remind you of memberchk/2, which also expects
its first argument to be ground. ord_selectchk(X, S, T) =>
ord_memberchk(X, S) & \+ ord_memberchk(X, T).
aauutthhoorr Richard O'Keefe
oorrdd__mmeemmbbeerrcchhkk((_+_E_l_e_m_e_n_t_, _+_O_r_d_S_e_t)) _[_s_e_m_i_d_e_t_]
True if _E_l_e_m_e_n_t is a member of _O_r_d_S_e_t, compared using ==. Note
that _e_n_u_m_e_r_a_t_i_n_g elements of an ordered set can be done using
member/2.
Some Prolog implementations also provide ord_member/2, with the
same semantics as ord_memberchk/2. We believe that having a
semidet ord_member/2 is unacceptably inconsistent with the *_chk
convention. Portable code should use ord_memberchk/2 or member/2.
aauutthhoorr Richard O'Keefe
oorrdd__ssuubbsseett((_+_S_u_b_, _+_S_u_p_e_r)) _[_s_e_m_i_d_e_t_]
Is true if all elements of _S_u_b are in _S_u_p_e_r
oorrdd__ssuubbttrraacctt((_+_I_n_O_S_e_t_, _+_N_o_t_I_n_O_S_e_t_, _-_D_i_f_f)) _[_d_e_t_]
_D_i_f_f is the set holding all elements of _I_n_O_S_e_t that are not in
_N_o_t_I_n_O_S_e_t.
oorrdd__uunniioonn((_+_S_e_t_O_f_S_e_t_s_, _-_U_n_i_o_n)) _[_d_e_t_]
True if _U_n_i_o_n is the union of all elements in the superset
_S_e_t_O_f_S_e_t_s. Each member of _S_e_t_O_f_S_e_t_s must be an ordered set, the
sets need not be ordered in any way.
aauutthhoorr Copied from YAP, probably originally by Richard
O'Keefe.
oorrdd__uunniioonn((_+_S_e_t_1_, _+_S_e_t_2_, _?_U_n_i_o_n)) _[_d_e_t_]
_U_n_i_o_n is the union of _S_e_t_1 and _S_e_t_2
oorrdd__uunniioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_U_n_i_o_n_, _-_N_e_w)) _[_d_e_t_]
True iff ord_union(Set1, Set2, Union) and
ord_subtract(Set2, Set1, New).
oorrdd__ssyymmddiiffff((_+_S_e_t_1_, _+_S_e_t_2_, _?_D_i_f_f_e_r_e_n_c_e)) _[_d_e_t_]
Is true when _D_i_f_f_e_r_e_n_c_e is the symmetric difference of _S_e_t_1 and
_S_e_t_2. I.e., _D_i_f_f_e_r_e_n_c_e contains all elements that are not in
the intersection of _S_e_t_1 and _S_e_t_2. The semantics is the same as
the sequence below (but the actual implementation requires only a
single scan).
____________________________________________________________________| |
| ord_union(Set1, Set2, Union), |
| ord_intersection(Set1, Set2, Intersection), |
||______ord_subtract(Union,_Intersection,_Difference).______________ ||
For example:
____________________________________________________________________| |
| ?- ord_symdiff([1,2], [2,3], X). |
||X_=_[1,3].________________________________________________________ ||
1122..2200 lliibbrraarryy((ppaaiirrss)):: OOppeerraattiioonnss oonn kkeeyy--vvaalluuee lliissttss
aauutthhoorr Jan Wielemaker
SSeeee aallssoo keysort/2, library(assoc)
This module implements common operations on Key-Value lists, also
known as _P_a_i_r_s. Pairs have great practical value, especially due to
keysort/2 and the library assoc.pl.
This library is based on disussion in the SWI-Prolog mailinglist,
including specifications from Quintus and a library proposal by Richard
O'Keefe.
ppaaiirrss__kkeeyyss__vvaalluueess((_?_P_a_i_r_s_, _?_K_e_y_s_, _?_V_a_l_u_e_s)) _[_d_e_t_]
True if _K_e_y_s holds the keys of _P_a_i_r_s and _V_a_l_u_e_s the values.
Deterministic if any argument is instantiated to a finite list and
the others are either free or finite lists. All three lists are in
the same order.
SSeeee aallssoo pairs_values/2 and pairs_keys/2.
ppaaiirrss__vvaalluueess((_+_P_a_i_r_s_, _-_V_a_l_u_e_s)) _[_d_e_t_]
Remove the keys from a list of Key-Value pairs. Same as
pairs_keys_values(Pairs, _, Values)
ppaaiirrss__kkeeyyss((_+_P_a_i_r_s_, _-_K_e_y_s)) _[_d_e_t_]
Remove the values from a list of Key-Value pairs. Same as
pairs_keys_values(Pairs, Keys, _)
ggrroouupp__ppaaiirrss__bbyy__kkeeyy((_+_P_a_i_r_s_, _-_J_o_i_n_e_d_:_l_i_s_t_(_K_e_y_-_V_a_l_u_e_s_))) _[_d_e_t_]
Group values with the same key. _P_a_i_r_s must be a key-sorted list.
For example:
____________________________________________________________________| |
| ?- group_pairs_by_key([a-2, a-1, b-4], X). |
| |
||X_=_[a-[2,1],_b-[4]]______________________________________________ ||
___________________________________________________________Arguments_
_P_a_i_r_s _K_e_y-Value list, sorted to the standard order of
terms (as keysort/2 does)
_J_o_i_n_e_d List of _K_e_y-Group, where Group is the list of
_V_a_l_u_e_s associated with _K_e_y.
ttrraannssppoossee__ppaaiirrss((_+_P_a_i_r_s_, _-_T_r_a_n_s_p_o_s_e_d)) _[_d_e_t_]
Swap Key-Value to Value-Key. The resulting list is sorted using
keysort/2 on the new key.
mmaapp__lliisstt__ttoo__ppaaiirrss((_:_F_u_n_c_t_i_o_n_, _+_L_i_s_t_, _-_K_e_y_e_d))
Create a Key-Value list by mapping each element of _L_i_s_t. For
example, if we have a list of lists we can create a list of
Length-_L_i_s_t using
____________________________________________________________________| |
||________map_list_to_pairs(length,_ListOfLists,_Pairs),____________ ||
1122..2211 lliibbrraarryy((ppeerrssiisstteennccyy)):: PPrroovviiddee ppeerrssiisstteenntt ddyynnaammiicc pprreeddiiccaatteess
TToo bbee ddoonnee
- Provide type safety while loading
- Thread safety must now be provided at the user-level.
Can we provide generic thread safety? Basically, this
means that we must wrap all exported predicates. That
might better be done outside this library.
- Transaction management?
- Should assert_<name> only assert if the database does
not contain a variant?
This module provides simple persistent storage for one or more dynamic
predicates. A database is always associated with a module. A module
that wishes to maintain a database must declare the terms that can be
placed in the database using the directive persistent/1.
The persistent/1 expands each declaration into four predicates:
o name(Arg, ...)
o assert_name(Arg, ...)
o retract_name(Arg, ...)
o retractall_name(Arg, ...)
As mentioned, a database can only be accessed from within a single
module. This limitation is on purpose, forcing the user to provide a
proper API for accessing the shared persistent data.
Below is a simple example:
________________________________________________________________________| |
|:- module(user_db, |
| [ attach_user_db/1, % +File |
| current_user_role/2, % ?User, ?Role |
| add_user/2, % +User, +Role |
| set_user_role/2 % +User, +Role |
| ]). |
|:- use_module(library(persistency)). |
| |
|:- persistent |
| user_role(name:atom, role:oneof([user,administrator])). |
| |
|attach_user_db(File) :- |
| db_attach(File, []). |
| |
|%% current_user_role(+Name, -Role) is semidet. |
| |
|current_user_role(Name, Role) :- |
| with_mutex(user_db, user_role(Name, Role)). |
| |
|add_user(Name, Role) :- |
| assert_user_role(Name, Role). |
| |
|set_user_role(Name, Role) :- |
| user_role(Name, Role), !. |
|set_user_role(Name, Role) :- |
| with_mutex(user_db, |
| ( retractall_user_role(Name, _), |
||_____________________assert_user_role(Name,_Role))).__________________ ||
ppeerrssiisstteenntt _+_S_p_e_c
Declare dynamic database terms. Declarations appear in a directive
and have the following format:
____________________________________________________________________| |
| :- persistent |
| <callable>, |
| <callable>, |
||________..._______________________________________________________ ||
Each specification is a callable term, following the conventions of
library(record), where each argument is of the form
____________________________________________________________________| |
||name:type_________________________________________________________ ||
Types are defined by library(error).
ccuurrrreenntt__ppeerrssiisstteenntt__pprreeddiiccaattee((_:_P_I)) _[_n_o_n_d_e_t_]
True if _P_I is a predicate that provides access to the persistent
database DB.
ddbb__aattttaacchh((_:_F_i_l_e_, _+_O_p_t_i_o_n_s))
Use _F_i_l_e as persistent database for the calling module. The
calling module must defined persistent/1 to declare the database
terms. Defined options:
ssyynncc((_+_S_y_n_c))
One of close (close journal after write), flush (default,
flush journal after write) or none (handle as fully buffered
stream).
ddbb__ssyynncc((_:_W_h_a_t))
Synchronise database with the associated file. _W_h_a_t is one of:
rreellooaadd
Database is reloaded from file
ggcc
Database was re-written, deleting all retractall statements.
This is the same as gc(50).
ggcc((_P_e_r_c_e_n_t_a_g_e))
GC DB if the number of deleted terms is the given percentage
of the total number of terms.
cclloossee
Database stream was closed
ddeettaacchh
Remove all registered persistency for the calling module
nnoopp
No-operation performed
With unbound _W_h_a_t, db_sync/1 reloads the database if it was
modified on disk, gc it if it is dirty and close it if it is
opened.
ddbb__ssyynncc__aallll((_+_W_h_a_t))
Sync all registered databases.
1122..2222 lliibbrraarryy((ppiioo)):: PPuurree II//OO
This library provides pure list-based I/O processing for Prolog, where
the communication to the actual I/O device is performed transparently
through coroutining. This module itself is just an interface to the
actual implementation modules.
1122..2222..11 lliibbrraarryy((ppuurree__iinnppuutt)):: PPuurree IInnppuutt ffrroomm ffiilleess
aauutthhoorr
- Ulrich Neumerkel
- Jan Wielemaker
TToo bbee ddoonnee
- Provide support for alternative input readers, e.g.
reading terms, tokens, etc.
- Support non-repositioning streams, such as sockets and
pipes.
This module is part of pio.pl, dealing with _p_u_r_e _i_n_p_u_t: processing
input streams from the outside world using pure predicates, notably
grammar rules (DCG). Using pure predicates makes non-deterministic
processing of input much simpler.
Pure input uses coroutining (freeze/2) to read input from the external
source into a list _o_n _d_e_m_a_n_d. The overhead of lazy reading is more
than compensated for by using block reads based on read_pending_input/3.
pphhrraassee__ffrroomm__ffiillee((_:_G_r_a_m_m_a_r_, _+_F_i_l_e)) _[_n_o_n_d_e_t_]
Process the content of _F_i_l_e using the DCG rule _G_r_a_m_m_a_r. The
space usage of this mechanism depends on the length of the not
committed part of _G_r_a_m_m_a_r. Committed parts of the temporary list
are reclaimed by the garbage collector, while the list is extended
on demand. Here is a very simple definition for searching a string
in a file:
____________________________________________________________________| |
| ... --> []|[_],... . |
| |
| file_contains(File, Pattern) :- |
| phrase_from_file((..., Pattern, ...), File). |
| |
| match_count(File, Pattern, Count) :- |
| findall(x, file_contains(File, Pattern), Xs), |
||________length(Xs,_Count).________________________________________ ||
This can be called as (note that the pattern must be a string (code
list)):
____________________________________________________________________| |
||?-_match_count('pure_input.pl',_"file",_Count).___________________ ||
pphhrraassee__ffrroomm__ffiillee((_:_G_r_a_m_m_a_r_, _+_F_i_l_e_, _+_O_p_t_i_o_n_s)) _[_n_o_n_d_e_t_]
As phrase_from_file/2, providing additional _O_p_t_i_o_n_s. _O_p_t_i_o_n_s are
passed to open/4, except for buffer_size, which is passed to
set_stream/2. If not specified, the default buffer size is 512
bytes. Of particular importance are the open/4 options type and
encoding.
pphhrraassee__ffrroomm__ssttrreeaamm((_:_G_r_a_m_m_e_r_, _+_S_t_r_e_a_m))
Helper for phrase_from_file/3. This predicate cooperates with
syntax_error//1 to generate syntax error locations for grammars.
ssyynnttaaxx__eerrrroorr((_+_E_r_r_o_r)) //
Throw the syntax error _E_r_r_o_r at the current location of the input.
This predicate is designed to be called from the handler of
phrase_from_file/3.
tthhrroowwss error(syntax_error(Error), Location)
llaazzyy__lliisstt__llooccaattiioonn((_-_L_o_c_a_t_i_o_n)) // _[_d_e_t_]
Determine current (error) location in a lazy list. True when
_L_o_c_a_t_i_o_n is an (error) location term that represents the current
location in the DCG list.
___________________________________________________________Arguments_
_L_o_c_a_t_i_o_n is a term file(Name, Line, LinePos, CharNo)
or stream(Stream, Line, LinePos, CharNo) if no
file is associated to the stream RestLazyList.
Finally, if the Lazy list is fully materialized
(ends in []), _L_o_c_a_t_i_o_n is unified with
end_of_file-CharCount.
SSeeee aallssoo lazy_list_character_count//1 only provides the
character count.
llaazzyy__lliisstt__cchhaarraacctteerr__ccoouunntt((_-_C_h_a_r_C_o_u_n_t)) //
True when _C_h_a_r_C_o_u_n_t is the current character count in the Lazy
list. The character count is computed by finding the distance to
the next frozen tail of the lazy list. _C_h_a_r_C_o_u_n_t is one of:
o An integer
o A term end_of_file-Count
SSeeee aallssoo lazy_list_location//1 provides full details of
the location for error reporting.
ssttrreeaamm__ttoo__llaazzyy__lliisstt((_+_S_t_r_e_a_m_, _-_L_i_s_t)) _[_d_e_t_]
Create a lazy list representing the character codes in _S_t_r_e_a_m. It
must be possible to reposition _S_t_r_e_a_m. _L_i_s_t is a list that ends in
a delayed goal. _L_i_s_t can be unified completely transparent to a
(partial) list and processed transparently using DCGs, but please
be aware that a lazy list is not the same as a materialized list in
all respects.
Typically, this predicate is used as a building block for more high
level safe predicates such as phrase_from_file/2.
TToo bbee ddoonnee Enhance of lazy list throughout the system.
1122..2233 lliibbrraarryy((pprreeddiiccaattee__ooppttiioonnss)):: DDeeccllaarree ooppttiioonn--pprroocceessssiinngg ooff pprreeddii--
ccaatteess
_D_i_s_c_u_s_s_i_o_n_s _w_i_t_h _J_e_f_f _S_c_h_u_l_t_z _h_e_l_p_e_d _s_h_a_p_i_n_g _t_h_i_s _l_i_b_r_a_r_y
1122..2233..11 TThhee ssttrreennggtthh aanndd wweeaakknneessss ooff pprreeddiiccaattee ooppttiioonnss
Many ISO predicates accept options, e.g., open/4, write_term/3.
Options offer an attractive alternative to proliferation into many
predicates and using high-arity predicates. Properly defined and used,
they also form a mechanism for extending the API of both system and
application predicates without breaking portability. I.e., previously
fixed behaviour can be replaced by dynamic behaviour controlled by an
option where the default is the previously defined fixed behaviour.
The alternative to using options is to add an additional argument
and maintain the previous definition. While a series of predicates
with increasing arity is adequate for a small number of additional
parameters, the untyped positional argument handling of Prolog quickly
makes this unmanageable.
The ISO standard uses the extensibility offered by options by allowing
implementations to extend the set of accepted options. While options
form a perfect solution to maintain backward portability in a linear
development model, it is not well equipped to deal with concurrent
branches because
1. There is no API to find which options are supported in a particular
implementation.
2. While the portability problem caused by a missing predicate in
Prolog _A can easily be solved by implementing this predicate, it is
much harder to add processing of an additional option to an already
existing predicate.
Different Prolog implementations can be seen as concurrent development
branches of the Prolog language. Different sets of supported options
pose a serious portability issue. Using an option _O that establishes
the desired behaviour on system _A leads (on most systems) to an error
or system _B. Porting may require several actions:
o Drop _O (if the option is not vital, such as the layout options to
write_term/3)
o Replace _O by _O_2 (i.e., a differently named option doing the same)
o Something else (cannot be ported; requires a totally different
approach, etc.)
Predicates that process options are particularly a problem when writing
a compatibility layer to run programs developed for System _A on System
_B because complete emulation is often hard, may cause a serious
slowdown and is often not needed because the application-to-be-ported
only uses options that are shared by all target Prolog implementations.
Unfortunately, the consequences of a partial emulation cannot be
assessed by tools.
1122..2233..22 OOppttiioonnss aass aarrgguummeennttss oorr eennvviirroonnmmeenntt??
We distinguish two views on options. One is to see them as additional
parameters that require strict existence, type and domain-checking and
the other is to consider them `locally scoped environment variables'.
Most systems adopt the first option. SWI-Prolog adopts the second:
it silently ignores options that are not supported but does type and
domain checking of option-values. The `environment' view is commonly
used in applications to create predicates supporting more options using
the skeleton below. This way of programming requires that _p_r_e_d_1 and
_p_r_e_d_2 do not interpret the same option differently. In cases where
this is not true, the options must be distributed by _s_o_m_e___p_r_e_d. We
have been using this programming style for many years and in practice
it turns out that the need for active distribution of options is
rare. I.e., options either have distinct names or multiple predicates
implement the same option but this has the desired effect. An example
of the latter is the encoding option, which typically needs to be
applied consistently.
________________________________________________________________________| |
|some_pred(..., Options) :- |
| pred1(..., Options), |
||_____pred2(...,_Options)._____________________________________________ ||
As stated before, options provide a readable alternative to high-arity
predicates and offer a robust mechanism to evolve the API, but at the
cost of some runtime overhead and weaker consistency checking, both
at compiletime and runtime. From our experience, the `environment'
approach is productive, but the consequence is that mistyped options
are silently ignored. The option infrastructure described in this
section tries to remedy these problems.
1122..2233..33 IImmpprroovviinngg oonn tthhee ccuurrrreenntt ssiittuuaattiioonn
Whether we see options as arguments or locally scoped environment
variables, the most obvious way to improve on the current situation is
to provide reflective support for options: discover that an argument
is an option-list and find what options are supported. Reflective
access to options can be used by the compiler and development
environment as well as by the runtime system to warn or throw errors.
1122..2233..33..11 OOppttiioonnss aass ttyyppeess
An obvious approach to deal with options is to define the different
possible option values as a type and type the argument that processes
the option as list(<option_type>), as illustrated below. Considering
options as types fully covers the case where we consider options as
additional parameters.
________________________________________________________________________| |
|:- type open_option ---> type(stream_type) | |
| alias(atom) | ... . |
|:-|pred_open(source_sink,_open_mode,_stream,_list(open_option))._______ | |
There are three reasons for considering a different approach:
o There is no consensus about types in the Prolog world, neither
about what types should look like, nor whether or not they are
desirable. It is not likely that this debate will be resolved
shortly.
o Considering options as types does not support the `environment'
view, which we consider the most productive.
o Even when using types, we need reflective access to what options
are provided in order to be able to write compile or runtime
conditional code.
1122..2233..33..22 RReefflleeccttiivvee aacccceessss ttoo ooppttiioonnss
From the above, we conclude that we require reflective access to
find out whether an option is supported and valid for a particular
predicate. Possible option values must be described by types. Due to
lack of a type system, we use library(error) to describe allowed option
values. Predicate options are declared using predicate_options/3:
pprreeddiiccaattee__ooppttiioonnss((_:_P_I_, _+_A_r_g_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Declare that the predicate _P_I processes options on _A_r_g. _O_p_t_i_o_n_s is
a list of options processed. Each element is one of:
o Option(ModeAndType) _P_I processes Option. The option-value
must comply to ModeAndType. Mode is one of + or - and Type is
a type as accepted by must_be/2.
o pass_to(:_P_I,_A_r_g) The option-list is passed to the indicated
predicate.
Below is an example that processes the option header(boolean) and
passes all options to open/4:
____________________________________________________________________| |
| :- predicate_options(write_xml_file/3, 3, |
| [ header(boolean), |
| pass_to(open/4, 4) |
| ]). |
| |
| write_xml_file(File, XMLTerm, Options) :- |
| open(File, write, Out, Options), |
| ( option(header(true), Option, true) |
| -> write_xml_header(Out) |
| ; true |
| ), |
||____...___________________________________________________________ ||
This predicate may only be used as a _d_i_r_e_c_t_i_v_e and is processed by
expand_term/2. Option processing can be specified at runtime using
assert_predicate_options/3, which is intended to support program
analysis.
aasssseerrtt__pprreeddiiccaattee__ooppttiioonnss((_:_P_I_, _+_A_r_g_, _+_O_p_t_i_o_n_s_, _?_N_e_w)) _[_s_e_m_i_d_e_t_]
As predicate_options(:_P_I, +_A_r_g, +_O_p_t_i_o_n_s). _N_e_w is a boolean
indicating whether the declarations have changed. If _N_e_w is
provided and false, the predicate becomes semidet and fails without
modifications if modifications are required.
The predicates below realise the support for compile and runtime
checking for supported options.
ccuurrrreenntt__pprreeddiiccaattee__ooppttiioonn((_:_P_I_, _?_A_r_g_, _?_O_p_t_i_o_n)) _[_n_o_n_d_e_t_]
True when _A_r_g of _P_I processes _O_p_t_i_o_n. For example, the following
is true:
____________________________________________________________________| |
| ?- current_predicate_option(open/4, 4, type(text)). |
||true._____________________________________________________________ ||
This predicate is intended to support conditional compilation using
if/1 ... endif/0. The predicate current_predicate_options/3 can
be used to access the full capabilities of a predicate.
cchheecckk__pprreeddiiccaattee__ooppttiioonn((_:_P_I_, _+_A_r_g_, _+_O_p_t_i_o_n)) _[_d_e_t_]
Verify predicate options at runtime. Similar to
current_predicate_option/3, but intended to support runtime
checking.
EErrrroorrss
- existence_error(option, OptionName) if the option
is not supported by _P_I.
- type_error(Type, Value) if the option is supported
but the value does not match the option type. See
must_be/2.
The predicates below can be used in a development environment to inform
the user about supported options. PceEmacs uses this for colouring
option names and values.
ccuurrrreenntt__ooppttiioonn__aarrgg((_:_P_I_, _?_A_r_g)) _[_n_o_n_d_e_t_]
True when _A_r_g of _P_I processes predicate options. Which options are
processed can be accessed using current_predicate_option/3.
ccuurrrreenntt__pprreeddiiccaattee__ooppttiioonnss((_:_P_I_, _?_A_r_g_, _?_O_p_t_i_o_n_s)) _[_n_o_n_d_e_t_]
True when _O_p_t_i_o_n_s is the current active option declaration for _P_I
on _A_r_g. See predicate_options/3for the argument descriptions. If
_P_I is ground and refers to an undefined predicate, the autoloader
is used to obtain a definition of the predicate.
The library can execute a complete check of your program using
check_predicate_options/0:
cchheecckk__pprreeddiiccaattee__ooppttiioonnss _[_d_e_t_]
Analyse loaded program for erroneous options. This predicate
decompiles the current program and searches for calls to predicates
that process options. For each option list, it validates whether
the provided options are supported and validates the argument
type. This predicate performs partial dataflow analysis to track
option-lists inside a clause.
SSeeee aallssoo derive_predicate_options/0 can be used to derive
declarations for predicates that pass options.
This predicate should normally be called before
check_predicate_options/0.
The library offers predicates that may be used to create declarations
for your application. These predicates are designed to cooperate with
the module system.
ddeerriivvee__pprreeddiiccaattee__ooppttiioonnss _[_d_e_t_]
Derive new predicate option declarations. This predicate analyses
the loaded program to find clauses that process options using one
of the predicates from library(option) or passes options to other
predicates that are known to process options. The process is
repeated until no new declarations are retrieved.
SSeeee aallssoo autoload/0 may be used to complete the loaded
program.
rreettrraaccttaallll__pprreeddiiccaattee__ooppttiioonnss _[_d_e_t_]
Remove all dynamically (derived) predicate options.
ddeerriivveedd__pprreeddiiccaattee__ooppttiioonnss((_:_P_I_, _?_A_r_g_, _?_O_p_t_i_o_n_s)) _[_n_o_n_d_e_t_]
Derive option arguments using static analysis. True when _O_p_t_i_o_n_s
is the current _d_e_r_i_v_e_d active option declaration for _P_I on _A_r_g.
ddeerriivveedd__pprreeddiiccaattee__ooppttiioonnss((_+_M_o_d_u_l_e)) _[_d_e_t_]
Derive predicate option declarations for a module. The derived
options are printed to the current_output stream.
1122..2244 lliibbrraarryy((pprroolloogg__ppaacckk)):: AA ppaacckkaaggee mmaannaaggeerr ffoorr PPrroolloogg
SSeeee aallssoo Installed packages can be inspected using
?- doc_browser.
TToo bbee ddoonnee
- Version logic
- Find and resolve conflicts
- Upgrade git packages
- Validate git packages
- Test packages: run tests from directory `test'.
The library(prolog_pack) provides the SWI-Prolog package manager. This
library lets you inspect installed packages, install packages, remove
packages, etc. It is complemented by the built-in attach_packs/0 that
makes installed packages available as libaries.
ppaacckk__lliisstt__iinnssttaalllleedd _[_d_e_t_]
List currently installed packages. Unlike pack_list/1, only
locally installed packages are displayed and no connection is made
to the internet.
SSeeee aallssoo Use pack_list/1 to find packages.
ppaacckk__iinnffoo((_+_P_a_c_k))
Print more detailed information about _P_a_c_k.
ppaacckk__sseeaarrcchh((_+_Q_u_e_r_y)) _[_d_e_t_]
ppaacckk__lliisstt((_+_Q_u_e_r_y)) _[_d_e_t_]
_Q_u_e_r_y package server and installed packages and display results.
_Q_u_e_r_y is matches case-insensitively against the name and title of
known and installed packages. For each matching package, a single
line is displayed that provides:
o Installation status
{{ pp: package, not installed
{{ ii: installed package; up-to-date with public version
{{ UU: installed package; can be upgraded
{{ AA: installed package; newer than publically available
{{ ll: installed package; not on server
o Name@Version
o Name@Version(ServerVersion)
o Title
Hint: ?- pack_list(''). lists all packages.
The predicates pack_list/1 and pack_search/1 are synonyms. Both
contact the package server at http://www.swi-prolog.org to find
available packages.
SSeeee aallssoo pack_list_installed/0 to list installed packages
without contacting the server.
ppaacckk__iinnssttaallll((_+_S_p_e_c_:_a_t_o_m)) _[_d_e_t_]
Install a package. _S_p_e_c is one of
o Archive file name
o HTTP URL of an archive file name. This URL may contain a star
(*) for the version. In this case pack_install asks for the
deirectory content and selects the latest version.
o GIT URL (not well supported yet)
o A local directory name
o A package name. This queries the package repository at
http://www.swi-prolog.org
After resolving the type of package, pack_install/2 is used to do
the actual installation.
ppaacckk__iinnssttaallll((_+_N_a_m_e_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Install package _N_a_m_e. Processes the options below. Default
options as would be used by pack_install/1are used to complete the
provided _O_p_t_i_o_n_s.
uurrll((_+_U_R_L))
Source for downloading the package
ppaacckkaaggee__ddiirreeccttoorryy((_+_D_i_r))
Directory into which to install the package
iinntteerraaccttiivvee((_+_B_o_o_l_e_a_n))
Use default answer without asking the user if there is a
default action.
ssiilleenntt((_+_B_o_o_l_e_a_n))
If true (default false), suppress informational progress
messages.
uuppggrraaddee((_+_B_o_o_l_e_a_n))
If true (default false), upgrade package if it is already
installed.
ggiitt((_+_B_o_o_l_e_a_n))
If true (default false unless _U_R_L ends with =.git=), assume
the URL is a GIT repository.
Non-interactive installation can be established using the option
interactive(false). It is adviced to install from a particular
_t_r_u_s_t_e_d URL instead of the plain pack name for unattented
operation.
ppaacckk__uurrll__ffiillee((_+_U_R_L_, _-_F_i_l_e)) _[_d_e_t_]
True if _F_i_l_e is a unique id for the referenced pack and version.
Normally, that is simply the base name, but GitHub archives destroy
this picture. Needed by the pack manager.
ppaacckk__rreebbuuiilldd((_+_P_a_c_k)) _[_d_e_t_]
Rebuilt possible foreign components of _P_a_c_k.
ppaacckk__rreebbuuiilldd _[_d_e_t_]
Rebuild foreign components of all packages.
eennvviirroonnmmeenntt((_-_N_a_m_e_, _-_V_a_l_u_e)) _[_n_o_n_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Hook to define the environment for building packs. This
Multifile hook extends the process environment for building foreign
extensions. A value provided by this hook overrules defaults
provided by def_environment/2. In addition to changing the
environment, this may be used to pass additional values to the
environment, as in:
____________________________________________________________________| |
| prolog_pack:environment('USER', User) :- |
||____getenv('USER',_User)._________________________________________ ||
___________________________________________________________Arguments_
_N_a_m_e is an atom denoting a valid variable name
_V_a_l_u_e is either an atom or number representing the
value of the variable.
ppaacckk__uuppggrraaddee((_+_P_a_c_k)) _[_s_e_m_i_d_e_t_]
Try to upgrade the package _P_a_c_k.
TToo bbee ddoonnee Update dependencies when updating a pack from
git?
ppaacckk__rreemmoovvee((_+_N_a_m_e)) _[_d_e_t_]
Remove the indicated package.
ppaacckk__pprrooppeerrttyy((_?_P_a_c_k_, _?_P_r_o_p_e_r_t_y)) _[_n_o_n_d_e_t_]
True when _P_r_o_p_e_r_t_y is a property of _P_a_c_k. This interface is
intended for programs that wish to interact with the package
manager. Defined properties are:
ddiirreeccttoorryy((_D_i_r_e_c_t_o_r_y))
_D_i_r_e_c_t_o_r_y into which the package is installed
vveerrssiioonn((_V_e_r_s_i_o_n))
Installed version
ttiittllee((_T_i_t_l_e))
Full title of the package
aauutthhoorr((_A_u_t_h_o_r))
Registered author
ddoowwnnllooaadd((_U_R_L))
Official download _U_R_L
rreeaaddmmee((_F_i_l_e))
Package README file (if present)
ttooddoo((_F_i_l_e))
Package TODO file (if present)
1122..2255 lliibbrraarryy((pprroolloogg__xxrreeff)):: CCrroossss--rreeffeerreennccee ddaattaa ccoolllleeccttiioonn lliibbrraarryy
This library collects information on defined and used objects in Prolog
source files. Typically these are predicates, but we expect the
library to deal with other types of objects in the future. The
library is a building block for tools doing dependency tracking in
applications. Dependency tracking is useful to reveal the structure of
an unknown program or detect missing components at compile time, but
also for program transformation or minimising a program saved state by
only saving the reachable objects.
This section gives a partial description of the library API, providing
some insight in how you can use it for analysing your program. The
library should be further modularized, moving its knowledge about, for
example, XPCE into a different file and allowing for adding knowledge
about other libraries such as Logtalk. PPlleeaassee ddoo nnoott ccoonnssiiddeerr tthhiiss
iinntteerrffaaccee rroocckk--ssoolliidd..
The library is exploited by two graphical tools in the SWI-Prolog
environment: the XPCE front-end started by gxref/0 and described in
section 3.7, and PceEmacs (section 3.4), which exploits this library
for its syntax colouring.
For all predicates described below, _S_o_u_r_c_e is the source that is
processed. This is normally a filename in any notation acceptable
to the file loading predicates (see load_files/2). Using the hooks
defined in section 12.25.1 it can be anything else that can be
translated into a Prolog stream holding Prolog source text. _C_a_l_l_a_b_l_e
is a callable term (see callable/1). Callables do not carry a module
qualifier unless the referred predicate is not in the module defined
_S_o_u_r_c_e.
xxrreeff__ssoouurrccee((_+_S_o_u_r_c_e))
Gather information on _S_o_u_r_c_e. If _S_o_u_r_c_e has already been processed
and is still up-to-date according to the file timestamp, no action
is taken. This predicate must be called on a file before
information can be gathered.
xxrreeff__ccuurrrreenntt__ssoouurrccee((_?_S_o_u_r_c_e))
_S_o_u_r_c_e has been processed.
xxrreeff__cclleeaann((_+_S_o_u_r_c_e))
Remove the information gathered for _S_o_u_r_c_e
xxrreeff__ddeeffiinneedd((_?_S_o_u_r_c_e_, _?_C_a_l_l_a_b_l_e_, _-_H_o_w))
_C_a_l_l_a_b_l_e is defined in _S_o_u_r_c_e. _H_o_w is one of
dynamic(_L_i_n_e) Declared dynamic at _L_i_n_e
thread_local(_L_i_n_e) Declared thread local at _L_i_n_e
multifile(_L_i_n_e) Declared multifile at _L_i_n_e
local(_L_i_n_e) First clause at _L_i_n_e
foreign(_L_i_n_e) Foreign library loaded at _L_i_n_e
constraint(_L_i_n_e) CHR Constraint at _L_i_n_e
imported(_F_i_l_e) Imported from _F_i_l_e
xxrreeff__ccaalllleedd((_?_S_o_u_r_c_e_, _?_C_a_l_l_a_b_l_e_, _?_B_y))
_C_a_l_l_a_b_l_e is called in _S_o_u_r_c_e by _B_y.
xxrreeff__eexxppoorrtteedd((_?_S_o_u_r_c_e_, _?_C_a_l_l_a_b_l_e))
_C_a_l_l_a_b_l_e is public (exported from the module).
xxrreeff__mmoodduullee((_?_S_o_u_r_c_e_, _?_M_o_d_u_l_e))
_S_o_u_r_c_e is a module file defining the given module.
xxrreeff__bbuuiilltt__iinn((_?_C_a_l_l_a_b_l_e))
True if _C_a_l_l_a_b_l_e is a built-in predicate. Currently this is
assumed for all predicates defined in the system module and having
the property built_in. Built-in predicates are not registered as
`called'.
1122..2255..11 EExxtteennddiinngg tthhee lliibbrraarryy
The library provides hooks for extending the rules it uses for finding
predicates called by some programming construct.
pprroolloogg::ccaalllleedd__bbyy((_+_G_o_a_l_, _-_C_a_l_l_e_d))
_G_o_a_l is a non-var subgoal appearing in the called object (typically
a clause body). If it succeeds it must return a list of goals
called by _G_o_a_l. As a special construct, if a term Callable +N
is returned, N variable arguments are added to _C_a_l_l_a_b_l_e before
further processing. For simple meta-calls a single fact suffices.
Complex rules as used in the html_write library provided by the
HTTP package examine the arguments and create a list of called
objects.
The current system cannot deal with the same name/arity in
different modules that behave differently with respect to called
arguments.
1122..2266 lliibbrraarryy((qquuaassii__qquuoottaattiioonnss)):: DDeeffiinnee QQuuaassii QQuuoottaattiioonn ssyynnttaaxx
aauutthhoorr Jan Wielemaker. Introduction of Quasi Quotation was
suggested by Michael Hendricks.
SSeeee aallssoo Why it's nice to be quoted: quasiquoting for haskell
Inspired by Haskell, SWI-Prolog support _q_u_a_s_i _q_u_o_t_a_t_i_o_n. Quasi
quotation allows for embedding (long) strings using the syntax of an
external language (e.g., HTML, SQL) in Prolog text and syntax-aware
embedding of Prolog variables in this syntax. At the same time, quasi
quotation provides an alternative to represent long strings and atoms
in Prolog.
The basic form of a quasi quotation is defined below. Here, _S_y_n_t_a_x
is an arbitrary Prolog term that must parse into a _c_a_l_l_a_b_l_e (atom or
compound) term and Quotation is an arbitrary sequence of characters,
not including the sequence |}. If this sequence needs to be embedded,
it must be escaped according to the rules of the target language or the
`quoter' must provide an escaping mechanism.
________________________________________________________________________| |
|{|Syntax||Quotation|}|_________________________________________________ | |
While reading a Prolog term, and if the Prolog flag quasi_quotes is
set to true (which is the case if this library is loaded), the parser
collects quasi quotations. After reading the final full stop, the
parser makes the call below. Here, _S_y_n_t_a_x_N_a_m_e is the functor name
of _S_y_n_t_a_x above and _S_y_n_t_a_x_A_r_g_s is a list holding the arguments, i.e.,
Syntax =.. [SyntaxName|SyntaxArgs]. Splitting the syntax into its name
and arguments is done to make the quasi quotation parser a predicate
with a consistent arity 4, regardless of the number of additional
arguments.
________________________________________________________________________| |
|call(+SyntaxName,|+Content,_+SyntaxArgs,_+VariableNames,_-Result)______ | |
The arguments are defined as
o _S_y_n_t_a_x_N_a_m_e is the principal functor of the quasi quotation syntax.
This must be declared using quasi_quotation_syntax/1and there must
be a predicate SyntaxName/4.
o _C_o_n_t_e_n_t is an opaque term that carries the content of the quasi
quoted material and position information about the source code. It
is passed to with_quasi_quote_input/3.
o _S_y_n_t_a_x_A_r_g_s carries the additional arguments of the _S_y_n_t_a_x. These
are commonly used to make the parameter passing between the clause
and the quasi quotation explicit. For example:
____________________________________________________________________| |
| ..., |
| {|html(Name, Address)|| |
| <tr><td>Name<td>Address</tr> |
||_____|}___________________________________________________________ ||
o _V_a_r_i_a_b_l_e_N_a_m_e_s is the complete variable dictionary of the clause
as it is made available throug read_term/3 with the option
variable_names. It is a list of terms Name = Var.
o _R_e_s_u_l_t is a variable that must be unified to resulting term.
Typically, this term is structured Prolog tree that carries a
(partial) representation of the abstract syntax tree with embedded
variables that pass the Prolog parameters. This term is normally
either passed to a predicate that serializes the abstract syntax
tree, or a predicate that processes the result in Prolog. For
example, HTML is commonly embedded for writing HTML documents
(see library(http/html_write)). Examples of languages that may be
embedded for processing in Prolog are SPARQL, RuleML or regular
expressions.
The file library(http/html_quasiquotations) provides the, suprisingly
simple, quasi quotation parser for HTML.
wwiitthh__qquuaassii__qquuoottaattiioonn__iinnppuutt((_+_C_o_n_t_e_n_t_, _-_S_t_r_e_a_m_, _:_G_o_a_l)) _[_d_e_t_]
Process the quasi-quoted _C_o_n_t_e_n_t using _S_t_r_e_a_m parsed by _G_o_a_l.
_S_t_r_e_a_m is a temporary stream with the following properties:
o Its initial _p_o_s_i_t_i_o_n represents the position of the start of
the quoted material.
o It is a text stream, using utf8 _e_n_c_o_d_i_n_g.
o It allows for repositioning
o It will be closed after _G_o_a_l completes.
___________________________________________________________Arguments_
_G_o_a_l is executed as once(Goal). _G_o_a_l must succeed.
Failure or exceptions from _G_o_a_l are interpreted
as syntax errors.
SSeeee aallssoo phrase_from_quasi_quotation/2 can be used to
process a quotation using a grammar.
pphhrraassee__ffrroomm__qquuaassii__qquuoottaattiioonn((_:_G_r_a_m_m_a_r_, _+_C_o_n_t_e_n_t)) _[_d_e_t_]
Process the quasi quotation using the DCG _G_r_a_m_m_a_r. Failure of the
grammer is interpreted as a syntax error.
SSeeee aallssoo with_quasi_quotation_input/3 for processing quo-
tations from stream.
qquuaassii__qquuoottaattiioonn__ssyynnttaaxx((_:_S_y_n_t_a_x_N_a_m_e)) _[_d_e_t_]
Declare the predicate _S_y_n_t_a_x_N_a_m_e/4 to implement the the quasi quote
syntax _S_y_n_t_a_x_N_a_m_e. Normally used as a directive.
qquuaassii__qquuoottaattiioonn__ssyynnttaaxx__eerrrroorr((_+_E_r_r_o_r))
Report syntax_error(Error) using the current location in the quasi
quoted input parser.
tthhrroowwss error(syntax_error(Error), Position)
1122..2277 lliibbrraarryy((rraannddoomm)):: RRaannddoomm nnuummbbeerrss
aauutthhoorr R.A. O'Keefe, V.S. Costa, L. Damas, Jan Wielemaker
SSeeee aallssoo Built-in function random/1: A is random(10)
This library is derived from the DEC10 library random. Later,
the core random generator was moved to C. The current version uses
the SWI-Prolog arithmetic functions to realise this library. These
functions are based on the GMP library.
rraannddoomm((_-_R_:_f_l_o_a_t)) _[_d_e_t_]
Binds _R to a new random float in the _o_p_e_n interval (0.0,1.0).
SSeeee aallssoo
- setrand/1, getrand/1 may be used to fetch/set the
state.
- In SWI-Prolog, random/1 is implemented by the
function random_float/0.
rraannddoomm__bbeettwweeeenn((_+_L_:_i_n_t_, _+_U_:_i_n_t_, _-_R_:_i_n_t)) _[_s_e_m_i_d_e_t_]
Binds _R to a random integer in [_L,_U] (i.e., including both _L and
_U). Fails silently if _U<_L.
rraannddoomm((_+_L_:_i_n_t_, _+_U_:_i_n_t_, _-_R_:_i_n_t)) _[_d_e_t_]
rraannddoomm((_+_L_:_f_l_o_a_t_, _+_U_:_f_l_o_a_t_, _-_R_:_f_l_o_a_t)) _[_d_e_t_]
Generate a random integer or float in a range. If _L and _U are both
integers, _R is a random integer in the half open interval [_L,_U). If
_L and _U are both floats, _R is a float in the open interval (_L,_U).
ddeepprreeccaatteedd Please use random/1 for generating a random
float and random_between/3 for generating a random
integer. Note that the random_between/3 includes the
upper bound, while this predicate excludes the upper
bound.
sseettrraanndd((_+_S_t_a_t_e)) _[_d_e_t_]
ggeettrraanndd((_-_S_t_a_t_e)) _[_d_e_t_]
Query/set the state of the random generator. This is intended for
restarting the generator at a known state only. The predicate
setrand/1 accepts an opaque term returned by getrand/1. This term
may be asserted, written and read. The application may not make
other assumptions about this term.
For compatibility reasons with older versions of this library,
setrand/1 also accepts a term rand(A,B,C), where A, B and C are
integers in the range 1..30,000. This argument is used to seed the
random generator. Deprecated.
EErrrroorrss existence_error(random_state, _) is raised if the
underlying infrastructure cannot fetch the random
state. This is currently the case if SWI-Prolog is
not compiled with the GMP library.
SSeeee aallssoo set_random/1 and random_property/1 provide the
SWI-Prolog native implementation.
mmaayybbee _[_s_e_m_i_d_e_t_]
Succeed/fail with equal probability (variant of maybe/1).
mmaayybbee((_+_P)) _[_s_e_m_i_d_e_t_]
Succeed with probability _P, fail with probability 1-_P
mmaayybbee((_+_K_, _+_N)) _[_s_e_m_i_d_e_t_]
Succeed with probability _K/_N (variant of maybe/1)
rraannddoomm__ppeerrmm22((_?_A_, _?_B_, _?_X_, _?_Y)) _[_s_e_m_i_d_e_t_]
Does _X=_A,_Y=_B or _X=_B,_Y=_A with equal probability.
rraannddoomm__mmeemmbbeerr((_-_X_, _+_L_i_s_t_:_l_i_s_t)) _[_s_e_m_i_d_e_t_]
_X is a random member of _L_i_s_t. Equivalent to random_between(1,
|_L_i_s_t|), followed by nth1/3. Fails of _L_i_s_t is the empty list.
CCoommppaattiibbiilliittyy Quintus and SICStus libraries.
rraannddoomm__sseelleecctt((_-_X_, _+_L_i_s_t_, _-_R_e_s_t)) _[_s_e_m_i_d_e_t_]
rraannddoomm__sseelleecctt((_+_X_, _-_L_i_s_t_, _+_R_e_s_t)) _[_d_e_t_]
Randomly select or insert an element. Either _L_i_s_t or _R_e_s_t must be
a list. Fails if _L_i_s_t is the empty list.
CCoommppaattiibbiilliittyy Quintus and SICStus libraries.
rraannddsseett((_+_K_:_i_n_t_, _+_N_:_i_n_t_, _-_S_:_l_i_s_t_(_i_n_t_))) _[_d_e_t_]
_S is a sorted list of _K unique random integers in the range 1.._N.
Implemented by enumerating 1.._N and deciding whether or not the
number should be part of the set. For example:
____________________________________________________________________| |
| ?- randset(5, 5, S). |
| S = [1, 2, 3, 4, 5]. (always) |
| ?- randset(5, 20, S). |
||S_=_[2,_7,_10,_19,_20].___________________________________________ ||
SSeeee aallssoo randseq/3.
bbuugg Slow if _N is large and _K is small.
rraannddsseeqq((_+_K_:_i_n_t_, _+_N_:_i_n_t_, _-_L_i_s_t_:_l_i_s_t_(_i_n_t_))) _[_d_e_t_]
S is a list of _K unique random integers in the range 1.._N. The
order is random. Works as if defined by the following code.
____________________________________________________________________| |
| randseq(K, N, List) :- |
| randset(K, N, Set), |
||______random_permutation(Set,_List).______________________________ ||
SSeeee aallssoo randset/3.
rraannddoomm__ppeerrmmuuttaattiioonn((_+_L_i_s_t_, _-_P_e_r_m_u_t_a_t_i_o_n)) _[_d_e_t_]
rraannddoomm__ppeerrmmuuttaattiioonn((_-_L_i_s_t_, _+_P_e_r_m_u_t_a_t_i_o_n)) _[_d_e_t_]
_P_e_r_m_u_t_a_t_i_o_n is a random permutation of _L_i_s_t. This is intended to
process the elements of _L_i_s_t in random order. The predicate is
symmetric.
EErrrroorrss instantiation_error, type_error(list, _).
1122..2288 lliibbrraarryy((rreeaadduuttiill)):: RReeaaddiinngg lliinneess,, ssttrreeaammss aanndd ffiilleess
This library contains primitives to read lines, files, multiple terms,
etc. The package clib provides a shared object (DLL) named readutil.
If the library can locate this shared object it will use the foreign
implementation for reading character codes. Otherwise it will use a
Prolog implementation. Distributed applications should make sure to
deliver the readutil shared object if performance of these predicates
is critical.
rreeaadd__lliinnee__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s))
Read the next line of input from _S_t_r_e_a_m and unify the result
with _C_o_d_e_s _a_f_t_e_r the line has been read. A line is ended by a
newline character or end-of-file. Unlike read_line_to_codes/3, this
predicate removes a trailing newline character.
On end-of-file the atom end_of_file is returned. See also
at_end_of_stream/[0,1].
rreeaadd__lliinnee__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s_, _?_T_a_i_l))
Difference-list version to read an input line to a list of
character codes. Reading stops at the newline or end-of-file
character, but unlike read_line_to_codes/2, the newline is retained
in the output. This predicate is especially useful for reading a
block of lines up to some delimiter. The following example reads
an HTTP header ended by a blank line:
____________________________________________________________________| |
| read_header_data(Stream, Header) :- |
| read_line_to_codes(Stream, Header, Tail), |
| read_header_data(Header, Stream, Tail). |
| |
| read_header_data("\r\n", _, _) :- !. |
| read_header_data("\n", _, _) :- !. |
| read_header_data("", _, _) :- !. |
| read_header_data(_, Stream, Tail) :- |
| read_line_to_codes(Stream, Tail, NewTail), |
||________read_header_data(Tail,_Stream,_NewTail).__________________ ||
rreeaadd__ssttrreeaamm__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s))
Read all input until end-of-file and unify the result to _C_o_d_e_s.
rreeaadd__ssttrreeaamm__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s_, _?_T_a_i_l))
Difference-list version of read_stream_to_codes/2.
rreeaadd__ffiillee__ttoo__ccooddeess((_+_S_p_e_c_, _-_C_o_d_e_s_, _+_O_p_t_i_o_n_s))
Read a file to a list of character codes. _S_p_e_c is a file
specification for absolute_file_name/3. _C_o_d_e_s is the resulting
code list. _O_p_t_i_o_n_s is a list of options for absolute_file_name/3
and open/4. In addition, the option tail(_T_a_i_l) is defined, forming
a difference-list.
rreeaadd__ffiillee__ttoo__tteerrmmss((_+_S_p_e_c_, _-_T_e_r_m_s_, _+_O_p_t_i_o_n_s))
Read a file to a list of Prolog terms (see read/1). _S_p_e_c
is a file specification for absolute_file_name/3. _T_e_r_m_s is the
resulting list of Prolog terms. _O_p_t_i_o_n_s is a list of options
for absolute_file_name/3 and open/4. In addition, the option
tail(_T_a_i_l) is defined, forming a difference-list.
1122..2299 lliibbrraarryy((rreeccoorrdd)):: AAcccceessss nnaammeedd ffiieellddss iinn aa tteerrmm
The library record provides named access to fields in a record
represented as a compound term such as point(X, Y). The Prolog world
knows various approaches to solve this problem, unfortunately with no
consensus. The approach taken by this library is proposed by Richard
O'Keefe on the SWI-Prolog mailinglist.
The approach automates a technique commonly described in Prolog
text-books, where access and modification predicates are defined for
the record type. Such predicates are subject to normal import/export
as well as analysis by cross-referencers. Given the simple nature of
the access predicates, an optimizing compiler can easily inline them
for optimal preformance.
A record is defined using the directive record/1. We introduce the
library with a short example:
________________________________________________________________________| |
|:- record point(x:integer=0, y:integer=0). |
| |
| ..., |
| default_point(Point), |
| point_x(Point, X), |
| set_x_of_point(10, Point, Point1), |
| |
||_______make_point([y(20)],_YPoint),___________________________________ ||
The principal functor and arity of the term used defines the name and
arity of the compound used as records. Each argument is described
using a term of the format below.
<_n_a_m_e>[:<_t_y_p_e>][=<_d_e_f_a_u_l_t>]
In this definition, <_n_a_m_e> is an atom defining the name of the argument,
<_t_y_p_e> is an optional type specification as defined by must_be/2 from
library error, and <_d_e_f_a_u_l_t> is the default initial value. The <_t_y_p_e>
defaults to any. If no default value is specified the default is an
unbound variable.
A record declaration creates a set of predicates through _t_e_r_m_-
_e_x_p_a_n_s_i_o_n. We describe these predicates below. In this description,
<_c_o_n_s_t_r_u_c_t_o_r> refers to the name of the record (`point' in the example
above) and <_n_a_m_e> to the name of an argument (field).
o _d_e_f_a_u_l_t__<_c_o_n_s_t_r_u_c_t_o_r>_(_-_R_e_c_o_r_d_)
Create a new record where all fields have their default values.
This is the same as make_<_c_o_n_s_t_r_u_c_t_o_r>([], Record).
o _m_a_k_e__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_F_i_e_l_d_s_, _-_R_e_c_o_r_d_)
Create a new record where specified fields have the specified
values and remaining fields have their default value. Each
field is specified as a term <_n_a_m_e>(<_v_a_l_u_e>). See example in the
introduction.
o _m_a_k_e__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_F_i_e_l_d_s_, _-_R_e_c_o_r_d_, _-_R_e_s_t_F_i_e_l_d_s_)
Same as make_<_c_o_n_s_t_r_u_c_t_o_r>/2, but named fields that do not appear in
_R_e_c_o_r_d are returned in _R_e_s_t_F_i_e_l_d_s. This predicate is motivated by
option-list processing. See library option.
o <_c_o_n_s_t_r_u_c_t_o_r>_<_n_a_m_e>_(_R_e_c_o_r_d_, _V_a_l_u_e_)
Unify _V_a_l_u_e with argument in _R_e_c_o_r_d named <_n_a_m_e>.
o <_c_o_n_s_t_r_u_c_t_o_r>__d_a_t_a_(_?_N_a_m_e_, _+_R_e_c_o_r_d_, _?_V_a_l_u_e_)
True when _V_a_l_u_e is the value for the field named _N_a_m_e in _R_e_c_o_r_d.
This predicate does not perform type-checking.
o _s_e_t__<_n_a_m_e>__o_f__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_V_a_l_u_e_, _+_O_l_d_R_e_c_o_r_d_, _-_N_e_w_R_e_c_o_r_d_)
Replace the value for <_n_a_m_e> in _O_l_d_R_e_c_o_r_d by _V_a_l_u_e and unify the
result with _N_e_w_R_e_c_o_r_d.
o _s_e_t__<_n_a_m_e>__o_f__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_V_a_l_u_e_, _!_R_e_c_o_r_d_)
Destructively replace the argument <_n_a_m_e> in _R_e_c_o_r_d by _V_a_l_u_e based
on setarg/3. Use with care.
o _n_b___s_e_t__<_n_a_m_e>__o_f__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_V_a_l_u_e_, _!_R_e_c_o_r_d_)
As above, but using non-backtrackable assignment based on
nb_setarg/3. Use with _e_x_t_r_e_m_e care.
o _s_e_t__<_c_o_n_s_t_r_u_c_t_o_r>__f_i_e_l_d_s_(_+_F_i_e_l_d_s_, _+_R_e_c_o_r_d_0_, _-_R_e_c_o_r_d_)
Set multiple fields using the same syntax as make_<_c_o_n_s_t_r_u_c_t_o_r>/2,
but starting with _R_e_c_o_r_d_0 rather than the default record.
o _s_e_t__<_c_o_n_s_t_r_u_c_t_o_r>__f_i_e_l_d_s_(_+_F_i_e_l_d_s_, _+_R_e_c_o_r_d_0_, _-_R_e_c_o_r_d_, _-_R_e_s_t_F_i_e_l_d_s_)
Similar to set_<_c_o_n_s_t_r_u_c_t_o_r>_fields/4, but fields not defined by
<_c_o_n_s_t_r_u_c_t_o_r> are returned in _R_e_s_t_F_i_e_l_d_s.
o _s_e_t__<_c_o_n_s_t_r_u_c_t_o_r>__f_i_e_l_d_(_+_F_i_e_l_d_, _+_R_e_c_o_r_d_0_, _-_R_e_c_o_r_d_)
Set a single field specified as a term <_n_a_m_e>(<_v_a_l_u_e>).
rreeccoorrdd((_+_S_p_e_c))
The construct :- record Spec, ... is used to define access to
named fields in a compound. It is subject to term-expansion
(see expand_term/2) and cannot be called as a predicate. See
section 12.29 for details.
1122..3300 lliibbrraarryy((rreeggiissttrryy)):: MMaanniippuullaattiinngg tthhee WWiinnddoowwss rreeggiissttrryy
The registry is only available on the MS-Windows version of SWI-Prolog.
It loads the foreign extension plregtry.dll, providing the predicates
described below. This library only makes the most common operations
on the registry available through the Prolog user. The underlying DLL
provides a more complete coverage of the Windows registry API. Please
consult the sources in pl/src/win32/foreign/plregtry.c for further
details.
In all these predicates, _P_a_t_h refers to a `/' separated path into
the registry. This is _n_o_t an atom containing `/'-characters as used
for filenames, but a term using the functor //2. Windows defines
the following roots for the registry: classes_root, current_user,
local_machine and users.
rreeggiissttrryy__ggeett__kkeeyy((_+_P_a_t_h_, _-_V_a_l_u_e))
Get the principal (default) value associated to this key. Fails
silently if the key does not exist.
rreeggiissttrryy__ggeett__kkeeyy((_+_P_a_t_h_, _+_N_a_m_e_, _-_V_a_l_u_e))
Get a named value associated to this key.
rreeggiissttrryy__sseett__kkeeyy((_+_P_a_t_h_, _+_V_a_l_u_e))
Set the principal (default) value of this key. Creates (a path to)
the key if it does not already exist.
rreeggiissttrryy__sseett__kkeeyy((_+_P_a_t_h_, _+_N_a_m_e_, _+_V_a_l_u_e))
Associate a named value to this key. Creates (a path to) the key
if it does not already exist.
rreeggiissttrryy__ddeelleettee__kkeeyy((_+_P_a_t_h))
Delete the indicated key.
sshheellll__rreeggiisstteerr__ffiillee__ttyyppee((_+_E_x_t_, _+_T_y_p_e_, _+_N_a_m_e_, _+_O_p_e_n_A_c_t_i_o_n))
Register a file-type. _E_x_t is the extension to associate. _T_y_p_e
is the type name, often something like prolog.type. _N_a_m_e is the
name visible in the Windows file-type browser. Finally, _O_p_e_n_A_c_t_i_o_n
defines the action to execute when a file with this extension is
opened in the Windows explorer.
sshheellll__rreeggiisstteerr__ddddee((_+_T_y_p_e_, _+_A_c_t_i_o_n_, _+_S_e_r_v_i_c_e_, _+_T_o_p_i_c_, _+_C_o_m_m_a_n_d_, _+_I_f_N_o_t_R_u_n_n_i_n_g))
Associate DDE actions to a type. _T_y_p_e is the same type as used for
the 2nd argument of shell_register_file_type/4, _A_c_t_i_o_n is the action
to perform, _S_e_r_v_i_c_e and _T_o_p_i_c specify the DDE topic to address,
and _C_o_m_m_a_n_d is the command to execute on this topic. Finally,
_I_f_N_o_t_R_u_n_n_i_n_g defines the command to execute if the required DDE
server is not present.
sshheellll__rreeggiisstteerr__pprroolloogg((_+_E_x_t))
Default registration of SWI-Prolog, which is invoked as part of the
initialisation process on Windows systems. As the source also
includes the above predicates, it is given as an example:
____________________________________________________________________| |
| shell_register_prolog(Ext) :- |
| current_prolog_flag(argv, [Me|_]), |
| atomic_list_concat(['"', Me, '" "%1"'], OpenCommand), |
| shell_register_file_type( |
| Ext, 'prolog.type', 'Prolog Source', OpenCommand), |
| shell_register_dde( |
| 'prolog.type', consult, |
| prolog, control, 'consult(''%1'')', Me), |
| shell_register_dde( |
| 'prolog.type', edit, |
||____________prolog,_control,_'edit(''%1'')',_Me)._________________ ||
1122..3311 lliibbrraarryy((ssiimmpplleexx)):: SSoollvvee lliinneeaarr pprrooggrraammmmiinngg pprroobblleemmss
Author: _M_a_r_k_u_s _T_r_i_s_k_a
A linear programming problem consists of a set of (linear) constraints,
a number of variables and a linear objective function. The goal is
to assign values to the variables so as to maximize (or minimize) the
value of the objective function while satisfying all constraints.
Many optimization problems can be modeled in this way. Consider having
a knapsack with fixed capacity C, and a number of items with sizes s(i)
and values v(i). The goal is to put as many items as possible in the
knapsack (not exceeding its capacity) while maximizing the sum of their
values.
As another example, suppose you are given a set of coins with certain
values, and you are to find the minimum number of coins such that their
values sum up to a fixed amount. Instances of these problems are
solved below.
The simplex module provides the following predicates:
aassssiiggnnmmeenntt((_+_C_o_s_t_, _-_A_s_s_i_g_n_m_e_n_t))
Solves an assignment problem. _C_o_s_t is a list of lists representing
the quadratic cost matrix, where element (i,j) denotes the integer
cost of assigning entity i to entity j. An assignment with minimal
cost is computed and unified with _A_s_s_i_g_n_m_e_n_t as a list of lists,
representing an adjacency matrix.
ccoonnssttrraaiinntt((_+_C_o_n_s_t_r_a_i_n_t_, _+_S_0_, _-_S))
Adds a linear or integrality constraint to the linear program
corresponding to state _S_0. A linear constraint is of the form
"Left Op C", where "Left" is a list of Coefficient*Variable terms
(variables in the context of linear programs can be atoms or
compound terms) and C is a non-negative numeric constant. The list
represents the sum of its elements. _O_p can be =, =< or >=. The
coefficient "1" can be omitted. An integrality constraint is of
the form integral(Variable) and constrains Variable to an integral
value.
ccoonnssttrraaiinntt((_+_N_a_m_e_, _+_C_o_n_s_t_r_a_i_n_t_, _+_S_0_, _-_S))
Like constraint/3, and attaches the name _N_a_m_e (an atom or compound
term) to the new constraint.
ccoonnssttrraaiinntt__aadddd((_+_N_a_m_e_, _+_L_e_f_t_, _+_S_0_, _-_S))
_L_e_f_t is a list of Coefficient*Variable terms. The terms are added
to the left-hand side of the constraint named _N_a_m_e. _S is unified
with the resulting state.
ggeenn__ssttaattee((_-_S_t_a_t_e))
Generates an initial state corresponding to an empty linear
program.
mmaaxxiimmiizzee((_+_O_b_j_e_c_t_i_v_e_, _+_S_0_, _-_S))
Maximizes the objective function, stated as a list of "Coeffi-
cient*Variable" terms that represents the sum of its elements, with
respect to the linear program corresponding to state _S_0. _S is
unified with an internal representation of the solved instance.
mmiinniimmiizzee((_+_O_b_j_e_c_t_i_v_e_, _+_S_0_, _-_S))
Analogous to maximize/3.
oobbjjeeccttiivvee((_+_S_t_a_t_e_, _-_O_b_j_e_c_t_i_v_e))
Unifies _O_b_j_e_c_t_i_v_e with the result of the objective function at the
obtained extremum. _S_t_a_t_e must correspond to a solved instance.
sshhaaddooww__pprriiccee((_+_S_t_a_t_e_, _+_N_a_m_e_, _-_V_a_l_u_e))
Unifies _V_a_l_u_e with the shadow price corresponding to the linear
constraint whose name is _N_a_m_e. _S_t_a_t_e must correspond to a solved
instance.
ttrraannssppoorrttaattiioonn((_+_S_u_p_p_l_i_e_s_, _+_D_e_m_a_n_d_s_, _+_C_o_s_t_s_, _-_T_r_a_n_s_p_o_r_t))
Solves a transportation problem. _S_u_p_p_l_i_e_s and _D_e_m_a_n_d_s must be
lists of non-negative integers. Their respective sums must be
equal. _C_o_s_t_s is a list of lists representing the cost matrix,
where an entry (i,j) denotes the integer cost of transporting one
unit from i to j. A transportation plan having minimum cost is
computed and unified with _T_r_a_n_s_p_o_r_t in the form of a list of lists
that represents the transportation matrix, where element (i,j)
denotes how many units to ship from i to j.
vvaarriiaabbllee__vvaalluuee((_+_S_t_a_t_e_, _+_V_a_r_i_a_b_l_e_, _-_V_a_l_u_e))
_V_a_l_u_e is unified with the value obtained for _V_a_r_i_a_b_l_e. _S_t_a_t_e must
correspond to a solved instance.
All numeric quantities are converted to rationals via rationalize/1,
and rational arithmetic is used throughout solving linear programs. In
the current implementation, all variables are implicitly constrained
to be non-negative. This may change in future versions, and
non-negativity constraints should therefore be stated explicitly.
1122..3311..11 EExxaammppllee 11
This is the "radiation therapy" example, taken from "Introduction to
Operations Research" by Hillier and Lieberman. DCG notation is used to
implicitly thread the state through posting the constraints:
________________________________________________________________________| |
|:- use_module(library(simplex)). |
| |
|post_constraints --> |
| constraint([0.3*x1, 0.1*x2] =< 2.7), |
| constraint([0.5*x1, 0.5*x2] = 6), |
| constraint([0.6*x1, 0.4*x2] >= 6), |
| constraint([x1] >= 0), |
| constraint([x2] >= 0). |
| |
|radiation(S) :- |
| gen_state(S0), |
| post_constraints(S0, S1), |
||_______minimize([0.4*x1,_0.5*x2],_S1,_S)._____________________________ ||
An example query:
________________________________________________________________________| |
|?- radiation(S), variable_value(S, x1, Val1), |
| variable_value(S, x2, Val2). |
| |
|Val1 = 15 rdiv 2 |
|Val2|=_9_rdiv_2_;______________________________________________________ | |
1122..3311..22 EExxaammppllee 22
Here is an instance of the knapsack problem described above, where C
= 8, and we have two types of items: One item with value 7 and size
6, and 2 items each having size 4 and value 4. We introduce two
variables, x(1) and x(2) that denote how many items to take of each
type.
________________________________________________________________________| |
|knapsack_constrain(S) :- |
| gen_state(S0), |
| constraint([6*x(1), 4*x(2)] =< 8, S0, S1), |
| constraint([x(1)] =< 1, S1, S2), |
| constraint([x(2)] =< 2, S2, S). |
| |
|knapsack(S) :- |
| knapsack_constrain(S0), |
||_______maximize([7*x(1),_4*x(2)],_S0,_S)._____________________________ ||
An example query yields:
________________________________________________________________________| |
|?- knapsack(S), variable_value(S, x(1), X1), |
| variable_value(S, x(2), X2). |
| |
|X1 = 1 |
|X2|=_1_rdiv_2_;________________________________________________________ | |
That is, we are to take the one item of the first type, and half of one
of the items of the other type to maximize the total value of items in
the knapsack.
If items can not be split, integrality constraints have to be imposed:
________________________________________________________________________| |
|knapsack_integral(S) :- |
| knapsack_constrain(S0), |
| constraint(integral(x(1)), S0, S1), |
| constraint(integral(x(2)), S1, S2), |
||_______maximize([7*x(1),_4*x(2)],_S2,_S)._____________________________ ||
Now the result is different:
________________________________________________________________________| |
|?- knapsack_integral(S), variable_value(S, x(1), X1), |
| variable_value(S, x(2), X2). |
| |
|X1 = 0 |
|X2|=_2_________________________________________________________________ | |
That is, we are to take only the two items of the second type.
Notice in particular that always choosing the remaining item with best
performance (ratio of value to size) that still fits in the knapsack
does not necessarily yield an optimal solution in the presence of
integrality constraints.
1122..3311..33 EExxaammppllee 33
We are given 3 coins each worth 1, 20 coins each worth 5, and 10 coins
each worth 20 units of money. The task is to find a minimal number of
these coins that amount to 111 units of money. We introduce variables
c(1), c(5) and c(20) denoting how many coins to take of the respective
type:
________________________________________________________________________| |
|coins --> |
| constraint([c(1), 5*c(5), 20*c(20)] = 111), |
| constraint([c(1)] =< 3), |
| constraint([c(5)] =< 20), |
| constraint([c(20)] =< 10), |
| constraint([c(1)] >= 0), |
| constraint([c(5)] >= 0), |
| constraint([c(20)] >= 0), |
| constraint(integral(c(1))), |
| constraint(integral(c(5))), |
| constraint(integral(c(20))), |
| minimize([c(1), c(5), c(20)]). |
| |
|coins(S) :- |
| gen_state(S0), |
||_______coins(S0,_S).__________________________________________________ ||
An example query:
________________________________________________________________________| |
|?- coins(S), variable_value(S, c(1), C1), |
| variable_value(S, c(5), C5), |
| variable_value(S, c(20), C20). |
| |
|C1 = 1 |
|C5 = 2 |
|C20|=_5________________________________________________________________ | |
1122..3322 lliibbrraarryy((ssoolluuttiioonn__sseeqquueenncceess)):: MMooddiiffyy ssoolluuttiioonn sseeqquueenncceess
SSeeee aallssoo
- all solution predicates findall/3, bagof/3 and setof/3.
- library(aggregate)
The meta predicates of this library modify the sequence of solutions
of a goal. The modifications and the predicate names are based on
the classical database operations DISTINCT, LIMIT, OFFSET, ORDER BY and
GROUP BY.
These predicates were introduced in the context of the SWISH Prolog
browser-based shell, which can represent the solutions to a predicate
as a table. Notably wrapping a goal in distinct/1 avoids duplicates in
the result table and using order_by/2 produces a nicely ordered table.
However, the predicates from this library can also be used to stay
longer within the clean paradigm where non-deterministic predicates
are composed from simpler non-deterministic predicates by means of
conjunction and disjunction. While evaluating a conjunction, we might
want to eliminate duplicates of the first part of the conjunction.
Below we give both the classical solution for solving variations of
(a(X), b(X)) and the ones using this library side-by-side.
____________________________________________________________________| |
AAvvooiidd||dduupplliiccaatteesssooffeeeaarrlliieerrtsstteeppssof(X, a(X), Xs), distinct(a(X)), |
| member(X, Xs), b(X) |
||__b(X).___________________________________________________________ ||
Note that the distinct/1 based solution returns the first result of
distinct(a(X)) immediately after a/1 produces a result, while the
setof/3 based solution will first compute all results of a/1.
____________________________________________________________________| |
OOnnllyy|ttrryysb(X)eoonnllyytffoorrotthheefttoopp--1100(a(X)X, a(X), Xs), limit(10, order_by([desc(X)], a(X))),|
| reverse(Xs, Desc), b(X) |
| first_max_n(10, Desc, Limit), |
| member(X, Limit), |
||__b(X)____________________________________________________________ ||
Here we see power of composing primitives from this library and
staying within the paradigm of pure non-deterministic relational
predicates.
ddiissttiinncctt((_:_G_o_a_l))
ddiissttiinncctt((_?_W_i_t_n_e_s_s_, _:_G_o_a_l))
True if _G_o_a_l is true and no previous solution of _G_o_a_l bound
_W_i_t_n_e_s_s to the same value. The variant distinct/1 is equivalent
to distinct(Goal,Goal). Semantically, distinct/1 is the same as
the code below, but answers are returned as soon as they become
available rather than first computing the complete answer set.
____________________________________________________________________| |
| distinct(Goal) :- |
| findall(Goal, Goal, List), |
| list_to_set(List, Set), |
||____member(Goal,_Set).____________________________________________ ||
lliimmiitt((_+_C_o_u_n_t_, _:_G_o_a_l))
Limit the number of solutions. True if _G_o_a_l is true, returning
at most _C_o_u_n_t solutions. Solutions are returned as soon as they
become available.
ooffffsseett((_+_C_o_u_n_t_, _:_G_o_a_l))
Ignore the first _C_o_u_n_t solutions. True if _G_o_a_l is true and
produces more than _C_o_u_n_t solutions. This predicate computes and
ignores the first _C_o_u_n_t solutions.
oorrddeerr__bbyy((_S_p_e_c_, _G_o_a_l))
Order solutions according to _S_p_e_c. _S_p_e_c is a list of terms, where
each element is one of. The ordering of solutions of _G_o_a_l that
only differ in variables that are _n_o_t shared with _S_p_e_c is not
changed.
aasscc((_T_e_r_m))
Order solution according to ascending _T_e_r_m
ddeesscc((_T_e_r_m))
Order solution according to descending _T_e_r_m
ggrroouupp__bbyy((_+_B_y_, _+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_B_a_g)) _[_n_o_n_d_e_t_]
Group bindings of _T_e_m_p_l_a_t_e that have the same value for _B_y. This
predicate is almost the same as bagof/3, but instead of specifying
the existential variables we specify the free variables. It
is provided for consistency and complete coverage of the common
database vocabulary.
1122..3333 lliibbrraarryy((tthhrreeaadd__ppooooll)):: RReessoouurrccee bboouunnddeedd tthhrreeaadd mmaannaaggeemmeenntt
SSeeee aallssoo http_handler/3 and http_spawn/2.
The module library(thread_pool) manages threads in pools. A pool
defines properties of its member threads and the maximum number of
threads that can coexist in the pool. The call thread_create_in_pool/4
allocates a thread in the pool, just like thread_create/3. If the pool
is fully allocated it can be asked to wait or raise an error.
The library has been designed to deal with server applications that
receive a variety of requests, such as HTTP servers. Simply starting a
thread for each request is a bit too simple minded for such servers:
o Creating many CPU intensive threads often leads to a slow-down
rather than a speedup.
o Creating many memory intensive threads may exhaust resources
o Tasks that require little CPU and memory but take long waiting for
external resources can run many threads.
Using this library, one can define a pool for each set of tasks with
comparable characteristics and create threads in this pool. Unlike the
worker-pool model, threads are not started immediately. Depending on
the design, both approaches can be attractive.
The library is implemented by means of a manager thread with the
fixed thread id __thread_pool_manager. All state is maintained in
this manager thread, which receives and processes requests to create
and destroy pools, create threads in a pool and handle messages from
terminated threads. Thread pools are _n_o_t saved in a saved state and
must therefore be recreated using the initialization/1 directive or
otherwise during startup of the application.
tthhrreeaadd__ppooooll__ccrreeaattee((_+_P_o_o_l_, _+_S_i_z_e_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Create a pool of threads. A pool of threads is a declaration
for creating threads with shared properties (stack sizes) and
a limited number of threads. Threads are created using
thread_create_in_pool/4. If all threads in the pool are in use,
the behaviour depends on the wait option of thread_create_in_pool/4
and the backlog option described below. _O_p_t_i_o_n_s are passed to
thread_create/3, except for
bbaacckklloogg((_+_M_a_x_B_a_c_k_L_o_g))
Maximum number of requests that can be suspended. Default is
infinite. Otherwise it must be a non-negative integer. Using
backlog(0) will never delay thread creation for this pool.
The pooling mechanism does _n_o_t interact with the detached state of
a thread. Threads can be created both detached and normal and must
be joined using thread_join/2 if they are not detached.
tthhrreeaadd__ppooooll__ddeessttrrooyy((_+_N_a_m_e)) _[_d_e_t_]
Destroy the thread pool named _N_a_m_e.
EErrrroorrss existence_error(thread_pool, Name).
ccuurrrreenntt__tthhrreeaadd__ppooooll((_?_N_a_m_e)) _[_n_o_n_d_e_t_]
True if _N_a_m_e refers to a defined thread pool.
tthhrreeaadd__ppooooll__pprrooppeerrttyy((_?_N_a_m_e_, _?_P_r_o_p_e_r_t_y)) _[_n_o_n_d_e_t_]
True if _P_r_o_p_e_r_t_y is a property of thread pool _N_a_m_e. Defined
properties are:
ooppttiioonnss((_O_p_t_i_o_n_s))
Thread creation options for this pool
ffrreeee((_S_i_z_e))
Number of free slots on this pool
ssiizzee((_S_i_z_e))
Total number of slots on this pool
mmeemmbbeerrss((_L_i_s_t_O_f_I_D_s))
_L_i_s_t_O_f_I_D_s is the list or threads running in this pool
rruunnnniinngg((_R_u_n_n_i_n_g))
Number of running threads in this pool
bbaacckklloogg((_S_i_z_e))
Number of delayed thread creations on this pool
tthhrreeaadd__ccrreeaattee__iinn__ppooooll((_+_P_o_o_l_, _:_G_o_a_l_, _-_I_d_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Create a thread in _P_o_o_l. _O_p_t_i_o_n_s overrule default thread creation
options associated to the pool. In addition, the following option
is defined:
wwaaiitt((_+_B_o_o_l_e_a_n))
If true (default) and the pool is full, wait until a member of
the pool completes. If false, throw a resource_error.
EErrrroorrss
- resource_error(threads_in_pool(Pool)) is raised if
wait is false or the backlog limit has been reached.
- existence_error(thread_pool, Pool) if _P_o_o_l does not
exist.
ccrreeaattee__ppooooll((_+_P_o_o_l_N_a_m_e)) _[_s_e_m_i_d_e_t_,_m_u_l_t_i_f_i_l_e_]
Hook to create a thread pool lazily. The hook is called if
thread_create_in_pool/4 discovers that the thread pool does not
exist. If the hook succeeds, thread_create_in_pool/4 retries
creating the thread. For example, we can use the following
declaration to create threads in the pool media, which holds a
maximum of 20 threads.
____________________________________________________________________| |
| :- multifile thread_pool:create_pool/1. |
| |
| thread_pool:create_pool(media) :- |
||____thread_pool_create(media,_20,_[]).____________________________ ||
1122..3344 lliibbrraarryy((uuggrraapphhss)):: UUnnwweeiigghhtteedd GGrraapphhss
Authors: _R_i_c_h_a_r_d _O_'_K_e_e_f_e _& _V_i_t_o_r _S_a_n_t_o_s _C_o_s_t_a
_I_m_p_l_e_m_e_n_t_a_t_i_o_n _a_n_d _d_o_c_u_m_e_n_t_a_t_i_o_n _a_r_e _c_o_p_i_e_d _f_r_o_m _Y_A_P _5_._0_._1_.
_T_h_e ugraph _l_i_b_r_a_r_y _i_s _b_a_s_e_d _o_n _c_o_d_e _o_r_i_g_i_n_a_l_l_y _w_r_i_t_t_e_n
_b_y _R_i_c_h_a_r_d _O_'_K_e_e_f_e_. _T_h_e _c_o_d_e _w_a_s _t_h_e_n _e_x_t_e_n_d_e_d _t_o _b_e
_c_o_m_p_a_t_i_b_l_e _w_i_t_h _t_h_e _S_I_C_S_t_u_s _P_r_o_l_o_g _u_g_r_a_p_h_s _l_i_b_r_a_r_y_. _C_o_d_e _a_n_d
_d_o_c_u_m_e_n_t_a_t_i_o_n _h_a_v_e _b_e_e_n _c_l_e_a_n_e_d _a_n_d _s_t_y_l_e _h_a_s _b_e_e_n _c_h_a_n_g_e_d _t_o
_b_e _m_o_r_e _i_n _l_i_n_e _w_i_t_h _t_h_e _r_e_s_t _o_f _S_W_I_-_P_r_o_l_o_g_.
_T_h_e _u_g_r_a_p_h_s _l_i_b_r_a_r_y _w_a_s _o_r_i_g_i_n_a_l_l_y _r_e_l_e_a_s_e_d _i_n _t_h_e _p_u_b_l_i_c
_d_o_m_a_i_n_. _T_h_e _Y_A_P _v_e_r_s_i_o_n _i_s _c_o_v_e_r_e_d _b_y _t_h_e _P_e_r_l _A_r_t_i_s_t_i_c
_l_i_c_e_n_s_e_, _v_e_r_s_i_o_n _2_._0_. _T_h_i_s _c_o_d_e _i_s _d_u_a_l_-_l_i_c_e_n_s_e_d _u_n_d_e_r _t_h_e
_m_o_d_i_f_i_e_d _G_P_L _a_s _u_s_e_d _f_o_r _a_l_l _S_W_I_-_P_r_o_l_o_g _l_i_b_r_a_r_i_e_s _o_r _t_h_e _P_e_r_l
_A_r_t_i_s_t_i_c _l_i_c_e_n_s_e_, _v_e_r_s_i_o_n _2_._0_.
The routines assume directed graphs; undirected graphs may be
implemented by using two edges.
Originally graphs were represented in two formats. The SICStus library
and this version of ugraphs.pl only use the _S_-_r_e_p_r_e_s_e_n_t_a_t_i_o_n. The
S-representation of a graph is a list of (vertex-neighbors) pairs,
where the pairs are in standard order (as produced by keysort) and the
neighbors of each vertex are also in standard order (as produced by
sort). This form is convenient for many calculations. Each vertex
appears in the S-representation, even if it has no neighbors.
vveerrttiicceess__eeddggeess__ttoo__uuggrraapphh((_+_V_e_r_t_i_c_e_s_, _+_E_d_g_e_s_, _-_G_r_a_p_h))
Given a graph with a set of _V_e_r_t_i_c_e_s and a set of _E_d_g_e_s, _G_r_a_p_h must
unify with the corresponding S-representation. Note that vertices
without edges will appear in _V_e_r_t_i_c_e_s but not in _E_d_g_e_s. Moreover,
it is sufficient for a vertex to appear in _E_d_g_e_s.
____________________________________________________________________| |
| ?- vertices_edges_to_ugraph([],[1-3,2-4,4-5,1-5], L). |
||L_=_[1-[3,5],_2-[4],_3-[],_4-[5],_5-[]]___________________________ ||
In this case all vertices are defined implicitly. The next example
shows three unconnected vertices:
____________________________________________________________________| |
| ?- vertices_edges_to_ugraph([6,7,8],[1-3,2-4,4-5,1-5], L). |
||L_=_[1-[3,5],_2-[4],_3-[],_4-[5],_5-[],_6-[],_7-[],_8-[]]_?_______ ||
vveerrttiicceess((_+_G_r_a_p_h_, _-_V_e_r_t_i_c_e_s))
Unify _V_e_r_t_i_c_e_s with all vertices appearing in _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- vertices([1-[3,5],2-[4],3-[],4-[5],5-[]], L). |
||L_=_[1,_2,_3,_4,_5]_______________________________________________ ||
eeddggeess((_+_G_r_a_p_h_, _-_E_d_g_e_s))
Unify _E_d_g_e_s with all edges appearing in _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- edges([1-[3,5],2-[4],3-[],4-[5],5-[]], L). |
||L_=_[1-3,_1-5,_2-4,_4-5]__________________________________________ ||
aadddd__vveerrttiicceess((_+_G_r_a_p_h_, _+_V_e_r_t_i_c_e_s_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained by adding the list of
_V_e_r_t_i_c_e_s to _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- add_vertices([1-[3,5],2-[]], [0,1,2,9], NG). |
||NG_=_[0-[],_1-[3,5],_2-[],_9-[]]__________________________________ ||
ddeell__vveerrttiicceess((_+_G_r_a_p_h_, _+_V_e_r_t_i_c_e_s_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained by deleting the list
of _V_e_r_t_i_c_e_s and all edges that start from or go to a vertex in
_V_e_r_t_i_c_e_s from _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- del_vertices([2,1], |
| [1-[3,5],2-[4],3-[],4-[5], |
| 5-[],6-[],7-[2,6],8-[]], |
| NL). |
||NL_=_[3-[],4-[5],5-[],6-[],7-[6],8-[]]____________________________ ||
aadddd__eeddggeess((_+_G_r_a_p_h_, _+_E_d_g_e_s_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained by adding the list of
_E_d_g_e_s to _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- add_edges([1-[3,5],2-[4],3-[],4-[5], |
| 5-[],6-[],7-[],8-[]], |
| [1-6,2-3,3-2,5-7,3-2,4-5], |
| NL). |
| NL = [1-[3,5,6], 2-[3,4], 3-[2], 4-[5], |
||______5-[7],_6-[],_7-[],_8-[]]____________________________________ ||
ddeell__eeddggeess((_+_G_r_a_p_h_, _+_E_d_g_e_s_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained by removing the list of
_E_d_g_e_s from _G_r_a_p_h. Notice that no vertices are deleted. Example:
____________________________________________________________________| |
| ?- del_edges([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]], |
| [1-6,2-3,3-2,5-7,3-2,4-5,1-3], |
| NL). |
||NL_=_[1-[5],2-[4],3-[],4-[],5-[],6-[],7-[],8-[]]__________________ ||
ttrraannssppoossee((_+_G_r_a_p_h_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained from _G_r_a_p_h by replacing
all edges of the form V1-V2 by edges of the form V2-V1. The cost
is O(|V|2). Notice that an undirected graph is its own transpose.
Example:
____________________________________________________________________| |
| ?- transpose([1-[3,5],2-[4],3-[],4-[5], |
| 5-[],6-[],7-[],8-[]], NL). |
||NL_=_[1-[],2-[],3-[1],4-[2],5-[1,4],6-[],7-[],8-[]]_______________ ||
nneeiigghhbboouurrss((_+_V_e_r_t_e_x_, _+_G_r_a_p_h_, _-_V_e_r_t_i_c_e_s))
Unify _V_e_r_t_i_c_e_s with the list of neighbours of vertex _V_e_r_t_e_x in
_G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- neighbours(4,[1-[3,5],2-[4],3-[], |
| 4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL). |
||NL_=_[1,2,7,5]____________________________________________________ ||
nneeiigghhbboorrss((_+_V_e_r_t_e_x_, _+_G_r_a_p_h_, _-_V_e_r_t_i_c_e_s))
American version of neighbours/3.
ccoommpplleemmeenntt((_+_G_r_a_p_h_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with the graph complementary to _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- complement([1-[3,5],2-[4],3-[], |
| 4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL). |
| NL = [1-[2,4,6,7,8],2-[1,3,5,6,7,8],3-[1,2,4,5,6,7,8], |
| 4-[3,5,6,8],5-[1,2,3,4,6,7,8],6-[1,2,3,4,5,7,8], |
||______7-[1,2,3,4,5,6,8],8-[1,2,3,4,5,6,7]]________________________ ||
ccoommppoossee((_+_L_e_f_t_G_r_a_p_h_, _+_R_i_g_h_t_G_r_a_p_h_, _-_N_e_w_G_r_a_p_h))
Compose _N_e_w_G_r_a_p_h by connecting the _d_r_a_i_n_s of _L_e_f_t_G_r_a_p_h to the
_s_o_u_r_c_e_s of _R_i_g_h_t_G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- compose([1-[2],2-[3]],[2-[4],3-[1,2,4]],L). |
||L_=_[1-[4],_2-[1,2,4],_3-[]]______________________________________ ||
uuggrraapphh__uunniioonn((_+_G_r_a_p_h_1_, _+_G_r_a_p_h_2_, _-_N_e_w_G_r_a_p_h))
_N_e_w_G_r_a_p_h is the union of _G_r_a_p_h_1 and _G_r_a_p_h_2. Example:
____________________________________________________________________| |
| ?- ugraph_union([1-[2],2-[3]],[2-[4],3-[1,2,4]],L). |
||L_=_[1-[2],_2-[3,4],_3-[1,2,4]]___________________________________ ||
ttoopp__ssoorrtt((_+_G_r_a_p_h_, _-_S_o_r_t))
Generate the set of nodes _S_o_r_t as a topological sorting of _G_r_a_p_h,
if one is possible. A toplogical sort is possible if the graph
is connected and acyclic. In the example we show how topological
sorting works for a linear graph:
____________________________________________________________________| |
| ?- top_sort([1-[2], 2-[3], 3-[]], L). |
||L_=_[1,_2,_3]_____________________________________________________ ||
ttoopp__ssoorrtt((_+_G_r_a_p_h_, _-_S_o_r_t_0_, _-_S_o_r_t))
Generate the difference list Sort-Sort0 as a topological sorting of
_G_r_a_p_h, if one is possible.
ttrraannssiittiivvee__cclloossuurree((_+_G_r_a_p_h_, _-_C_l_o_s_u_r_e))
Generate the graph Closure as the transitive closure of _G_r_a_p_h.
Example:
____________________________________________________________________| |
| ?- transitive_closure([1-[2,3],2-[4,5],4-[6]],L). |
||L_=_[1-[2,3,4,5,6],_2-[4,5,6],_4-[6]]_____________________________ ||
rreeaacchhaabbllee((_+_V_e_r_t_e_x_, _+_G_r_a_p_h_, _-_V_e_r_t_i_c_e_s))
Unify _V_e_r_t_i_c_e_s with the set of all vertices in _G_r_a_p_h that are
reachable from _V_e_r_t_e_x. Example:
____________________________________________________________________| |
| ?- reachable(1,[1-[3,5],2-[4],3-[],4-[5],5-[]],V). |
||V_=_[1,_3,_5]_____________________________________________________ ||
1122..3355 lliibbrraarryy((uurrll)):: AAnnaallyyssiinngg aanndd ccoonnssttrruuccttiinngg UURRLL
aauutthhoorr
- Jan Wielemaker
- Lukas Faulstich
ddeepprreeccaatteedd New code should use library(uri), provided by the
clib package.
This library deals with the analysis and construction of a URL,
Universal Resource Locator. URL is the basis for communicating
locations of resources (data) on the web. A URL consists of a protocol
identifier (e.g. HTTP, FTP, and a protocol-specific syntax further
defining the location. URLs are standardized in RFC-1738.
The implementation in this library covers only a small portion of the
defined protocols. Though the initial implementation followed RFC-1738
strictly, the current is more relaxed to deal with frequent violations
of the standard encountered in practical use.
gglloobbaall__uurrll((_+_U_R_L_, _+_B_a_s_e_, _-_G_l_o_b_a_l)) _[_d_e_t_]
Translate a possibly relative _U_R_L into an absolute one.
EErrrroorrss syntax_error(illegal_url) if _U_R_L is not legal.
iiss__aabbssoolluuttee__uurrll((_+_U_R_L))
True if _U_R_L is an absolute _U_R_L. That is, a _U_R_L that starts with a
protocol identifier.
hhttttpp__llooccaattiioonn((_?_P_a_r_t_s_, _?_L_o_c_a_t_i_o_n))
Construct or analyze an HTTP location. This is similar to
parse_url/2, but only deals with the location part of an HTTP URL.
That is, the path, search and fragment specifiers. In the HTTP
protocol, the first line of a message is
____________________________________________________________________| |
||<Action>_<Location>_HTTP/<version>________________________________ ||
___________________________________________________________Arguments_
_L_o_c_a_t_i_o_n Atom or list of character codes.
ppaarrssee__uurrll((_?_U_R_L_, _?_A_t_t_r_i_b_u_t_e_s)) _[_d_e_t_]
Construct or analyse a _U_R_L. _U_R_L is an atom holding a _U_R_L or a
variable. _A_t_t_r_i_b_u_t_e_s is a list of components. Each component is
of the format Name(Value). Defined components are:
pprroottooccooll((_P_r_o_t_o_c_o_l))
The used protocol. This is, after the optional url:, an
identifier separated from the remainder of the _U_R_L using
:. parse_url/2 assumes the http protocol if no protocol is
specified and the _U_R_L can be parsed as a valid HTTP url.
In addition to the RFC-1738 specified protocols, the file
protocol is supported as well.
hhoosstt((_H_o_s_t))
_H_o_s_t-name or IP-address on which the resource is located.
Supported by all network-based protocols.
ppoorrtt((_P_o_r_t))
Integer port-number to access on the \arg{Host}. This only
appears if the port is explicitly specified in the _U_R_L.
Implicit default ports (e.g., 80 for HTTP) do _n_o_t appear in
the part-list.
ppaatthh((_P_a_t_h))
(File-) path addressed by the _U_R_L. This is supported for the
ftp, http and file protocols. If no path appears, the library
generates the path /.
sseeaarrcchh((_L_i_s_t_O_f_N_a_m_e_V_a_l_u_e))
Search-specification of HTTP _U_R_L. This is the part after the
?, normally used to transfer data from HTML forms that use the
GET protocol. In the _U_R_L it consists of a www-form-encoded
list of Name=Value pairs. This is mapped to a list of Prolog
Name=Value terms with decoded names and values.
ffrraaggmmeenntt((_F_r_a_g_m_e_n_t))
_F_r_a_g_m_e_n_t specification of HTTP _U_R_L. This is the part after the
# character.
The example below illustrates all of this for an HTTP _U_R_L.
____________________________________________________________________| |
| ?- parse_url('http://www.xyz.org/hello?msg=Hello+World%21#x', |
| P). |
| |
| P = [ protocol(http), |
| host('www.xyz.org'), |
| fragment(x), |
| search([ msg = 'Hello World!' |
| ]), |
| path('/hello') |
||____]_____________________________________________________________ ||
By instantiating the parts-list this predicate can be used to
create a _U_R_L.
ppaarrssee__uurrll((_+_U_R_L_, _+_B_a_s_e_U_R_L_, _-_A_t_t_r_i_b_u_t_e_s)) _[_d_e_t_]
Similar to parse_url/2 for relative URLs. If _U_R_L is relative, it
is resolved using the absolute _U_R_L _B_a_s_e_U_R_L.
wwwwww__ffoorrmm__eennccooddee((_+_V_a_l_u_e_, _-_X_W_W_W_F_o_r_m_E_n_c_o_d_e_d)) _[_d_e_t_]
wwwwww__ffoorrmm__eennccooddee((_-_V_a_l_u_e_, _+_X_W_W_W_F_o_r_m_E_n_c_o_d_e_d)) _[_d_e_t_]
En/decode to/from application/x-www-form-encoded. Encoding encodes
all characters except RFC 3986 _u_n_r_e_s_e_r_v_e_d (ASCII alnum (see
code_type/2)), and one of "-._~" using percent encoding. Newline
is mapped to %OD%OA. When decoding, newlines appear as a single
newline (10) character.
Note that a space is encoded as %20 instead of +. Decoding decodes
both to a space.
ddeepprreeccaatteedd Use uri_encoded/3 for new code.
sseett__uurrll__eennccooddiinngg((_?_O_l_d_, _+_N_e_w)) _[_s_e_m_i_d_e_t_]
Query and set the encoding for URLs. The default is utf8. The
only other defined value is iso_latin_1.
TToo bbee ddoonnee Having a global flag is highly inconvenient,
but a work-around for old sites using ISO Latin 1
encoding.
uurrll__iirrii((_+_E_n_c_o_d_e_d_, _-_D_e_c_o_d_e_d)) _[_d_e_t_]
uurrll__iirrii((_-_E_n_c_o_d_e_d_, _+_D_e_c_o_d_e_d)) _[_d_e_t_]
Convert between a URL, encoding in US-ASCII and an IRI. An IRI is a
fully expanded Unicode string. Unicode strings are first encoded
into UTF-8, after which %-encoding takes place.
ppaarrssee__uurrll__sseeaarrcchh((_?_S_p_e_c_, _?_F_i_e_l_d_s_:_l_i_s_t_(_N_a_m_e_=_V_a_l_u_e_))) _[_d_e_t_]
Construct or analyze an HTTP search specification. This deals with
form data using the MIME-type application/x-www-form-urlencoded as
used in HTTP GET requests.
ffiillee__nnaammee__ttoo__uurrll((_+_F_i_l_e_, _-_U_R_L)) _[_d_e_t_]
ffiillee__nnaammee__ttoo__uurrll((_-_F_i_l_e_, _+_U_R_L)) _[_s_e_m_i_d_e_t_]
Translate between a filename and a file:// _U_R_L.
TToo bbee ddoonnee Current implementation does not deal with
paths that need special encoding.
1122..3366 lliibbrraarryy((vvaarrnnuummbbeerrss)):: UUttiilliittiieess ffoorr nnuummbbeerreedd tteerrmmss
SSeeee aallssoo numbervars/4, =@=/2 (variant/2).
CCoommppaattiibbiilliittyy This library was introduced by Quintus and
available in many related implementations, although not
with exactly the same set of predicates.
This library provides the inverse functionality of the built-in
numbervars/3. Note that this library suffers from the known issues
that '$VAR'(X) is a normal Prolog term and, -unlike the built-in
numbervars-, the inverse predicates do _n_o_t process cyclic terms. The
following predicate is true for any acyclic term that contains no
'$VAR'(X), integer(X) terms and no constraint variables:
________________________________________________________________________| |
|always_true(X) :- |
| copy_term(X, X2), |
| numbervars(X), |
| varnumbers(X, Copy), |
||_____Copy_=@=_X2._____________________________________________________ ||
nnuummbbeerrvvaarrss((_+_T_e_r_m)) _[_d_e_t_]
Number variables in _T_e_r_m using $VAR(N). Equivalent to
numbervars(Term, 0, _).
SSeeee aallssoo numbervars/3, numbervars/4
vvaarrnnuummbbeerrss((_+_T_e_r_m_, _-_C_o_p_y)) _[_d_e_t_]
Inverse of numbervars/1. Equivalent to varnumbers(Term, 0, Copy).
vvaarrnnuummbbeerrss((_+_T_e_r_m_, _+_S_t_a_r_t_, _-_C_o_p_y)) _[_d_e_t_]
Inverse of numbervars/3. True when _C_o_p_y is a copy of _T_e_r_m with
all variables numbered >= _S_t_a_r_t consistently replaced by fresh
variables. Variables in _T_e_r_m are _s_h_a_r_e_d with _C_o_p_y rather than
replaced by fresh variables.
EErrrroorrss domain_error(acyclic_term, Term) if _T_e_r_m is
cyclic.
CCoommppaattiibbiilliittyy Quintus, SICStus. Not in YAP version of
this library
mmaaxx__vvaarr__nnuummbbeerr((_+_T_e_r_m_, _+_S_t_a_r_t_, _-_M_a_x)) _[_d_e_t_]
True when _M_a_x is the max of _S_t_a_r_t and the highest numbered $VAR(N)
term.
aauutthhoorr Vitor Santos Costa
CCoommppaattiibbiilliittyy YAP
CChhaapptteerr 1133.. HHAACCKKEERRSS CCOORRNNEERR
This appendix describes a number of predicates which enable the
Prolog user to inspect the Prolog environment and manipulate (or
even redefine) the debugger. They can be used as entry points for
experiments with debugging tools for Prolog. The predicates described
here should be handled with some care as it is easy to corrupt the
consistency of the Prolog system by misusing them.
1133..11 EExxaammiinniinngg tthhee EEnnvviirroonnmmeenntt SSttaacckk
pprroolloogg__ccuurrrreenntt__ffrraammee((_-_F_r_a_m_e)) _[_d_e_t_]
Unify _F_r_a_m_e with an integer providing a reference to the parent
of the current local stack frame. A pointer to the current
local frame cannot be provided as the predicate succeeds
deterministically and therefore its frame is destroyed immediately
after succeeding.
pprroolloogg__ccuurrrreenntt__cchhooiiccee((_-_C_h_o_i_c_e)) _[_s_e_m_i_d_e_t_]
Unify _C_h_o_i_c_e with an integer provided a reference to the last
choice point. Fails if the current environment has no choice
points. See also prolog_choice_attribute/3.
pprroolloogg__ffrraammee__aattttrriibbuuttee((_+_F_r_a_m_e_, _+_K_e_y_, _:_V_a_l_u_e))
Obtain information about the local stack frame _F_r_a_m_e. _F_r_a_m_e
is a frame reference as obtained through prolog_current_frame/1,
prolog_trace_interception/4 or this predicate. The key values are
described below.
aalltteerrnnaattiivvee
_V_a_l_u_e is unified with an integer reference to the local stack
frame in which execution is resumed if the goal associated
with _F_r_a_m_e fails. Fails if the frame has no alternative
frame.
hhaass__aalltteerrnnaattiivveess
_V_a_l_u_e is unified with true if _F_r_a_m_e still is a candidate for
backtracking; false otherwise.
ggooaall
_V_a_l_u_e is unified with the goal associated with _F_r_a_m_e. If
the definition module of the active predicate is not the
calling context, the goal is represented as <_m_o_d_u_l_e>:<_g_o_a_l>.
Do not instantiate variables in this goal unless you kknnooww
what you are doing! Note that the returned term may contain
references to the frame and should be discarded before the
frame terminates.
ppaarreenntt__ggooaall
If _V_a_l_u_e is instantiated to a callable term, find a frame
executing the predicate described by _V_a_l_u_e and unify the
arguments of _V_a_l_u_e to the goal arguments associated with the
frame. This is intended to check the current execution
context. The user must ensure the checked parent goal is not
removed from the stack due to last-call optimisation and be
aware of the slow operation on deeply nested calls.
pprreeddiiccaattee__iinnddiiccaattoorr
Similar to goal, but only returning the
[<_m_o_d_u_l_e>:]<_n_a_m_e>/<_a_r_i_t_y> term describing the term, not
the actual arguments. It avoids creating an illegal term as
goal and is used by the library prolog_stack.
ccllaauussee
_V_a_l_u_e is unified with a reference to the currently running
clause. Fails if the current goal is associated with a
foreign (C) defined predicate. See also nth_clause/3 and
clause_property/2.
lleevveell
_V_a_l_u_e is unified with the recursion level of _F_r_a_m_e. The top
level frame is at level `0'.
ppaarreenntt
_V_a_l_u_e is unified with an integer reference to the parent local
stack frame of _F_r_a_m_e. Fails if _F_r_a_m_e is the top frame.
ccoonntteexxtt__mmoodduullee
_V_a_l_u_e is unified with the name of the context module of the
environment.
ttoopp
_V_a_l_u_e is unified with true if _F_r_a_m_e is the top Prolog goal
from a recursive call back from the foreign language; false
otherwise.
hhiiddddeenn
_V_a_l_u_e is unified with true if the frame is hidden from the
user, either because a parent has the hide-childs attribute
(all system predicates), or the system has no trace-me
attribute.
sskkiippppeedd
_V_a_l_u_e is true if this frame was skipped in the debugger.
ppcc
_V_a_l_u_e is unified with the program pointer saved on behalf
of the parent goal if the parent goal is not owned by a
foreign predicate or belongs to a compound meta-call (e.g.,
call((a,b))).
aarrgguummeenntt((_N))
_V_a_l_u_e is unified with the _N-th slot of the frame. Argument
1 is the first argument of the goal. Arguments above the
arity refer to local variables. Fails silently if _N is out of
range.
pprroolloogg__cchhooiiccee__aattttrriibbuuttee((_+_C_h_o_i_c_e_P_o_i_n_t_, _+_K_e_y_, _-_V_a_l_u_e))
Extract attributes of a choice point. _C_h_o_i_c_e_P_o_i_n_t is a reference
to a choice point as passed to prolog_trace_interception/4 on
the 3rd argument or obtained using prolog_current_choice/1. _K_e_y
specifies the requested information:
ppaarreenntt
Requests a reference to the first older choice point.
ffrraammee
Requests a reference to the frame to which the choice point
refers.
ttyyppee
Requests the type. Defined values are clause (the goal
has alternative clauses), foreign (non-deterministic foreign
predicate), jump (clause internal choice point), top (first
dummy choice point), catch (catch/3 to allow for undo), debug
(help the debugger), or none (has been deleted).
This predicate is used for the graphical debugger to show the
choice point stack.
ddeetteerrmmiinniissttiicc((_-_B_o_o_l_e_a_n))
Unifies its argument with true if no choice point exists that is
more recent than the entry of the clause in which it appears.
There are few realistic situations for using this predicate. It
is used by the prolog/0 top level to check whether Prolog should
prompt the user for alternatives. Similar results can be achieved
in a more portable fashion using call_cleanup/2.
1133..22 AAnncceessttrraall ccuuttss
pprroolloogg__ccuutt__ttoo((_+_C_h_o_i_c_e))
Prunes all choice points created since _C_h_o_i_c_e. Can be used
together with prolog_current_choice/1 to implement _a_n_c_e_s_t_r_a_l cuts.
This predicate is in the hackers corner because it should not be
used in normal Prolog code. It may be used to create new high
level control structures, particularly for compatibility purposes.
1133..33 IInntteerrcceeppttiinngg tthhee TTrraacceerr
pprroolloogg__ttrraaccee__iinntteerrcceeppttiioonn((_+_P_o_r_t_, _+_F_r_a_m_e_, _+_C_h_o_i_c_e_, _-_A_c_t_i_o_n))
Dynamic predicate, normally not defined. This predicate is called
from the SWI-Prolog debugger just before it would show a port.
If this predicate succeeds, the debugger assumes that the trace
action has been taken care of and continues execution as described
by _A_c_t_i_o_n. Otherwise the normal Prolog debugger actions are
performed.
_P_o_r_t denotes the reason to activate the tracer (`port' in the
4/5-port, but with some additions):
ccaallll
Normal entry through the call port of the 4-port debugger.
rreeddoo((_P_C))
Normal entry through the redo port of the 4-port debugger.
The redo port signals resuming a predicate to generate
alternative solutions. If _P_C is 0 (zero), clause indexing has
found another clause that will be tried next. Otherwise, _P_C
is the program counter in the current clause where execution
continues. This implies we are dealing with an in-clause
choice point left by, e.g., ;/2. Note that non-determinism in
foreign predicates are also handled using an in-clause choice
point.
uunniiffyy
The unify port represents the _n_e_c_k instruction, signalling
the end of the head-matching process. This port is normally
invisible. See leash/1 and visible/1.
eexxiitt
The exit port signals the goal is proved. It is possible for
the goal to have alternatives. See prolog_frame_attribute/3 to
examine the goal stack.
ffaaiill
The fail port signals final failure of the goal.
eexxcceeppttiioonn((_E_x_c_e_p_t))
An exception is raised and still pending. This port is
activated on each parent frame of the frame generating the
exception until the exception is caught or the user restarts
normal computation using retry. _E_x_c_e_p_t is the pending
exception term.
bbrreeaakk((_P_C))
A break instruction is executed. _P_C is program counter. This
port is used by the graphical debugger.
ccuutt__ccaallll((_P_C))
A cut is encountered at _P_C. This port is used by the graphical
debugger to visualise the effect of the cut.
ccuutt__eexxiitt((_P_C))
A cut has been executed. See cut_call(_P_C) for more informa-
tion.
_F_r_a_m_e is a reference to the current local stack frame, which
can be examined using prolog_frame_attribute/3. _C_h_o_i_c_e is a
reference to the last choice point and can be examined using
prolog_choice_attribute/3. _A_c_t_i_o_n must be unified with a term that
specifies how execution must continue. The following actions are
defined:
aabboorrtt
Abort execution. See abort/0.
ccoonnttiinnuuee
Continue (i.e., _c_r_e_e_p in the command line debugger).
ffaaiill
Make the current goal fail.
iiggnnoorree
Step over the current goal without executing it.
nnooddeebbuugg
Continue execution in normal nodebugging mode. See nodebug/0.
rreettrryy
Retry the current frame.
rreettrryy((_F_r_a_m_e))
Retry the given frame. This must be a parent of the current
frame.
sskkiipp
Skip over the current goal (i.e., _s_k_i_p in the command line
debugger).
uupp
Skip to the parent goal (i.e., _u_p in the command line
debugger).
Together with the predicates described in section 4.37 and the
other predicates of this chapter, this predicate enables the Prolog
user to define a complete new debugger in Prolog. Besides this,
it enables the Prolog programmer to monitor the execution of a
program. The example below records all goals trapped by the tracer
in the database.
____________________________________________________________________| |
| prolog_trace_interception(Port, Frame, _PC, continue) :- |
| prolog_frame_attribute(Frame, goal, Goal), |
| prolog_frame_attribute(Frame, level, Level), |
||________recordz(trace,_trace(Port,_Level,_Goal))._________________ ||
To trace the execution of `go' this way the following query should
be given:
____________________________________________________________________| |
||?-_trace,_go,_notrace.____________________________________________ ||
pprroolloogg__sskkiipp__ffrraammee((_-_F_r_a_m_e))
Indicate _F_r_a_m_e as a skipped frame and set the `skip level' (see
prolog_skip_level/2 to the recursion depth of _F_r_a_m_e. The effect of
the skipped flag is that a redo on a child of this frame is handled
differently. First, a redo trace is called for the child, where
the skip level is set to redo_in_skip. Next, the skip level is set
to skip level of the skipped frame.
pprroolloogg__sskkiipp__lleevveell((_-_O_l_d_, _+_N_e_w))
Unify _O_l_d with the old value of `skip level' and then set
this level according to _N_e_w. _N_e_w is an integer, the atom
very_deep (meaning don't skip) or the atom skip_in_redo (see
prolog_skip_frame/1). The `skip level' is a setting of each Prolog
thread that disables the debugger on all recursion levels deeper
than the level of the variable. See also prolog_skip_frame/1.
1133..44 BBrreeaakkppooiinntt aanndd wwaattcchhppooiinntt hhaannddlliinngg
SWI-Prolog support _b_r_e_a_k_p_o_i_n_t_s. Breakpoints can be manipulated with
the library prolog_breakpoints. Setting a breakpoint replaces a
virtual machine instruction with the D_BREAK instruction. If the
virtual machine executes a D_BREAK, it performs a callback to decide on
the action to perform. This section describes this callback, called
prolog:break_hook/6.
pprroolloogg::bbrreeaakk__hhooookk((_+_C_l_a_u_s_e_, _+_P_C_, _+_F_R_, _+_B_F_R_, _+_E_x_p_r_e_s_s_i_o_n_, _-_A_c_t_i_o_n))_[_h_o_o_k_,_s_e_m_i_d_e_t_]
_E_x_p_e_r_i_m_e_n_t_a_l This hook is called if the virtual machine executes a
D_BREAK, set using set_breakpoint/4. _C_l_a_u_s_e and _P_C identify the
breakpoint. _F_R and _B_F_R provide the environment frame and current
choicepoint. _E_x_p_r_e_s_s_i_o_n identifies the action that is interrupted,
and is one of the following:
ccaallll((_G_o_a_l))
The instruction will call _G_o_a_l. This is generated for nearly
all instructions. Note that _G_o_a_l is semantically equivalent
to the compiled body term, but might differ syntactically.
This is notably the case when arithmetic expressions are
compiled in optimized mode (see optimise). In particular,
the arguments of arithmetic expressions have already been
evaluated. Thus, _A is 3*_B, where _B equals 3 results in a
term call(A is 9) if the clause was compiled with optimization
enabled.
!
The instruction will call the cut. Because the semantics of
metacalling the cut differs from executing the cut in its
original context we do not wrap the cut in call/1.
:-
The breakpoint is on the _n_e_c_k instruction, i.e., after
performing the head unifications.
eexxiitt
The breakpoint is on the _e_x_i_t instruction, i.e., at the end of
the clause. Note that the exit instruction may not be reached
due to last-call optimisation.
uunniiffyy__eexxiitt
The breakpoint is on the completion of an in-lined unification
while the system is not in debug mode. If the system is in
debug mode, inlined unification is returned as call(Var=Term).
If prolog:break_hook/6 succeeds, it must unify _A_c_t_i_o_n with a value
that describes how execution must continue. Possible values for
_A_c_t_i_o_n are:
ccoonnttiinnuuee
Just continue as if no breakpoint was present.
ddeebbuugg
Continue in _d_e_b_u_g _m_o_d_e. See debug/0.
ttrraaccee
Continue in _t_r_a_c_e _m_o_d_e. See trace/0.
ccaallll((_G_o_a_l))
Execute _G_o_a_l instead of the goal that would be executed.
_G_o_a_l is executed as call/1, preserving (non-)determinism and
exceptions.
If this hook throws an exception, the exception is propagated
normally. If this hook is not defined or fails, the default action
is executed. This implies that, if the thread is in debug mode,
the tracer will be enabled (trace) and otherwise the breakpoint is
ignored (continue).
This hook allows for injecting various debugging scenarios into the
executable without recompiling. The hook can access variables of
the calling context using the frame inspection predicates. Here
are some examples.
o Create _c_o_n_d_i_t_i_o_n_a_l breakpoints by imposing conditions before
deciding the return trace.
o Watch variables at a specific point in the execution. Note
that binding of these variables can be monitored using
_a_t_t_r_i_b_u_t_e_d _v_a_r_i_a_b_l_e_s, see section 7.1.
o Dynamically add _a_s_s_e_r_t_i_o_n_s on variables using assertion/1.
o Wrap the _G_o_a_l into a meta-call that traces progress of the
_G_o_a_l.
1133..55 AAddddiinngg ccoonntteexxtt ttoo eerrrroorrss:: pprroolloogg__eexxcceeppttiioonn__hhooookk
The hook prolog_exception_hook/4 has been introduced in SWI-Prolog 5.6.5
to provide dedicated exception handling facilities for application
frameworks, for example non-interactive server applications that wish
to provide extensive context for exceptions for offline debugging.
pprroolloogg__eexxcceeppttiioonn__hhooookk((_+_E_x_c_e_p_t_i_o_n_I_n_, _-_E_x_c_e_p_t_i_o_n_O_u_t_, _+_F_r_a_m_e_, _+_C_a_t_c_h_e_r_F_r_a_m_e))
This hook predicate, if defined in the module user, is between
raising an exception and handling it. It is intended to
allow a program adding additional context to an exception to
simplify diagnosing the problem. _E_x_c_e_p_t_i_o_n_I_n is the exception
term as raised by throw/1 or one of the built-in predicates.
The output argument _E_x_c_e_p_t_i_o_n_O_u_t describes the exception that
is actually raised. _F_r_a_m_e is the innermost frame. See
prolog_frame_attribute/3 and the library prolog_stack for getting
information from this. _C_a_t_c_h_e_r_F_r_a_m_e is a reference to the frame
calling the matching catch/3 or none if the exception is not
caught.
The hook is run in `nodebug' mode. If it succeeds, _E_x_c_e_p_t_i_o_n_O_u_t is
considered the current exception. If it fails, _E_x_c_e_p_t_i_o_n_I_n is used
for further processing. The hook is _n_e_v_e_r called recursively. The
hook is _n_o_t allowed to modify _E_x_c_e_p_t_i_o_n_O_u_t in such a way that it no
longer unifies with the catching frame.
Typically, prolog_exception_hook/4 is used to fill the second
argument of error(_F_o_r_m_a_l_, _C_o_n_t_e_x_t) exceptions. _F_o_r_m_a_l is defined
by the ISO standard, while SWI-Prolog defines _C_o_n_t_e_x_t as a
term context(_L_o_c_a_t_i_o_n_, _M_e_s_s_a_g_e). _L_o_c_a_t_i_o_n is bound to a term
<_n_a_m_e>/<_a_r_i_t_y> by the kernel. This hook can be used to add more
information on the calling context, such as a full stack trace.
Applications that use exceptions as part of normal processing must
do a quick test of the environment before starting expensive
gathering information on the state of the program.
The hook can call trace/0 to enter trace mode immediately. For
example, imagine an application performing an unwanted division by
zero while all other errors are expected and handled. We can force
the debugger using the hook definition below. Run the program in
debug mode (see debug/0) to preserve as much as possible of the
error context.
____________________________________________________________________| |
| user:prolog_exception_hook( |
| error(evaluation_error(zero_divisor), _), |
| _, _, _) :- |
||________trace,_fail.______________________________________________ ||
1133..66 HHooookkss uussiinngg tthhee eexxcceeppttiioonn pprreeddiiccaattee
This section describes the predicate exception/3, which can be defined
by the user in the module user as a multifile predicate. Unlike the
name suggests, this is actually a _h_o_o_k predicate that has no relation
to Prolog exceptions as defined by the ISO predicates catch/3 and
throw/1.
The predicate exception/3 is called by the kernel on a couple of
events, allowing the user to `fix' errors just-in-time. The mechanism
allows for _l_a_z_y creation of objects such as predicates.
eexxcceeppttiioonn((_+_E_x_c_e_p_t_i_o_n_, _+_C_o_n_t_e_x_t_, _-_A_c_t_i_o_n))
Dynamic predicate, normally not defined. Called by the Prolog
system on run-time exceptions that can be repaired `just-in-time'.
The values for _E_x_c_e_p_t_i_o_n are described below. See also catch/3 and
throw/1.
If this hook predicate succeeds it must instantiate the _A_c_t_i_o_n
argument to the atom fail to make the operation fail silently,
retry to tell Prolog to retry the operation or error to make the
system generate an exception. The action retry only makes sense if
this hook modified the environment such that the operation can now
succeed without error.
uunnddeeffiinneedd__pprreeddiiccaattee
_C_o_n_t_e_x_t is instantiated to a predicate indicator
([module]:<_n_a_m_e>/<_a_r_i_t_y>). If the predicate fails, Prolog will
generate an existence_error exception. The hook is intended
to implement alternatives to the built-in autoloader, such as
autoloading code from a database. Do _n_o_t use this hook to
suppress existence errors on predicates. See also unknown and
section 2.13.
uunnddeeffiinneedd__gglloobbaall__vvaarriiaabbllee
_C_o_n_t_e_x_t is instantiated to the name of the missing global
variable. The hook must call nb_setval/2 or b_setval/2 before
returning with the action retry.
1133..77 HHooookkss ffoorr iinntteeggrraattiinngg lliibbrraarriieess
Some libraries realise an entirely new programming paradigm on top of
Prolog. An example is XPCE which adds an object system to Prolog as
well as an extensive set of graphical primitives. SWI-Prolog provides
several hooks to improve the integration of such libraries. See also
section 4.5 for editing hooks and section 4.10.3 for hooking into the
message system.
pprroolloogg__lliisstt__ggooaall((_:_G_o_a_l))
Hook, normally not defined. This hook is called by the 'L' command
of the tracer in the module user to list the currently called
predicate. This hook may be defined to list only relevant clauses
of the indicated _G_o_a_l and/or show the actual source code in an
editor. See also portray/1 and multifile/1.
pprroolloogg::ddeebbuugg__ccoonnttrrooll__hhooookk((_:_A_c_t_i_o_n))
Hook for the debugger control predicates that allows the creator of
more high-level programming languages to use the common front-end
predicates to control the debugger. For example, XPCE uses these
hooks to allow for spying methods rather than predicates. _A_c_t_i_o_n
is one of:
ssppyy((_S_p_e_c))
Hook in spy/1. If the hook succeeds spy/1 takes no further
action.
nnoossppyy((_S_p_e_c))
Hook in nospy/1. If the hook succeeds nospy/1 takes no
further action. If spy/1 is hooked, it is advised to place a
complementary hook for nospy/1.
nnoossppyyaallll
Hook in nospyall/0. Should remove all spy points. This hook
is called in a failure-driven loop.
ddeebbuuggggiinngg
Hook in debugging/0. It can be used in two ways. It can
report the status of the additional debug points controlled
by the above hooks and fail to let the system report the
others, or it succeeds, overruling the entire behaviour of
debugging/0.
pprroolloogg::hheellpp__hhooookk((_+_A_c_t_i_o_n))
Hook into help/0 and help/1. If the hook succeeds, the built-in
actions are not executed. For example, ?- help(picture). is caught
by the XPCE help hook to give help on the class _p_i_c_t_u_r_e. Defined
actions are:
hheellpp
User entered plain help/0 to give default help. The default
performs help(help/1), giving help on help.
hheellpp((_W_h_a_t))
Hook in help/1 on the topic _W_h_a_t.
aapprrooppooss((_W_h_a_t))
Hook in apropos/1 on the topic _W_h_a_t.
1133..88 HHooookkss ffoorr llooaaddiinngg ffiilleess
All loading of source files is achieved by load_files/2. The hook
prolog_load_file/2 can be used to load Prolog code from non-files or
even load entirely different information, such as foreign files.
pprroolloogg__llooaadd__ffiillee((_+_S_p_e_c_, _+_O_p_t_i_o_n_s))
Load a single object. If this call succeeds, load_files/2 assumes
the action has been taken care of. This hook is only called if
_O_p_t_i_o_n_s does not contain the stream(_I_n_p_u_t) option. The hook must
be defined in the module user.
This can be used to load from unusual places. For example,
library http/http_load loads Prolog directly from an HTTP server.
It can also be used to load source in unusual forms, such as
loading compressed files without decompressing them first. There
is currently no example of that.
pprroolloogg::ccoommmmeenntt__hhooookk((_+_C_o_m_m_e_n_t_s_, _+_P_o_s_, _+_T_e_r_m))
This hook allows for processing comments encountered by the
compiler. If this hook is defined, the compiler calls read_term/2
with the option comments(_C_o_m_m_e_n_t_s). If the list of comments
returned by read_term/2 is not empty it calls this comment hook
with the following arguments.
o _C_o_m_m_e_n_t_s is the non-empty list of comments. Each comment is
a pair _P_o_s_i_t_i_o_n-_S_t_r_i_n_g, where _S_t_r_i_n_g is a string object (see
section 5.2) that contains the comment _i_n_c_l_u_d_i_n_g delimiters.
Consecutive line comments are returned as a single comment.
o _P_o_s is a stream-position term that describes the starting
position of _T_e_r_m
o _T_e_r_m is the term read.
This hook is exploited by the documentation system. See
stream_position_data/3. See also read_term/3.
1133..99 RReeaaddlliinnee IInntteerraaccttiioonn
The following predicates are available if SWI-Prolog is linked to the
GNU readline library. This is by default the case on non-Windows
installations and indicated by the Prolog flag readline. See also
readline(3).
rrll__rreeaadd__iinniitt__ffiillee((_+_F_i_l_e))
Read a readline initialisation file. Readline by default reads
~/.inputrc. This predicate may be used to read alternative
readline initialisation files.
rrll__aadddd__hhiissttoorryy((_+_L_i_n_e))
Add a line to the Control-P/Control-N history system of the
readline library.
rrll__wwrriittee__hhiissttoorryy((_+_F_i_l_e_N_a_m_e))
Write current history to _F_i_l_e_N_a_m_e. Can be used from at_halt/1 to
save the history.
rrll__rreeaadd__hhiissttoorryy((_+_F_i_l_e_N_a_m_e))
Read history from _F_i_l_e_N_a_m_e, appending to the current history.
CChhaapptteerr 1144.. CCOOMMPPAATTIIBBIILLIITTYY WWIITTHH OOTTHHEERR PPRROOLLOOGG DDIIAALLEECCTTSS
This chapter explains issues for writing portable Prolog programs.
It was started after discussion with Vitor Santos Costa, the leading
developer of YAP Prolog YAP and SWI-Prolog have expressed the
ambition to enhance the portability beyond the trivial Prolog examples,
including complex libraries involving foreign code.
Although it is our aim to enhance compatibility, we are still faced
with many incompatibilities between the dialects. As a first step both
YAP and SWI will provide some instruments that help developing portable
code. A first release of these tools appeared in SWI-Prolog 5.6.43.
Some of the facilities are implemented in the base system, others in
the library dialect.pl.
o The Prolog flag dialect is an unambiguous and fast way to find out
which Prolog dialect executes your program. It has the value swi
for SWI-Prolog and yap on YAP.
o The Prolog flag version_data is bound to a term swi(_M_a_j_o_r_, _M_i_n_o_r_,
_P_a_t_c_h_, _E_x_t_r_a)
o Conditional compilation using :- if(Condition) ...:- endif is
supported. See section 4.3.1.2.
o The predicate expects_dialect/1 allows for specifying for which
Prolog system the code was written.
o The predicates exists_source/1 and source_exports/2 can be used to
query the library content. The require/1 directive can be used to
get access to predicates without knowing their location.
o The module predicates use_module/1, use_module/2have been extended
with a notion for `import-except' and `import-as'. This is
particularly useful together with reexport/1 and reexport/2 to
compose modules from other modules and mapping names.
o Foreign code can expect __SWI_PROLOG__ when compiled for SWI-Prolog
and __YAP_PROLOG__when compiled on YAP.
::-- eexxppeeccttss__ddiiaalleecctt((_+_D_i_a_l_e_c_t))
This directive states that the code following the directive is
written for the given Prolog _D_i_a_l_e_c_t. See also dialect. The
declaration holds until the end of the file in which it appears.
The current dialect is available using prolog_load_context/2.
The exact behaviour of this predicate is still subject to
discussion. Of course, if _D_i_a_l_e_c_t matches the running dialect the
directive has no effect. Otherwise we check for the existence
of library(_d_i_a_l_e_c_t_/_D_i_a_l_e_c_t) and load it if the file is found.
Currently, this file has this functionality:
o Define system predicates of the requested dialect we do not
have.
o Apply goal_expansion/2 rules that map conflicting predicates
to versions emulating the requested dialect. These expansion
rules reside in the dialect compatibility module, but are
applied if prolog_load_context(dialect, Dialect) is active.
o Modify the search path for library directories, putting
libraries compatible with the target dialect before the native
libraries.
o Setup support for the default filename extension of the
dialect.
eexxiissttss__ssoouurrccee((_+_S_p_e_c))
Is true if _S_p_e_c exists as a Prolog source. _S_p_e_c uses the same
conventions as load_files/2. Fails without error if _S_p_e_c cannot be
found.
ssoouurrccee__eexxppoorrttss((_+_S_p_e_c_, _+_E_x_p_o_r_t))
Is true if source _S_p_e_c exports _E_x_p_o_r_t, a predicate indicator.
Fails without error otherwise.
1144..11 SSoommee ccoonnssiiddeerraattiioonnss ffoorr wwrriittiinngg ppoorrttaabbllee ccooddee
The traditional way to write portable code is to define custom
predicates for all potentially non-portable code and define these
separately for all Prolog dialects one wishes to support. Here are
some considerations.
o Probably the best reason for this is that it allows to define
minimal semantics required by the application for the portability
predicates. Such functionality can often be mapped efficiently to
the target dialect. Contrary, if code was written for dialect
X, the defined semantics are those of dialect X. Emulating all
extreme cases and full error handling compatibility may be tedious
and result in a much slower implementation that needed. Take for
example call_cleanup/2. The SICStus definition is fundamentally
different from the SWI definition, but 99% of the applications just
want to make calls like below to guarantee _S_t_r_e_a_m_I_n is closed, even
if process/1 misbehaves.
____________________________________________________________________| |
||________call_cleanup(process(StreamIn),_close(In))________________ ||
o As a drawback, the code becomes full of _m_y___c_a_l_l___c_l_e_a_n_u_p, etc. and
every potential portability conflict needs to be abstracted. It
is hard for people who have to maintain such code later to grasp
the exact semantics of the _m_y___* predicates and applications that
combine multiple libraries using this compatibility approach are
likely to encounter conflicts between the portability layers. A
good start is not to use _m_y___*, but a prefix derived from the
library or application name or names that explain the intended
semantics more precisely.
o Another problem is that most code is initially not written with
portability in mind. Instead, ports are requested by users or
arise from the desire to switch Prolog dialect. Typically, we want
to achieve compatibility with the new Prolog dialect with minimal
changes, often keeping compatibility with the original dialect(s).
This problem is well known from the C/Unix world and we advise
anyone to study the philosophy of GNU autoconf, from which we will
illustrate some highlights below.
The GNU autoconf suite, known to most people as configure, was an
answer to the frustrating life of Unix/C programmers when Unix dialects
were about as abundant and poorly standardised as Prolog dialects
today. Writing a portable C program can only be achieved using cpp,
the C preprocessor. The C preprocessor performs two tasks: macro
expansion and conditional compilation. Prolog realises macro expansion
through term_expansion/2 and goal_expansion/2. Conditional compilation
is achieved using :- if(Condition) as explained in section 4.3.1.2.
The situation appears similar.
The important lesson learned from GNU autoconf is that the _l_a_s_t resort
for conditional compilation to achieve portability is to switch on the
platform or dialect. Instead, GNU autoconf allows you to write tests
for specific properties of the platform. Most of these are whether
or not some function or file is available. Then there are some
standard tests for difficult-to-write-portable situations and finally
there is a framework that allows you to write arbitrary C programs
and check whether they can be compiled and/or whether they show the
intended behaviour. Using a separate configure program is needed in
C, as you cannot perform C compilation step or run C programs from
the C preprocessor. In most Prolog environments we do not need this
distinction as the compiler is integrated into the runtime environment
and Prolog has excellent reflexion capabilities.
We must learn from the distinction to test for features instead of
platform (dialect), as this makes the platform-specific code robust for
future changes of the dialect. Suppose we need compare/3 as defined in
this manual. The compare/3 predicate is not part of the ISO standard,
but many systems support it and it is not unlikely it will become
ISO standard or the intended dialect will start supporting it. GNU
autoconf strongly advises to test for the availability:
________________________________________________________________________| |
|:- if(\+current_predicate(_, compare(_,_,_))). |
|compare(<, Term1, Term2) :- |
| Term1 @< Term2, !. |
|compare(>, Term1, Term2) :- |
| Term1 @> Term2, !. |
|compare(=, Term1, Term2) :- |
| Term1 == Term2. |
|:-|endif.______________________________________________________________ | |
This code is mmuucchh more robust against changes to the intended dialect
and, possibly at least as important, will provide compatibility with
dialects you didn't even consider porting to right now.
In a more challenging case, the target Prolog has compare/3, but the
semantics are different. What to do? One option is to write a
my_compare/3 and change all occurrences in the code. Alternatively you
can rename calls using goal_expansion/2 like below. This construct
will not only deal with Prolog dialects lacking compare/3 as well as
those that only implement it for numeric comparison or have changed
the argument order. Of course, writing rock-solid code would require
a complete test-suite, but this example will probably cover all
Prolog dialects that allow for conditional compilation, have core ISO
facilities and provide goal_expansion/2, the things we claim a Prolog
dialect should have to start writing portable code for it.
________________________________________________________________________| |
|:- if(\+catch(compare(<,a,b), _, fail)). |
|compare_standard_order(<, Term1, Term2) :- |
| Term1 @< Term2, !. |
|compare_standard_order(>, Term1, Term2) :- |
| Term1 @> Term2, !. |
|compare_standard_order(=, Term1, Term2) :- |
| Term1 == Term2. |
| |
|goal_expansion(compare(Order, Term1, Term2), |
| compare_standard_order(Order, Term1, Term2)). |
|:-|endif.______________________________________________________________ | |
CChhaapptteerr 1155.. GGLLOOSSSSAARRYY OOFF TTEERRMMSS
aannoonnyymmoouuss [[vvaarriiaabbllee]]
The variable _ is called the _a_n_o_n_y_m_o_u_s variable. Multiple
occurrences of _ in a single _t_e_r_m are not _s_h_a_r_e_d.
aarrgguummeennttss
Arguments are _t_e_r_m_s that appear in a _c_o_m_p_o_u_n_d _t_e_r_m. _A_1 and _a_2 are
the first and second argument of the term myterm(_A_1_, _a_2).
aarriittyy
Argument count (= number of arguments) of a _c_o_m_p_o_u_n_d _t_e_r_m.
aasssseerrtt
Add a _c_l_a_u_s_e to a _p_r_e_d_i_c_a_t_e. Clauses can be added at either end of
the clause-list of a _p_r_e_d_i_c_a_t_e. See asserta/1 and assertz/1.
aattoomm
Textual constant. Used as name for _c_o_m_p_o_u_n_d terms, to represent
constants or text.
bbaacckkttrraacckkiinngg
Search process used by Prolog. If a predicate offers multiple
_c_l_a_u_s_e_s to solve a _g_o_a_l, they are tried one-by-one until one
_s_u_c_c_e_e_d_s. If a subsequent part of the proof is not satisfied
with the resulting _v_a_r_i_a_b_l_e _b_i_n_d_i_n_g, it may ask for an alternative
_s_o_l_u_t_i_o_n (= _b_i_n_d_i_n_g of the _v_a_r_i_a_b_l_e_s), causing Prolog to reject the
previously chosen _c_l_a_u_s_e and try the next one.
bbiinnddiinngg [[ooff aa vvaarriiaabbllee]]
Current value of the _v_a_r_i_a_b_l_e. See also _b_a_c_k_t_r_a_c_k_i_n_g and _q_u_e_r_y.
bbuuiilltt--iinn [[pprreeddiiccaattee]]
Predicate that is part of the Prolog system. Built-in predicates
cannot be redefined by the user, unless this is overruled using
redefine_system_predicate/1.
bbooddyy
Part of a _c_l_a_u_s_e behind the _n_e_c_k operator (:-).
cchhooiiccee ppooiinntt
A _c_h_o_i_c_e _p_o_i_n_t represents a choice in the search for a _s_o_l_u_t_i_o_n.
Choice points are created if multiple clauses match a _q_u_e_r_y or
using disjunction (;/2). On _b_a_c_k_t_r_a_c_k_i_n_g, the execution state of
the most recent _c_h_o_i_c_e _p_o_i_n_t is restored and search continues with
the next alternative (i.e., next clause or second branch of ;/2).
ccllaauussee
`Sentence' of a Prolog program. A _c_l_a_u_s_e consists of a _h_e_a_d and
_b_o_d_y separated by the _n_e_c_k operator (:-) or it is a _f_a_c_t. For
example:
____________________________________________________________________| |
| parent(X) :- |
||________father(X,__)._____________________________________________ ||
Expressed as ``X is a parent if X is a father of someone''. See
also _v_a_r_i_a_b_l_e and _p_r_e_d_i_c_a_t_e.
ccoommppiillee
Process where a Prolog _p_r_o_g_r_a_m is translated to a sequence of
instructions. See also _i_n_t_e_r_p_r_e_t_e_d. SWI-Prolog always compiles
your program before executing it.
ccoommppoouunndd [[tteerrmm]]
Also called _s_t_r_u_c_t_u_r_e. It consists of a name followed by _N
_a_r_g_u_m_e_n_t_s, each of which are _t_e_r_m_s. _N is called the _a_r_i_t_y of the
term.
ccoonntteexxtt mmoodduullee
If a _t_e_r_m is referring to a _p_r_e_d_i_c_a_t_e in a _m_o_d_u_l_e, the _c_o_n_t_e_x_t
_m_o_d_u_l_e is used to find the target module. The context module of a
_g_o_a_l is the module in which the _p_r_e_d_i_c_a_t_e is defined, unless this
_p_r_e_d_i_c_a_t_e is _m_o_d_u_l_e _t_r_a_n_s_p_a_r_e_n_t, in which case the _c_o_n_t_e_x_t _m_o_d_u_l_e
is inherited from the parent _g_o_a_l. See also module_transparent/1
and _m_e_t_a_-_p_r_e_d_i_c_a_t_e.
ddeett [[ddeetteerrmmiinniissmm]]
Short for _d_e_t_e_r_m_i_n_i_s_t_i_c.
ddeetteerrmmiinniissmm
How many solutions a _g_o_a_l can provide. Values are `nondet' (zero
to infinite), `multi' (one to infinite), `det' (exactly one) and
`semidet' (zero or one).
ddeetteerrmmiinniissttiicc
A _p_r_e_d_i_c_a_t_e is _d_e_t_e_r_m_i_n_i_s_t_i_c if it succeeds exactly one time
without leaving a _c_h_o_i_c_e _p_o_i_n_t.
ddyynnaammiicc [[pprreeddiiccaattee]]
A _d_y_n_a_m_i_c predicate is a predicate to which _c_l_a_u_s_e_s may be _a_s_s_e_r_ted
and from which _c_l_a_u_s_e_s may be _r_e_t_r_a_c_ted while the program is
running. See also _u_p_d_a_t_e _v_i_e_w.
eexxppoorrtteedd [[pprreeddiiccaattee]]
A _p_r_e_d_i_c_a_t_e is said to be _e_x_p_o_r_t_e_d from a _m_o_d_u_l_e if it appears
in the _p_u_b_l_i_c _l_i_s_t. This implies that the predicate can be
_i_m_p_o_r_t_e_d into another module to make it visible there. See also
use_module/[1,2].
ffaacctt
_C_l_a_u_s_e without a _b_o_d_y. This is called a fact because, interpreted
as logic, there is no condition to be satisfied. The example below
states john is a person.
____________________________________________________________________| |
||person(john)._____________________________________________________ ||
ffaaiill
A _g_o_a_l is said to haved failed if it could not be _p_r_o_v_e_n.
ffllooaatt
Computer's crippled representation of a real number. Represented
as `IEEE double'.
ffoorreeiiggnn
Computer code expressed in languages other than Prolog. SWI-Prolog
can only cooperate directly with the C and C++ computer languages.
ffuunnccttoorr
Combination of name and _a_r_i_t_y of a _c_o_m_p_o_u_n_d term. The term foo(_a_,
_b_, _c) is said to be a term belonging to the functor foo/3. foo/0
is used to refer to the _a_t_o_m foo.
ggooaall
Question stated to the Prolog engine. A _g_o_a_l is either an _a_t_o_m
or a _c_o_m_p_o_u_n_d term. A _g_o_a_l either succeeds, in which case the
_v_a_r_i_a_b_l_e_s in the _c_o_m_p_o_u_n_d terms have a _b_i_n_d_i_n_g, or it _f_a_i_l_s if
Prolog fails to prove it.
hhaasshhiinngg
_I_n_d_e_x_i_n_g technique used for quick lookup.
hheeaadd
Part of a _c_l_a_u_s_e before the _n_e_c_k operator (:-). This is an _a_t_o_m or
_c_o_m_p_o_u_n_d term.
iimmppoorrtteedd [[pprreeddiiccaattee]]
A _p_r_e_d_i_c_a_t_e is said to be _i_m_p_o_r_t_e_d into a _m_o_d_u_l_e if it is defined
in another _m_o_d_u_l_e and made available in this _m_o_d_u_l_e. See also
chapter 6.
iinnddeexxiinngg
Indexing is a technique used to quickly select candidate _c_l_a_u_s_e_s of
a _p_r_e_d_i_c_a_t_e for a specific _g_o_a_l. In most Prolog systems, indexing
is done (only) on the first _a_r_g_u_m_e_n_t of the _h_e_a_d. If this argument
is instantiated to an _a_t_o_m, _i_n_t_e_g_e_r, _f_l_o_a_t or _c_o_m_p_o_u_n_d term with
_f_u_n_c_t_o_r, _h_a_s_h_i_n_g is used to quickly select all _c_l_a_u_s_e_s where the
first argument may _u_n_i_f_y with the first argument of the _g_o_a_l.
SWI-Prolog supports just-in-time and multi-argument indexing. See
section 2.17.
iinntteeggeerr
Whole number. On all implementations of SWI-Prolog integers are at
least 64-bit signed values. When linked to the GNU GMP library,
integer arithmetic is unbounded. See also current_prolog_flag/2,
flags bounded, max_integer and min_integer.
iinntteerrpprreetteedd
As opposed to _c_o_m_p_i_l_e_d, interpreted means the Prolog system
attempts to prove a _g_o_a_l by directly reading the _c_l_a_u_s_e_s rather
than executing instructions from an (abstract) instruction set that
is not or only indirectly related to Prolog.
iinnssttaannttiiaattiioonn [[ooff aann aarrgguummeenntt]]
To what extend a term is bound to a value. Typical levels
are `unbound' (a _v_a_r_i_a_b_l_e), `ground' (term without variables) or
`partially bound' (term with embedded variables).
mmeettaa--pprreeddiiccaattee
A _p_r_e_d_i_c_a_t_e that reasons about other _p_r_e_d_i_c_a_t_e_s, either by calling
them, (re)defining them or querying _p_r_o_p_e_r_t_i_e_s.
mmooddee [[ddeeccllaarraattiioonn]]
Declaration of an argument _i_n_s_t_a_n_t_i_a_t_i_o_n pattern for a _p_r_e_d_i_c_a_t_e,
often accompanied with a _d_e_t_e_r_m_i_n_i_s_m.
mmoodduullee
Collection of predicates. Each module defines a name-space for
predicates. _b_u_i_l_t_-_i_n predicates are accessible from all modules.
Predicates can be published (_e_x_p_o_r_t_e_d) and _i_m_p_o_r_t_e_d to make their
definition available to other modules.
mmoodduullee ttrraannssppaarreenntt [[pprreeddiiccaattee]]
A _p_r_e_d_i_c_a_t_e that does not change the _c_o_n_t_e_x_t _m_o_d_u_l_e. Sometimes
also called a _m_e_t_a_-_p_r_e_d_i_c_a_t_e.
mmuullttii [[ddeetteerrmmiinniissmm]]
A _p_r_e_d_i_c_a_t_e is said to have _d_e_t_e_r_m_i_n_i_s_m multi if it generates at
_l_e_a_s_t one answer.
mmuullttiiffiillee [[pprreeddiiccaattee]]
Predicate for which the definition is distributed over multiple
source files. See multifile/1.
nneecckk
Operator (:-) separating _h_e_a_d from _b_o_d_y in a _c_l_a_u_s_e.
nnoonnddeett
Short for _n_o_n _d_e_t_e_r_m_i_n_i_s_t_i_c.
nnoonn ddeetteerrmmiinniissttiicc
A _n_o_n _d_e_t_e_r_m_i_n_i_s_t_i_c predicate is a predicate that mail fail or
succeed any number of times.
ooppeerraattoorr
Symbol (_a_t_o_m) that may be placed before its _o_p_e_r_a_n_d (prefix), after
its _o_p_e_r_a_n_d (postfix) or between its two _o_p_e_r_a_n_d_s (infix).
In Prolog, the expression a+b is exactly the same as the canonical
term +(a,b).
ooppeerraanndd
_A_r_g_u_m_e_n_t of an _o_p_e_r_a_t_o_r.
pprreecceeddeennccee
The _p_r_i_o_r_i_t_y of an _o_p_e_r_a_t_o_r. Operator precedence is used to
interpret a+b*c as +(a, *(b,c)).
pprreeddiiccaattee
Collection of _c_l_a_u_s_e_s with the same _f_u_n_c_t_o_r (name/_a_r_i_t_y). If a
_g_o_a_l is proved, the system looks for a _p_r_e_d_i_c_a_t_e with the same
functor, then uses _i_n_d_e_x_i_n_g to select candidate _c_l_a_u_s_e_s and then
tries these _c_l_a_u_s_e_s one-by-one. See also _b_a_c_k_t_r_a_c_k_i_n_g.
pprreeddiiccaattee iinnddiiccaattoorr
Term of the form Name/Arity (traditional) or Name//Arity (ISO DCG
proposal), where Name is an atom and Arity a non-negative integer.
It acts as an _i_n_d_i_c_a_t_o_r (or reference) to a predicate or _D_C_G rule.
pprriioorriittyy
In the context of _o_p_e_r_a_t_o_r_s a synonym for _p_r_e_c_e_d_e_n_c_e.
pprrooggrraamm
Collection of _p_r_e_d_i_c_a_t_e_s.
pprrooppeerrttyy
Attribute of an object. SWI-Prolog defines various _*___p_r_o_p_e_r_t_y
predicates to query the status of predicates, clauses. etc.
pprroovvee
Process where Prolog attempts to prove a _q_u_e_r_y using the available
_p_r_e_d_i_c_a_t_e_s.
ppuubblliicc lliisstt
List of _p_r_e_d_i_c_a_t_e_s exported from a _m_o_d_u_l_e.
qquueerryy
See _g_o_a_l.
rreettrraacctt
Remove a _c_l_a_u_s_e from a _p_r_e_d_i_c_a_t_e. See also _d_y_n_a_m_i_c, _u_p_d_a_t_e _v_i_e_w
and _a_s_s_e_r_t.
sseemmiiddeett
Shorthand for
sseemmii ddeetteerrmmiinniissttiicc
.
sseemmii ddeetteerrmmiinniissttiicc
A _p_r_e_d_i_c_a_t_e that is _s_e_m_i _d_e_t_e_r_m_i_n_i_s_t_i_c either fails or succeeds
exactly once without a _c_h_o_i_c_e _p_o_i_n_t. See also _d_e_t_e_r_m_i_n_i_s_t_i_c.
sshhaarreedd
Two _v_a_r_i_a_b_l_e_s are called _s_h_a_r_e_d after they are _u_n_i_f_i_e_d. This
implies if either of them is _b_o_u_n_d, the other is bound to the same
value:
____________________________________________________________________| |
| ?- A = B, A = a. |
||A_=_B,_B_=_a._____________________________________________________ ||
ssiinngglleettoonn [[vvaarriiaabbllee]]
_V_a_r_i_a_b_l_e appearing only one time in a _c_l_a_u_s_e. SWI-Prolog normally
warns for this to avoid you making spelling mistakes. If a
variable appears on purpose only once in a clause, write it as
_ (see _a_n_o_n_y_m_o_u_s). Rules for naming a variable and avoiding a
warning are given in section 2.15.2.5.
ssoolluuttiioonn
_B_i_n_d_i_n_g_s resulting from a successfully _p_r_o_v_en _g_o_a_l.
ssttrruuccttuurree
Synonym for _c_o_m_p_o_u_n_d term.
ssttrriinngg
Used for the following representations of text: a packed array
(see section 5.2, SWI-Prolog specific), a list of character codes
or a list of one-character _a_t_o_m_s.
ssuucccceeeedd
A _g_o_a_l is said to have _s_u_c_c_e_e_d_e_d if it has been _p_r_o_v_e_n.
tteerrmm
Value in Prolog. A _t_e_r_m is either a _v_a_r_i_a_b_l_e, _a_t_o_m, _i_n_t_e_g_e_r, _f_l_o_a_t
or _c_o_m_p_o_u_n_d term. In addition, SWI-Prolog also defines the type
_s_t_r_i_n_g.
ttrraannssppaarreenntt
See _m_o_d_u_l_e _t_r_a_n_s_p_a_r_e_n_t.
uunniiffyy
Prolog process to make two terms equal by assigning variables in
one term to values at the corresponding location of the other term.
For example:
____________________________________________________________________| |
| ?- foo(a, B) = foo(A, b). |
| A = a, |
||B_=_b.____________________________________________________________ ||
Unlike assignment (which does not exist in Prolog), unification is
not directed.
uuppddaattee vviieeww
How Prolog behaves when a _d_y_n_a_m_i_c _p_r_e_d_i_c_a_t_e is changed while it is
running. There are two models. In most older Prolog systems the
change becomes immediately visible to the _g_o_a_l, in modern systems
including SWI-Prolog, the running _g_o_a_l is not affected. Only new
_g_o_a_l_s `see' the new definition.
vvaarriiaabbllee
A Prolog variable is a value that `is not yet bound'. After
_b_i_n_d_i_n_g a variable, it cannot be modified. _B_a_c_k_t_r_a_c_k_i_n_g to a point
in the execution before the variable was bound will turn it back
into a variable:
____________________________________________________________________| |
| ?- A = b, A = c. |
| false. |
| |
| ?- (A = b; true; A = c). |
| A = b ; |
| true ; |
||A_=_c_.___________________________________________________________ ||
See also _u_n_i_f_y.
CChhaapptteerr 1166.. SSWWII--PPRROOLLOOGG LLIICCEENNSSEE CCOONNDDIITTIIOONNSS AANNDD TTOOOOLLSS
SWI-Prolog licensing aims at a large audience, combining ideas from the
Free Software Foundation and the less principal Open Source Initiative.
The license aims at the following:
o Make SWI-Prolog and its libraries `as free as possible'.
o Allow for easy integration of contributions. See section 16.2.
o Free software can build on SWI-Prolog without limitations.
o Non-free (open or proprietary) software can be produced using
SWI-Prolog, although contributed pure GPL-ed components cannot be
used.
To achieve this, different parts of the system have different licenses.
SWI-Prolog programs consist of a mixture of `native' code (source
compiled to machine instructions) and `virtual machine' code (Prolog
source compiled to SWI-Prolog virtual machine instructions, covering
both compiled SWI-Prolog libraries and your compiled application).
For maximal coherence between free licenses, we start with the two
prime licenses from the Free Software Foundation, the GNU General
Public License (GPL) and the Lesser GNU General Public License (LGPL),
after which we add a proven (used by the GNU C compiler runtime library
as well as the GNU _C_l_a_s_s_P_a_t_h project) exception to deal with the
specific nature of compiled virtual machine code in a saved state.
1166..11 TThhee SSWWII--PPrroolloogg kkeerrnneell aanndd ffoorreeiiggnn lliibbrraarriieess
The SWI-Prolog kernel and our foreign libraries are distributed under
the LLGGPPLL. A Prolog executable consists of the combination of these
`native' code components and Prolog virtual machine code. The
SWI-Prolog swipl-rc utility allows for disassembling and re-assembling
these parts, a process satisfying article 66bb of the LGPL.
Under the LGPL, SWI-Prolog can be linked to code distributed under
arbitrary licenses, provided a number of requirements are fulfilled.
The most important requirement is that if an application relies on
a _m_o_d_i_f_i_e_d version of SWI-Prolog, the modified sources must be made
available.
1166..11..11 TThhee SSWWII--PPrroolloogg PPrroolloogg lliibbrraarriieess
Lacking a satisfactory technical solution to handle article 66 of the
LGPL, this license cannot be used for the Prolog source code that is
part of the SWI-Prolog system (both libraries and kernel code). This
situation is comparable to libgcc, the runtime library used with the
GNU C compiler. Therefore, we use the same proven license terms as
this library. The libgcc license is the with a special exception.
Below we rephrase this exception adjusted to our needs:
_A_s _a _s_p_e_c_i_a_l _e_x_c_e_p_t_i_o_n_, _i_f _y_o_u _l_i_n_k _t_h_i_s _l_i_b_r_a_r_y _w_i_t_h _o_t_h_e_r
_f_i_l_e_s_, _c_o_m_p_i_l_e_d _w_i_t_h _a _F_r_e_e _S_o_f_t_w_a_r_e _c_o_m_p_i_l_e_r_, _t_o _p_r_o_d_u_c_e
_a_n _e_x_e_c_u_t_a_b_l_e_, _t_h_i_s _l_i_b_r_a_r_y _d_o_e_s _n_o_t _b_y _i_t_s_e_l_f _c_a_u_s_e _t_h_e
_r_e_s_u_l_t_i_n_g _e_x_e_c_u_t_a_b_l_e _t_o _b_e _c_o_v_e_r_e_d _b_y _t_h_e _G_N_U _G_e_n_e_r_a_l _P_u_b_l_i_c
_L_i_c_e_n_s_e_. _T_h_i_s _e_x_c_e_p_t_i_o_n _d_o_e_s _n_o_t_, _h_o_w_e_v_e_r_, _i_n_v_a_l_i_d_a_t_e _a_n_y
_o_t_h_e_r _r_e_a_s_o_n_s _w_h_y _t_h_e _e_x_e_c_u_t_a_b_l_e _f_i_l_e _m_i_g_h_t _b_e _c_o_v_e_r_e_d _b_y _t_h_e
_G_N_U _G_e_n_e_r_a_l _P_u_b_l_i_c _L_i_c_e_n_s_e_.
1166..22 CCoonnttrriibbuuttiinngg ttoo tthhee SSWWII--PPrroolloogg pprroojjeecctt
To achieve maximal coherence using SWI-Prolog for Free and Non-Free
software we advise using LGPL for contributed foreign code and using
GPL with the SWI-Prolog exception for Prolog code for contributed
modules.
As a rule of thumb it is advised to use the above licenses whenever
possible, and use a strict GPL compliant license only if the module
contains other code under strict GPL compliant licenses.
1166..33 SSooffttwwaarree ssuuppppoorrtt ttoo kkeeeepp ttrraacckk ooff lliicceennssee ccoonnddiittiioonnss
Given the above, it is possible that SWI-Prolog packages and extensions
will rely on the GPL. The predicates below allow for registering
license requirements for Prolog files and foreign modules. The
predicate eval_license/0 reports which components from the currently
configured system are distributed under copy-left and open source
enforcing licenses (the GPL) and therefore must be replaced before
distributing linked applications under non-free license conditions.
eevvaall__lliicceennssee
Evaluate the license conditions of all loaded components. If the
system contains one or more components that are licenced under
GPL-like restrictions the system indicates this program may only
be distributed under the GPL license as well as which components
prohibit the use of other license conditions.
lliicceennssee((_+_L_i_c_e_n_s_e_I_d_, _+_C_o_m_p_o_n_e_n_t))
Register the fact that _C_o_m_p_o_n_e_n_t is distributed under a license
identified by _L_i_c_e_n_s_e_I_d. The most important _L_i_c_e_n_s_e_I_d's are:
sswwiippll
Indicates this module is distributed under the GNU General
Public License (GPL) with the SWI-Prolog exception:
_A_s _a _s_p_e_c_i_a_l _e_x_c_e_p_t_i_o_n_, _i_f _y_o_u _l_i_n_k _t_h_i_s _l_i_b_r_a_r_y _w_i_t_h
_o_t_h_e_r _f_i_l_e_s_, _c_o_m_p_i_l_e_d _w_i_t_h _S_W_I_-_P_r_o_l_o_g_, _t_o _p_r_o_d_u_c_e _a_n
_e_x_e_c_u_t_a_b_l_e_, _t_h_i_s _l_i_b_r_a_r_y _d_o_e_s _n_o_t _b_y _i_t_s_e_l_f _c_a_u_s_e _t_h_e
_r_e_s_u_l_t_i_n_g _e_x_e_c_u_t_a_b_l_e _t_o _b_e _c_o_v_e_r_e_d _b_y _t_h_e _G_N_U _G_e_n_e_r_a_l
_P_u_b_l_i_c _L_i_c_e_n_s_e_. _T_h_i_s _e_x_c_e_p_t_i_o_n _d_o_e_s _n_o_t_, _h_o_w_e_v_e_r_,
_i_n_v_a_l_i_d_a_t_e _a_n_y _o_t_h_e_r _r_e_a_s_o_n_s _w_h_y _t_h_e _e_x_e_c_u_t_a_b_l_e _f_i_l_e
_m_i_g_h_t _b_e _c_o_v_e_r_e_d _b_y _t_h_e _G_N_U _G_e_n_e_r_a_l _P_u_b_l_i_c _L_i_c_e_n_s_e_.
This should be the default for software contributed to the
SWI-Prolog project as it allows the community to prosper
both in the free and non-free world. Still, people using
SWI-Prolog to create non-free applications must contribute
sources to improvements they make to the community.
llggppll
This is the default license for foreign libraries linked with
SWI-Prolog. Use PL_license() to register the condition from
foreign code.
ggppll
Indicates this module is strictly Free Software, which implies
it cannot be used together with any module that is
incompatible with the GPL. Please only use these conditions
when forced by other code used in the component.
Other licenses known to the system are guile, gnu_ada, x11,
expat, sml, public_domain, cryptix, bsd, zlib, lgpl_compatible and
gpl_compatible. New licenses can be defined by adding clauses for
the multifile predicate license:license/3. Below is an example.
The second argument is either gpl or lgpl to indicate compatibility
with these licenses. Other values cause the license to be
interpreted as _p_r_o_p_r_i_e_t_a_r_y. Proprietary licenses are reported by
eval_license/0. See the file boot/license.pl for details.
____________________________________________________________________| |
| :- multifile license:license/3. |
| |
| license:license(mylicense, lgpl, |
| [ comment('My personal license'), |
| url('http://www.mine.org/license.html') |
| ]). |
| |
||:-_license(mylicense).____________________________________________ ||
lliicceennssee((_+_L_i_c_e_n_s_e_I_d))
Intended as a directive in Prolog source files. It takes the
current filename and calls license/2.
void PPLL__lliicceennssee(_c_o_n_s_t _c_h_a_r _*_L_i_c_e_n_s_e_I_d_, _c_o_n_s_t _c_h_a_r _*_C_o_m_p_o_n_e_n_t)
Intended for the install() procedure of foreign libraries. This
call can be made _b_e_f_o_r_e PL_initialise().
1166..44 LLiicceennssee ccoonnddiittiioonnss iinnhheerriitteedd ffrroomm uusseedd ccooddee
1166..44..11 CCrryyppttooggrraapphhiicc rroouuttiinneess
Cryptographic routines are used in variant_sha1/2 and crypt. These
routines are provided under the following conditions:
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
CChhaapptteerr 1177.. SSUUMMMMAARRYY
1177..11 PPrreeddiiccaatteess
The predicate summary is used by the Prolog predicate apropos/1 to
suggest predicates from a keyword.
@/2 Call using calling context
!/0 Cut (discard choicepoints)
,/2 Conjunction of goals
->/2 If-then-else
*->/2 Soft-cut
./2 Consult. Also functional notation
:</2 Select keys from a dict
;/2 Disjunction of two goals
</2 Arithmetic smaller
=/2 True when arguments are unified
=../2 ``Univ.'' Term to list conversion
=:=/2 Arithmetic equality
=</2 Arithmetic smaller or equal
==/2 Test for strict equality
=@=/2 Test for structural equality (variant)
=\=/2 Arithmetic not equal
>/2 Arithmetic larger
>=/2 Arithmetic larger or equal
>:</2 Partial dict unification
?=/2 Test of terms can be compared now
@</2 Standard order smaller
@=</2 Standard order smaller or equal
@>/2 Standard order larger
@>=/2 Standard order larger or equal
\+/1 Negation by failure. Same as not/1
\=/2 True if arguments cannot be unified
\==/2 True if arguments are not strictly equal
\=@=/2 Not structural identical
^/2 Existential quantification (bagof/3, setof/3)
|/2 Disjunction in DCGs. Same as ;/2
{}/1 DCG escape; constraints
abolish/1 Remove predicate definition from the database
abolish/2 Remove predicate definition from the database
abort/0 Abort execution, return to top level
absolute_file_name/2 Get absolute path name
absolute_file_name/3 Get absolute path name with options
access_file/2 Check access permissions of a file
acyclic_term/1 Test term for cycles
add_import_module/3 Add module to the auto-import list
add_nb_set/2 Add term to a non-backtrackable set
add_nb_set/3 Add term to a non-backtrackable set
append/1 Append to a file
apply/2 Call goal with additional arguments
apropos/1 online_help Search manual
arg/3 Access argument of a term
assoc_to_list/2 Convert association tree to list
assert/1 Add a clause to the database
assert/2 Add a clause to the database, give reference
asserta/1 Add a clause to the database (first)
asserta/2 Add a clause to the database (first)
assertion/1 Make assertions about your program
assertz/1 Add a clause to the database (last)
assertz/2 Add a clause to the database (last)
attach_console/0 Attach I/O console to thread
attribute_goals/3 Project attributes to goals
attr_unify_hook/2 Attributed variable unification hook
attr_portray_hook/2 Attributed variable print hook
attvar/1 Type test for attributed variable
at_end_of_stream/0 Test for end of file on input
at_end_of_stream/1 Test for end of file on stream
at_halt/1 Register goal to run at halt/1
atom/1 Type check for an atom
atom_chars/2 Convert between atom and list of characters
atom_codes/2 Convert between atom and list of characters codes
atom_concat/3 Contatenate two atoms
atom_length/2 Determine length of an atom
atom_number/2 Convert between atom and number
atom_prefix/2 Test for start of atom
atom_string/2 Conversion between atom and string
atom_to_term/3 Convert between atom and term
atomic/1 Type check for primitive
atomic_concat/3 Concatenate two atomic values to an atom
atomic_list_concat/2 Append a list of atomics
atomic_list_concat/3 Append a list of atomics with separator
atomics_to_string/2 Concatenate list of inputs to a string
atomics_to_string/3 Concatenate list of inputs to a string
autoload/0 Autoload all predicates now
autoload_path/1 Add directories for autoloading
b_getval/2 Fetch backtrackable global variable
b_set_dict/3 Destructive assignment on a dict
b_setval/2 Assign backtrackable global variable
bagof/3 Find all solutions to a goal
between/3 Integer range checking/generating
blob/2 Type check for a blob
break/0 Start interactive top level
break_hook/6 (hook) Debugger hook
byte_count/2 Byte-position in a stream
call/1 Call a goal
call/[2..] Call with additional arguments
call_cleanup/3 Guard a goal with a cleaup-handler
call_cleanup/2 Guard a goal with a cleaup-handler
call_dcg/3 As phrase/3 without type checking
call_residue_vars/2 Find residual attributed variables
call_shared_object_function/2 UNIX: Call C-function in shared (.so) file
call_with_depth_limit/3 Prove goal with bounded depth
call_with_inference_limit/3 Prove goal in limited inferences
callable/1 Test for atom or compound term
cancel_halt/1 Cancel halt/0 from an at_halt/1 hook
catch/3 Call goal, watching for exceptions
char_code/2 Convert between character and character code
char_conversion/2 Provide mapping of input characters
char_type/2 Classify characters
character_count/2 Get character index on a stream
chdir/1 Compatibility: change working directory
chr_constraint/1 CHR Constraint declaration
chr_show_store/1 List suspended CHR constraints
chr_trace/0 Start CHR tracer
chr_type/1 CHR Type declaration
chr_notrace/0 Stop CHR tracer
chr_leash/1 Define CHR leashed ports
chr_option/2 Specify CHR compilation options
clause/2 Get clauses of a predicate
clause/3 Get clauses of a predicate
clause_property/2 Get properties of a clause
close/1 Close stream
close/2 Close stream (forced)
close_dde_conversation/1 Win32: Close DDE channel
close_shared_object/1 UNIX: Close shared library (.so file)
collation_key/2 Sort key for locale dependent ordering
comment_hook/3 (hook) handle comments in sources
compare/3 Compare, using a predicate to determine the order
compile_aux_clauses/1 Compile predicates for goal_expansion/2
compile_predicates/1 Compile dynamic code to static
compiling/0 Is this a compilation run?
compound/1 Test for compound term
compound_name_arity/3 Name and arity of a compound term
compound_name_arguments/3 Name and arguments of a compound term
code_type/2 Classify a character-code
consult/1 Read (compile) a Prolog source file
context_module/1 Get context module of current goal
convert_time/8 Break time stamp into fields
convert_time/2 Convert time stamp to string
copy_stream_data/2 Copy all data from stream to stream
copy_stream_data/3 Copy n bytes from stream to stream
copy_predicate_clauses/2 Copy clauses between predicates
copy_term/2 Make a copy of a term
copy_term/3 Copy a term and obtain attribute-goals
copy_term_nat/2 Make a copy of a term without attributes
create_prolog_flag/3 Create a new Prolog flag
current_arithmetic_function/1 Examine evaluable functions
current_atom/1 Examine existing atoms
current_blob/2 Examine typed blobs
current_char_conversion/2 Query input character mapping
current_flag/1 Examine existing flags
current_foreign_library/2 shlib Examine loaded shared libraries (.so files)
current_format_predicate/2 Enumerate user-defined format codes
current_functor/2 Examine existing name/arity pairs
current_input/1 Get current input stream
current_key/1 Examine existing database keys
current_locale/1 Get the current locale
current_module/1 Examine existing modules
current_op/3 Examine current operator declarations
current_output/1 Get the current output stream
current_predicate/1 Examine existing predicates (ISO)
current_predicate/2 Examine existing predicates
current_signal/3 Current software signal mapping
current_stream/3 Examine open streams
cyclic_term/1 Test term for cycles
day_of_the_week/2 Determine ordinal-day from date
date_time_stamp/2 Convert date structure to time-stamp
date_time_value/3 Extract info from a date structure
dcg_translate_rule/2 Source translation of DCG rules
dcg_translate_rule/4 Source translation of DCG rules
dde_current_connection/2 Win32: Examine open DDE connections
dde_current_service/2 Win32: Examine DDE services provided
dde_execute/2 Win32: Execute command on DDE server
dde_register_service/2 Win32: Become a DDE server
dde_request/3 Win32: Make a DDE request
dde_poke/3 Win32: POKE operation on DDE server
dde_unregister_service/1 Win32: Terminate a DDE service
debug/0 Test for debugging mode
debug/1 Select topic for debugging
debug/3 Print debugging message on topic
debug_control_hook/1 (hook) Extend spy/1, etc.
debugging/0 Show debugger status
debugging/1 Test where we are debugging topic
default_module/2 Query module inheritance
del_attr/2 Delete attribute from variable
del_attrs/1 Delete all attributes from variable
del_dict/4 Delete Key-Value pair from a dict
delete_directory/1 Remove a folder from the file system
delete_file/1 Remove a file from the file system
delete_import_module/2 Remove module from import list
deterministic/1 Test deterministicy of current clause
dif/2 Constrain two terms to be different
directory_files/2 Get entries of a directory/folder
discontiguous/1 Indicate distributed definition of a predicate
divmod/4 Compute quotient and remainder of two integers
downcase_atom/2 Convert atom to lower-case
duplicate_term/2 Create a copy of a term
dwim_match/2 Atoms match in ``Do What I Mean'' sense
dwim_match/3 Atoms match in ``Do What I Mean'' sense
dwim_predicate/2 Find predicate in ``Do What I Mean'' sense
dynamic/1 Indicate predicate definition may change
edit/0 Edit current script- or associated file
edit/1 Edit a file, predicate, module (extensible)
elif/1 Part of conditional compilation (directive)
else/0 Part of conditional compilation (directive)
empty_assoc/1 Create/test empty association tree
empty_nb_set/1 Test/create an empty non-backtrackable set
encoding/1 Define encoding inside a source file
endif/0 End of conditional compilation (directive)
ensure_loaded/1 Consult a file if that has not yet been done
erase/1 Erase a database record or clause
eval_license/0 Evaluate licenses of loaded modules
exception/3 (hook) Handle runtime exceptions
exists_directory/1 Check existence of directory
exists_file/1 Check existence of file
exists_source/1 Check existence of a Prolog source
expand_answer/2 Expand answer of query
expand_file_name/2 Wildcard expansion of file names
expand_file_search_path/2 Wildcard expansion of file paths
expand_goal/2 Compiler: expand goal in clause-body
expand_goal/4 Compiler: expand goal in clause-body
expand_query/4 Expanded entered query
expand_term/2 Compiler: expand read term into clause(s)
expand_term/4 Compiler: expand read term into clause(s)
expects_dialect/1 For which Prolog dialect is this code written?
explain/1 explain Explain argument
explain/2 explain 2nd argument is explanation of first
export/1 Export a predicate from a module
fail/0 Always false
false/0 Always false
current_prolog_flag/2 Get system configuration parameters
file_base_name/2 Get file part of path
file_directory_name/2 Get directory part of path
file_name_extension/3 Add, remove or test file extensions
file_search_path/2 Define path-aliases for locating files
find_chr_constraint/1 Returns a constraint from the store
findall/3 Find all solutions to a goal
findall/4 Difference list version of findall/3
findnsols/4 Find first _N solutions
findnsols/5 Difference list version of findsols/4
flag/3 Simple global variable system
float/1 Type check for a floating point number
flush_output/0 Output pending characters on current stream
flush_output/1 Output pending characters on specified stream
forall/2 Prove goal for all solutions of another goal
format/1 Formatted output
format/2 Formatted output with arguments
format/3 Formatted output on a stream
format_time/3 C strftime() like date/time formatter
format_time/4 date/time formatter with explicit locale
format_predicate/2 Program format/[1,2]
term_attvars/2 Find attributed variables in a term
term_variables/2 Find unbound variables in a term
term_variables/3 Find unbound variables in a term
text_to_string/2 Convert arbitrary text to a string
freeze/2 Delay execution until variable is bound
frozen/2 Query delayed goals on var
functor/3 Get name and arity of a term or construct a term
garbage_collect/0 Invoke the garbage collector
garbage_collect_atoms/0 Invoke the atom garbage collector
garbage_collect_clauses/0 Invoke clause garbage collector
gen_assoc/3 Enumerate members of association tree
gen_nb_set/2 Generate members of non-backtrackable set
gensym/2 Generate unique atoms from a base
get/1 Read first non-blank character
get/2 Read first non-blank character from a stream
get_assoc/3 Fetch key from association tree
get_assoc/5 Fetch key from association tree
get0/1 Read next character
get0/2 Read next character from a stream
get_attr/3 Fetch named attribute from a variable
get_attrs/2 Fetch all attributes of a variable
get_byte/1 Read next byte (ISO)
get_byte/2 Read next byte from a stream (ISO)
get_char/1 Read next character as an atom (ISO)
get_char/2 Read next character from a stream (ISO)
get_code/1 Read next character (ISO)
get_code/2 Read next character from a stream (ISO)
get_dict/3 Get the value associated to a key from a dict
get_dict/5 Replace existing value in a dict
get_single_char/1 Read next character from the terminal
get_string_code/3 Get character code at index in string
get_time/1 Get current time
getenv/2 Get shell environment variable
goal_expansion/2 Hook for macro-expanding goals
goal_expansion/4 Hook for macro-expanding goals
ground/1 Verify term holds no unbound variables
gdebug/0 Debug using graphical tracer
gspy/1 Spy using graphical tracer
gtrace/0 Trace using graphical tracer
guitracer/0 Install hooks for the graphical debugger
gxref/0 Cross-reference loaded program
halt/0 Exit from Prolog
halt/1 Exit from Prolog with status
term_hash/2 Hash-value of ground term
term_hash/4 Hash-value of term with depth limit
help/0 Give help on help
help/1 Give help on predicates and show parts of manual
help_hook/1 (hook) User-hook in the help-system
if/1 Start conditional compilation (directive)
ignore/1 Call the argument, but always succeed
import/1 Import a predicate from a module
import_module/2 Query import modules
in_pce_thread/1 Run goal in XPCE thread
in_pce_thread_sync/1 Run goal in XPCE thread
include/1 Include a file with declarations
initialization/1 Initialization directive
initialization/2 Initialization directive
instance/2 Fetch clause or record from reference
integer/1 Type check for integer
interactor/0 Start new thread with console and top level
is/2 Evaluate arithmetic expression
is_absolute_file_name/1 True if arg defines an absolute path
is_assoc/1 Verify association list
is_list/1 Type check for a list
is_dict/1 Type check for a dict
is_dict/2 Type check for a dict in a class
is_stream/1 Type check for a stream handle
join_threads/0 Join all terminated threads interactively
keysort/2 Sort, using a key
last/2 Last element of a list
leash/1 Change ports visited by the tracer
length/2 Length of a list
library_directory/1 (hook) Directories holding Prolog libraries
license/1 Define license for current file
license/2 Define license for named module
line_count/2 Line number on stream
line_position/2 Character position in line on stream
list_debug_topics/0 List registered topics for debugging
list_to_assoc/2 Create association tree from list
list_to_set/2 Remove duplicates from a list
list_strings/0 Help porting to version 7
listing/0 List program in current module
listing/1 List predicate
load_files/1 Load source files
load_files/2 Load source files with options
load_foreign_library/1 shlib Load shared library (.so file)
load_foreign_library/2 shlib Load shared library (.so file)
locale_create/3 Create a new locale object
locale_destroy/1 Destroy a locale object
locale_property/2 Query properties of locale objects
locale_sort/2 Language dependent sort of atoms
make/0 Reconsult all changed source files
make_directory/1 Create a folder on the file system
make_library_index/1 Create autoload file INDEX.pl
make_library_index/2 Create selective autoload file INDEX.pl
map_assoc/2 Map association tree
map_assoc/3 Map association tree
dict_create/3 Create a dict from data
dict_pairs/3 Convert between dict and list of pairs
max_assoc/3 Highest key in association tree
memberchk/2 Deterministic member/2
message_hook/3 Intercept print_message/2
message_line_element/2 (hook) Intercept print_message_lines/3
message_property/2 (hook) Define display of a message
message_queue_create/1 Create queue for thread communication
message_queue_create/2 Create queue for thread communication
message_queue_destroy/1 Destroy queue for thread communication
message_queue_property/2 Query message queue properties
message_to_string/2 Translate message-term to string
meta_predicate/1 Declare access to other predicates
min_assoc/3 Lowest key in association tree
module/1 Query/set current type-in module
module/2 Declare a module
module/3 Declare a module with language options
module_property/2 Find properties of a module
module_transparent/1 Indicate module based meta-predicate
msort/2 Sort, do not remove duplicates
multifile/1 Indicate distributed definition of predicate
mutex_create/1 Create a thread-synchronisation device
mutex_create/2 Create a thread-synchronisation device
mutex_destroy/1 Destroy a mutex
mutex_lock/1 Become owner of a mutex
mutex_property/2 Query mutex properties
mutex_statistics/0 Print statistics on mutex usage
mutex_trylock/1 Become owner of a mutex (non-blocking)
mutex_unlock/1 Release ownership of mutex
mutex_unlock_all/0 Release ownership of all mutexes
name/2 Convert between atom and list of character codes
nb_current/2 Enumerate non-backtrackable global variables
nb_delete/1 Delete a non-backtrackable global variable
nb_getval/2 Fetch non-backtrackable global variable
nb_link_dict/3 Non-backtrackable assignment to dict
nb_linkarg/3 Non-backtrackable assignment to term
nb_linkval/2 Assign non-backtrackable global variable
nb_set_to_list/2 Convert non-backtrackable set to list
nb_set_dict/3 Non-backtrackable assignment to dict
nb_setarg/3 Non-backtrackable assignment to term
nb_setval/2 Assign non-backtrackable global variable
nl/0 Generate a newline
nl/1 Generate a newline on a stream
nodebug/0 Disable debugging
nodebug/1 Disable debug-topic
noguitracer/0 Disable the graphical debugger
nonvar/1 Type check for bound term
noprofile/1 Hide (meta-) predicate for the profiler
noprotocol/0 Disable logging of user interaction
normalize_space/2 Normalize white space
nospy/1 Remove spy point
nospyall/0 Remove all spy points
not/1 Negation by failure (argument not provable). Same as \+/1
notrace/0 Stop tracing
notrace/1 Do not debug argument goal
nth_clause/3 N-th clause of a predicate
nth_integer_root_and_remainder/4Integer root and remainder
number/1 Type check for integer or float
number_chars/2 Convert between number and one-char atoms
number_codes/2 Convert between number and character codes
number_string/2 Convert between number and string
numbervars/3 Number unbound variables of a term
numbervars/4 Number unbound variables of a term
on_signal/3 Handle a software signal
once/1 Call a goal deterministically
op/3 Declare an operator
open/3 Open a file (creating a stream)
open/4 Open a file (creating a stream)
open_dde_conversation/3 Win32: Open DDE channel
open_null_stream/1 Open a stream to discard output
open_resource/3 Open a program resource as a stream
open_shared_object/2 UNIX: Open shared library (.so file)
open_shared_object/3 UNIX: Open shared library (.so file)
open_string/2 Open a string as a stream
ord_list_to_assoc/2 Convert ordered list to assoc
parse_time/2 Parse text to a time-stamp
parse_time/3 Parse text to a time-stamp
pce_dispatch/1 Run XPCE GUI in separate thread
pce_call/1 Run goal in XPCE GUI thread
peek_byte/1 Read byte without removing
peek_byte/2 Read byte without removing
peek_char/1 Read character without removing
peek_char/2 Read character without removing
peek_code/1 Read character-code without removing
peek_code/2 Read character-code without removing
peek_string/3 Read a string without removing
phrase/2 Activate grammar-rule set
phrase/3 Activate grammar-rule set (returning rest)
phrase_from_quasi_quotation/2 Parse quasi quotation with DCG
please/3 Query/change environment parameters
plus/3 Logical integer addition
portray/1 (hook) Modify behaviour of print/1
portray_clause/1 Pretty print a clause
portray_clause/2 Pretty print a clause to a stream
predicate_property/2 Query predicate attributes
predsort/3 Sort, using a predicate to determine the order
print/1 Print a term
print/2 Print a term on a stream
print_message/2 Print message from (exception) term
print_message_lines/3 Print message to stream
profile/1 Obtain execution statistics
profile/2 Obtain execution statistics
profile_count/3 Obtain profile results on a predicate
profiler/2 Obtain/change status of the profiler
prolog/0 Run interactive top level
prolog_choice_attribute/3 Examine the choice point stack
prolog_current_choice/1 Reference to most recent choice point
prolog_current_frame/1 Reference to goal's environment stack
prolog_cut_to/1 Realise global cuts
prolog_edit:locate/2 Locate targets for edit/1
prolog_edit:locate/3 Locate targets for edit/1
prolog_edit:edit_source/1 Call editor for edit/1
prolog_edit:edit_command/2 Specify editor activation
prolog_edit:load/0 Load edit/1 extensions
prolog_exception_hook/4 Rewrite exceptions
prolog_file_type/2 Define meaning of file extension
prolog_frame_attribute/3 Obtain information on a goal environment
prolog_ide/1 Program access to the development environment
prolog_list_goal/1 (hook) Intercept tracer 'L' command
prolog_load_context/2 Context information for directives
prolog_load_file/2 (hook) Program load_files/2
prolog_skip_level/2 Indicate deepest recursion to trace
prolog_skip_frame/1 Perform `skip' on a frame
prolog_stack_property/2 Query properties of the stacks
prolog_to_os_filename/2 Convert between Prolog and OS filenames
prolog_trace_interception/4 user Intercept the Prolog tracer
project_attributes/2 Project constraints to query variables
prompt1/1 Change prompt for 1 line
prompt/2 Change the prompt used by read/1
protocol/1 Make a log of the user interaction
protocola/1 Append log of the user interaction to file
protocolling/1 On what file is user interaction logged
public/1 Declaration that a predicate may be called
put/1 Write a character
put/2 Write a character on a stream
put_assoc/4 Add Key-Value to association tree
put_attr/3 Put attribute on a variable
put_attrs/2 Set/replace all attributes on a variable
put_byte/1 Write a byte
put_byte/2 Write a byte on a stream
put_char/1 Write a character
put_char/2 Write a character on a stream
put_code/1 Write a character-code
put_code/2 Write a character-code on a stream
put_dict/3 Add/replace multiple keys in a dict
put_dict/4 Add/replace a single key in a dict
qcompile/1 Compile source to Quick Load File
qcompile/2 Compile source to Quick Load File
qsave_program/1 Create runtime application
qsave_program/2 Create runtime application
quasi_quotation_syntax/1 Declare quasi quotation syntax
quasi_quotation_syntax_error/1 Raise syntax error
random_property/1 Query properties of random generation
rational/1 Type check for a rational number
rational/3 Decompose a rational
read/1 Read Prolog term
read/2 Read Prolog term from stream
read_clause/3 Read clause from stream
read_history/6 Read using history substitution
read_link/3 Read a symbolic link
read_pending_input/3 Fetch buffered input from a stream
read_string/3 Read a number of characters into a string
read_string/5 Read string upto a delimiter
read_term/2 Read term with options
read_term/3 Read term with options from stream
read_term_from_atom/3 Read term with options from atom
recorda/2 Record term in the database (first)
recorda/3 Record term in the database (first)
recorded/2 Obtain term from the database
recorded/3 Obtain term from the database
recordz/2 Record term in the database (last)
recordz/3 Record term in the database (last)
redefine_system_predicate/1 Abolish system definition
reexport/1 Load files and re-export the imported predicates
reexport/2 Load predicates from a file and re-export it
reload_foreign_libraries/0 Reload DLLs/shared objects
reload_library_index/0 Force reloading the autoload index
rename_file/2 Change name of file
repeat/0 Succeed, leaving infinite backtrack points
require/1 This file requires these predicates
reset_gensym/1 Reset a gensym key
reset_gensym/0 Reset all gensym keys
reset_profiler/0 Clear statistics obtained by the profiler
resource/3 Declare a program resource
retract/1 Remove clause from the database
retractall/1 Remove unifying clauses from the database
same_file/2 Succeeds if arguments refer to same file
same_term/2 Test terms to be at the same address
see/1 Change the current input stream
seeing/1 Query the current input stream
seek/4 Modify the current position in a stream
seen/0 Close the current input stream
select_dict/2 Select matching attributes from a dict
select_dict/3 Select matching attributes from a dict
set_end_of_stream/1 Set physical end of an open file
set_input/1 Set current input stream from a stream
set_locale/1 Set the default local
set_module/1 Set properties of a module
set_output/1 Set current output stream from a stream
set_prolog_IO/3 Prepare streams for interactive session
set_prolog_flag/2 Define a system feature
set_prolog_stack/2 Modify stack characteristics
set_random/1 Control random number generation
set_stream/2 Set stream attribute
set_stream_position/2 Seek stream to position
setup_call_cleanup/3 Undo side-effects safely
setup_call_catcher_cleanup/4 Undo side-effects safely
setarg/3 Destructive assignment on term
setenv/2 Set shell environment variable
setlocale/3 Set/query C-library regional information
setof/3 Find all unique solutions to a goal
shell/0 Execute interactive subshell
shell/1 Execute OS command
shell/2 Execute OS command
show_profile/1 Show results of the profiler
size_file/2 Get size of a file in characters
size_nb_set/2 Determine size of non-backtrackable set
skip/1 Skip to character in current input
skip/2 Skip to character on stream
rl_add_history/1 Add line to readline(3) history
rl_read_history/1 Read readline(3) history
rl_read_init_file/1 Read readline(3) init file
rl_write_history/1 Write readline(3) history
sleep/1 Suspend execution for specified time
sort/2 Sort elements in a list
sort/4 Sort elements in a list
source_exports/2 Check whether source exports a predicate
source_file/1 Examine currently loaded source files
source_file/2 Obtain source file of predicate
source_file_property/2 Information about loaded files
source_location/2 Location of last read term
split_string/4 Break a string into substrings
spy/1 Force tracer on specified predicate
stamp_date_time/3 Convert time-stamp to date structure
statistics/0 Show execution statistics
statistics/2 Obtain collected statistics
stream_pair/3 Create/examine a bi-directional stream
stream_position_data/3 Access fields from stream position
stream_property/2 Get stream properties
string/1 Type check for string
string_concat/3 atom_concat/3 for strings
string_length/2 Determine length of a string
string_chars/2 Conversion between string and list of characters
string_codes/2 Conversion between string and list of character codes
string_code/3 Get or find a character code in a string
string_lower/2 Case conversion to lower case
string_upper/2 Case conversion to upper case
string_predicate/1 (hook) Predicate contains strings
strip_module/3 Extract context module and term
style_check/1 Change level of warnings
sub_atom/5 Take a substring from an atom
sub_atom_icasechk/3 Case insensitive substring match
sub_string/5 Take a substring from a string
subsumes_term/2 One-sided unification test
succ/2 Logical integer successor relation
swritef/2 Formatted write on a string
swritef/3 Formatted write on a string
tab/1 Output number of spaces
tab/2 Output number of spaces on a stream
tdebug/0 Switch all threads into debug mode
tdebug/1 Switch a thread into debug mode
tell/1 Change current output stream
telling/1 Query current output stream
term_expansion/2 (hook) Convert term before compilation
term_expansion/4 (hook) Convert term before compilation
term_string/2 Read/write a term from/to a string
term_string/3 Read/write a term from/to a string
term_subsumer/3 Most specific generalization of two terms
term_to_atom/2 Convert between term and atom
thread_at_exit/1 Register goal to be called at exit
thread_create/3 Create a new Prolog task
thread_detach/1 Make thread cleanup after completion
thread_exit/1 Terminate Prolog task with value
thread_get_message/1 Wait for message
thread_get_message/2 Wait for message in a queue
thread_get_message/3 Wait for message in a queue
thread_initialization/1 Run action at start of thread
thread_join/2 Wait for Prolog task-completion
thread_local/1 Declare thread-specific clauses for a predicate
thread_message_hook/3 Thread local message_hook/3
thread_peek_message/1 Test for message
thread_peek_message/2 Test for message in a queue
thread_property/2 Examine Prolog threads
thread_self/1 Get identifier of current thread
thread_send_message/2 Send message to another thread
thread_send_message/3 Send message to another thread
thread_setconcurrency/2 Number of active threads
thread_signal/2 Execute goal in another thread
thread_statistics/3 Get statistics of another thread
threads/0 List running threads
throw/1 Raise an exception (see catch/3)
time/1 Determine time needed to execute goal
time_file/2 Get last modification time of file
tmp_file/2 Create a temporary filename
tmp_file_stream/3 Create a temporary file and open it
tnodebug/0 Switch off debug mode in all threads
tnodebug/1 Switch off debug mode in a thread
told/0 Close current output
tprofile/1 Profile a thread for some period
trace/0 Start the tracer
trace/1 Set trace point on predicate
trace/2 Set/Clear trace point on ports
tracing/0 Query status of the tracer
trim_stacks/0 Release unused memory resources
true/0 Succeed
tspy/1 Set spy point and enable debugging in all threads
tspy/2 Set spy point and enable debugging in a thread
tty_get_capability/3 Get terminal parameter
tty_goto/2 Goto position on screen
tty_put/2 Write control string to terminal
tty_size/2 Get row/column size of the terminal
ttyflush/0 Flush output on terminal
unify_with_occurs_check/2 Logically sound unification
unifiable/3 Determining binding required for unification
unix/1 OS interaction
unknown/2 Trap undefined predicates
unload_file/1 Unload a source file
unload_foreign_library/1 shlib Detach shared library (.so file)
unload_foreign_library/2 shlib Detach shared library (.so file)
unsetenv/1 Delete shell environment variable
upcase_atom/2 Convert atom to upper-case
use_foreign_library/1 Load DLL/shared object (directive)
use_foreign_library/2 Load DLL/shared object (directive)
use_module/1 Import a module
use_module/2 Import predicates from a module
valid_string_goal/1 (hook) Goal handles strings
var/1 Type check for unbound variable
var_number/2 Check that var is numbered by numbervars
var_property/2 Variable properties during macro expansion
variant_sha1/2 Term-hash for term-variants
version/0 Print system banner message
version/1 Add messages to the system banner
visible/1 Ports that are visible in the tracer
volatile/1 Predicates that are not saved
wait_for_input/3 Wait for input with optional timeout
when/2 Execute goal when condition becomes true
wildcard_match/2 Csh(1) style wildcard match
win_add_dll_directory/1 Add directory to DLL search path
win_add_dll_directory/2 Add directory to DLL search path
win_remove_dll_directory/1 Remove directory from DLL search path
win_exec/2 Win32: spawn Windows task
win_has_menu/0 Win32: true if console menu is available
win_folder/2 Win32: get special folder by CSIDL
win_insert_menu/2 swipl-win.exe: add menu
win_insert_menu_item/4 swipl-win.exe: add item to menu
win_shell/2 Win32: open document through Shell
win_shell/3 Win32: open document through Shell
win_registry_get_value/3 Win32: get registry value
win_window_pos/1 Win32: change size and position of window
window_title/2 Win32: change title of window
with_mutex/2 Run goal while holding mutex
with_output_to/2 Write to strings and more
with_quasi_quotation_input/3 Parse quasi quotation from stream
working_directory/2 Query/change CWD
write/1 Write term
write/2 Write term to stream
writeln/1 Write term, followed by a newline
writeln/2 Write term, followed by a newline to a stream
write_canonical/1 Write a term with quotes, ignore operators
write_canonical/2 Write a term with quotes, ignore operators on a stream
write_length/3 Dermine #characters to output a term
write_term/2 Write term with options
write_term/3 Write term with options to stream
writef/1 Formatted write
writef/2 Formatted write on stream
writeq/1 Write term, insert quotes
writeq/2 Write term, insert quotes on stream
1177..22 LLiibbrraarryy pprreeddiiccaatteess
1177..22..11 lliibbrraarryy((aaggggrreeggaattee))
aggregate/3 Aggregate bindings in Goal according to Template.
aggregate/4 Aggregate bindings in Goal according to Template.
aggregate_all/3 Aggregate bindings in Goal according to Template.
aggregate_all/4 Aggregate bindings in Goal according to Template.
foreach/2 True if conjunction of results is true.
free_variables/4 Find free variables in bagof/setof template.
safe_meta/2 Declare the aggregate meta-calls safe.
1177..22..22 lliibbrraarryy((aappppllyy))
exclude/3 Filter elements for which Goal fails.
foldl/4 Fold a list, using arguments of the list as left argument.
foldl/5 Fold a list, using arguments of the list as left argument.
foldl/6 Fold a list, using arguments of the list as left argument.
foldl/7 Fold a list, using arguments of the list as left argument.
include/3 Filter elements for which Goal succeeds.
maplist/2 True if Goal can successfully be applied on all elements of List.
maplist/3 As maplist/2, operating on pairs of elements from two lists.
maplist/4 As maplist/2, operating on triples of elements from three lists.
maplist/5 As maplist/2, operating on quadruples of elements from four lists.
partition/4 Filter elements of List according to Pred.
partition/5 Filter List according to Pred in three sets.
scanl/4 Left scan of list.
scanl/5 Left scan of list.
scanl/6 Left scan of list.
scanl/7 Left scan of list.
1177..22..33 lliibbrraarryy((aassssoocc))
assoc_to_list/2 Translate assoc into a pairs list
assoc_to_keys/2 Translate assoc into a key list
assoc_to_values/2 Translate assoc into a value list
empty_assoc/1 Test/create an empty assoc
gen_assoc/3 Non-deterministic enumeration of assoc
get_assoc/3 Get associated value
get_assoc/5 Get and replace associated value
list_to_assoc/2 Translate pair list to assoc
map_assoc/2 Test assoc values
map_assoc/3 Map assoc values
max_assoc/3 Max key-value of an assoc
min_assoc/3 Min key-value of an assoc
ord_list_to_assoc/3Translate ordered list into an assoc
put_assoc/4 Add association to an assoc
1177..22..44 lliibbrraarryy((bbrrooaaddccaasstt))
broadcast/1 Send event notification
broadcast_request/1 Request all agents
listen/2 Listen to event notifications
listen/3 Listen to event notifications
unlisten/1 Stop listening to event notifications
unlisten/2 Stop listening to event notifications
unlisten/3 Stop listening to event notifications
listening/3 Who is listening to event notifications?
1177..22..55 lliibbrraarryy((cchhaarrssiioo))
atom_to_chars/2 Convert Atom into a list of character codes.
atom_to_chars/3 Convert Atom into a difference list of character codes.
format_to_chars/3 Use format/2 to write to a list of character codes.
format_to_chars/4 Use format/2 to write to a difference list of character codes.
number_to_chars/2 Convert Atom into a list of character codes.
number_to_chars/3 Convert Number into a difference list of character codes.
open_chars_stream/2 Open Codes as an input stream.
read_from_chars/2 Read Codes into Term.
read_term_from_chars/3Read Codes into Term.
with_output_to_chars/2Run Goal as with once/1.
with_output_to_chars/3Run Goal as with once/1.
with_output_to_chars/4Same as with_output_to_chars/3 using an explicit stream.
write_to_chars/2 Write a term to a code list.
write_to_chars/3 Write a term to a code list.
1177..22..66 lliibbrraarryy((cchheecckk))
check/0 Run all consistency checks defined by checker/2.
checker/2 Register code validation routines.
list_autoload/0 Report predicates that may be auto-loaded.
list_redefined/0 Lists predicates that are defined in the global module =user= as well as in a normal module; that is, predicates for which the@
list_strings/0 List strings that appear in clauses.
list_strings/1 List strings that appear in clauses.
list_trivial_fails/0 List goals that trivially fail because there is no matching clause.
list_trivial_fails/1 List goals that trivially fail because there is no matching clause.
list_undefined/0 Report undefined predicates.
list_undefined/1 Report undefined predicates.
list_void_declarations/0 List predicates that have declared attributes, but no clauses.
string_predicate/1 Multifile hook to disable list_strings/0 on the given predicate.
trivial_fail_goal/1 Multifile hook that tells list_trivial_fails/0 to accept Goal as valid.
valid_string_goal/1 Multifile hook that qualifies Goal as valid for list_strings/0.
1177..22..77 lliibbrraarryy((ccssvv))
csv_read_file/2 Read a CSV file into a list of rows.
csv_read_file/3 Read a CSV file into a list of rows.
csv_read_file_row/3True when Row is a row in File.
csv_write_file/2 Write a list of Prolog terms to a CSV file.
csv_write_file/3 Write a list of Prolog terms to a CSV file.
csv_write_stream/3 Write the rows in Data to Stream.
csv/3 Prolog DCG to `read/write' CSV data.
csv/4 Prolog DCG to `read/write' CSV data.
1177..22..88 lliibbrraarryy((lliissttss))
append/2 Concatenate a list of lists.
append/3 List1AndList2 is the concatenation of List1 and List2.
delete/3 Delete matching elements from a list.
flatten/2 Is true if FlatList is a non-nested version of NestedList.
intersection/3 True if Set3 unifies with the intersection of Set1 and Set2.
is_set/1 True if Set is a proper list without duplicates.
last/2 Succeeds when Last is the last element of List.
list_to_set/2 True when Set has the same elements as List in the same order.
max_list/2 True if Max is the largest number in List.
max_member/2 True when Max is the largest member in the standard order of terms.
member/2 True if Elem is a member of List.
min_list/2 True if Min is the smallest number in List.
min_member/2 True when Min is the smallest member in the standard order of terms.
nextto/3 True if Y follows X in List.
nth0/3 True when Elem is the Index'th element of List.
nth0/4 Select/insert element at index.
nth1/3 Is true when Elem is the Index'th element of List.
nth1/4 As nth0/4, but counting starts at 1.
numlist/3 List is a list [Low, Low+1, ... High].
permutation/2 True when Xs is a permutation of Ys.
prefix/2 True iff Part is a leading substring of Whole.
proper_length/2 True when Length is the number of elements in the proper list List.
reverse/2 Is true when the elements of List2 are in reverse order compared to List1.
same_length/2 Is true when List1 and List2 are lists with the same number of elements.
select/3 Is true when List1, with Elem removed, results in List2.
select/4 Select from two lists at the same positon.
selectchk/3 Semi-deterministic removal of first element in List that unifies with Elem.
selectchk/4 Semi-deterministic version of select/4.
subset/2 True if all elements of SubSet belong to Set as well.
subtract/3 Delete all elements in Delete from Set.
sum_list/2 Sum is the result of adding all numbers in List.
union/3 True if Set3 unifies with the union of Set1 and Set2.
1177..22..99 lliibbrraarryy((ddeebbuugg))
assertion/1 Acts similar to C assert() macro.
assertion_failed/2 This hook is called if the Goal of assertion/1 fails.
debug/1 Add/remove a topic from being printed.
debug/3 Format a message if debug topic is enabled.
debug_message_context/1 Specify additional context for debug messages.
debug_print_hook/3 Hook called by debug/3.
debugging/1 Examine debug topics.
debugging/2 Examine debug topics.
list_debug_topics/0 List currently known debug topics and their setting.
nodebug/1 Add/remove a topic from being printed.
1177..22..1100 lliibbrraarryy((iioossttrreeaamm))
1177..22..1111 lliibbrraarryy((ssuummmmaarriieess..dd//iioossttrreeaamm//tteexx))
1177..22..1122 lliibbrraarryy((ooppttiioonn))
dict_options/2 Convert between an option list and a dictionary.
merge_options/3 Merge two option lists.
meta_options/3 Perform meta-expansion on options that are module-sensitive.
option/2 Get an Option from OptionList.
option/3 Get an Option Qfrom OptionList.
select_option/3 Get and remove Option from an option list.
select_option/4 Get and remove Option with default value.
1177..22..1133 lliibbrraarryy((ooppttppaarrssee))
opt_arguments/3 Extract commandline options according to a specification.
opt_help/2 True when Help is a help string synthesized from OptsSpec.
opt_parse/4 Equivalent to opt_parse(OptsSpec, ApplArgs, Opts, PositionalArgs, []).
opt_parse/5 Parse the arguments Args (as list of atoms) according to OptsSpec.
parse_type/3 Hook to parse option text Codes to an object of type Type.
1177..22..1144 lliibbrraarryy((oorrddsseettss))
is_ordset/1 True if Term is an ordered set.
list_to_ord_set/2 Transform a list into an ordered set.
ord_add_element/3 Insert an element into the set.
ord_del_element/3 Delete an element from an ordered set.
ord_disjoint/2 True if Set1 and Set2 have no common elements.
ord_empty/1 True when List is the empty ordered set.
ord_intersect/2 True if both ordered sets have a non-empty intersection.
ord_intersect/3 Intersection holds the common elements of Set1 and Set2.
ord_intersection/2 Intersection of a powerset.
ord_intersection/3 Intersection holds the common elements of Set1 and Set2.
ord_intersection/4 Intersection and difference between two ordered sets.
ord_memberchk/2 True if Element is a member of OrdSet, compared using ==.
ord_selectchk/3 Selectchk/3, specialised for ordered sets.
ord_seteq/2 True if Set1 and Set2 have the same elements.
ord_subset/2 Is true if all elements of Sub are in Super.
ord_subtract/3 Diff is the set holding all elements of InOSet that are not in NotInOSet.
ord_symdiff/3 Is true when Difference is the symmetric difference of Set1 and Set2.
ord_union/2 True if Union is the union of all elements in the superset SetOfSets.
ord_union/3 Union is the union of Set1 and Set2.
ord_union/4 True iff ord_union(Set1, Set2, Union) and ord_subtract(Set2, Set1, New).
1177..22..1155 lliibbrraarryy((ppeerrssiisstteennccyy))
current_persistent_predicate/1 True if PI is a predicate that provides access to the persistent database DB.
db_attach/2 Use File as persistent database for the calling module.
db_sync/1 Synchronise database with the associated file.
db_sync_all/1 Sync all registered databases.
persistent/1 Declare dynamic database terms.
1177..22..1166 lliibbrraarryy((pprreeddiiccaattee__ooppttiioonnss))
assert_predicate_options/4 As predicate_options(:PI, +Arg, +Options).
check_predicate_option/3 Verify predicate options at runtime.
check_predicate_options/0 Analyse loaded program for erroneous options.
current_option_arg/2 True when Arg of PI processes predicate options.
current_predicate_option/3 True when Arg of PI processes Option.
current_predicate_options/3 True when Options is the current active option declaration for PI on Arg.
derive_predicate_options/0 Derive new predicate option declarations.
derived_predicate_options/1 Derive predicate option declarations for a module.
derived_predicate_options/3 Derive option arguments using static analysis.
predicate_options/3 Declare that the predicate PI processes options on Arg.
retractall_predicate_options/0 Remove all dynamically (derived) predicate options.
1177..22..1177 lliibbrraarryy((pprroollooggppaacckk))
environment/2 Hook to define the environment for building packs.
pack_info/1 Print more detailed information about Pack.
pack_install/1 Install a package.
pack_install/2 Install package Name.
pack_list/1 Query package server and installed packages and display results.
pack_list_installed/0 List currently installed packages.
pack_property/2 True when Property is a property of Pack.
pack_rebuild/0 Rebuild foreign components of all packages.
pack_rebuild/1 Rebuilt possible foreign components of Pack.
pack_remove/1 Remove the indicated package.
pack_search/1 Query package server and installed packages and display results.
pack_upgrade/1 Try to upgrade the package Pack.
pack_url_file/2 True if File is a unique id for the referenced pack and version.
1177..22..1188 lliibbrraarryy((pprroollooggxxrreeff))
prolog:called_by/2 (hook) Extend cross-referencer
xref_built_in/1 Examine defined built-ins
xref_called/3 Examine called predicates
xref_clean/1 Remove analysis of source
xref_current_source/1 Examine cross-referenced sources
xref_defined/3 Examine defined predicates
xref_exported/2 Examine exported predicates
xref_module/2 Module defined by source
xref_source/1 Cross-reference analysis of source
1177..22..1199 lliibbrraarryy((ppaaiirrss))
group_pairs_by_key/2Group values with the same key.
map_list_to_pairs/3 Create a Key-Value list by mapping each element of List.
pairs_keys/2 Remove the values from a list of Key-Value pairs.
pairs_keys_values/3 True if Keys holds the keys of Pairs and Values the values.
pairs_values/2 Remove the keys from a list of Key-Value pairs.
transpose_pairs/2 Swap Key-Value to Value-Key.
1177..22..2200 lliibbrraarryy((ppiioo))
1177..22..2200..11 lliibbrraarryy((ppuurree__iinnppuutt))
phrase_from_file/2 Process the content of File using the DCG rule Grammar.
phrase_from_file/3 As phrase_from_file/2, providing additional Options.
phrase_from_stream/2 Helper for phrase_from_file/3.
stream_to_lazy_list/2 Create a lazy list representing the character codes in Stream.
lazy_list_character_count/3True when CharCount is the current character count in the Lazy list.
lazy_list_location/3 Determine current (error) location in a lazy list.
syntax_error/3 Throw the syntax error Error at the current location of the input.
1177..22..2211 lliibbrraarryy((rraannddoomm))
getrand/1 Query/set the state of the random generator.
maybe/0 Succeed/fail with equal probability (variant of maybe/1).
maybe/1 Succeed with probability P, fail with probability 1-P.
maybe/2 Succeed with probability K/N (variant of maybe/1).
random/1 Binds R to a new random float in the _open_interval (0.0,1.0).
random/3 Generate a random integer or float in a range.
random_between/3 Binds R to a random integer in [L,U] (i.e., including both L and U).
random_member/2 X is a random member of List.
random_perm2/4 Does X=A,Y=B or X=B,Y=A with equal probability.
random_permutation/2 Permutation is a random permutation of List.
random_select/3 Randomly select or insert an element.
randseq/3 S is a list of K unique random integers in the range 1..N.
randset/3 S is a sorted list of K unique random integers in the range 1..N.
setrand/1 Query/set the state of the random generator.
1177..22..2222 lliibbrraarryy((rreeaadduuttiill))
read_line_to_codes/2 Read line from a stream
read_line_to_codes/3 Read line from a stream
read_stream_to_codes/2Read contents of stream
read_stream_to_codes/3Read contents of stream
read_file_to_codes/3 Read contents of file
read_file_to_terms/3 Read contents of file to Prolog terms
1177..22..2233 lliibbrraarryy((rreeccoorrdd))
record/1 Define named fields in a term
1177..22..2244 lliibbrraarryy((rreeggiissttrryy))
This library is only available on Windows systems.
registry_get_key/2 Get principal value of key
registry_get_key/3 Get associated value of key
registry_set_key/2 Set principal value of key
registry_set_key/3 Set associated value of key
registry_delete_key/1 Remove a key
shell_register_file_type/4Register a file-type
shell_register_dde/6 Register DDE action
shell_register_prolog/1 Register Prolog
1177..22..2255 lliibbrraarryy((uuggrraapphhss))
vertices_edges_to_ugraph/3Create unweighted graph
vertices/2 Find vertices in graph
edges/2 Find edges in graph
add_vertices/3 Add vertices to graph
del_vertices/3 Delete vertices from graph
add_edges/3 Add edges to graph
del_edges/3 Delete edges from graph
transpose/2 Invert the direction of all edges
neighbors/3 Find neighbors of vertice
neighbours/3 Find neighbors of vertice
complement/2 Inverse presense of edges
compose/3
top_sort/2 Sort graph topologically
top_sort/3 Sort graph topologically
transitive_closure/2 Create transitive closure of graph
reachable/3 Find all reachable vertices
ugraph_union/3 Union of two graphs
1177..22..2266 lliibbrraarryy((uurrll))
file_name_to_url/2 Translate between a filename and a file:// URL.
global_url/3 Translate a possibly relative URL into an absolute one.
http_location/2 Construct or analyze an HTTP location.
is_absolute_url/1 True if URL is an absolute URL.
parse_url/2 Construct or analyse a URL.
parse_url/3 Similar to parse_url/2 for relative URLs.
parse_url_search/2 Construct or analyze an HTTP search specification.
set_url_encoding/2 Query and set the encoding for URLs.
url_iri/2 Convert between a URL, encoding in US-ASCII and an IRI.
www_form_encode/2 En/decode to/from application/x-www-form-encoded.
1177..22..2277 lliibbrraarryy((wwwwww__bbrroowwsseerr))
www_open_url/1 Open a web-page in a browser
1177..22..2288 lliibbrraarryy((ccllpp//ccllppbb))
labeling/1 Assigns truth values to the Boolean variables Vs such that all stated constraints are satisfied.
sat/1 True iff Expr is a satisfiable Boolean expression.
sat_count/2 N is the number of different assignments of truth values to the variables in the Boolean expression Expr, such that Expr is true and all po@
taut/2 Succeeds with T = 0 if the Boolean expression Expr cannot be satisfied, and with T = 1 if Expr is always true with respect to the current c@
1177..22..2299 lliibbrraarryy((ccllpp//ccllppffdd))
#/\/2 P and Q hold.
#</2 X is less than Y.
#<==/2 Q implies P.
#<==>/2 P and Q are equivalent.
#=/2 X equals Y.
#=</2 X is less than or equal to Y.
#==>/2 P implies Q.
#>/2 X is greater than Y.
#>=/2 X is greater than or equal to Y.
#\/1 The reifiable constraint Q does _not_hold.
#\/2 Either P holds or Q holds, but not both.
#\//2 P or Q holds.
#\=/2 X is not Y.
all_different/1 Vars are pairwise distinct.
all_distinct/1 Like all_different/1, with stronger propagation.
automaton/3 Describes a list of finite domain variables with a finite automaton.
automaton/8 Describes a list of finite domain variables with a finite automaton.
chain/2 Zs form a chain with respect to Relation.
circuit/1 True iff the list Vs of finite domain variables induces a Hamiltonian circuit.
cumulative/1 Equivalent to cumulative(Tasks, [limit(1)]).
cumulative/2 Schedule with a limited resource.
disjoint2/1 True iff Rectangles are not overlapping.
element/3 The N-th element of the list of finite domain variables Vs is V.
fd_dom/2 Dom is the current domain (see in/2) of Var.
fd_inf/2 Inf is the infimum of the current domain of Var.
fd_size/2 Size is the number of elements of the current domain of Var, or the atom *sup* if the domain is unbounded.
fd_sup/2 Sup is the supremum of the current domain of Var.
fd_var/1 True iff Var is a CLP(FD) variable.
global_cardinality/2 Global Cardinality constraint.
global_cardinality/3 Global Cardinality constraint.
in/2 Var is an element of Domain.
indomain/1 Bind Var to all feasible values of its domain on backtracking.
ins/2 The variables in the list Vars are elements of Domain.
label/1 Equivalent to labeling([], Vars).
labeling/2 Assign a value to each variable in Vars.
lex_chain/1 Lists are lexicographically non-decreasing.
scalar_product/4 True iff the scalar product of Cs and Vs is in relation Rel to Expr.
serialized/2 Describes a set of non-overlapping tasks.
sum/3 The sum of elements of the list Vars is in relation Rel to Expr.
transpose/2 Transpose a list of lists of the same length.
tuples_in/2 True iff all Tuples are elements of Relation.
zcompare/3 Analogous to compare/3, with finite domain variables A and B.
1177..22..3300 lliibbrraarryy((ccllppqqrr))
entailed/1 Check if constraint is entailed
inf/2 Find the infimum of an expression
sup/2 Find the supremum of an expression
minimize/1 Minimizes an expression
maximize/1 Maximizes an expression
bb_inf/3 Infimum of expression for mixed-integer problems
bb_inf/4 Infimum of expression for mixed-integer problems
bb_inf/5 Infimum of expression for mixed-integer problems
dump/3 Dump constraints on variables
1177..22..3311 lliibbrraarryy((ccllpp//ssiimmpplleexx))
assignment/2 Solve assignment problem
constraint/3 Add linear constraint to state
constraint/4 Add named linear constraint to state
constraint_add/4 Extend a named constraint
gen_state/1 Create empty linear program
maximize/3 Maximize objective function in to linear constraints
minimize/3 Minimize objective function in to linear constraints
objective/2 Fetch value of objective function
shadow_price/3 Fetch shadow price in solved state
transportation/4 Solve transportation problem
variable_value/3 Fetch value of variable in solved state
1177..22..3322 lliibbrraarryy((ssoolluuttiioonn__sseeqquueenncceess))
distinct/1 True if Goal is true and no previous solution of Goal bound Witness to the same value.
distinct/2 True if Goal is true and no previous solution of Goal bound Witness to the same value.
group_by/4 Group bindings of Template that have the same value for By.
limit/2 Limit the number of solutions.
offset/2 Ignore the first Count solutions.
order_by/2 Order solutions according to Spec.
1177..22..3333 lliibbrraarryy((tthhrreeaadd__ppooooll))
create_pool/1 Hook to create a thread pool lazily.
current_thread_pool/1 True if Name refers to a defined thread pool.
thread_create_in_pool/4Create a thread in Pool.
thread_pool_create/3 Create a pool of threads.
thread_pool_destroy/1 Destroy the thread pool named Name.
thread_pool_property/2 True if Property is a property of thread pool Name.
1177..22..3344 lliibbrraarryy((vvaarrnnuummbbeerrss))
max_var_number/3 True when Max is the max of Start and the highest numbered $VAR(N) term.
numbervars/1 Number variables in Term using $VAR(N).
varnumbers/2 Inverse of numbervars/1.
varnumbers/3 Inverse of numbervars/3.
1177..33 AArriitthhmmeettiicc FFuunnccttiioonnss
*/2 Multiplication
**/2 Power function
+/1 Unary plus (No-op)
+/2 Addition
-/1 Unary minus
-/2 Subtraction
//2 Division
///2 Integer division
/\/2 Bitwise and
<</2 Bitwise left shift
>>/2 Bitwise right shift
./2 List of one character: character code
\/1 Bitwise negation
\//2 Bitwise or
^/2 Power function
abs/1 Absolute value
acos/1 Inverse (arc) cosine
acosh/1 Inverse hyperbolic cosine
asin/1 Inverse (arc) sine
asinh/1 Inverse (arc) sine
atan/1 Inverse hyperbolic sine
atan/2 Rectangular to polar conversion
atanh/1 Inverse hyperbolic tangent
atan2/2 Rectangular to polar conversion
ceil/1 Smallest integer larger than arg
ceiling/1 Smallest integer larger than arg
cos/1 Cosine
cosh/1 Hyperbolic cosine
copysign/2 Apply sign of N2 to N1
cputime/0 Get CPU time
div/2 Integer division
e/0 Mathematical constant
erf/1 Gauss error function
erfc/1 Complementary error function
epsilon/0 Floating point precision
eval/1 Evaluate term as expression
exp/1 Exponent (base e)
float/1 Explicitly convert to float
float_fractional_part/1 Fractional part of a float
float_integer_part/1 Integer part of a float
floor/1 Largest integer below argument
gcd/2 Greatest common divisor
getbit/2 Get bit at index from large integer
integer/1 Round to nearest integer
lgamma/1 Log of gamma function
log/1 Natural logarithm
log10/1 10 base logarithm
lsb/1 Least significant bit
max/2 Maximum of two numbers
min/2 Minimum of two numbers
msb/1 Most significant bit
mod/2 Remainder of division
powm/3 Integer exponent and modulo
random/1 Generate random number
random_float/0 Generate random number
rational/1 Convert to rational number
rationalize/1 Convert to rational number
rdiv/2 Ration number division
rem/2 Remainder of division
round/1 Round to nearest integer
truncate/1 Truncate float to integer
pi/0 Mathematical constant
popcount/1 Count 1s in a bitvector
sign/1 Extract sign of value
sin/1 Sine
sinh/1 Hyperbolic sine
sqrt/1 Square root
tan/1 Tangent
tanh/1 Hyperbolic tangent
xor/2 Bitwise exclusive or
1177..44 OOppeerraattoorrss
$ 1 fx Bind top-level variable
^ 200 xfy Existential qualification
^ 200 xfy Arithmetic function
mod 300 xfx Arithmetic function
* 400 yfx Arithmetic function
/ 400 yfx Arithmetic function
// 400 yfx Arithmetic function
<< 400 yfx Arithmetic function
>> 400 yfx Arithmetic function
xor 400 yfx Arithmetic function
+ 500 fx Arithmetic function
- 500 fx Arithmetic function
? 500 fx XPCE: obtainer
\ 500 fx Arithmetic function
+ 500 yfx Arithmetic function
- 500 yfx Arithmetic function
/\ 500 yfx Arithmetic function
\/ 500 yfx Arithmetic function
: 600 xfy module:term separator
< 700 xfx Predicate
= 700 xfx Predicate
=.. 700 xfx Predicate
=:= 700 xfx Predicate
< 700 xfx Predicate
== 700 xfx Predicate
=@= 700 xfx Predicate
=\= 700 xfx Predicate
> 700 xfx Predicate
>= 700 xfx Predicate
@< 700 xfx Predicate
@=< 700 xfx Predicate
@> 700 xfx Predicate
@>= 700 xfx Predicate
is 700 xfx Predicate
\= 700 xfx Predicate
\== 700 xfx Predicate
=@= 700 xfx Predicate
not 900 fy Predicate
\+ 900 fy Predicate
, 1000 xfy Predicate
-> 1050 xfy Predicate
*-> 1050 xfy Predicate
; 1100 xfy Predicate
| 1105 xfy DCG disjunction
discontiguous 1150 fx Directive
dynamic 1150 fx Directive
module_transparent 1150 fx Directive
meta_predicate 1150 fx Head
multifile 1150 fx Directive
thread_local 1150 fx Directive
volatile 1150 fx Directive
initialization 1150 fx Directive
:- 1200 fx Introduces a directive
?- 1200 fx Introduces a directive
--> 1200 xfx DCGrammar: rewrite
:- 1200 xfx head :- body. separator
Bibliography
[Bowen _e_t _a_l_., 1983] D. L. Bowen, L. M. Byrd, and WF.
Clocksin. A portable Prolog compiler.
In L. M. Pereira, editor, _P_r_o_c_e_e_d_i_n_g_s
_o_f _t_h_e _L_o_g_i_c _P_r_o_g_r_a_m_m_i_n_g _W_o_r_k_s_h_o_p _1_9_8_3,
Lisabon, Portugal, 1983. Universidade nova
de Lisboa.
[Bratko, 1986] I. Bratko. _P_r_o_l_o_g _P_r_o_g_r_a_m_m_i_n_g _f_o_r _A_r_t_i_f_i_-
_c_i_a_l _I_n_t_e_l_l_i_g_e_n_c_e. Addison-Wesley, Reading,
Massachusetts, 1986.
[Butenhof, 1997] David R. Butenhof. _P_r_o_g_r_a_m_m_i_n_g _w_i_t_h _P_O_S_I_X
_t_h_r_e_a_d_s. Addison-Wesley, Reading, MA, USA,
1997.
[Byrd, 1980] L. Byrd. Understanding the control flow
of Prolog programs. _L_o_g_i_c _P_r_o_g_r_a_m_m_i_n_g
_W_o_r_k_s_h_o_p, 1980.
[Clocksin & Melish, 1987] W. F. Clocksin and C. S. Melish.
_P_r_o_g_r_a_m_m_i_n_g _i_n _P_r_o_l_o_g. Springer-Verlag,
New York, Third, Revised and Extended
edition, 1987.
[Demoen, 2002] Bart Demoen. Dynamic attributes, their
hProlog implementation, and a first
evaluation. Report CW 350, Depart-
ment of Computer Science, K.U.Leuven,
Leuven, Belgium, oct 2002. URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.
[Freire _e_t _a_l_., 1997] Juliana Freire, David S. Warren, Kon-
stantinos Sagonas, Prasad Rao, and Terrance
Swift. XSB: A system for efficiently
computing well-founded semantics. In _P_r_o_-
_c_e_e_d_i_n_g_s _o_f _L_P_N_M_R _9_7, pages 430--440,
Berlin, Germany, jan 1997. Springer Verlag.
LNCS 1265.
[Fr"uhwirth, ] T. Fr"uhwirth. Thom Fruehwirth's
constraint handling rules website.
http://www.constraint-handling-rules.org.
[Fr"uhwirth, 2009] T. Fr"uhwirth. _C_o_n_s_t_r_a_i_n_t _H_a_n_d_l_i_n_g _R_u_l_e_s.
Cambridge University Press, 2009.
[Graham _e_t _a_l_., 1982] Susan L. Graham, Peter B. Kessler, and
Marshall K. McKusick. gprof: a call graph
execution profiler. In _S_I_G_P_L_A_N _S_y_m_p_o_s_i_u_m
_o_n _C_o_m_p_i_l_e_r _C_o_n_s_t_r_u_c_t_i_o_n, pages 120--126,
1982.
[Hodgson, 1998] Jonathan Hodgson. validation suite for con-
formance with part 1 of the standard, 1998,
http://www.sju.edu/~jhodgson/pub/suite.tar.gz.
[Holzbaur, 1992] Christian Holzbaur. Metastructures versus
attributed variables in the context of
extensible unification. In _P_L_I_L_P, volume
631, pages 260--268. Springer-Verlag, 1992.
LNCS 631.
[Kernighan & Ritchie, 1978] B. W. Kernighan and D. M. Ritchie.
_T_h_e _C _P_r_o_g_r_a_m_m_i_n_g _L_a_n_g_u_a_g_e. Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.
[Neumerkel, 1993] Ulrich Neumerkel. The binary WAM, a
simplified Prolog engine. Technical re-
port, Technische Universit"at Wien, 1993.
http://www.complang.tuwien.ac.at/ulrich/papers/PDF/binwam-
nov93.pdf.
[O'Keefe, 1990] R. A. O'Keefe. _T_h_e _C_r_a_f_t _o_f _P_r_o_l_o_g. MIT
Press, Massachussetts, 1990.
[Pereira, 1986] F. Pereira. _C_-_P_r_o_l_o_g _U_s_e_r_'_s _M_a_n_u_a_l.
EdCaad, University of Edinburgh, 1986.
[Qui, 1997] AI International ltd., Berkhamsted, UK.
_Q_u_i_n_t_u_s _P_r_o_l_o_g_, _U_s_e_r _G_u_i_d_e _a_n_d _R_e_f_e_r_e_n_c_e
_M_a_n_u_a_l, 1997.
[Schimpf, 2002] Joachim Schimpf. Logical loops. In PeterJ.
Stuckey, editor, _L_o_g_i_c _P_r_o_g_r_a_m_m_i_n_g, volume
2401 of _L_e_c_t_u_r_e _N_o_t_e_s _i_n _C_o_m_p_u_t_e_r _S_c_i_e_n_c_e,
pages 224--238. Springer Berlin Heidelberg,
2002.
[Sterling & Shapiro, 1986] L. Sterling and E. Shapiro. _T_h_e _A_r_t _o_f _P_r_o_-
_l_o_g. MIT Press, Cambridge, Massachusetts,
1986.
1804
Index
( _l_i_b_r_a_r_y, 968 PL_get_string_chars(), 1042
-lswipl _l_i_b_r_a_r_y, 1247 PL_get_tail(), 1081
.pl, 79 PL_get_wchars(), 1075
.pro, 79 PL_halt(), 1245
?=/2, 211 PL_handle_signals(), 1199
@/2, 813 PL_initialise(), 1239
=:=/2, 485 PL_install_readline(), 1241
/\/2, 524 PL_instantiation_error(), 1142
=\=/2, 484 PL_is_acyclic(), 1038
|/2, 220 PL_is_atom(), 1027
#/\/2, 1399 PL_is_atomic(), 1036
#=/2, 1391 PL_is_blob(), 1159
#<==>/2, 1396 PL_is_callable(), 1031
#>=/2, 1389 PL_is_compound(), 1032
#>/2, 1393 PL_is_float(), 1030
#=</2, 1390 PL_is_functor(), 1033
#</2, 1394 PL_is_ground(), 1026
#\=/2, 1392 PL_is_initialised(), 1240
#\/1, 1395 PL_is_integer(), 1029
#\/2, 1401 PL_is_list(), 1034
,/2, 218 PL_is_number(), 1037
#\//2, 1400 PL_is_pair(), 1035
{}/1, 1424 PL_is_string(), 1028
!/0, 217 PL_is_variable(), 1025
/, 80 PL_license(), 1761
//2, 495 PL_LIST, 1083
./2, 507 PL_malloc(), 1253
./3, 768 PL_malloc_atomic(), 1257
=/2, 194 PL_malloc_atomic_uncollectable(),
==/2, 197 1259
>=/2, 483 PL_malloc_stubborn(), 1260
>/2, 480 PL_malloc_uncollectable(), 1258
^/2, 546 PL_module_name(), 1189
///2, 498 PL_new_atom(), 1012
->/2, 221 PL_new_atom_nchars(), 1070
=</2, 482 PL_new_atom_wchars(), 1073
#<==/2, 1398 PL_new_functor(), 1016
<</2, 522 PL_new_module(), 1190
</2, 481 PL_new_term_ref(), 994
>:</2, 786 PL_new_term_refs(), 995
:</2, 784 PL_next_solution(), 1176
-/1, 490 PL_NOT_A_LIST, 1083
-/2, 493 PL_on_halt(), 1233
\=/2, 195 PL_open_foreign_frame(), 1182
\/1, 526 PL_open_query(), 1175
\==/2, 198 PL_PARTIAL_LIST, 1083
\+/1, 223 PL_permission_error(), 1148
\//2, 523 PL_pred(), 1171
+/1, 491 PL_predicate(), 1172
+/2, 492 PL_predicate_info(), 1173
**/2, 545 PL_put_atom(), 1087
#==>/2, 1397 PL_put_atom_chars(), 1089
>>/2, 521 PL_put_atom_nchars(), 1062
;/2, 219 PL_put_blob(), 1161
*->/2, 222 PL_put_bool(), 1088
=@=/2, 206 PL_put_float(), 1096
\=@=/2, 207 PL_put_functor(), 1097
@>=/2, 202 PL_put_int64(), 1094
@>/2, 201 PL_put_integer(), 1093
*/2, 494 PL_put_list(), 1098
@=</2, 200 PL_put_list_chars(), 1092
@</2, 199 PL_put_list_nchars(), 1065
=../2, 416 PL_put_list_ncodes(), 1064
\, 80 PL_put_nil(), 1099
_PL_get_arg(), 1057 PL_put_pointer(), 1095
64-bits PL_put_string_chars(), 1090
platforms, 73 PL_put_string_nchars(), 1063, 1091
abolish/1, 262, 263 PL_put_term(),P1100L_put_variable(), 1086
abolish/2, 263 PL_query(), 1223
abolish/[1 PL_quote(), 1125
2], 41 PL_raise(), 1198
abort/0, 20, 32, 239, 311, 316, PL_raise_exception(), 1192
323, 663, 888, 1220, 1231, PL_realloc(), 1254
1726 PL_record(), 1206
abs/1, 502 PL_record_external(), 1209
absolute_file_name/2, 7, 113, 125, PL_recorded(), 1207
647, 649, 659, 1275 PL_recorded_external(), 1210
absolute_file_name/3, 41, 44, 104, PL_register_atom(), 1020
111, 122, 128, 615, 647, PL_register_extensions(), 1228
648, 1212, 1213, 1637, 1638 PL_register_extensions_in_module(),
absolute_file_name/[2 1227
3], 41, 121, 648 PL_register_foreign(), 1226
access_file/2, 41, 637, 648 PL_register_foreign_in_module(), 1225
acos/1, 532 PL_representation_error(), 1144
acosh/1, 540 PL_reset_term_refs(), 997
acquire(), 1153 PL_resource_error(), 1149
acyclic_term/1, 60, 191, 192, 205 PL_retry(), 1005
add_edges/3, 1685 PL_retry_address(), 1006
add_import_module/3, 821, 823, 838 PL_rewind_foreign_frame(), 1185
add_nb_set/2, 1502 PL_same_compound(), 1204
add_nb_set/3, 1502--1504 PL_set_engine(), 967
add_vertices/3, 1683 PL_set_prolog_flag(), 1216
agent, 1322 PL_signal(), 1197
aggregate/3, 810, 1282 PL_skip_list(), 1083
aggregate/4, 810, 1283 PL_strip_module(), 1188
aggregate_all/3, 1284 PL_succeed(), 1002
aggregate_all/4, 1285 PL_syntax_error(), 1150
all_different/1, 1385 PL_term_type(), 1024
all_distinct/1, 1386 PL_thread_at_exit(), 963
AMD64, 74 PL_thread_attach_engine(), 961
anonymous PL_thread_destroy_engine(), 962
variable, 59 PL_thread_self(), 959
anonymous variable, 1752 PL_throw(), 1193
ansi_format/3, 247 PL_toplevel(), 1242
ansi_term _l_i_b_r_a_r_y, 41, 244, 248 PL_type_error(), 1145
append/1, 325, 329 PL_unify(), 1105
append/2, 808, 1470 PL_unify_arg(), 1121
append/3, 306, 441, 1469 PL_unify_atom(), 1106
apply/2, 227 PL_unify_atom_chars(), 1109
apply_macros _l_i_b_r_a_r_y, 259 PL_unify_atom_nchars(), 1066
apropos/1, 26, 27, 44, 1738, 1765 PL_unify_blob(), 1160
arg/3, 415 PL_unify_bool(), 1107
arithmetic_function/1, 1191 PL_unify_bool_ex(), 1141
arity, 1752 PL_unify_chars(), 1108
asin/1, 531 PL_unify_compound(), 1118
asinh/1, 539 PL_unify_float(), 1115
assert, 1752 PL_unify_functor(), 1117
assert/1, 111, 261, 268, 270, 283, PL_unify_int64(), 1114
289, 290, 302, 801, 809, PL_unify_integer(), 1113
839, 865, 932 PL_unify_list(), 1119
assert/2, 41, 273, 280, 305 PL_unify_list_chars(), 1110
assert_predicate_options/4, 1574 PL_unify_list_ex(), 1139
asserta/1, 18, 60, 61, 120, 206, PL_unify_list_nchars(), 1069
268, 269, 271, 272, 811, PL_unify_list_ncodes(), 1068
813, 1752 PL_unify_mpq(), 1168
asserta/2, 271, 280 PL_unify_mpz(), 1167
assertion/1, 1457, 1730 PL_unify_nil(), 1120
assertz/1, 120, 264, 269, 270, 302, PL_unify_nil_ex(), 1140
307, 837, 1752 PL_unify_pointer(), 1116
assertz/2, 272, 273, 280 PL_unify_string_chars(), 1111
assignment/2, 1651 PL_unify_string_nchars(), 1067, 1112
assoc _l_i_b_r_a_r_y, 774, 791, 792, 1306, PL_unify_term(), 1122
1500 PL_unify_thread_id(), 960
assoc_to_keys/2, 1308 PL_unify_wchars(), 1076
assoc_to_list/2, 1307 PL_unify_wchars_diff(), 1077
assoc_to_values/2, 1309 PL_uninstantiation_error(), 1143
at_end_of_stream/0, 383 PL_unregister_atom(), 1021
at_end_of_stream/1, 384, 388 PL_unregister_blob_type(), 1157
at_end_of_stream/[0 PL_warning(), 1218
1], 316, 1633 PL_wchars_to_term(), 1124
at_halt/1, 41, 130, 131, 665, 910, plus/3, 476
1233, 1243, 1745, 1765 PLVERSION, 1262
atan/1, 533 popcount/1, 558
atan/2, 535 portable
atan2/2, 534 prolog code, 1747
atanh/1, 541 portray/1, 32, 82, 390, 401, 403,
atom, 1752 1175, 1236, 1736
atom/1, 184, 187, 1022 portray_clause/1, 172, 174, 175
atom_chars/2, 110, 340, 367, 431, portray_clause/2, 174, 175, 420
433, 435, 457, 800 portray_text _l_i_b_r_a_r_y, 401
atom_codes/2, 110, 340, 431--433, portray_text/1, 259, 761
437, 438, 457, 800 powm/3, 547
atom_concat/3, 441, 746 precedence, 1752
ATOM_dot(), 1014 pred/1, 816
atom_length/2, 41, 445, 743 predicate, 1752
ATOM_nil(), 1013 dynamic, 1752
atom_number/2, 340, 437, 438 exported, 1752
atom_prefix/2, 446 imported, 1752
atom_result/2, 830 predicate indicator, 109, 1752
atom_string/2, 736 predicate_options/3, 1573
atom_to_chars/2, 1336 predicate_property/2, 116, 226,
atom_to_chars/3, 1337 293, 300, 302, 810, 836
atom_to_term/3, 409, 440 predsort/3, 569, 572
atomic/1, 187 prefix/2, 1471
atomic_concat/3, 441, 442 print/1, 41, 390, 401, 403, 585,
atomic_list_concat/2, 437, 443, 444 590, 1175, 1765
atomic_list_concat/3, 444 print/2, 41, 402
atomics_to_string/2, 749, 750 print_message/2, 41, 44, 113, 130,
atomics_to_string/3, 750 242--245, 252, 401, 407,
attach_console/0, 946--948, 1220 712, 904, 906, 1765
attr_portray_hook/2, 390, 848 print_message_lines/3, 243--245,
attr_unify_hook/2, 840, 847 248, 252, 1765
attribute_goals//1, 848, 852 priority, 1752
attribute_goals/1, 849 process _l_i_b_r_a_r_y, 311, 601
attribute_goals/3, 840 process_create/3, 311, 601, 609
attvar/1, 842 profile file, 14
autoload/0, 49, 117, 1267, 1269 profile/1, 699, 955, 1244
autoload_path/1, 46 profile/3, 700
automaton/3, 1412 profiler/2, 702
automaton/8, 1413 profiling
b_getval/2, 867, 869 proforeigngcode,r1263am, 1752
b_linkarg/3, 790 project_attributes/+QueryVars
b_set_dict/3, 788 +ResidualVars, 850
b_setval/2, 788, 865, 866, 1734 project_attributes/2, 850
backtracking, 1752 prolog/0, 20, 324, 662, 666, 667,
bagof/3, 60, 574, 578, 579, 810, 815, 1242, 1722
1765 prolog/assertion_failed, 1458
bb_inf/3, 1432 prolog/debug_print_hook, 1456
bb_inf/4, 1431 prolog:break_hook/6, 1730
bb_inf/5, 1430 prolog:called_by/2, 1608
between/3, 474 prolog:comment_hook/3, 1741
binding, 1752 prolog:debug_control_hook/1, 1737
bits prolog:help_hook/1, 1738
64, 72 prolog:message_line_element/2, 248
blackboard, 1322 prolog_breakpoints _l_i_b_r_a_r_y, 1729
blob/2, 185, 187, 310 prolog_choice_attribute/3, 1719,
body, 1752 1721, 1726
Boehm GC, 1256 prolog_codewalk _l_i_b_r_a_r_y, 302
BOM, 66 prolog_current_choice/1, 1719, 1721,
break/0, 20, 32, 41, 662, 888, 1220 1724
broadcast, 1322 prolog_current_frame/1, 1718, 1720
broadcast _l_i_b_r_a_r_y, 1322 prolog_cut_to/1, 1724
broadcast/1, 1323, 1324 prolog_edit:edit_command/2, 169
broadcast_request/1, 1324 prolog_edit:edit_source/1, 168
built-in predicate, 1752 prolog_edit:load/0, 170
Byte Order Mark, 66 prolog_edit:locate/2, 167
byte_count/2, 321, 343 prolog_edit:locate/3, 166
call/1, 103, 189, 217, 225, 238, prolog_exception_hook/4, 240, 712,
682, 696, 704, 706, 801, 1731, 1732
860, 1169, 1730 prolog_file_type/2, 111, 123, 648
call/2, 189, 226 prolog_frame_attribute/3, 307, 1720,
call/3, 390 1726, 1732
call/[2-8], 226 prolog_ide _c_l_a_s_s, 106
call_cleanup/2, 233, 235, 236, 340, prolog_ide/1, 105, 106
1722, 1751 prolog_list_goal/1, 1736
call_cleanup/3, 236 prolog_load_context/2, 128, 129,
call_dcg/3, 259, 260 406, 1748
call_residue_vars/2, 864 prolog_load_file/2, 113, 1739, 1740
call_shared_object_function/2, 990 prolog_server _l_i_b_r_a_r_y, 309, 324
call_with_depth_limit/3, 231, 232 prolog_skip_frame/1, 1727, 1728
call_with_inference_limit/3, 231,prolog_skip_level/2, 1727, 1728
232 prolog_stack _l_i_b_r_a_r_y, 1720, 1732
call_with_time_limit/2, 232, 233 prolog_stack_property/2, 712, 713
callable/1, 189, 1031, 1598 prolog_to_os_filename/2, 80, 615,
cancel_halt/1, 130, 131, 665, 1243 639, 649, 653
catch/3, 237--240, 407, 663, 704, prolog_trace_interception/4, 95,
904, 912, 913, 1721, 1732-- 678, 712, 1720, 1721, 1726
1734, 1765 prolog_xref _l_i_b_r_a_r_y, 103, 802
ceil/1, 520 prompt
ceiling/1, 519 alternatives, 41
chain/2, 1416 prompt/2, 410--412, 904
char_code/2, 110, 434 prompt1/1, 412
char_conversion/2, 41, 470, 471 proper_length/2, 1483
char_type/2, 58, 449, 456--459 property, 1752
character set, 53 protocol/1, 670, 671, 673
character_count/2, 321, 343, 344 protocola/1, 671, 673
chdir/1, 659, 660 protocolling/1, 673
check _l_i_b_r_a_r_y, 119, 302 prove, 1752
check/0, 117, 1347 public list, 1752
check:string_predicate/1, 759 public/1, 288, 293, 302, 1269
check:valid_string_goal/1, 760 put/1, 350, 351, 772
check_predicate_option/3, 1576 put/2, 351, 773
check_predicate_options/0, 1579 put_assoc/4, 1320
checker/2, 1360 put_attr/3, 842, 843, 847, 855
choice point, 1752 put_attrs/2, 857
chr _l_i_b_r_a_r_y, 885, 889 put_byte/1, 352
chr_constraint/1, 883, 897 put_byte/2, 353
chr_leash/1, 892 put_byte/[1
chr_notrace/0, 888, 891 2], 110
chr_option/2, 879, 897 put_char/1, 350, 354, 356
chr_show_store/1, 893 put_char/2, 355
chr_trace/0, 888, 890 put_char/[1
chr_type/1, 884 2], 110
circuit/1, 1408 put_code/1, 350, 356, 357
clause, 1752 put_code/2, 65, 357, 386, 388
clause/2, 172, 304, 305, 1269 put_code/[1
clause/3, 271, 280, 305, 307, 1271 2], 110
clause/[2 put_dict/3, 772, 781
3], 41 put_dict/4, 773, 782
clause_property/2, 116, 125, 302, qcompile/1, 4, 113, 134, 159--161,
307, 1720 899
close/1, 308, 314, 319 qcompile/2, 161
close/2, 315 qsave_program/1, 41, 132, 1268
close_any/1, 1465 qsave_program/2, 4, 39, 41, 49, 82,
close_dde_conversation/1, 717 105, 1266, 1267, 1273
close_shared_object/1, 989 qsave_program/[1
clpfd _l_i_b_r_a_r_y, 819 2], 18, 38, 41, 302, 976, 1239,
clpqr _l_i_b_r_a_r_y, 1422 1249, 1269, 1271
code_type/2, 449, 455, 457, 458 quasi_quotation_syntax/1, 302, 1612
collate, 463 quasi_quotation_syntax_error/1, 1613
collation_key/2, 449, 464, 465, 607 query, 1752
COM, 1151 quiet, 18
command line
arguments, 18 random _l_i_b_r_a_r_y, 561
compare random/1, 508, 1615
language-specific, 463 random/3, 1617, 1618
compare(), 1155 random_between/3, 1616
compare/3, 60, 203, 572, 1203, 1751 random_float/0, 509
compile_aux_clauses/1, 111, 140 random_member/2, 1625
compile_predicates/1, 289, 290 random_perm2/4, 1624
compiling/0, 134, 160 random_permutation/2, 1630, 1631
complement/2, 1690 random_property/1, 561, 562
completion random_select/3, 1626, 1627
TAB, 86 randseq/3, 1629
compose/3, 1691 randset/3, 1628
compound, 1752 rational
compound/1, 188 number, 487
compound_name_arguments/3, 188, 416- rational trees, 60
-418, 764, 767 rational/1, 181, 513
compound_name_arity/3, 188, 414, rational/3, 182, 487
417, 418, 764, 767 rationalize/1, 514
concat_atom/3, 444 rb_new/1, 41
constraint/3, 1652, 1653 rbtrees _l_i_b_r_a_r_y, 41
constraint/4, 1653 RDF
constraint_add/4, 1654 memory usage, 75
consult/1, 11, 14, 44, 94, 111- rdiv/2, 500
-116, 119, 156, 159, 160, reachable/3, 1696
291 read/1, 41, 70, 309--311, 360, 397,
context module, 1752 404, 407, 411, 692, 873,
context_module/1, 810, 832, 1175 1638, 1765
convert_time/2, 41 read/2, 342, 405
convert_time/[2 read_clause/3, 59, 406, 692
8], 646 read_file_to_codes/3, 1637
copy_file/2, 601 read_file_to_terms/3, 1638
copy_predicate_clauses/2, 264 read_from_chars/2, 1340
copy_stream_data/2, 387, 388 read_history/6, 410
copy_stream_data/3, 322, 386 read_line_to_codes/2, 756, 1633,
copy_term/2, 60, 206, 424, 426, 1634
429, 787, 839, 853, 867 read_line_to_codes/3, 1633, 1634
copy_term/3, 390, 848, 849, 852 read_link/3, 654
copy_term_nat/2, 853 read_pending_input/3, 388
copysign/1, 504 read_stream_to_codes/2, 1635, 1636
cos/1, 529 read_stream_to_codes/3, 1636
cosh/1, 537 read_string/3, 753
count_atom_results/3, 830 read_string/5, 747, 754
cputime/0, 554 read_term/2, 41, 128, 148, 390,
create_pool/1, 1678 407, 408, 410, 440, 732,
create_prolog_flag/3, 41--43, 1215 739, 1741
crypt _l_i_b_r_a_r_y, 1763 read_term/3, 59, 390, 406--409,
csv//1, 1441 470, 667, 791, 1741
csv//2, 1442 read_term/[2
csv_read_file/2, 569, 1439 3], 407
csv_read_file/3, 1440 read_term_from_atom/3, 409, 440
csv_read_file_row/3, 1443 read_term_from_chars/3, 1341
csv_write_file/2, 1444 readutil _l_i_b_r_a_r_y, 84
csv_write_file/3, 1445 reconsult, 111
csv_write_stream/3, 1446 record _l_i_b_r_a_r_y, 791, 792, 1639
ctype _l_i_b_r_a_r_y, 455 record/1, 1639, 1640
cumulative/1, 1409 recorda/2, 275
cumulative/2, 1410 recorda/3, 60, 274, 276, 280, 299,
current_arithmetic_function/1, 563 865, 1205, 1206, 1209
current_atom/1, 295 recorded/2, 279
current_blob/2, 296, 1152 recorded/3, 278, 280, 1271
current_char_conversion/2, 470, 471 recordz/2, 277
current_flag/1, 298 recordz/3, 60, 276, 280
current_foreign_library/2, 984, 1267 redefine_system_predicate/1, 265,
current_format_predicate/2, 594 1752
current_functor/2, 297 reexport/1, 111, 113, 817, 1747
current_input/1, 128, 309, 330, 337 reexport/2, 111, 113, 818, 1747
current_key/1, 278, 299 registry, 68
current_locale/1, 454 registry _l_i_b_r_a_r_y, 1641
current_module/1, 300, 835 registry_delete_key/1, 1646
current_op/3, 468 registry_get_key/2, 1642
current_option_arg/2, 1577 registry_get_key/3, 1643
current_output/1, 309, 331, 338 registry_set_key/2, 1644
current_persistent_predicate/1, 1554 registry_set_key/3, 1645
current_predicate/1, 226, 300--302 release(), 1154
current_predicate/2, 300, 301 reload_foreign_libraries/0, 985
current_predicate_option/3, 1575 reload_library_index/0, 45, 46, 49
current_predicate_options/3, 1578 rem/2, 497
current_prolog_flag/2, 18, 40, 41, rename_file/2, 601, 644
45, 50, 55, 113, 407, 722, repeat/0, 212, 216, 231, 233
975, 1280, 1752 representation_error/1, 1144
current_signal/3, 254, 255 require/1, 117, 1747
current_stream/3, 317 reset_gensym/0, 1462
current_thread_pool/1, 1675 reset_gensym/1, 1461
cyclic terms, 60 reset_profiler/0, 703
cyclic_term/1, 60, 191, 192 resource/3, 41, 1266, 1267, 1273,
daemon, 1322 resour1275,c1276e_error/1, 1149
date_time_stamp/2, 623 retract, 1752
date_time_value/3, 619, 624 retract/1, 111, 120, 261, 262, 266,
day_of_the_week/2, 629 283, 289, 290, 302, 932
db_attach/2, 1555 retract/2, 839
db_sync/1, 1556 retractall/1, 261, 262, 267
db_sync_all/1, 1557 retractall_predicate_options/0, 1581
DCG, 111, 257 rev/3, 803
dcg_translate_rule/2, 137, 141 reverse/2, 260, 803, 1485
dcg_translate_rule/4, 148 rl_add_history/1, 1744
dde_current_connection/2, 725 rl_read_history/1, 1746
dde_current_service/2, 724 rl_read_init_file/1, 1743
dde_execute/2, 719 rl_write_history/1, 1745
dde_poke/4, 720 round/1, 510
dde_register_service/2, 722
dde_request/3, 718 same_file/2, 639, 641
dde_unregister_service/1, 723 same_length/2, 1484
debug _l_i_b_r_a_r_y, 106 same_term/2, 430
debug/0, 32, 41, 240, 681, 683, sandbox/safe_meta, 1288
684, 712, 949, 1220, 1730, sat/1, 1366
1732 sat_count/2, 1369
debug/1, 1451 scalar_product/4, 1388
debug/3, 243, 1455 scanl/4, 1302
debug_message_context/1, 1454 scanl/5, 1303
debugging scanl/6, 1304
exceptions, 240 scanl/7, 1305
debugging/0, 44, 681, 685, 1737 see/1, 308, 309, 325--327
debugging/1, 1448, 1449 seeing/1, 325, 326, 330
debugging/2, 1450 seek/4, 316, 320, 322
default_module/2, 302, 821, 822 seen/0, 332
del_attr/2, 845, 855 select(), 342
del_attrs/1, 858 select/3, 1472
del_dict/4, 783 select/4, 1474
del_edges/3, 1686 select_dict/2, 785
del_vertices/3, 1684 select_dict/3, 785, 786
delete/3, 1477 select_option/3, 1512
delete_directory/1, 658 select_option/4, 1513
delete_file/1, 601, 643, 656 selectchk/3, 1473
delete_import_module/2, 821, 823, selectchk/4, 1475
824, 838 semi deterministic, 1752
derive_predicate_options/0, 1580 semidet, 1752
derived_predicate_options/1, 1583 serialize, 257
derived_predicate_options/3, 1582 serialized/2, 1404
deserialize, 257 set_breakpoint/4, 1730
det, 1752 set_end_of_stream/1, 385
determinism, 1752 set_input/1, 309, 323, 327, 335
deterministic, 1752 set_locale/1, 453
deterministic/1, 233, 1722 set_module/1, 268, 820, 836, 837
Development environment, 76 set_output/1, 309, 328, 336
dialect.pl _l_i_b_r_a_r_y, 1747 set_prolog_flag/2, 30, 40--43, 111,
dict_create/3, 779, 781 479, 1215
dict_options/2, 1516 set_prolog_IO/3, 309, 324
dict_pairs/2, 791 set_prolog_stack/2, 19, 68, 683,
dict_pairs/3, 780 712, 713, 734, 904
dif _l_i_b_r_a_r_y, 863 set_random/1, 508, 561, 562
dif/2, 60, 195, 862, 863 set_stream/2, 65, 309, 311, 316,
directory_file_path/3, 639 323, 324, 342, 378, 453
directory_files/2, 651 set_stream_position/2, 316, 320, 322
discontiguous/1, 116, 243, 288, set_url_encoding/2, 1705
292, 692 setarg/3, 109, 424, 426, 427, 429,
disjoint2/1, 1411 430, 788, 843, 873, 1639
display/1, 585, 1084 setenv/2, 605
distinct/1, 1666 setlocale/1, 904
distinct/2, 1667 setlocale/3, 465, 607
div/2, 499 setof/3, 60, 579, 810, 1765
divmod/4, 477 setrand/1, 1619
do_not_use/1, 816 setup_call_catcher_cleanup/4, 234
domain/2, 840 setup_call_cleanup/2, 933
domain_error/2, 1146 setup_call_cleanup/3, 233, 235, 908,
downcase_atom/2, 456, 459, 460 937, 938, 941
dump/3, 1433, 1437 shadow_price/3, 1659
duplicate_term/2, 60, 424, 427, shared, 1752
429, 868 shell/0, 603, 608
dwim_match/2, 303, 727, 728 shell/1, 80, 169, 602, 608
dwim_match/3, 728 shell/2, 601, 609
dwim_predicate/2, 303 shell/[0-2], 605
dynamic predicate, 1752 shell/[1
dynamic/1, 41, 109, 116, 261, 267, 2], 601
288--290, 302, 831, 931, shell_register_dde/6, 1648
932, 1269 shell_register_file_type/4, 1647,
e/0, 552 shell_1648register_prolog/1, 1649
edges/2, 1682 shlib _l_i_b_r_a_r_y, 1765
edit/0, 41, 164 show_profile/1, 700, 701
edit/1, 41, 44, 86, 89, 94, 107, sign/1, 503
116, 119, 162--166, 168, simplex _l_i_b_r_a_r_y, 1650
814, 1765 sin/1, 528
edit_source/1, 169 singleton, 1752
editor _c_l_a_s_s, 85, 90 variable, 59
element/3, 1405 sinh/1, 536
elif/1, 151 size_file/2, 645
else/0, 152 size_nb_set/2, 1505
Emacs, 23 skip/1, 380, 381
emacs/[0 skip/2, 381
1], 89 sleep/1, 730
emacs/prolog_colour _l_i_b_r_a_r_y, 93 socket _l_i_b_r_a_r_y, 342
empty_assoc/1, 1310 Solaris, 911
empty_nb_set/1, 1501 solution, 1752
encoding/1, 65, 118 sort/2, 232, 568--570, 572, 579
endif/0, 153 sort/4, 569
ensure_loaded/1, 34, 111, 115, 807 source_exports/2, 1747, 1750
entailed/1, 1425 source_file/1, 124
environment/2, 1594 source_file/2, 116, 125, 160, 302
epsilon/0, 553 source_file_property/2, 113, 116,
erase/1, 271, 274, 280, 305 126
erf/1, 549 source_location/2, 128, 129
erfc/1, 550 split_string/4, 444, 747, 754
error _l_i_b_r_a_r_y, 176, 1639 spy/1, 32, 41, 44, 96, 97, 107,
eval/1, 555 109, 686, 814, 953, 954,
eval_license/0, 1757--1759 1737, 1765
exception/3, 865, 1733, 1734 sqrt/1, 527
exceptions stack
debugging, 240 memory management, 69
exclude/3, 1291 stamp_date_time/3, 619, 622, 623
exists_directory/1, 642 startup file, 14
exists_file/1, 41, 638 statistics _l_i_b_r_a_r_y, 697
exists_source/1, 1747, 1749 statistics/0, 243, 695
exp/1, 544 statistics/2, 554, 694, 914
expand_answer/2, 667, 668 stream_pair/3, 310, 314, 319, 323
expand_file_name/2, 41, 113, 605, stream_position_data/3, 128, 316,
608, 647, 648, 651, 652 321, 407, 1741
expand_file_search_path/2, 122 stream_property/2, 66, 128, 311,
expand_goal/2, 41, 135--139, 150 316, 320--323, 407
expand_goal/4, 144 stream_to_lazy_list/2, 1566
expand_query/4, 667 string/1, 186, 187, 590, 735
expand_term/2, 135--138, 141, 257, string_chars/2, 740
1640 string_code/3, 744, 745, 761
expand_term/4, 146 string_codes/2, 741, 756
expects_dialect/1, 113, 128, 1747, string_concat/3, 746, 756
1748 string_length/2, 743
explain _l_i_b_r_a_r_y, 1765 string_lower/2, 752
explain/1, 28 string_predicate/1, 1358
explain/2, 29 string_upper/2, 751
export/1, 293, 827--829 strip_module/3, 810, 830, 833, 838
export_list/2, 828 structure, 1752
exported predicate, 1752 style_check/1, 59, 70, 113, 292,
fact, 1752 692
fail/0, 139, 213 sub_atom/5, 447, 748
false/0, 214 sub_atom_icasechk/3, 448
fd_dom/2, 1421 sub_string/5, 744, 748, 756
fd_inf/2, 1418 subset/2, 1498
fd_size/2, 1420 subsumes_chk/2, 287
fd_sup/2, 1419 subsumes_term/2, 60, 204, 208
fd_var/1, 1417 subtract/3, 1499
file_base_name/2, 640 succ/2, 475
file_directory_name/2, 639, 640 succeed, 1752
file_name_extension/3, 650 sum/3, 1387
file_name_to_url/2, 1709, 1710 sum_list/2, 1490
file_of_label/2, 815 sup/2, 1427
file_search_path/2, 14, 18, 41, 45, swi/pce_profile _l_i_b_r_a_r_y, 697
49, 81, 104, 113, 120, 121, swi_edit _l_i_b_r_a_r_y, 170
123, 128, 1213, 1249, 1272, swritef/2, 587
1275, 1278 swritef/3, 340, 582, 586
fileerrors/2, 41 syntax_error/1, 1563
filesex _l_i_b_r_a_r_y, 601, 639 TAB
find_chr_constraint/1, 894 completion, 86
findall/3, 60, 206, 212, 574, 575, tab/1, 358
577, 581, 791, 839, 1765 tab/2, 359
findall/4, 575, 577 tan/1, 530
findnsols/4, 576 tanh/1, 538
findnsols/5, 577 taut/2, 1367
findsols/4, 1765 tdebug/0, 904, 950, 954
flag/3, 282, 298, 427 tdebug/1, 949, 950, 953
flag:access_level, 41 tell/1, 308, 309, 325, 326, 328,
flag:address_bits, 41 329
flag:agc_margin, 41 telling/1, 325, 326, 331
flag:allow_dot_in_atom, 41 term, 1752
flag:allow_variable_name_as_functor, term//1, 340
41 term_attvars/2, 854
flag:answer_write_options, 41 term_expansion/2, 44, 111, 134--
flag:apple, 41 138, 149, 160, 667, 885,
flag:arch, 41 1751
flag:argv, 41 term_expansion/4, 111, 147
flag:associated_file, 41 term_hash/2, 60, 63, 284--287
flag:autoload, 41 term_hash/4, 63, 284, 286
flag:back_quotes, 41 term_string/2, 439, 738, 739
flag:bounded, 41 term_string/3, 739
flag:break_level, 41 term_subsumer/3, 209
flag:c_cc, 41 term_to_atom/2, 340, 439, 1123
flag:c_cflags, 41 term_variables/2, 60, 407, 422, 423
flag:c_ldflags, 41 term_variables/3, 422, 423
flag:c_libplso, 41 terms
flag:c_libs, 41 cyclic, 60
flag:char_conversion, 41 text_to_string/2, 742
flag:character_escapes, 41 thread _l_i_b_r_a_r_y, 41
flag:colon_sets_calling_context, 41 thread_at_exit/1, 665, 904, 910, 963
flag:color_term, 41 thread_create/3, 904, 907, 910, 971
flag:compile_meta_arguments, 41 thread_create_in_pool/4, 904, 1677
flag:compiled_at, 41 thread_detach/1, 904, 907
flag:console_menu, 41 thread_exit/1, 906, 908, 913
flag:cpu_count, 41 thread_get_message/1, 920, 925
flag:dde, 41 thread_get_message/2, 924--926
flag:debug, 41 thread_get_message/3, 919, 921, 926
flag:debug_on_error, 41 thread_initialization/1, 865, 909
flag:debugger_show_context, 41 thread_join/2, 904, 906, 908, 913
flag:debugger_write_options, 41 thread_local/1, 246, 289, 302, 931,
flag:dialect, 41 932
flag:double_quotes, 41 thread_message_hook/3, 246
flag:editor, 41 thread_peek_message/1, 920, 921, 927
flag:emacs_inferior_process, 41 thread_peek_message/2, 926, 927
flag:encoding, 41 thread_pool_create/3, 1673
flag:executable, 41 thread_pool_destroy/1, 1674
flag:exit_status, 41 thread_pool_property/2, 1676
flag:file_name_variables, 41 thread_property/2, 906, 907, 910,
flag:gc, 41 913
flag:generate_debug_info, 41 thread_self/1, 41, 905, 907, 910,
flag:gmp_version, 41 918
flag:gui, 41 thread_send_message/2, 918, 919, 923
flag:history, 41 thread_send_message/3, 919
flag:home, 41 thread_setconcurrency/2, 41, 911
flag:hwnd, 41 thread_signal/2, 233, 930, 949,
flag:integer_rounding_function, 41 1198, 1246
flag:iso, 41 thread_statistics/3, 913, 914
flag:large_files, 41 threads/0, 944
flag:last_call_optimisation, 41 throw/1, 32, 60, 237--239, 252,
flag:max_arity, 41 256, 908, 913, 929, 930,
flag:max_integer, 41 1192, 1194, 1732--1734
flag:max_tagged_integer, 41 time/1, 554, 696
flag:min_integer, 41 time_file/2, 646
flag:min_tagged_integer, 41 tmp_file/2, 655, 656
flag:occurs_check, 41 tmp_file_stream/3, 655, 656
flag:open_shared_object, 41 tnodebug/0, 952
flag:optimise, 41 tnodebug/1, 951, 954
flag:os_argv, 41 told/0, 333
flag:pid, 41 top_sort/2, 1693
flag:pipe, 41 top_sort/3, 1694
flag:print_write_options, 41 tprofile/1, 955, 956
flag:prompt_alternatives_on, 41 trace/0, 32, 41, 96, 97, 107, 675,
flag:qcompile, 41 681, 890, 891, 930, 1220,
flag:readline, 41 1730, 1732
flag:report_error, 41 trace/1, 41, 680
flag:resource_database, 41 trace/2, 681
flag:runtime, 41 tracing/0, 676
flag:sandboxed_load, 41 transformation
flag:saved_program, 41 of program, 135
flag:shared_object_extension, 41 transitive_closure/2, 1695
flag:shared_object_search_path, 41 transparent, 1752
flag:signals, 41 transportation/4, 1660
flag:stream_type_check, 41 transpose/2, 1414, 1687
flag:system_thread_id, 41 transpose_pairs/2, 1550
flag:timezone, 41 trim_stacks/0, 709, 711, 712
flag:toplevel_print_anon, 41 trivial_fail_goal/1, 1355
flag:toplevel_print_factorized, 41 true/0, 41, 139, 215, 231
flag:toplevel_prompt, 41 truncate/1, 517
flag:toplevel_var_size, 41 tspy/1, 904, 947, 954
flag:trace_gc, 41 tspy/2, 953
flag:traditional, 41 tty_get_capability/3, 596, 598, 599
flag:tty_control, 41 tty_goto/2, 597
flag:unix, 41 tty_put/2, 598
flag:unknown, 41 tty_size/2, 599
flag:unload_foreign_libraries, 41 ttyflush/0, 362, 585
flag:user_flags, 41 tuples_in/2, 1403
flag:verbose, 41 type_error/2, 252, 1145, 1147
flag:verbose_autoload, 41
flag:verbose_file_search, 41 UCS, 64
flag:verbose_load, 41 ugraph _l_i_b_r_a_r_y, 1679
flag:version, 41 ugraph_union/3, 1692
flag:version_data, 41 ugraphs.pl _l_i_b_r_a_r_y, 1679
flag:version_git, 41 Unicode, 64
flag:warn_override_implicit_import, unifiable/3, 60, 204, 210
41 unify, 1752
flag:windows, 41 unify_with_occurs_check/2, 41, 60,
flag:write_attributes, 41 204, 205
flag:write_help_with_overstrike, 41 union/3, 1497
flag:xpce, 41 unix, 41
flag:xpce_version, 41 unix/1, 608
flatten/2, 807, 1487 unknown/2, 691, 1280
float/1, 180, 187, 512 unlisten/1, 1327
float_fractional_part/1, 515 unlisten/2, 1328
float_integer_part/1, 516 unlisten/3, 1329
floor/1, 518 unload_file/1, 113, 127
flush_output/0, 360 unload_foreign_library/1, 982
flush_output/1, 244, 361, 388 unload_foreign_library/2, 983
flush_output/[0 unsetenv/1, 605, 606
1], 311, 362 upcase_atom/2, 456, 460
foldl/4, 1298 update view, 283, 1752
foldl/5, 1299 URL, 611
foldl/6, 1300 url _l_i_b_r_a_r_y, 1507
foldl/7, 1301 url_iri/2, 1706, 1707
forall/2, 581 use_foreign_library/1, 121, 132,
foreach/2, 581, 1286 615, 980, 1267
format/1, 244, 582, 589 use_foreign_library/2, 981
format/2, 57, 311, 401, 449, 582, use_module/1, 41, 44, 81, 111, 113,
589--591 116, 156, 805--808, 817,
format/3, 243, 244, 247, 252, 309, 825, 826, 1269, 1747
340, 389, 439, 449, 462, use_module/2, 45, 111, 113, 806--
487, 488, 582, 590, 591, 808, 818, 1747
593, 756, 760 use_module/[1
format/[1 2], 34, 94, 111, 113, 115, 827,
2], 389, 1765 828, 1752
format/[2 user _l_i_b_r_a_r_y, 1765
3], 55 user profile file, 14
format_predicate/2, 593 UTF-8, 64
format_time/3, 449, 593, 607, 625 utf-8, 110
format_time/4, 625, 626
format_to_chars/3, 1332 valgrind, 1263
format_to_chars/4, 1333 valid_string_goal/1, 1359
free_variables/4, 1287 var/1, 177, 842, 1022
freeze/2, 859, 860, 862 var_number/2, 421
frozen/2, 861 var_property/2, 142
functor, 1752 variable, 1752
functor/3, 188, 301, 414, 416, 417, anonymous, 1752
764, 767, 873 variable_value/3, 1661
garbage_collect/0, 709 variant,v206ariant_sha1/2, 287, 1763
garbage_collect_atoms/0, 710, 1235 varnumbers/2, 1713
garbage_collect_clauses/0, 61, 154, varnumbers/3, 1714
155, 158 verbose, 18
garbage_collect_heap/0, 694 version/0, 250, 251
gcd/2, 501 version/1, 250, 251
gdebug/0, 100 vertices/2, 1681
gen_assoc/3, 1311 vertices_edges_to_ugraph/3, 1680
gen_nb_set/2, 1504 view
gen_state/1, 1655 update, 1752
gensym/2, 1460 visible/1, 690, 1726
get/1, 371, 372, 771 vm_list/1, 1221
get/2, 372 volatile/1, 302, 932, 1270
get0/1, 311, 369--372
get0/2, 370, 372 wait_for_input/3, 323, 342
get_assoc/2, 791 when _l_i_b_r_a_r_y, 862
get_assoc/3, 1312 when/2, 60, 862
get_assoc/5, 1313 wildcard_match/2, 729
get_attr/3, 844, 855 win_add_dll_directory/1, 615
get_attrs/2, 856, 857 win_add_dll_directory/2, 615--617
get_byte/1, 363, 369 win_exec/2, 601, 609--611
get_byte/2, 364, 368 win_folder/2, 14, 18, 614
get_byte/[1 win_has_menu/0, 633
2], 110 win_insert_menu/2, 633--635
get_char/1, 365, 367 win_insert_menu_item/4, 633, 635
get_char/2, 368 win_registry_get_value/3, 613
get_char/[1 win_remove_dll_directory/1, 616, 617
2], 110 win_shell/2, 601, 609, 611, 612,
get_code/1, 110, 309, 365, 369, 1508
380, 382 win_window_pos/1, 632
get_code/2, 65, 322, 366, 368, 370, window_title/2, 631
386, 388 windows, 41
get_code/[1 with_mutex/2, 929, 933, 937, 938,
2], 110 941, 957
get_dict/3, 771, 777 with_output_to/2, 309, 310, 336,
get_dict/5, 778 340, 389, 439, 462, 591, 625
get_dict_ex/3, 768, 771 with_output_to_chars/2, 1343
get_single_char/1, 18, 41, 382 with_output_to_chars/3, 1344
get_string_code/3, 745 with_output_to_chars/4, 1345
get_time/1, 621, 646, 694, 919, 926 with_quasi_quotation_input/3, 1610
getbit/2, 559 working_directory/2, 16, 608, 648,
getenv/2, 604, 605, 1508 659, 660
getrand/1, 1620 write(), 1156
global_cardinality/2, 1406 write/1, 41, 60, 70, 309, 395, 585,
global_cardinality/3, 1407 590, 1043, 1084, 1156
global_url/3, 1698 write/2, 396
GMP, 487 write_canonical/1, 390, 393, 407,
GNU-Emacs, 23 590, 732
go/0, 764 write_canonical/2, 394, 420, 1043
goal, 1752 write_length/3, 392, 445
goal_expansion/2, 111, 135, 136, write_term/2, 32, 41, 390--393,
138--140, 142, 149, 1748, 401, 407, 420, 439, 585,
1751, 1765 590, 732, 739, 848
goal_expansion/4, 111, 145 write_term/3, 41, 44, 390, 391,
ground/1, 60, 190, 285, 1026 419, 445
group_by/4, 1671 write_to_chars/2, 1334
group_pairs_by_key/2, 1549 write_to_chars/3, 1335
gspy/1, 101 writef/1, 582, 584
gtrace/0, 99, 947 writef/2, 7, 55, 389, 582, 584--586
guitracer/0, 96--98, 107, 674, 678 writeln/1, 399
gxref/0, 28, 104, 808, 1269, 1598 writeln/2, 400
halt/0, 32, 130, 664, 1765 writeq/1,w397,r585,i590teq/2, 398, 1043
halt/1, 41, 664, 665, 1220, 1765 www_form_encode/2, 1703, 1704
halt/[0 www_open_url/1, 1508
1], 130
hashing, 1752 xor/2, 525
head, 1752 xref_built_in/1, 1606
help/0, 25, 44, 1273, 1738 xref_called/3, 1603
help/1, 25, 26, 41, 44, 1738 xref_clean/1, 1601
hooks, 44 xref_current_source/1, 1600
html_write _l_i_b_r_a_r_y, 1608 xref_defined/3, 1602
http/http_error _l_i_b_r_a_r_y, 240 xref_exported/2, 1604
http/http_header _l_i_b_r_a_r_y, 625 xref_module/2, 1605
http/http_load _l_i_b_r_a_r_y, 113, 1740 xref_source/1, 1599
http_location/2, 1700
http_open/3, 252 YAP
http_timestamp/2, 625 prolog, 1747
IA32, 74 zcompare/3, 1415
IDE, 76
if
directive, 149
if/1, 128, 150
ignore/1, 230, 704, 904
immediate
update view, 283
import/1, 828, 829
import_module/2, 300, 821--823
imported predicate, 1752
in/2, 1380
in_pce_thread/1, 969, 970
in_pce_thread_sync/1, 970
include/1, 111, 113, 116, 125, 126,
307
include/3, 1290
indexing, 1752
term-hashes, 284
indomain/1, 1382
inf/2, 1426
infinite trees, 60
initialization/1, 111, 132, 133,
157, 865, 909, 976, 1239,
1271
initialization/2, 133
ins/2, 1381
instance/2, 281
instantiation, 1752
instantiation_error/1, 1142
integer, 1752
unbounded, 487
integer//1, 259
integer/1, 179, 187, 511
interactor/0, 323, 946
internationalization, 64
interpreted, 1752
intersection/3, 1496
is/2, 486, 487, 512, 897
is_absolute_file_name/1, 649
is_absolute_url/1, 1699
is_assoc/1, 1321
is_dict/1, 775
is_dict/2, 776
is_list/1, 565
is_ordset/1, 1525
is_set/1, 1494
is_stream/1, 318
ISO Latin 1, 53
Java, 1151
jitindex, 61
join_threads/0, 945
keysort/2, 569, 571, 572
label/1, 1383
labeling/1, 1368
labeling/2, 1384
last/2, 1482
lazy_list_character_count/1, 1565
lazy_list_location//1, 1564
leash/1, 32, 689, 690, 892, 1726
length/2, 567
lex_chain/1, 1402
lgamma/1, 548
library(apply_macros) _l_i_b_r_a_r_y, 111
library(dcg/basics) _l_i_b_r_a_r_y, 259
library_directory/1, 45, 49, 120
license/1, 1760
license/2, 1759, 1760
limit/2, 1668
line_count/2, 321, 323, 345, 597
line_position/2, 321, 323, 346, 597
list_autoload/0, 1350
list_debug_topics/0, 1453
list_redefined/0, 1351
list_strings/0, 731, 758, 759, 761,
1356
list_strings/1, 1357
list_to_assoc/2, 791, 1314
list_to_ord_set/2, 1528
list_to_set/2, 1495
list_trivial_fails/0, 1353
list_trivial_fails/1, 1354
list_undefined/0, 41, 119, 1348
list_undefined/1, 1349
list_void_declarations/0, 1352
listen/2, 1325, 1326
listen/3, 1326--1329
listening/3, 1330
listing/0, 173
listing/1, 32, 172, 173
lists _l_i_b_r_a_r_y, 564
load_file/2, 113
load_files/1, 112
load_files/2, 41, 44, 65, 111--114,
126, 127, 156, 157, 161,
692, 808, 1598, 1739, 1740,
1749, 1765
load_foreign_library/1, 132, 978,
987, 1247, 1272
load_foreign_library/2, 979
load_hotfixes/1, 113
locale, 463
locale_create/3, 450, 452
locale_destroy/1, 450, 451
locale_property/2, 452
locale_sort/2, 449, 464, 465, 607
log/1, 542
log10/1, 543
logical
update view, 283
lsb/1, 557
MacOS, 41
make/0, 4, 41, 45, 49, 87, 94, 107,
113, 116, 119, 126, 154
make_directory/1, 601, 657
make_library_index/1, 45, 47
make_library_index/2, 45, 48
make_library_index/[1
2], 49
manpce/0, 68
map_assoc/2, 1315
map_assoc/3, 1316
map_list_to_pairs/3, 1551
maplist/2, 581, 800, 1294
maplist/3, 791, 809, 830, 1295
maplist/4, 1296
maplist/5, 1297
maplist_/3, 809, 830
max/2, 505
max_assoc/3, 1317
max_list/2, 1491
max_member/2, 1488
max_var_number/3, 1715
maximize/1, 1429
maximize/3, 1656, 1657
maybe/0, 1621
maybe/1, 1622
maybe/2, 1623
member/2, 32, 233, 566, 648, 808,
1468, 1765
memberchk/2, 566, 761
memory
layout, 69
merge_options/3, 1514
message
service, 1322
message_hook/3, 242--246, 252, 712,
1765
message_property/2, 41, 247
message_queue_create/1, 917, 922,
924
message_queue_create/2, 922, 923,
928
message_queue_create/3, 933
message_queue_destroy/1, 924, 925
message_queue_property/2, 913, 928
message_to_string/2, 243, 245, 249
meta-predicate, 1752
meta_options/3, 808, 1515
meta_predicate/1, 41, 138, 189,
302, 809, 810, 830, 838,
1175, 1225, 1269
min/2, 506
min_assoc/3, 1318
min_list/2, 1492
min_member/2, 1489
minimize/1, 1428
minimize/3, 1657
mod/2, 496
mode, 1752
module, 1752
contex, 1752
module transparent, 1752
module/1, 41, 111, 293, 814, 815,
904
module/2, 136, 466, 467, 803--805,
808, 819, 827, 838
module/3, 805
module_property/2, 836, 837
module_transparent/1, 302, 810,
813, 831, 838, 1175, 1752
msb/1, 556
msort/2, 569, 570
multi, 1752
multifile/1, 41, 116, 288, 291,
302, 1736, 1752
must_be/2, 1639
mutex_create/1, 934, 937, 938
mutex_create/2, 935, 942
mutex_destroy/1, 936
mutex_lock/1, 938, 939
mutex_property/2, 942
mutex_statistics/0, 915
mutex_trylock/1, 939
mutex_unlock/1, 940
mutex_unlock_all/0, 941
my_compare/3, 1751
mypred/1, 816
name/1, 809
name/2, 431, 438
name_of/2, 1326
nb_current/2, 871
nb_delete/1, 872
nb_getval/2, 869, 871
nb_link_dict/3, 790
nb_linkarg/3, 427--429
nb_linkval/2, 428, 429, 790, 870,
873
nb_set _l_i_b_r_a_r_y, 1500
nb_set_dict/3, 789
nb_set_to_list/2, 1506
nb_setarg/3, 109, 426--429, 577,
789, 1500, 1639
nb_setval/2, 427, 429, 789, 865,
868, 870, 873, 1734
neck, 1752
neighbors/3, 1689
neighbours/3, 1688, 1689
nextto/3, 1476
nl/0, 348
nl/1, 349
nl/[0
1], 585
nodebug/0, 683, 684, 1726
nodebug/1, 1452
noguitracer/0, 96, 98, 107, 679
non deterministic, 1752
nondet, 1752
nonvar/1, 178
noprofile/1, 704
noprotocol/0, 672
normalize_space/2, 462
nospy/1, 32, 44, 687, 954, 1737
nospyall/0, 44, 688, 1737
not/1, 228, 1765
notrace/0, 677, 890, 891
notrace/1, 682
nth0/3, 1478
nth0/4, 1480
nth1/3, 1479
nth1/4, 1481
nth_clause/3, 302, 306, 307, 1720
nth_integer_root_and_remainder/4, 478
number
rational, 487
number/1, 183
number_chars/2, 110, 435, 436
number_codes/2, 110, 431, 436--438
number_string/2, 737
number_to_chars/2, 1338
number_to_chars/3, 1339
numbervars/1, 1712
numbervars/3, 60, 390, 419--421
numbervars/4, 60, 393, 419, 420
numlist/3, 1493
objective/2, 1658
occurs_check, 205
offset/2, 1669
on_signal/3, 254, 255
once/1, 229, 230, 233, 340, 577,
663, 682, 699, 700, 933,
937, 1180
online_help _l_i_b_r_a_r_y, 1765
op/3, 288, 390, 467, 468, 819
open/3, 41, 109, 308, 310, 312,
1143
open/4, 65, 66, 110, 311, 312, 316,
322, 323, 384, 453, 791,
792, 1637, 1638
open_any/5, 1464
open_chars_stream/2, 1342
open_dde_conversation/3, 716
open_hook/6, 1466
open_null_stream/1, 313, 322
open_resource/3, 1266, 1273, 1276
open_shared_object/2, 41, 616, 975,
987, 988
open_shared_object/3, 987, 988
open_string/2, 755
operand, 1752
operator, 1752
and modules, 466
opt_arguments/3, 1519
opt_help/2, 1522
opt_parse/4, 1520
opt_parse/5, 1521
option _l_i_b_r_a_r_y, 791, 799, 1639
option/2, 1511
option/3, 1510
options _l_i_b_r_a_r_y, 795
ord_add_element/3, 1535
ord_del_element/3, 1536
ord_disjoint/2, 1530
ord_empty/1, 1526
ord_intersect/2, 1529
ord_intersect/3, 1531
ord_intersection/2, 1532
ord_intersection/3, 1533
ord_intersection/4, 1534
ord_list_to_assoc/2, 1319
ord_memberchk/2, 1538
ord_selectchk/3, 1537
ord_seteq/2, 1527
ord_subset/2, 1539
ord_subtract/3, 1540
ord_symdiff/3, 1544
ord_union/2, 1541
ord_union/3, 1542
ord_union/4, 1543
order_by/2, 569, 1670
pack_info/1, 1586
pack_install/1, 1589
pack_install/2, 1590
pack_list/1, 1588
pack_list_installed/0, 1585
pack_property/2, 1597
pack_rebuild/0, 1593
pack_rebuild/1, 1592
pack_remove/1, 1596
pack_search/1, 1587
pack_upgrade/1, 1595
pack_url_file/2, 1591
pairs _l_i_b_r_a_r_y, 571, 791
pairs_keys/2, 1548
pairs_keys_values/3, 1546
pairs_values/2, 1547
parse_time/2, 627
parse_time/3, 627, 628
parse_type/3, 1523
parse_url/2, 1701
parse_url/3, 1702
parse_url_search/2, 1708
partition/4, 1292
partition/5, 1293
pce_dispatch/1, 968, 971
pce_thread/1, 970
pce_xref _l_i_b_r_a_r_y, 103
peek_byte/1, 373
peek_byte/2, 374
peek_byte/[1
2], 110
peek_char/1, 377
peek_char/2, 378
peek_char/[1
2], 110
peek_code/1, 375
peek_code/2, 376
peek_code/[1
2], 110
peek_string/3, 379
pengines _l_i_b_r_a_r_y, 577
permission_error/3, 1148
permutation/2, 1486
persistent/1, 1553
phrase/2, 257, 258
phrase/3, 257, 259, 260, 756, 810,
1765
phrase_from_file/2, 1560
phrase_from_file/3, 1561
phrase_from_quasi_quotation/2, 1611
phrase_from_stream/2, 1562
pi/0, 551
PL_abort_hook(), 1231
PL_abort_unhook(), 1232
PL_action(), 1220
PL_agc_hook(), 1235
PL_atom_chars(), 1015
PL_atom_nchars(), 1071
PL_atom_wchars(), 1074
PL_backtrace(), 1221
PL_blob_data(), 1163
PL_BLOB_NOCOPY, 1152
PL_BLOB_TEXT, 1152
PL_BLOB_UNIQUE, 1152
PL_call(), 1180
PL_call_predicate(), 1179
PL_chars_to_term(), 1123
PL_cleanup(), 1243
PL_cleanup_fork(), 1244
PL_clear_exception(), 1195
PL_close_foreign_frame(), 1183
PL_close_query(), 1178
PL_compare(), 1203
PL_cons_functor(), 1101
PL_cons_functor_v(), 1102
PL_cons_list(), 1103
PL_context(), 1187
PL_copy_term_ref(), 996
PL_create_engine(), 965
PL_cut_query(), 1177
PL_CYCLIC_TERM, 1083
PL_destroy_engine(), 966
PL_discard_foreign_frame(), 1184
PL_dispatch_hook(), 1230
PL_domain_error(), 1146
PL_end_stubborn_change(), 1261
PL_erase(), 1208
PL_erase_external(), 1211
PL_exception(), 1194
PL_existence_error(), 1147
PL_exit_hook(), 1234
PL_fail(), 1003
PL_foreign_context(), 1008
PL_foreign_context_address(), 1009
PL_foreign_context_predicate(), 1010
PL_foreign_control(), 1007
PL_free(), 1255
PL_functor_arity(), 1018
PL_functor_name(), 1017
PL_get_arg(), 1056
PL_get_atom(), 1040
PL_get_atom_chars(), 1041
PL_get_atom_ex(), 1127
PL_get_atom_nchars(), 1059
PL_get_blob(), 1162
PL_get_bool(), 1049
PL_get_bool_ex(), 1133
PL_get_char_ex(), 1135
PL_get_chars(), 1043
PL_get_compound_name_arity(), 1054
PL_get_file_name(), 1213
PL_get_file_nameW(), 1214
PL_get_float(), 1051
PL_get_float_ex(), 1134
PL_get_functor(), 1052
PL_get_head(), 1080
PL_get_int64(), 1047
PL_get_int64_ex(), 1130
PL_get_integer(), 1045
PL_get_integer_ex(), 1128
PL_get_intptr(), 1048
PL_get_intptr_ex(), 1131
PL_get_list(), 1079
PL_get_list_chars(), 1044
PL_get_list_ex(), 1137
PL_get_list_nchars(), 1060
PL_get_long(), 1046
PL_get_long_ex(), 1129
PL_get_module(), 1055
PL_get_mpq(), 1166
PL_get_mpz(), 1165
PL_get_name_arity(), 1053
PL_get_nchars(), 1061
PL_get_nil(), 1082
PL_get_nil_ex(), 1138
PL_get_pointer(), 1050
PL_get_pointer_ex(), 1136
PL_get_signum_ex(), 1200
PL_get_size_ex(), 1132
1805
|