This file is indexed.

/usr/lib/python2.7/dist-packages/pyresample/grid.py is in python-pyresample 1.2.9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# pyresample, Resampling of remote sensing image data in python
#
# Copyright (C) 2010, 2014, 2015  Esben S. Nielsen
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or
#(at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program.  If not, see <http://www.gnu.org/licenses/>.

"""Resample image from one projection to another 
using nearest neighbour method in cartesian projection coordinate systems"""

from __future__ import absolute_import

import numpy as np

from pyresample import geometry, _spatial_mp

try:
    range = xrange
except NameError:
    pass


def get_image_from_linesample(row_indices, col_indices, source_image,
                              fill_value=0):
    """Samples from image based on index arrays.

    Parameters
    ----------
    row_indices : numpy array
        Row indices. Dimensions must match col_indices
    col_indices : numpy array 
        Col indices. Dimensions must match row_indices
    source_image : numpy array 
        Source image
    fill_value : int or None, optional
            Set undetermined pixels to this value.
            If fill_value is None a masked array is returned 
            with undetermined pixels masked

    Returns
    -------
    image_data : numpy array
        Resampled image 
    """

    # mask out non valid row and col indices
    row_mask = (row_indices >= 0) * (row_indices < source_image.shape[0])
    col_mask = (col_indices >= 0) * (col_indices < source_image.shape[1])
    valid_rows = row_indices * row_mask
    valid_cols = col_indices * col_mask

    # free memory
    del(row_indices)
    del(col_indices)

    # get valid part of image
    target_image = source_image[valid_rows, valid_cols]

    # free memory
    del(valid_rows)
    del(valid_cols)

    # create mask for valid data points
    valid_data = row_mask * col_mask
    if valid_data.ndim != target_image.ndim:
        for i in range(target_image.ndim - valid_data.ndim):
            valid_data = np.expand_dims(valid_data, axis=valid_data.ndim)

    # free memory
    del(row_mask)
    del(col_mask)

    # fill the non valid part of the image
    if fill_value is not None:
        target_filled = (target_image * valid_data +
                         (1 - valid_data) * fill_value)
    else:
        if np.ma.is_masked(target_image):
            mask = ((1 - valid_data) | target_image.mask)
        else:
            mask = (1 - valid_data)
        target_filled = np.ma.array(target_image, mask=mask)

    return target_filled.astype(target_image.dtype)


def get_linesample(lons, lats, source_area_def, nprocs=1):
    """Returns index row and col arrays for resampling

    Parameters
    ----------
    lons : numpy array
        Lons. Dimensions must match lats
    lats : numpy array   
        Lats. Dimensions must match lons
    source_area_def : object 
        Source definition as AreaDefinition object
    nprocs : int, optional 
        Number of processor cores to be used

    Returns
    -------
    (row_indices, col_indices) : tuple of numpy arrays
        Arrays for resampling area by array indexing
    """

    # Proj.4 definition of source area projection
    if nprocs > 1:
        source_proj = _spatial_mp.Proj_MP(**source_area_def.proj_dict)
    else:
        source_proj = _spatial_mp.Proj(**source_area_def.proj_dict)

    # get cartesian projection values from longitude and latitude
    source_x, source_y = source_proj(lons, lats, nprocs=nprocs)

    # Find corresponding pixels (element by element conversion of ndarrays)
    source_pixel_x = (source_area_def.pixel_offset_x +
                      source_x / source_area_def.pixel_size_x).astype(np.int32)

    source_pixel_y = (source_area_def.pixel_offset_y -
                      source_y / source_area_def.pixel_size_y).astype(np.int32)

    return source_pixel_y, source_pixel_x


def get_image_from_lonlats(lons, lats, source_area_def, source_image_data,
                           fill_value=0, nprocs=1):
    """Samples from image based on lon lat arrays 
    using nearest neighbour method in cartesian projection coordinate systems.

    Parameters
    ----------
    lons : numpy array
        Lons. Dimensions must match lats
    lats : numpy array   
        Lats. Dimensions must match lons
    source_area_def : object 
        Source definition as AreaDefinition object
    source_image_data : numpy array 
        Source image data
    fill_value : int or None, optional
            Set undetermined pixels to this value.
            If fill_value is None a masked array is returned 
            with undetermined pixels masked    
    nprocs : int, optional 
        Number of processor cores to be used

    Returns
    -------
    image_data : numpy array
        Resampled image data
    """

    source_pixel_y, source_pixel_x = get_linesample(lons, lats,
                                                    source_area_def,
                                                    nprocs=nprocs)

    # Return target image
    return get_image_from_linesample(source_pixel_y, source_pixel_x,
                                     source_image_data, fill_value)


def get_resampled_image(target_area_def, source_area_def, source_image_data,
                        fill_value=0, nprocs=1, segments=None):
    """Resamples image using nearest neighbour method in cartesian 
    projection coordinate systems.

    Parameters
    ----------
    target_area_def : object
        Target definition as AreaDefinition object
    source_area_def : object 
        Source definition as AreaDefinition object
    source_image_data : numpy array 
        Source image data
    fill_value : {int, None} optional 
        Set undetermined pixels to this value.
        If fill_value is None a masked array is returned 
        with undetermined pixels masked    
    nprocs : int, optional 
        Number of processor cores to be used
    segments : {int, None} optional
        Number of segments to use when resampling.
        If set to None an estimate will be calculated. 

    Returns
    -------
    image_data : numpy array 
        Resampled image data    
    """

    if not isinstance(target_area_def, geometry.AreaDefinition):
        raise TypeError('target_area_def must be of type AreaDefinition')
    if not isinstance(source_area_def, geometry.AreaDefinition):
        raise TypeError('source_area_def must be of type AreaDefinition')
    if not isinstance(source_image_data, (np.ndarray,
                                          np.ma.core.MaskedArray)):
        raise TypeError('source_image must be of type ndarray'
                        ' or a masked array.')

    # Calculate number of segments if needed
    if segments is None:
        rows = target_area_def.y_size
        cut_off = 500
        if rows > cut_off:
            segments = int(rows / cut_off)
        else:
            segments = 1

    if segments > 1:
        # Iterate through segments
        for i, target_slice in enumerate(geometry._get_slice(segments,
                                                             target_area_def.shape)):

            # Select data from segment with slice
            lons, lats = target_area_def.get_lonlats(
                nprocs=nprocs, data_slice=target_slice)

            # Calculate partial result
            next_result = get_image_from_lonlats(lons, lats, source_area_def,
                                                 source_image_data,
                                                 fill_value, nprocs)

            # Build result iteratively
            if i == 0:
                # First iteration
                result = next_result
            else:
                result = np.row_stack((result, next_result))

        return result
    else:
        # Get lon lat arrays of target area
        lons, lats = target_area_def.get_lonlats(nprocs)
        # Get target image
        return get_image_from_lonlats(lons, lats, source_area_def,
                                      source_image_data, fill_value, nprocs)