This file is indexed.

/usr/lib/python3/dist-packages/reproject/interpolation/tests/test_core.py is in python3-reproject 0.3.1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# Licensed under a 3-clause BSD style license - see LICENSE.rst

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import os
import itertools

import numpy as np
from distutils.version import LooseVersion
from astropy.io import fits
from astropy.wcs import WCS
from astropy.utils.data import get_pkg_data_filename
from astropy.tests.helper import pytest

from ...array_utils import map_coordinates
from ..core_celestial import _reproject_celestial
from ..core_full import _reproject_full
from ..high_level import reproject_interp

# TODO: add reference comparisons


DATA = os.path.join(os.path.dirname(__file__), '..', '..', 'tests', 'data')


def array_footprint_to_hdulist(array, footprint, header):
    hdulist = fits.HDUList()
    hdulist.append(fits.PrimaryHDU(array, header))
    hdulist.append(fits.ImageHDU(footprint, header, name='footprint'))
    return hdulist


@pytest.mark.fits_compare()
def test_reproject_celestial_2d_gal2equ():
    """
    Test reprojection of a 2D celestial image, which includes a coordinate
    system conversion.
    """
    hdu_in = fits.open(os.path.join(DATA, 'galactic_2d.fits'))[0]
    header_out = hdu_in.header.copy()
    header_out['CTYPE1'] = 'RA---TAN'
    header_out['CTYPE2'] = 'DEC--TAN'
    header_out['CRVAL1'] = 266.39311
    header_out['CRVAL2'] = -28.939779
    array_out, footprint_out = reproject_interp(hdu_in, header_out)
    return array_footprint_to_hdulist(array_out, footprint_out, header_out)


# Note that we can't use independent_celestial_slices=True and reorder the
# axes, hence why we need to prepare the combinations in this way.
AXIS_ORDER = list(itertools.permutations((0, 1, 2)))
COMBINATIONS = [(True, (0, 1, 2))]
for axis_order in AXIS_ORDER:
    COMBINATIONS.append((False, axis_order))

@pytest.mark.fits_compare(single_reference=True)
@pytest.mark.parametrize(('indep_slices', 'axis_order'), tuple(COMBINATIONS))
def test_reproject_celestial_3d_equ2gal(indep_slices, axis_order):
    """
    Test reprojection of a 3D cube with celestial components, which includes a
    coordinate system conversion (the original header is in equatorial
    coordinates). We test using both the 'fast' method which assumes celestial
    slices are independent, and the 'full' method. We also scramble the input
    dimensions of the data and header to make sure that the reprojection can
    deal with this.
    """

    # Read in the input cube
    hdu_in = fits.open(os.path.join(DATA, 'equatorial_3d.fits'))[0]

    # Define the output header - this should be the same for all versions of
    # this test to make sure we can use a single reference file.
    header_out = hdu_in.header.copy()
    header_out['NAXIS1'] = 10
    header_out['NAXIS2'] = 9
    header_out['CTYPE1'] = 'GLON-SIN'
    header_out['CTYPE2'] = 'GLAT-SIN'
    header_out['CRVAL1'] = 163.16724
    header_out['CRVAL2'] = -15.777405
    header_out['CRPIX1'] = 6
    header_out['CRPIX2'] = 5

    # We now scramble the input axes
    if axis_order != (0, 1, 2):
        wcs_in = WCS(hdu_in.header)
        wcs_in = wcs_in.sub((3 - np.array(axis_order)[::-1]).tolist())
        hdu_in.header = wcs_in.to_header()
        hdu_in.data = np.transpose(hdu_in.data, axis_order)

    array_out, footprint_out = reproject_interp(hdu_in, header_out,
                                                independent_celestial_slices=indep_slices)
    return array_footprint_to_hdulist(array_out, footprint_out, header_out)


@pytest.mark.fits_compare()
def test_small_cutout():
    """
    Test reprojection of a cutout from a larger image (makes sure that the
    pre-reprojection cropping works)
    """
    hdu_in = fits.open(os.path.join(DATA, 'galactic_2d.fits'))[0]
    header_out = hdu_in.header.copy()
    header_out['NAXIS1'] = 10
    header_out['NAXIS2'] = 9
    header_out['CTYPE1'] = 'RA---TAN'
    header_out['CTYPE2'] = 'DEC--TAN'
    header_out['CRVAL1'] = 266.39311
    header_out['CRVAL2'] = -28.939779
    header_out['CRPIX1'] = 5.1
    header_out['CRPIX2'] = 4.7
    array_out, footprint_out = reproject_interp(hdu_in, header_out)
    return array_footprint_to_hdulist(array_out, footprint_out, header_out)


def test_small_cutout_outside():
    """
    Test reprojection of a cutout from a larger image - in this case the
    cutout is completely outside the region of the input image so we should
    take a shortcut that returns arrays of NaNs.
    """
    hdu_in = fits.open(os.path.join(DATA, 'galactic_2d.fits'))[0]
    header_out = hdu_in.header.copy()
    header_out['NAXIS1'] = 10
    header_out['NAXIS2'] = 9
    header_out['CTYPE1'] = 'RA---TAN'
    header_out['CTYPE2'] = 'DEC--TAN'
    header_out['CRVAL1'] = 216.39311
    header_out['CRVAL2'] = -21.939779
    header_out['CRPIX1'] = 5.1
    header_out['CRPIX2'] = 4.7
    array_out, footprint_out = reproject_interp(hdu_in, header_out)
    assert np.all(np.isnan(array_out))
    assert np.all(footprint_out == 0)


def test_celestial_mismatch_2d():
    """
    Make sure an error is raised if the input image has celestial WCS
    information and the output does not (and vice-versa). This example will
    use the _reproject_celestial route.
    """

    hdu_in = fits.open(os.path.join(DATA, 'galactic_2d.fits'))[0]

    header_out = hdu_in.header.copy()
    header_out['CTYPE1'] = 'APPLES'
    header_out['CTYPE2'] = 'ORANGES'

    data = hdu_in.data
    wcs1 = WCS(hdu_in.header)
    wcs2 = WCS(header_out)

    with pytest.raises(ValueError) as exc:
        array_out, footprint_out = reproject_interp((data, wcs1), wcs2, shape_out=(2, 2))
    assert exc.value.args[0] == "Input WCS has celestial components but output WCS does not"


def test_celestial_mismatch_3d():
    """
    Make sure an error is raised if the input image has celestial WCS
    information and the output does not (and vice-versa). This example will
    use the _reproject_full route.
    """

    hdu_in = fits.open(os.path.join(DATA, 'equatorial_3d.fits'))[0]

    header_out = hdu_in.header.copy()
    header_out['CTYPE1'] = 'APPLES'
    header_out['CTYPE2'] = 'ORANGES'
    header_out['CTYPE3'] = 'BANANAS'

    data = hdu_in.data
    wcs1 = WCS(hdu_in.header)
    wcs2 = WCS(header_out)

    with pytest.raises(ValueError) as exc:
        array_out, footprint_out = reproject_interp((data, wcs1), wcs2, shape_out=(1, 2, 3))
    assert exc.value.args[0] == "Input WCS has celestial components but output WCS does not"

    with pytest.raises(ValueError) as exc:
        array_out, footprint_out = reproject_interp((data, wcs2), wcs1, shape_out=(1, 2, 3))
    assert exc.value.args[0] == "Output WCS has celestial components but input WCS does not"


def test_spectral_mismatch_3d():
    """
    Make sure an error is raised if there are mismatches between the presence
    or type of spectral axis.
    """

    hdu_in = fits.open(os.path.join(DATA, 'equatorial_3d.fits'))[0]

    header_out = hdu_in.header.copy()
    header_out['CTYPE3'] = 'FREQ'
    header_out['CUNIT3'] = 'Hz'

    data = hdu_in.data
    wcs1 = WCS(hdu_in.header)
    wcs2 = WCS(header_out)

    with pytest.raises(ValueError) as exc:
        array_out, footprint_out = reproject_interp((data, wcs1), wcs2, shape_out=(1, 2, 3))
    assert exc.value.args[0] == "The input (VOPT) and output (FREQ) spectral coordinate types are not equivalent."

    header_out['CTYPE3'] = 'BANANAS'
    wcs2 = WCS(header_out)

    with pytest.raises(ValueError) as exc:
        array_out, footprint_out = reproject_interp((data, wcs1), wcs2, shape_out=(1, 2, 3))
    assert exc.value.args[0] == "Input WCS has a spectral component but output WCS does not"

    with pytest.raises(ValueError) as exc:
        array_out, footprint_out = reproject_interp((data, wcs2), wcs1, shape_out=(1, 2, 3))
    assert exc.value.args[0] == "Output WCS has a spectral component but input WCS does not"


def test_naxis_mismatch():
    """
    Make sure an error is raised if the input and output WCS have a different
    number of dimensions.
    """

    data = np.ones((3, 2, 2))
    wcs_in = WCS(naxis=3)
    wcs_out = WCS(naxis=2)

    with pytest.raises(ValueError) as exc:
        array_out, footprint_out = reproject_interp((data, wcs_in), wcs_out, shape_out=(1, 2))
    assert exc.value.args[0] == "Number of dimensions between input and output WCS should match"


def test_slice_reprojection():
    """
    Test case where only the slices change and the celestial projection doesn't
    """

    inp_cube = np.arange(3, dtype='float').repeat(4 * 5).reshape(3, 4, 5)

    header_in = fits.Header.fromtextfile(get_pkg_data_filename('../../tests/data/cube.hdr'))

    header_in['NAXIS1'] = 5
    header_in['NAXIS2'] = 4
    header_in['NAXIS3'] = 3

    header_out = header_in.copy()
    header_out['NAXIS3'] = 2
    header_out['CRPIX3'] -= 0.5

    wcs_in = WCS(header_in)
    wcs_out = WCS(header_out)

    out_cube, out_cube_valid = _reproject_full(inp_cube, wcs_in, wcs_out, (2, 4, 5))

    # we expect to be projecting from
    # inp_cube = np.arange(3, dtype='float').repeat(4*5).reshape(3,4,5)
    # to
    # inp_cube_interp = (inp_cube[:-1]+inp_cube[1:])/2.
    # which is confirmed by
    # map_coordinates(inp_cube.astype('float'), new_coords, order=1, cval=np.nan, mode='constant')
    # np.testing.assert_allclose(inp_cube_interp, map_coordinates(inp_cube.astype('float'), new_coords, order=1, cval=np.nan, mode='constant'))

    assert out_cube.shape == (2, 4, 5)
    assert out_cube_valid.sum() == 40.

    # We only check that the *valid* pixels are equal
    # but it's still nice to check that the "valid" array works as a mask
    np.testing.assert_allclose(out_cube[out_cube_valid.astype('bool')],
                               ((inp_cube[:-1] + inp_cube[1:]) / 2.)[out_cube_valid.astype('bool')])

    # Actually, I fixed it, so now we can test all
    np.testing.assert_allclose(out_cube, ((inp_cube[:-1] + inp_cube[1:]) / 2.))


def test_4d_fails():

    header_in = fits.Header.fromtextfile(get_pkg_data_filename('../../tests/data/cube.hdr'))

    header_in['NAXIS'] = 4

    header_out = header_in.copy()
    w_in = WCS(header_in)
    w_out = WCS(header_out)

    array_in = np.zeros((2, 3, 4, 5))

    with pytest.raises(ValueError) as ex:
        x_out, y_out, z_out = reproject_interp((array_in, w_in), w_out, shape_out=[2, 4, 5, 6])
    assert str(ex.value) == "Length of shape_out should match number of dimensions in wcs_out"


def test_inequal_wcs_dims():
    inp_cube = np.arange(3, dtype='float').repeat(4 * 5).reshape(3, 4, 5)
    header_in = fits.Header.fromtextfile(get_pkg_data_filename('../../tests/data/cube.hdr'))

    header_out = header_in.copy()
    header_out['CTYPE3'] = 'VRAD'
    header_out['CUNIT3'] = 'm/s'
    header_in['CTYPE3'] = 'STOKES'
    header_in['CUNIT3'] = ''

    wcs_out = WCS(header_out)

    with pytest.raises(ValueError) as ex:
        out_cube, out_cube_valid = reproject_interp((inp_cube, header_in), wcs_out, shape_out=(2, 4, 5))
    assert str(ex.value) == "Output WCS has a spectral component but input WCS does not"


def test_different_wcs_types():

    inp_cube = np.arange(3, dtype='float').repeat(4 * 5).reshape(3, 4, 5)
    header_in = fits.Header.fromtextfile(get_pkg_data_filename('../../tests/data/cube.hdr'))

    header_out = header_in.copy()
    header_out['CTYPE3'] = 'VRAD'
    header_out['CUNIT3'] = 'm/s'
    header_in['CTYPE3'] = 'VELO'
    header_in['CUNIT3'] = 'm/s'

    wcs_in = WCS(header_in)
    wcs_out = WCS(header_out)

    with pytest.raises(ValueError) as ex:
        out_cube, out_cube_valid = reproject_interp((inp_cube, header_in), wcs_out, shape_out=(2, 4, 5))
    assert str(ex.value) == ("The input (VELO) and output (VRAD) spectral "
                             "coordinate types are not equivalent.")

# TODO: add a test to check the units are the same.


def test_reproject_3d_celestial_correctness_ra2gal():

    inp_cube = np.arange(3, dtype='float').repeat(7 * 8).reshape(3, 7, 8)

    header_in = fits.Header.fromtextfile(get_pkg_data_filename('../../tests/data/cube.hdr'))

    header_in['NAXIS1'] = 8
    header_in['NAXIS2'] = 7
    header_in['NAXIS3'] = 3

    header_out = header_in.copy()
    header_out['CTYPE1'] = 'GLON-TAN'
    header_out['CTYPE2'] = 'GLAT-TAN'
    header_out['CRVAL1'] = 158.5644791
    header_out['CRVAL2'] = -21.59589875
    # make the cube a cutout approximately in the center of the other one, but smaller
    header_out['NAXIS1'] = 4
    header_out['CRPIX1'] = 2
    header_out['NAXIS2'] = 3
    header_out['CRPIX2'] = 1.5

    header_out['NAXIS3'] = 2
    header_out['CRPIX3'] -= 0.5

    wcs_in = WCS(header_in)
    wcs_out = WCS(header_out)

    out_cube, out_cube_valid = reproject_interp((inp_cube, wcs_in), wcs_out, shape_out=(2, 3, 4))

    assert out_cube.shape == (2, 3, 4)
    assert out_cube_valid.sum() == out_cube.size

    # only compare the spectral axis
    np.testing.assert_allclose(out_cube[:, 0, 0], ((inp_cube[:-1] + inp_cube[1:]) / 2.)[:, 0, 0])


# see https://github.com/astrofrog/reproject/issues/111
@pytest.mark.xfail()
def test_reproject_celestial_3d():
    """
    Test both full_reproject and slicewise reprojection. We use a case where the
    non-celestial slices are the same and therefore where both algorithms can
    work.
    """

    header_in = fits.Header.fromtextfile(get_pkg_data_filename('../../tests/data/cube.hdr'))

    array_in = np.ones((3, 200, 180))

    # TODO: here we can check that if we change the order of the dimensions in
    # the WCS, things still work properly

    wcs_in = WCS(header_in)
    wcs_out = wcs_in.deepcopy()
    wcs_out.wcs.ctype = ['GLON-SIN', 'GLAT-SIN', wcs_in.wcs.ctype[2]]
    wcs_out.wcs.crval = [158.0501, -21.530282, wcs_in.wcs.crval[2]]
    wcs_out.wcs.crpix = [50., 50., wcs_in.wcs.crpix[2] + 0.5]

    out_full, foot_full = _reproject_full(array_in, wcs_in, wcs_out, (3, 160, 170))

    out_celestial, foot_celestial = _reproject_celestial(array_in, wcs_in, wcs_out, (3, 160, 170))

    np.testing.assert_allclose(out_full, out_celestial)
    np.testing.assert_allclose(foot_full, foot_celestial)