This file is indexed.

/usr/lib/python2.7/dist-packages/pyresample/geometry.py is in python-pyresample 1.2.9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
# pyresample, Resampling of remote sensing image data in python
#
# Copyright (C) 2010-2016
#
# Authors:
#    Esben S. Nielsen
#    Thomas Lavergne
#    Adam Dybbroe
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program.  If not, see <http://www.gnu.org/licenses/>.

"""Classes for geometry operations"""

import warnings

import numpy as np

from pyresample import _spatial_mp, utils


class DimensionError(Exception):
    pass


class Boundary(object):

    """Container for geometry boundary.
    Labelling starts in upper left corner and proceeds clockwise"""

    def __init__(self, side1, side2, side3, side4):
        self.side1 = side1
        self.side2 = side2
        self.side3 = side3
        self.side4 = side4


class BaseDefinition(object):

    """Base class for geometry definitions"""

    def __init__(self, lons=None, lats=None, nprocs=1):
        if type(lons) != type(lats):
            raise TypeError('lons and lats must be of same type')
        elif lons is not None:
            if lons.shape != lats.shape:
                raise ValueError('lons and lats must have same shape')

        self.nprocs = nprocs

        # check the latitutes
        if lats is not None and ((lats.min() < -90. or lats.max() > +90.)):
            # throw exception
            raise ValueError(
                'Some latitudes are outside the [-90.;+90] validity range')
        else:
            self.lats = lats

        # check the longitudes
        if lons is not None and ((lons.min() < -180. or lons.max() >= +180.)):
            # issue warning
            warnings.warn('All geometry objects expect longitudes in the [-180:+180[ range. ' +
                          'We will now automatically wrap your longitudes into [-180:+180[, and continue. ' +
                          'To avoid this warning next time, use routine utils.wrap_longitudes().')
            # wrap longitudes to [-180;+180[
            self.lons = utils.wrap_longitudes(lons)
        else:
            self.lons = lons

        self.ndim = None
        self.cartesian_coords = None

    def __eq__(self, other):
        """Test for approximate equality"""

        if other.lons is None or other.lats is None:
            other_lons, other_lats = other.get_lonlats()
        else:
            other_lons = other.lons
            other_lats = other.lats

        if self.lons is None or self.lats is None:
            self_lons, self_lats = self.get_lonlats()
        else:
            self_lons = self.lons
            self_lats = self.lats

        try:
            return (np.allclose(self_lons, other_lons, atol=1e-6,
                                rtol=5e-9) and
                    np.allclose(self_lats, other_lats, atol=1e-6,
                                rtol=5e-9))
        except (AttributeError, ValueError):
            return False

    def __ne__(self, other):
        """Test for approximate equality"""

        return not self.__eq__(other)

    def get_area_extent_for_subset(self, row_LR, col_LR, row_UL, col_UL):
        """Retrieves area_extent for a subdomain
        rows    are counted from upper left to lower left
        columns are counted from upper left to upper right

        :Parameters:
        row_LR : int
            row of the lower right pixel
        col_LR : int
            col of the lower right pixel
        row_UL : int
            row of the upper left pixel
        col_UL : int
            col of the upper left pixel

        :Returns:
        area_extent : list
            Area extent as a list (LL_x, LL_y, UR_x, UR_y) of the subset

        :Author:
        Ulrich Hamann
        """

        (a, b) = self.get_proj_coords(data_slice=(row_LR, col_LR))
        a = a - 0.5 * self.pixel_size_x
        b = b - 0.5 * self.pixel_size_y
        (c, d) = self.get_proj_coords(data_slice=(row_UL, col_UL))
        c = c + 0.5 * self.pixel_size_x
        d = d + 0.5 * self.pixel_size_y

        return (a, b, c, d)

    def get_lonlat(self, row, col):
        """Retrieve lon and lat of single pixel

        Parameters
        ----------
        row : int
        col : int

        Returns
        -------
        (lon, lat) : tuple of floats
        """

        if self.ndim != 2:
            raise DimensionError(('operation undefined '
                                  'for %sD geometry ') % self.ndim)
        elif self.lons is None or self.lats is None:
            raise ValueError('lon/lat values are not defined')
        return self.lons[row, col], self.lats[row, col]

    def get_lonlats(self, data_slice=None, **kwargs):
        """Base method for lon lat retrieval with slicing"""

        if self.lons is None or self.lats is None:
            raise ValueError('lon/lat values are not defined')
        elif data_slice is None:
            return self.lons, self.lats
        else:
            return self.lons[data_slice], self.lats[data_slice]

    def get_boundary_lonlats(self):
        """Returns Boundary objects"""

        side1 = self.get_lonlats(data_slice=(0, slice(None)))
        side2 = self.get_lonlats(data_slice=(slice(None), -1))
        side3 = self.get_lonlats(data_slice=(-1, slice(None)))
        side4 = self.get_lonlats(data_slice=(slice(None), 0))
        return Boundary(side1[0], side2[0], side3[0][::-1], side4[0][::-1]), Boundary(side1[1], side2[1], side3[1][::-1], side4[1][::-1])

    def get_cartesian_coords(self, nprocs=None, data_slice=None, cache=False):
        """Retrieve cartesian coordinates of geometry definition

        Parameters
        ----------
        nprocs : int, optional
            Number of processor cores to be used.
            Defaults to the nprocs set when instantiating object
        data_slice : slice object, optional
            Calculate only cartesian coordnates for the defined slice
        cache : bool, optional
            Store result the result. Requires data_slice to be None

        Returns
        -------
        cartesian_coords : numpy array
        """

        if self.cartesian_coords is None:
            # Coordinates are not cached
            if nprocs is None:
                nprocs = self.nprocs

            if data_slice is None:
                # Use full slice
                data_slice = slice(None)

            lons, lats = self.get_lonlats(nprocs=nprocs, data_slice=data_slice)

            if nprocs > 1:
                cartesian = _spatial_mp.Cartesian_MP(nprocs)
            else:
                cartesian = _spatial_mp.Cartesian()

            cartesian_coords = cartesian.transform_lonlats(np.ravel(lons),
                                                           np.ravel(lats))

            if isinstance(lons, np.ndarray) and lons.ndim > 1:
                # Reshape to correct shape
                cartesian_coords = cartesian_coords.reshape(lons.shape[0],
                                                            lons.shape[1], 3)

            if cache and data_slice is None:
                self.cartesian_coords = cartesian_coords
        else:
            # Coordinates are cached
            if data_slice is None:
                cartesian_coords = self.cartesian_coords
            else:
                cartesian_coords = self.cartesian_coords[data_slice]

        return cartesian_coords

    @property
    def corners(self):
        """Returns the corners of the current area.
        """
        from pyresample.spherical_geometry import Coordinate
        return [Coordinate(*self.get_lonlat(0, 0)),
                Coordinate(*self.get_lonlat(0, -1)),
                Coordinate(*self.get_lonlat(-1, -1)),
                Coordinate(*self.get_lonlat(-1, 0))]

    def __contains__(self, point):
        """Is a point inside the 4 corners of the current area? This uses
        great circle arcs as area boundaries.
        """
        from pyresample.spherical_geometry import point_inside, Coordinate
        corners = self.corners

        if isinstance(point, tuple):
            return point_inside(Coordinate(*point), corners)
        else:
            return point_inside(point, corners)

    def overlaps(self, other):
        """Tests if the current area overlaps the *other* area. This is based
        solely on the corners of areas, assuming the boundaries to be great
        circles.

        Parameters
        ----------
        other : object
            Instance of subclass of BaseDefinition

        Returns
        -------
        overlaps : bool
        """

        from pyresample.spherical_geometry import Arc

        self_corners = self.corners

        other_corners = other.corners

        for i in self_corners:
            if i in other:
                return True
        for i in other_corners:
            if i in self:
                return True

        self_arc1 = Arc(self_corners[0], self_corners[1])
        self_arc2 = Arc(self_corners[1], self_corners[2])
        self_arc3 = Arc(self_corners[2], self_corners[3])
        self_arc4 = Arc(self_corners[3], self_corners[0])

        other_arc1 = Arc(other_corners[0], other_corners[1])
        other_arc2 = Arc(other_corners[1], other_corners[2])
        other_arc3 = Arc(other_corners[2], other_corners[3])
        other_arc4 = Arc(other_corners[3], other_corners[0])

        for i in (self_arc1, self_arc2, self_arc3, self_arc4):
            for j in (other_arc1, other_arc2, other_arc3, other_arc4):
                if i.intersects(j):
                    return True
        return False

    def get_area(self):
        """Get the area of the convex area defined by the corners of the current
        area.
        """
        from pyresample.spherical_geometry import get_polygon_area

        return get_polygon_area(self.corners)

    def intersection(self, other):
        """Returns the corners of the intersection polygon of the current area
        with *other*.

        Parameters
        ----------
        other : object
            Instance of subclass of BaseDefinition

        Returns
        -------
        (corner1, corner2, corner3, corner4) : tuple of points
        """
        from pyresample.spherical_geometry import intersection_polygon
        return intersection_polygon(self.corners, other.corners)

    def overlap_rate(self, other):
        """Get how much the current area overlaps an *other* area.

        Parameters
        ----------
        other : object
            Instance of subclass of BaseDefinition

        Returns
        -------
        overlap_rate : float
        """

        from pyresample.spherical_geometry import get_polygon_area
        other_area = other.get_area()
        inter_area = get_polygon_area(self.intersection(other))
        return inter_area / other_area


class CoordinateDefinition(BaseDefinition):
    """Base class for geometry definitions defined by lons and lats only"""

    def __init__(self, lons, lats, nprocs=1):
        super(CoordinateDefinition, self).__init__(lons, lats, nprocs)
        if lons.shape == lats.shape and lons.dtype == lats.dtype:
            self.shape = lons.shape
            self.size = lons.size
            self.ndim = lons.ndim
            self.dtype = lons.dtype
        else:
            raise ValueError(('%s must be created with either '
                              'lon/lats of the same shape with same dtype') %
                             self.__class__.__name__)

    def concatenate(self, other):
        if self.ndim != other.ndim:
            raise DimensionError(('Unable to concatenate %sD and %sD '
                                  'geometries') % (self.ndim, other.ndim))
        klass = _get_highest_level_class(self, other)
        lons = np.concatenate((self.lons, other.lons))
        lats = np.concatenate((self.lats, other.lats))
        nprocs = min(self.nprocs, other.nprocs)
        return klass(lons, lats, nprocs=nprocs)

    def append(self, other):
        if self.ndim != other.ndim:
            raise DimensionError(('Unable to append %sD and %sD '
                                  'geometries') % (self.ndim, other.ndim))
        self.lons = np.concatenate((self.lons, other.lons))
        self.lats = np.concatenate((self.lats, other.lats))
        self.shape = self.lons.shape
        self.size = self.lons.size

    def __str__(self):
        # Rely on numpy's object printing
        return ('Shape: %s\nLons: %s\nLats: %s') % (str(self.shape),
                                                    str(self.lons),
                                                    str(self.lats))


class GridDefinition(CoordinateDefinition):

    """Grid defined by lons and lats

    Parameters
    ----------
    lons : numpy array
    lats : numpy array
    nprocs : int, optional
        Number of processor cores to be used for calculations.

    Attributes
    ----------
    shape : tuple
        Grid shape as (rows, cols)
    size : int
        Number of elements in grid
    lons : object
        Grid lons
    lats : object
        Grid lats
    cartesian_coords : object
        Grid cartesian coordinates
    """

    def __init__(self, lons, lats, nprocs=1):
        super(GridDefinition, self).__init__(lons, lats, nprocs)
        if lons.shape != lats.shape:
            raise ValueError('lon and lat grid must have same shape')
        elif lons.ndim != 2:
            raise ValueError('2 dimensional lon lat grid expected')


class SwathDefinition(CoordinateDefinition):

    """Swath defined by lons and lats

    Parameters
    ----------
    lons : numpy array
    lats : numpy array
    nprocs : int, optional
        Number of processor cores to be used for calculations.

    Attributes
    ----------
    shape : tuple
        Swath shape
    size : int
        Number of elements in swath
    ndims : int
        Swath dimensions
    lons : object
        Swath lons
    lats : object
        Swath lats
    cartesian_coords : object
        Swath cartesian coordinates
    """

    def __init__(self, lons, lats, nprocs=1):
        super(SwathDefinition, self).__init__(lons, lats, nprocs)
        if lons.shape != lats.shape:
            raise ValueError('lon and lat arrays must have same shape')
        elif lons.ndim > 2:
            raise ValueError('Only 1 and 2 dimensional swaths are allowed')


class AreaDefinition(BaseDefinition):

    """Holds definition of an area.

    Parameters
    ----------
    area_id : str
        ID of area
    name : str
        Name of area
    proj_id : str
        ID of projection
    proj_dict : dict
        Dictionary with Proj.4 parameters
    x_size : int
        x dimension in number of pixels
    y_size : int
        y dimension in number of pixels
    area_extent : list
        Area extent as a list (LL_x, LL_y, UR_x, UR_y)
    nprocs : int, optional
        Number of processor cores to be used
    lons : numpy array, optional
        Grid lons
    lats : numpy array, optional
        Grid lats

    Attributes
    ----------
    area_id : str
        ID of area
    name : str
        Name of area
    proj_id : str
        ID of projection
    proj_dict : dict
        Dictionary with Proj.4 parameters
    x_size : int
        x dimension in number of pixels
    y_size : int
        y dimension in number of pixels
    shape : tuple
        Corresponding array shape as (rows, cols)
    size : int
        Number of points in grid
    area_extent : tuple
        Area extent as a tuple (LL_x, LL_y, UR_x, UR_y)
    area_extent_ll : tuple
        Area extent in lons lats as a tuple (LL_lon, LL_lat, UR_lon, UR_lat)
    pixel_size_x : float
        Pixel width in projection units
    pixel_size_y : float
        Pixel height in projection units
    pixel_upper_left : list
        Coordinates (x, y) of center of upper left pixel in projection units
    pixel_offset_x : float
        x offset between projection center and upper left corner of upper
        left pixel in units of pixels.
    pixel_offset_y : float
        y offset between projection center and upper left corner of upper
        left pixel in units of pixels..
    proj4_string : str
        Projection defined as Proj.4 string
    lons : object
        Grid lons
    lats : object
        Grid lats
    cartesian_coords : object
        Grid cartesian coordinates
    projection_x_coords : object
        Grid projection x coordinate
    projection_y_coords : object
        Grid projection y coordinate
    """

    def __init__(self, area_id, name, proj_id, proj_dict, x_size, y_size,
                 area_extent, nprocs=1, lons=None, lats=None, dtype=np.float64):
        if not isinstance(proj_dict, dict):
            raise TypeError('Wrong type for proj_dict: %s. Expected dict.'
                            % type(proj_dict))

        super(AreaDefinition, self).__init__(lons, lats, nprocs)
        self.area_id = area_id
        self.name = name
        self.proj_id = proj_id
        self.x_size = x_size
        self.y_size = y_size
        self.shape = (y_size, x_size)
        if lons is not None:
            if lons.shape != self.shape:
                raise ValueError('Shape of lon lat grid must match '
                                 'area definition')
        self.size = y_size * x_size
        self.ndim = 2
        self.pixel_size_x = (area_extent[2] - area_extent[0]) / float(x_size)
        self.pixel_size_y = (area_extent[3] - area_extent[1]) / float(y_size)
        self.proj_dict = proj_dict
        self.area_extent = tuple(area_extent)

        # Calculate area_extent in lon lat
        proj = _spatial_mp.Proj(**proj_dict)
        corner_lons, corner_lats = proj((area_extent[0], area_extent[2]),
                                        (area_extent[1], area_extent[3]),
                                        inverse=True)
        self.area_extent_ll = (corner_lons[0], corner_lats[0],
                               corner_lons[1], corner_lats[1])

        # Calculate projection coordinates of center of upper left pixel
        self.pixel_upper_left = \
            (float(area_extent[0]) +
             float(self.pixel_size_x) / 2,
             float(area_extent[3]) -
             float(self.pixel_size_y) / 2)

        # Pixel_offset defines the distance to projection center from origen (UL)
        # of image in units of pixels.
        self.pixel_offset_x = -self.area_extent[0] / self.pixel_size_x
        self.pixel_offset_y = self.area_extent[3] / self.pixel_size_y

        self.projection_x_coords = None
        self.projection_y_coords = None

        self.dtype = dtype

    def __str__(self):
        # We need a sorted dictionary for a unique hash of str(self)
        proj_dict = self.proj_dict
        proj_str = ('{' +
                    ', '.join(["'%s': '%s'" % (str(k), str(proj_dict[k]))
                               for k in sorted(proj_dict.keys())]) +
                    '}')
        return ('Area ID: %s\nName: %s\nProjection ID: %s\n'
                'Projection: %s\nNumber of columns: %s\nNumber of rows: %s\n'
                'Area extent: %s') % (self.area_id, self.name, self.proj_id,
                                      proj_str, self.x_size, self.y_size,
                                      self.area_extent)

    def create_areas_def(self):
        proj_dict = self.proj_dict
        proj_str = ','.join(["%s=%s" % (str(k), str(proj_dict[k]))
                             for k in sorted(proj_dict.keys())])

        fmt = "REGION: {name} {{\n"
        fmt += "\tNAME:\t{name}\n"
        fmt += "\tPCS_ID:\t{area_id}\n"
        fmt += "\tPCS_DEF:\t{proj_str}\n"
        fmt += "\tXSIZE:\t{x_size}\n"
        fmt += "\tYSIZE:\t{y_size}\n"
        fmt += "\tAREA_EXTENT: {area_extent}\n}};\n"
        area_def_str = fmt.format(name=self.name, area_id=self.area_id, proj_str=proj_str,
                                  x_size=self.x_size, y_size=self.y_size, area_extent=self.area_extent)
        return area_def_str

    __repr__ = __str__

    def __eq__(self, other):
        """Test for equality"""

        try:
            return ((self.proj_dict == other.proj_dict) and
                    (self.shape == other.shape) and
                    (np.allclose(self.area_extent, other.area_extent)))
        except AttributeError:
            return super(AreaDefinition, self).__eq__(other)

    def __ne__(self, other):
        """Test for equality"""

        return not self.__eq__(other)

    def colrow2lonlat(self, cols, rows):
        """
        Return longitudes and latitudes for the given image columns
        and rows. Both scalars and arrays are supported.
        To be used with scarse data points instead of slices
        (see get_lonlats).
        """
        p = _spatial_mp.Proj(self.proj4_string)
        x = self.proj_x_coords
        y = self.proj_y_coords
        return p(y[y.size - cols], x[x.size - rows], inverse=True)

    def lonlat2colrow(self, lons, lats):
        """
        Return image columns and rows for the given longitudes
        and latitudes. Both scalars and arrays are supported.
        Same as get_xy_from_lonlat, renamed for convenience.
        """
        return self.get_xy_from_lonlat(lons, lats)

    def get_xy_from_lonlat(self, lon, lat):
        """Retrieve closest x and y coordinates (column, row indices) for the
        specified geolocation (lon,lat) if inside area. If lon,lat is a point a
        ValueError is raised if the return point is outside the area domain. If
        lon,lat is a tuple of sequences of longitudes and latitudes, a tuple of
        masked arrays are returned.

        :Input:

        lon : point or sequence (list or array) of longitudes
        lat : point or sequence (list or array) of latitudes

        :Returns:

        (x, y) : tuple of integer points/arrays
        """

        if isinstance(lon, list):
            lon = np.array(lon)
        if isinstance(lat, list):
            lat = np.array(lat)

        if ((isinstance(lon, np.ndarray) and
             not isinstance(lat, np.ndarray)) or
            (not isinstance(lon, np.ndarray) and
             isinstance(lat, np.ndarray))):
            raise ValueError("Both lon and lat needs to be of " +
                             "the same type and have the same dimensions!")

        if isinstance(lon, np.ndarray) and isinstance(lat, np.ndarray):
            if lon.shape != lat.shape:
                raise ValueError("lon and lat is not of the same shape!")

        pobj = _spatial_mp.Proj(self.proj4_string)
        upl_x = self.area_extent[0]
        upl_y = self.area_extent[3]
        xscale = abs(self.area_extent[2] -
                     self.area_extent[0]) / float(self.x_size)
        yscale = abs(self.area_extent[1] -
                     self.area_extent[3]) / float(self.y_size)

        xm_, ym_ = pobj(lon, lat)
        x__ = (xm_ - upl_x) / xscale
        y__ = (upl_y - ym_) / yscale

        if isinstance(x__, np.ndarray) and isinstance(y__, np.ndarray):
            mask = (((x__ < 0) | (x__ > self.x_size)) |
                    ((y__ < 0) | (y__ > self.y_size)))
            return (np.ma.masked_array(x__.astype('int'), mask=mask,
                                       fill_value=-1),
                    np.ma.masked_array(y__.astype('int'), mask=mask,
                                       fill_value=-1))
        else:
            if ((x__ < 0 or x__ > self.x_size) or
                    (y__ < 0 or y__ > self.y_size)):
                raise ValueError('Point outside area:( %f %f)' % (x__, y__))
            return int(x__), int(y__)

    def get_xy_from_proj_coords(self, xm_, ym_):
        """Retrieve closest x and y coordinates (column, row indices) for a
        location specified with projection coordinates (xm_,ym_) in meters.
        A ValueError is raised, if the return point is outside the area domain. If
        xm_,ym_ is a tuple of sequences of projection coordinates, a tuple of
        masked arrays are returned.

        :Input:
        xm_ : point or sequence (list or array) of x-coordinates in m (map projection)
        ym_ : point or sequence (list or array) of y-coordinates in m (map projection)

        :Returns:
        (x, y) : tuple of integer points/arrays
        """

        if isinstance(xm_, list):
            xm_ = np.array(xm_)
        if isinstance(ym_, list):
            ym_ = np.array(ym_)

        if ((isinstance(xm_, np.ndarray) and
             not isinstance(ym_, np.ndarray)) or
            (not isinstance(xm_, np.ndarray) and
             isinstance(ym_, np.ndarray))):
            raise ValueError("Both projection coordinates xm_ and ym_ needs to be of " +
                             "the same type and have the same dimensions!")

        if isinstance(xm_, np.ndarray) and isinstance(ym_, np.ndarray):
            if xm_.shape != ym_.shape:
                raise ValueError(
                    "projection coordinates xm_ and ym_ is not of the same shape!")

        upl_x = self.area_extent[0]
        upl_y = self.area_extent[3]
        xscale = abs(self.area_extent[2] -
                     self.area_extent[0]) / float(self.x_size)
        yscale = abs(self.area_extent[1] -
                     self.area_extent[3]) / float(self.y_size)

        x__ = (xm_ - upl_x) / xscale
        y__ = (upl_y - ym_) / yscale

        if isinstance(x__, np.ndarray) and isinstance(y__, np.ndarray):
            mask = (((x__ < 0) | (x__ > self.x_size)) |
                    ((y__ < 0) | (y__ > self.y_size)))
            return (np.ma.masked_array(x__.astype('int'), mask=mask,
                                       fill_value=-1),
                    np.ma.masked_array(y__.astype('int'), mask=mask,
                                       fill_value=-1))
        else:
            if ((x__ < 0 or x__ > self.x_size) or
                    (y__ < 0 or y__ > self.y_size)):
                raise ValueError('Point outside area:( %f %f)' % (x__, y__))
            return int(x__), int(y__)

    def get_lonlat(self, row, col):
        """Retrieves lon and lat values of single point in area grid

        Parameters
        ----------
        row : int
        col : int

        Returns
        -------
        (lon, lat) : tuple of floats
        """

        return self.get_lonlats(nprocs=None, data_slice=(row, col))

    def get_proj_coords(self, data_slice=None, cache=False, dtype=None):
        """Get projection coordinates of grid

        Parameters
        ----------
        data_slice : slice object, optional
            Calculate only coordinates for specified slice
        cache : bool, optional
            Store result the result. Requires data_slice to be None

        Returns
        -------
        (target_x, target_y) : tuple of numpy arrays
            Grids of area x- and y-coordinates in projection units
        """

        def get_val(val, sub_val, max):
            # Get value with substitution and wrapping
            if val is None:
                return sub_val
            else:
                if val < 0:
                    # Wrap index
                    return max + val
                else:
                    return val

        if self.projection_x_coords is not None and self.projection_y_coords is not None:
            # Projection coords are cached
            if data_slice is None:
                return self.projection_x_coords, self.projection_y_coords
            else:
                return self.projection_x_coords[data_slice], self.projection_y_coords[data_slice]

        is_single_value = False
        is_1d_select = False

        if dtype is None:
            dtype = self.dtype

        # create coordinates of local area as ndarrays
        if data_slice is None or data_slice == slice(None):
            # Full slice
            rows = self.y_size
            cols = self.x_size
            row_start = 0
            col_start = 0
        else:
            if isinstance(data_slice, slice):
                # Row slice
                row_start = get_val(data_slice.start, 0, self.y_size)
                col_start = 0
                rows = get_val(
                    data_slice.stop, self.y_size, self.y_size) - row_start
                cols = self.x_size
            elif isinstance(data_slice[0], slice) and isinstance(data_slice[1], slice):
                # Block slice
                row_start = get_val(data_slice[0].start, 0, self.y_size)
                col_start = get_val(data_slice[1].start, 0, self.x_size)
                rows = get_val(
                    data_slice[0].stop, self.y_size, self.y_size) - row_start
                cols = get_val(
                    data_slice[1].stop, self.x_size, self.x_size) - col_start
            elif isinstance(data_slice[0], slice):
                # Select from col
                is_1d_select = True
                row_start = get_val(data_slice[0].start, 0, self.y_size)
                col_start = get_val(data_slice[1], 0, self.x_size)
                rows = get_val(
                    data_slice[0].stop, self.y_size, self.y_size) - row_start
                cols = 1
            elif isinstance(data_slice[1], slice):
                # Select from row
                is_1d_select = True
                row_start = get_val(data_slice[0], 0, self.y_size)
                col_start = get_val(data_slice[1].start, 0, self.x_size)
                rows = 1
                cols = get_val(
                    data_slice[1].stop, self.x_size, self.x_size) - col_start
            else:
                # Single element select
                is_single_value = True

                row_start = get_val(data_slice[0], 0, self.y_size)
                col_start = get_val(data_slice[1], 0, self.x_size)

                rows = 1
                cols = 1

        # Calculate coordinates
        target_x = np.fromfunction(lambda i, j: (j + col_start) *
                                   self.pixel_size_x +
                                   self.pixel_upper_left[0],
                                   (rows,
                                    cols), dtype=dtype)

        target_y = np.fromfunction(lambda i, j:
                                   self.pixel_upper_left[1] -
                                   (i + row_start) * self.pixel_size_y,
                                   (rows,
                                    cols), dtype=dtype)

        if is_single_value:
            # Return single values
            target_x = float(target_x)
            target_y = float(target_y)
        elif is_1d_select:
            # Reshape to 1D array
            target_x = target_x.reshape((target_x.size,))
            target_y = target_y.reshape((target_y.size,))

        if cache and data_slice is None:
            # Cache the result if requested
            self.projection_x_coords = target_x
            self.projection_y_coords = target_y

        return target_x, target_y

    @property
    def proj_x_coords(self):
        return self.get_proj_coords(data_slice=(0, slice(None)))[0]

    @property
    def proj_y_coords(self):
        return self.get_proj_coords(data_slice=(slice(None), 0))[1]

    @property
    def outer_boundary_corners(self):
        """Returns the lon,lat of the outer edges of the corner points
        """
        from pyresample.spherical_geometry import Coordinate
        proj = _spatial_mp.Proj(**self.proj_dict)

        corner_lons, corner_lats = proj((self.area_extent[0], self.area_extent[2],
                                         self.area_extent[2], self.area_extent[0]),
                                        (self.area_extent[3], self.area_extent[3],
                                         self.area_extent[1], self.area_extent[1]),
                                        inverse=True)
        return [Coordinate(corner_lons[0], corner_lats[0]),
                Coordinate(corner_lons[1], corner_lats[1]),
                Coordinate(corner_lons[2], corner_lats[2]),
                Coordinate(corner_lons[3], corner_lats[3])]

    def get_lonlats(self, nprocs=None, data_slice=None, cache=False, dtype=None):
        """Returns lon and lat arrays of area.

        Parameters
        ----------
        nprocs : int, optional
            Number of processor cores to be used.
            Defaults to the nprocs set when instantiating object
        data_slice : slice object, optional
            Calculate only coordinates for specified slice
        cache : bool, optional
            Store result the result. Requires data_slice to be None

        Returns
        -------
        (lons, lats) : tuple of numpy arrays
            Grids of area lons and and lats
        """

        if dtype is None:
            dtype = self.dtype

        if self.lons is None or self.lats is None:
            #Data is not cached
            if nprocs is None:
                nprocs = self.nprocs

            # Proj.4 definition of target area projection
            if nprocs > 1:
                target_proj = _spatial_mp.Proj_MP(**self.proj_dict)
            else:
                target_proj = _spatial_mp.Proj(**self.proj_dict)

            # Get coordinates of local area as ndarrays
            target_x, target_y = self.get_proj_coords(
                data_slice=data_slice, dtype=dtype)

            # Get corresponding longitude and latitude values
            lons, lats = target_proj(target_x, target_y, inverse=True,
                                     nprocs=nprocs)
            lons = np.asanyarray(lons, dtype=dtype)
            lats = np.asanyarray(lats, dtype=dtype)

            if cache and data_slice is None:
                # Cache the result if requested
                self.lons = lons
                self.lats = lats

            # Free memory
            del(target_x)
            del(target_y)
        else:
            #Data is cached
            if data_slice is None:
                # Full slice
                lons = self.lons
                lats = self.lats
            else:
                lons = self.lons[data_slice]
                lats = self.lats[data_slice]

        return lons, lats

    @property
    def proj4_string(self):
        """Returns projection definition as Proj.4 string"""

        items = self.proj_dict.items()
        return '+' + ' +'.join([t[0] + '=' + str(t[1]) for t in items])


def _get_slice(segments, shape):
    """Generator for segmenting a 1D or 2D array"""

    if not (1 <= len(shape) <= 2):
        raise ValueError('Cannot segment array of shape: %s' % str(shape))
    else:
        size = shape[0]
        slice_length = int(np.ceil(float(size) / segments))
        start_idx = 0
        end_idx = slice_length
        while start_idx < size:
            if len(shape) == 1:
                yield slice(start_idx, end_idx)
            else:
                yield (slice(start_idx, end_idx), slice(None))
            start_idx = end_idx
            end_idx = min(start_idx + slice_length, size)


def _flatten_cartesian_coords(cartesian_coords):
    """Flatten array to (n, 3) shape"""

    shape = cartesian_coords.shape
    if len(shape) > 2:
        cartesian_coords = cartesian_coords.reshape(shape[0] *
                                                    shape[1], 3)
    return cartesian_coords


def _get_highest_level_class(obj1, obj2):
    if (not issubclass(obj1.__class__, obj2.__class__) or
            not issubclass(obj2.__class__, obj1.__class__)):
        raise TypeError('No common superclass for %s and %s' %
                        (obj1.__class__, obj2.__class__))

    if obj1.__class__ == obj2.__class__:
        klass = obj1.__class__
    elif issubclass(obj1.__class__, obj2.__class__):
        klass = obj2.__class__
    else:
        klass = obj1.__class__
    return klass