This file is indexed.

/usr/lib/python2.7/dist-packages/pyresample/image.py is in python-pyresample 1.2.9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# pyresample, Resampling of remote sensing image data in python
#
# Copyright (C) 2010, 2015  Esben S. Nielsen
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program.  If not, see <http://www.gnu.org/licenses/>.

"""Handles resampling of images with assigned geometry definitions"""

from __future__ import absolute_import

import numpy as np

from pyresample import geometry, grid, kd_tree


class ImageContainer(object):

    """Holds image with geometry definition. 
    Allows indexing with linesample arrays.

    Parameters
    ----------
    image_data : numpy array
        Image data
    geo_def : object 
        Geometry definition
    fill_value : int or None, optional
        Set undetermined pixels to this value.
        If fill_value is None a masked array is returned 
        with undetermined pixels masked
    nprocs : int, optional 
        Number of processor cores to be used

    Attributes
    ----------
    image_data : numpy array
        Image data
    geo_def : object 
        Geometry definition
    fill_value : int or None
        Resample result fill value
    nprocs : int
        Number of processor cores to be used for geometry operations
    """

    def __init__(self, image_data, geo_def, fill_value=0, nprocs=1):
        if not isinstance(image_data, (np.ndarray, np.ma.core.MaskedArray)):
            raise TypeError('image_data must be either an ndarray'
                            ' or a masked array')
        elif ((image_data.ndim > geo_def.ndim + 1) or
              (image_data.ndim < geo_def.ndim)):
            raise ValueError(('Unexpected number of dimensions for '
                              'image_data: ') % image_data.ndim)
        for i, size in enumerate(geo_def.shape):
            if image_data.shape[i] != size:
                raise ValueError(('Size mismatch for image_data. Expected '
                                  'size %s for dimension %s and got %s') %
                                 (size, i, image_data.shape[i]))

        self.shape = geo_def.shape
        self.size = geo_def.size
        self.ndim = geo_def.ndim
        self.image_data = image_data
        if image_data.ndim > geo_def.ndim:
            self.channels = image_data.shape[-1]
        else:
            self.channels = 1
        self.geo_def = geo_def
        self.fill_value = fill_value
        self.nprocs = nprocs

    def __str__(self):
        return 'Image:\n %s' % self.image_data.__str__()

    def __repr__(self):
        return self.image_data.__repr__()

    def resample(self, target_geo_def):
        """Base method for resampling"""

        raise NotImplementedError('Method "resample" is not implemented '
                                  'in class %s' % self.__class__.__name__)

    def get_array_from_linesample(self, row_indices, col_indices):
        """Samples from image based on index arrays.

        Parameters
        ----------
        row_indices : numpy array
            Row indices. Dimensions must match col_indices
        col_indices : numpy array 
            Col indices. Dimensions must match row_indices 

        Returns
        -------
        image_data : numpy_array
            Resampled image data
        """

        if self.geo_def.ndim != 2:
            raise TypeError('Resampling from linesamples only makes sense '
                            'on 2D data')

        return grid.get_image_from_linesample(row_indices, col_indices,
                                              self.image_data,
                                              self.fill_value)

    def get_array_from_neighbour_info(self, *args, **kwargs):
        """Base method for resampling from preprocessed data."""

        raise NotImplementedError('Method "get_array_from_neighbour_info" is '
                                  'not implemented in class %s' %
                                  self.__class__.__name__)


class ImageContainerQuick(ImageContainer):

    """Holds image with area definition. '
    Allows quick resampling within area.

    Parameters
    ----------
    image_data : numpy array
        Image data
    geo_def : object 
        Area definition as AreaDefinition object
    fill_value : int or None, optional
        Set undetermined pixels to this value.
        If fill_value is None a masked array is returned 
        with undetermined pixels masked
    nprocs : int, optional 
        Number of processor cores to be used for geometry operations
    segments : int or None
        Number of segments to use when resampling.
        If set to None an estimate will be calculated

    Attributes
    ----------
    image_data : numpy array
        Image data
    geo_def : object 
        Area definition as AreaDefinition object
    fill_value : int or None
        Resample result fill value
        If fill_value is None a masked array is returned 
        with undetermined pixels masked 
    nprocs : int
        Number of processor cores to be used
    segments : int or None
        Number of segments to use when resampling      
    """

    def __init__(self, image_data, geo_def, fill_value=0, nprocs=1,
                 segments=None):
        if not isinstance(geo_def, geometry.AreaDefinition):
            raise TypeError('area_def must be of type '
                            'geometry.AreaDefinition')
        super(ImageContainerQuick, self).__init__(image_data, geo_def,
                                                  fill_value=fill_value,
                                                  nprocs=nprocs)
        self.segments = segments

    def resample(self, target_area_def):
        """Resamples image to area definition using nearest neighbour 
        approach in projection coordinates.

        Parameters
        ----------
        target_area_def : object
            Target area definition as AreaDefinition object

        Returns
        -------
        image_container : object
            ImageContainerQuick object of resampled area   
        """

        resampled_image = grid.get_resampled_image(target_area_def,
                                                   self.geo_def,
                                                   self.image_data,
                                                   fill_value=self.fill_value,
                                                   nprocs=self.nprocs,
                                                   segments=self.segments)

        return ImageContainerQuick(resampled_image, target_area_def,
                                   fill_value=self.fill_value,
                                   nprocs=self.nprocs, segments=self.segments)


class ImageContainerNearest(ImageContainer):

    """Holds image with geometry definition. 
    Allows nearest neighbour resampling to new geometry definition.

    Parameters
    ----------
    image_data : numpy array
        Image data
    geo_def : object 
        Geometry definition
    radius_of_influence : float 
        Cut off distance in meters    
    epsilon : float, optional
        Allowed uncertainty in meters. Increasing uncertainty
        reduces execution time
    fill_value : int or None, optional
        Set undetermined pixels to this value.
        If fill_value is None a masked array is returned 
        with undetermined pixels masked
    reduce_data : bool, optional
        Perform coarse data reduction before resampling in order
        to reduce execution time
    nprocs : int, optional 
        Number of processor cores to be used for geometry operations
    segments : int or None
        Number of segments to use when resampling.
        If set to None an estimate will be calculated

    Attributes
    ----------

    image_data : numpy array 
        Image data
    geo_def : object 
        Geometry definition
    radius_of_influence : float 
        Cut off distance in meters    
    epsilon : float
        Allowed uncertainty in meters
    fill_value : int or None
        Resample result fill value
    reduce_data : bool
        Perform coarse data reduction before resampling
    nprocs : int
        Number of processor cores to be used
    segments : int or None
        Number of segments to use when resampling   
    """

    def __init__(self, image_data, geo_def, radius_of_influence, epsilon=0,
                 fill_value=0, reduce_data=True, nprocs=1, segments=None):
        super(ImageContainerNearest, self).__init__(image_data, geo_def,
                                                    fill_value=fill_value,
                                                    nprocs=nprocs)
        self.radius_of_influence = radius_of_influence
        self.epsilon = epsilon
        self.reduce_data = reduce_data
        self.segments = segments

    def resample(self, target_geo_def):
        """Resamples image to area definition using nearest neighbour 
        approach

        Parameters
        ----------
        target_geo_def : object 
            Target geometry definition         

        Returns
        -------
        image_container : object
            ImageContainerNearest object of resampled geometry   
        """

        if self.image_data.ndim > 2 and self.ndim > 1:
            image_data = self.image_data.reshape(self.image_data.shape[0] *
                                                 self.image_data.shape[1],
                                                 self.image_data.shape[2])
        else:
            image_data = self.image_data.ravel()

        resampled_image = \
            kd_tree.resample_nearest(self.geo_def,
                                     image_data,
                                     target_geo_def,
                                     self.radius_of_influence,
                                     epsilon=self.epsilon,
                                     fill_value=self.fill_value,
                                     nprocs=self.nprocs,
                                     reduce_data=self.reduce_data,
                                     segments=self.segments)
        return ImageContainerNearest(resampled_image, target_geo_def,
                                     self.radius_of_influence,
                                     epsilon=self.epsilon,
                                     fill_value=self.fill_value,
                                     reduce_data=self.reduce_data,
                                     nprocs=self.nprocs,
                                     segments=self.segments)