/usr/lib/python2.7/dist-packages/healpy/sphtfunc.py is in python-healpy 1.10.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 | #
# This file is part of Healpy.
#
# Healpy is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# Healpy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Healpy; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#
# For more information about Healpy, see http://code.google.com/p/healpy
#
import warnings
import numpy as np
import six
pi = np.pi
import warnings
import astropy.io.fits as pf
from . import _healpy_sph_transform_lib as sphtlib
from . import _healpy_fitsio_lib as hfitslib
from . import _sphtools as _sphtools
from . import cookbook as cb
import os.path
from . import pixelfunc
from .pixelfunc import maptype, UNSEEN, ma_to_array, accept_ma
class FutureChangeWarning(UserWarning):
pass
DATAPATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data')
# Spherical harmonics transformation
def anafast(map1, map2 = None, nspec = None, lmax = None, mmax = None,
iter = 3, alm = False, pol = True, use_weights = False,
datapath = None):
"""Computes the power spectrum of an Healpix map, or the cross-spectrum
between two maps if *map2* is given.
No removal of monopole or dipole is performed.
Parameters
----------
map1 : float, array-like shape (Npix,) or (3, Npix)
Either an array representing a map, or a sequence of 3 arrays
representing I, Q, U maps
map2 : float, array-like shape (Npix,) or (3, Npix)
Either an array representing a map, or a sequence of 3 arrays
representing I, Q, U maps
nspec : None or int, optional
The number of spectra to return. If None, returns all, otherwise
returns cls[:nspec]
lmax : int, scalar, optional
Maximum l of the power spectrum (default: 3*nside-1)
mmax : int, scalar, optional
Maximum m of the alm (default: lmax)
iter : int, scalar, optional
Number of iteration (default: 3)
alm : bool, scalar, optional
If True, returns both cl and alm, otherwise only cl is returned
pol : bool, optional
If True, assumes input maps are TQU. Output will be TEB cl's and
correlations (input must be 1 or 3 maps).
If False, maps are assumed to be described by spin 0 spherical harmonics.
(input can be any number of maps)
If there is only one input map, it has no effect. Default: True.
datapath : None or str, optional
If given, the directory where to find the weights data.
Returns
-------
res : array or sequence of arrays
If *alm* is False, returns cl or a list of cl's (TT, EE, BB, TE, EB, TB for
polarized input map)
Otherwise, returns a tuple (cl, alm), where cl is as above and
alm is the spherical harmonic transform or a list of almT, almE, almB
for polarized input
"""
map1 = ma_to_array(map1)
alms1 = map2alm(map1, lmax = lmax, mmax = mmax, pol = pol, iter = iter,
use_weights = use_weights,
datapath = datapath)
if map2 is not None:
map2 = ma_to_array(map2)
alms2 = map2alm(map2, lmax = lmax, mmax = mmax, pol = pol,
iter = iter, use_weights = use_weights,
datapath = datapath)
else:
alms2 = None
cls = alm2cl(alms1, alms2 = alms2, lmax = lmax, mmax = mmax,
lmax_out = lmax, nspec = nspec)
if alm:
if map2 is not None:
return (cls, alms1, alms2)
else:
return (cls, alms1)
else:
return cls
def map2alm(maps, lmax = None, mmax = None, iter = 3, pol = True,
use_weights = False, datapath = None):
"""Computes the alm of an Healpix map.
Parameters
----------
maps : array-like, shape (Npix,) or (n, Npix)
The input map or a list of n input maps.
lmax : int, scalar, optional
Maximum l of the power spectrum. Default: 3*nside-1
mmax : int, scalar, optional
Maximum m of the alm. Default: lmax
iter : int, scalar, optional
Number of iteration (default: 3)
pol : bool, optional
If True, assumes input maps are TQU. Output will be TEB alm's.
(input must be 1 or 3 maps)
If False, apply spin 0 harmonic transform to each map.
(input can be any number of maps)
If there is only one input map, it has no effect. Default: True.
use_weights: bool, scalar, optional
If True, use the ring weighting. Default: False.
datapath : None or str, optional
If given, the directory where to find the weights data.
Returns
-------
alms : array or tuple of array
alm or a tuple of 3 alm (almT, almE, almB) if polarized input.
Notes
-----
The pixels which have the special `UNSEEN` value are replaced by zeros
before spherical harmonic transform. They are converted back to `UNSEEN`
value, so that the input maps are not modified. Each map have its own,
independent mask.
"""
maps = ma_to_array(maps)
info = maptype(maps)
if pol or info in (0, 1):
alms = _sphtools.map2alm(maps, niter = iter,
datapath = datapath, use_weights = use_weights,
lmax = lmax, mmax = mmax)
else:
# info >= 2 and pol is False : spin 0 spht for each map
alms = [_sphtools.map2alm(mm, niter = iter,
datapath = datapath, use_weights = use_weights,
lmax = lmax, mmax = mmax)
for mm in maps]
return alms
def alm2map(alms, nside, lmax = None, mmax = None, pixwin = False,
fwhm = 0.0, sigma = None, pol = True,
inplace = False, verbose=True):
"""Computes an Healpix map given the alm.
The alm are given as a complex array. You can specify lmax
and mmax, or they will be computed from array size (assuming
lmax==mmax).
Parameters
----------
alms : complex, array or sequence of arrays
A complex array or a sequence of complex arrays.
Each array must have a size of the form: mmax * (2 * lmax + 1 - mmax) / 2 + lmax + 1
nside : int, scalar
The nside of the output map.
lmax : None or int, scalar, optional
Explicitly define lmax (needed if mmax!=lmax)
mmax : None or int, scalar, optional
Explicitly define mmax (needed if mmax!=lmax)
pixwin : bool, optional
Smooth the alm using the pixel window functions. Default: False.
fwhm : float, scalar, optional
The fwhm of the Gaussian used to smooth the map (applied on alm)
[in radians]
sigma : float, scalar, optional
The sigma of the Gaussian used to smooth the map (applied on alm)
[in radians]
pol : bool, optional
If True, assumes input alms are TEB. Output will be TQU maps.
(input must be 1 or 3 alms)
If False, apply spin 0 harmonic transform to each alm.
(input can be any number of alms)
If there is only one input alm, it has no effect. Default: True.
inplace : bool, optional
If True, input alms may be modified by pixel window function and beam
smoothing (if alm(s) are complex128 contiguous arrays).
Otherwise, input alms are not modified. A copy is made if needed to
apply beam smoothing or pixel window.
Returns
-------
maps : array or list of arrays
An Healpix map in RING scheme at nside or a list of T,Q,U maps (if
polarized input)
"""
if not cb.is_seq(alms):
raise TypeError("alms must be a sequence")
alms = smoothalm(alms, fwhm = fwhm, sigma = sigma,
pol = pol, inplace = inplace, verbose=verbose)
if not cb.is_seq_of_seq(alms):
alms = [alms]
lonely = True
else:
lonely = False
if pixwin:
pw = globals()['pixwin'](nside,True)
alms_new = []
for ialm, alm in enumerate(alms):
pixelwindow = pw[1] if ialm >= 1 and pol else pw[0]
alms_new.append(almxfl(alm, pixelwindow, inplace = inplace))
else:
alms_new = alms
if lmax is None:
lmax = -1
if mmax is None:
mmax = -1
if pol:
output = sphtlib._alm2map(alms_new[0] if lonely else alms_new,
nside, lmax = lmax, mmax = mmax)
if lonely:
output = [output]
else:
output = [sphtlib._alm2map(alm, nside, lmax = lmax, mmax = mmax)
for alm in alms_new]
if lonely:
return output[0]
else:
return output
def synalm(cls, lmax = None, mmax = None, new = False, verbose=True):
"""Generate a set of alm given cl.
The cl are given as a float array. Corresponding alm are generated.
If lmax is None, it is assumed lmax=cl.size-1
If mmax is None, it is assumed mmax=lmax.
Parameters
----------
cls : float, array or tuple of arrays
Either one cl (1D array) or a tuple of either 4 cl
or of n*(n+1)/2 cl.
Some of the cl may be None, implying no
cross-correlation. See *new* parameter.
lmax : int, scalar, optional
The lmax (if None or <0, the largest size-1 of cls)
mmax : int, scalar, optional
The mmax (if None or <0, =lmax)
new : bool, optional
If True, use the new ordering of cl's, ie by diagonal
(e.g. TT, EE, BB, TE, EB, TB or TT, EE, BB, TE if 4 cl as input).
If False, use the old ordering, ie by row
(e.g. TT, TE, TB, EE, EB, BB or TT, TE, EE, BB if 4 cl as input).
Returns
-------
alms : array or list of arrays
the generated alm if one spectrum is given, or a list of n alms
(with n(n+1)/2 the number of input cl, or n=3 if there are 4 input cl).
Notes
-----
The order of the spectra will change in a future release. The new= parameter
help to make the transition smoother. You can start using the new order
by setting new=True.
In the next version of healpy, the default will be new=True.
This change is done for consistency between the different tools
(alm2cl, synfast, anafast).
In the new order, the spectra are ordered by diagonal of the correlation
matrix. Eg, if fields are T, E, B, the spectra are TT, EE, BB, TE, EB, TB
with new=True, and TT, TE, TB, EE, EB, BB if new=False.
"""
if (not new) and verbose:
warnings.warn("The order of the input cl's will change in a future "
"release.\n"
"Use new=True keyword to start using the new order.\n"
"See documentation of healpy.synalm.",
category=FutureChangeWarning)
if not cb.is_seq(cls):
raise TypeError('cls must be an array or a sequence of arrays')
if not cb.is_seq_of_seq(cls):
# Only one spectrum
if lmax is None or lmax < 0:
lmax = cls.size-1
if mmax is None or mmax < 0:
mmax = lmax
cls_list = [np.asarray(cls, dtype = np.float64)]
szalm = Alm.getsize(lmax,mmax)
alm = np.zeros(szalm,'D')
alm.real = np.random.standard_normal(szalm)
alm.imag = np.random.standard_normal(szalm)
alms_list=[alm]
sphtlib._synalm(cls_list,alms_list,lmax,mmax)
return alm
# From here, we interpret cls as a list of spectra
cls_list = list(cls)
maxsize = max([len(c) for c in cls])
if lmax is None or lmax < 0:
lmax = maxsize-1
if mmax is None or mmax < 0:
mmax = lmax
Nspec = sphtlib._getn(len(cls_list))
if Nspec <= 0:
if len(cls_list) == 4:
if new: ## new input order: TT EE BB TE -> TT EE BB TE 0 0
cls_list = [cls[0], cls[1], cls[2], cls[3], None, None]
else: ## old input order: TT TE EE BB -> TT TE 0 EE 0 BB
cls_list = [cls[0], cls[1], None, cls[2], None, cls[3]]
Nspec = 3
else:
raise TypeError("The sequence of arrays must have either 4 elements "
"or n(n+1)/2 elements (some may be None)")
szalm = Alm.getsize(lmax,mmax)
alms_list = []
for i in six.moves.xrange(Nspec):
alm = np.zeros(szalm,'D')
alm.real = np.random.standard_normal(szalm)
alm.imag = np.random.standard_normal(szalm)
alms_list.append(alm)
if new: # new input order: input given by diagonal, should be given by row
cls_list = new_to_old_spectra_order(cls_list)
# ensure cls are float64
cls_list = [(np.asarray(cl, dtype = np.float64) if cl is not None else None)
for cl in cls_list]
sphtlib._synalm(cls_list, alms_list, lmax, mmax)
return alms_list
def synfast(cls, nside, lmax = None, mmax = None, alm = False,
pol = True, pixwin = False, fwhm = 0.0, sigma = None,
new = False, verbose=True):
"""Create a map(s) from cl(s).
Parameters
----------
cls : array or tuple of array
A cl or a list of cl (either 4 or 6, see :func:`synalm`)
nside : int, scalar
The nside of the output map(s)
lmax : int, scalar, optional
Maximum l for alm. Default: min of 3*nside-1 or length of the cls - 1
mmax : int, scalar, optional
Maximum m for alm.
alm : bool, scalar, optional
If True, return also alm(s). Default: False.
pol : bool, optional
If True, assumes input cls are TEB and correlation. Output will be TQU maps.
(input must be 1, 4 or 6 cl's)
If False, fields are assumed to be described by spin 0 spherical harmonics.
(input can be any number of cl's)
If there is only one input cl, it has no effect. Default: True.
pixwin : bool, scalar, optional
If True, convolve the alm by the pixel window function. Default: False.
fwhm : float, scalar, optional
The fwhm of the Gaussian used to smooth the map (applied on alm)
[in radians]
sigma : float, scalar, optional
The sigma of the Gaussian used to smooth the map (applied on alm)
[in radians]
Returns
-------
maps : array or tuple of arrays
The output map (possibly list of maps if polarized input).
or, if alm is True, a tuple of (map,alm)
(alm possibly a list of alm if polarized input)
Notes
-----
The order of the spectra will change in a future release. The new= parameter
help to make the transition smoother. You can start using the new order
by setting new=True.
In the next version of healpy, the default will be new=True.
This change is done for consistency between the different tools
(alm2cl, synfast, anafast).
In the new order, the spectra are ordered by diagonal of the correlation
matrix. Eg, if fields are T, E, B, the spectra are TT, EE, BB, TE, EB, TB
with new=True, and TT, TE, TB, EE, EB, BB if new=False.
"""
if not pixelfunc.isnsideok(nside):
raise ValueError("Wrong nside value (must be a power of two).")
cls_lmax = cb.len_array_or_arrays(cls) -1
if lmax is None or lmax < 0:
lmax = min(cls_lmax, 3 * nside - 1)
alms = synalm(cls, lmax = lmax, mmax = mmax, new = new, verbose=verbose)
maps = alm2map(alms, nside, lmax = lmax, mmax = mmax, pixwin = pixwin,
pol = pol, fwhm = fwhm, sigma = sigma, inplace = True, verbose=verbose)
if alm:
return maps, alms
else:
return maps
class Alm(object):
"""This class provides some static methods for alm index computation.
Methods
-------
getlm
getidx
getsize
getlmax
"""
def __init__(self):
pass
@staticmethod
def getlm(lmax,i=None):
"""Get the l and m from index and lmax.
Parameters
----------
lmax : int
The maximum l defining the alm layout
i : int or None
The index for which to compute the l and m.
If None, the function return l and m for i=0..Alm.getsize(lmax)
"""
if i is None:
i=np.arange(Alm.getsize(lmax))
m=(np.ceil(((2*lmax+1)-np.sqrt((2*lmax+1)**2-8*(i-lmax)))/2)).astype(int)
l = i-m*(2*lmax+1-m)//2
return (l,m)
@staticmethod
def getidx(lmax,l,m):
"""Returns index corresponding to (l,m) in an array describing alm up to lmax.
Parameters
----------
lmax : int
The maximum l, defines the alm layout
l : int
The l for which to get the index
m : int
The m for which to get the index
Returns
-------
idx : int
The index corresponding to (l,m)
"""
return m*(2*lmax+1-m)//2+l
@staticmethod
def getsize(lmax,mmax = None):
"""Returns the size of the array needed to store alm up to *lmax* and *mmax*
Parameters
----------
lmax : int
The maximum l, defines the alm layout
mmax : int, optional
The maximum m, defines the alm layout. Default: lmax.
Returns
-------
size : int
The size of the array needed to store alm up to lmax, mmax.
"""
if mmax is None or mmax < 0 or mmax > lmax:
mmax = lmax
return mmax * (2 * lmax + 1 - mmax) // 2 + lmax + 1
@staticmethod
def getlmax(s, mmax = None):
"""Returns the lmax corresponding to a given array size.
Parameters
----------
s : int
Size of the array
mmax : None or int, optional
The maximum m, defines the alm layout. Default: lmax.
Returns
-------
lmax : int
The maximum l of the array, or -1 if it is not a valid size.
"""
if mmax is not None and mmax >= 0:
x = (2 * s + mmax ** 2 - mmax - 2) / (2 * mmax + 2)
else:
x = (-3 + np.sqrt(1 + 8 * s)) / 2
if x != np.floor(x):
return -1
else:
return int(x)
def alm2cl(alms1, alms2 = None, lmax = None, mmax = None,
lmax_out = None, nspec = None):
"""Computes (cross-)spectra from alm(s). If alm2 is given, cross-spectra between
alm and alm2 are computed. If alm (and alm2 if provided) contains n alm,
then n(n+1)/2 auto and cross-spectra are returned.
Parameters
----------
alm : complex, array or sequence of arrays
The alm from which to compute the power spectrum. If n>=2 arrays are given,
computes both auto- and cross-spectra.
alms2 : complex, array or sequence of 3 arrays, optional
If provided, computes cross-spectra between alm and alm2.
Default: alm2=alm, so auto-spectra are computed.
lmax : None or int, optional
The maximum l of the input alm. Default: computed from size of alm
and mmax_in
mmax : None or int, optional
The maximum m of the input alm. Default: assume mmax_in = lmax_in
lmax_out : None or int, optional
The maximum l of the returned spectra. By default: the lmax of the given
alm(s).
nspec : None or int, optional
The number of spectra to return. None means all, otherwise returns cl[:nspec]
Returns
-------
cl : array or tuple of n(n+1)/2 arrays
the spectrum <*alm* x *alm2*> if *alm* (and *alm2*) is one alm, or
the auto- and cross-spectra <*alm*[i] x *alm2*[j]> if alm (and alm2)
contains more than one spectra.
If more than one spectrum is returned, they are ordered by diagonal.
For example, if *alm* is almT, almE, almB, then the returned spectra are:
TT, EE, BB, TE, EB, TB.
"""
cls = _sphtools.alm2cl(alms1, alms2 = alms2, lmax = lmax,
mmax = mmax, lmax_out = lmax_out)
if nspec is None:
return cls
else:
return cls[:nspec]
def almxfl(alm, fl, mmax = None, inplace = False):
"""Multiply alm by a function of l. The function is assumed
to be zero where not defined.
Parameters
----------
alm : array
The alm to multiply
fl : array
The function (at l=0..fl.size-1) by which alm must be multiplied.
mmax : None or int, optional
The maximum m defining the alm layout. Default: lmax.
inplace : bool, optional
If True, modify the given alm, otherwise make a copy before multiplying.
Returns
-------
alm : array
The modified alm, either a new array or a reference to input alm,
if inplace is True.
"""
almout = _sphtools.almxfl(alm, fl, mmax = mmax, inplace = inplace)
return almout
def smoothalm(alms, fwhm = 0.0, sigma = None, pol = True,
mmax = None, verbose = True, inplace = True):
"""Smooth alm with a Gaussian symmetric beam function.
Parameters
----------
alms : array or sequence of 3 arrays
Either an array representing one alm, or a sequence of arrays.
See *pol* parameter.
fwhm : float, optional
The full width half max parameter of the Gaussian. Default:0.0
[in radians]
sigma : float, optional
The sigma of the Gaussian. Override fwhm.
[in radians]
pol : bool, optional
If True, assumes input alms are TEB. Output will be TQU maps.
(input must be 1 or 3 alms)
If False, apply spin 0 harmonic transform to each alm.
(input can be any number of alms)
If there is only one input alm, it has no effect. Default: True.
mmax : None or int, optional
The maximum m for alm. Default: mmax=lmax
inplace : bool, optional
If True, the alm's are modified inplace if they are contiguous arrays
of type complex128. Otherwise, a copy of alm is made. Default: True.
verbose : bool, optional
If True prints diagnostic information. Default: True
Returns
-------
alms : array or sequence of 3 arrays
The smoothed alm. If alm[i] is a contiguous array of type complex128,
and *inplace* is True the smoothing is applied inplace.
Otherwise, a copy is made.
"""
if sigma is None:
sigma = fwhm / (2.*np.sqrt(2.*np.log(2.)))
if verbose:
print("Sigma is {0:f} arcmin ({1:f} rad) ".format(sigma*60*180/pi,sigma))
print("-> fwhm is {0:f} arcmin".format(sigma*60*180/pi*(2.*np.sqrt(2.*np.log(2.)))))
# Check alms
if not cb.is_seq(alms):
raise ValueError("alm must be a sequence")
if sigma == 0:
# nothing to be done
return alms
lonely = False
if not cb.is_seq_of_seq(alms):
alms = [alms]
lonely = True
# we have 3 alms -> apply smoothing to each map.
# polarization has different B_l from temperature
# exp{-[ell(ell+1) - s**2] * sigma**2/2}
# with s the spin of spherical harmonics
# s = 2 for pol, s=0 for temperature
retalm = []
for ialm, alm in enumerate(alms):
lmax = Alm.getlmax(len(alm), mmax)
if lmax < 0:
raise TypeError('Wrong alm size for the given '
'mmax (len(alms[%d]) = %d).'%(ialm, len(alm)))
ell = np.arange(lmax + 1.)
s = 2 if ialm >= 1 and pol else 0
fact = np.exp(-0.5 * (ell * (ell + 1) - s ** 2) * sigma ** 2)
res = almxfl(alm, fact, mmax = mmax, inplace = inplace)
retalm.append(res)
# Test what to return (inplace/not inplace...)
# Case 1: 1d input, return 1d output
if lonely:
return retalm[0]
# case 2: 2d input, check if in-place smoothing for all alm's
for i in six.moves.xrange(len(alms)):
samearray = alms[i] is retalm[i]
if not samearray:
# Case 2a:
# at least one of the alm could not be smoothed in place:
# return the list of alm
return retalm
# Case 2b:
# all smoothing have been performed in place:
# return the input alms
return alms
@accept_ma
def smoothing(map_in, fwhm = 0.0, sigma = None, pol = True,
iter = 3, lmax = None, mmax = None, use_weights = False,
datapath = None, verbose = True):
"""Smooth a map with a Gaussian symmetric beam.
No removal of monopole or dipole is performed.
Parameters
----------
map_in : array or sequence of 3 arrays
Either an array representing one map, or a sequence of
3 arrays representing 3 maps, accepts masked arrays
fwhm : float, optional
The full width half max parameter of the Gaussian [in
radians]. Default:0.0
sigma : float, optional
The sigma of the Gaussian [in radians]. Override fwhm.
pol : bool, optional
If True, assumes input maps are TQU. Output will be TQU maps.
(input must be 1 or 3 alms)
If False, each map is assumed to be a spin 0 map and is
treated independently (input can be any number of alms).
If there is only one input map, it has no effect. Default: True.
iter : int, scalar, optional
Number of iteration (default: 3)
lmax : int, scalar, optional
Maximum l of the power spectrum. Default: 3*nside-1
mmax : int, scalar, optional
Maximum m of the alm. Default: lmax
use_weights: bool, scalar, optional
If True, use the ring weighting. Default: False.
datapath : None or str, optional
If given, the directory where to find the weights data.
verbose : bool, optional
If True prints diagnostic information. Default: True
Returns
-------
maps : array or list of 3 arrays
The smoothed map(s)
"""
if not cb.is_seq(map_in):
raise TypeError("map_in must be a sequence")
# save the masks of inputs
masks = pixelfunc.mask_bad(map_in)
if cb.is_seq_of_seq(map_in):
nside = pixelfunc.npix2nside(len(map_in[0]))
n_maps = len(map_in)
else:
nside = pixelfunc.npix2nside(len(map_in))
n_maps = 0
if pol or n_maps in (0, 1):
# Treat the maps together (1 or 3 maps)
alms = map2alm(map_in, lmax = lmax, mmax = mmax, iter = iter,
pol = pol, use_weights = use_weights,
datapath = datapath)
smoothalm(alms, fwhm = fwhm, sigma = sigma,
inplace = True, verbose = verbose)
output_map = alm2map(alms, nside, pixwin = False, verbose=verbose)
else:
# Treat each map independently (any number)
output_map = []
for m in map_in:
alm = map2alm(m, lmax = lmax, mmax = mmax, iter = iter, pol = pol,
use_weights = use_weights, datapath = datapath)
smoothalm(alm, fwhm = fwhm, sigma = sigma,
inplace = True, verbose = verbose)
output_map.append(alm2map(alm, nside, pixwin = False, verbose=verbose))
if pixelfunc.maptype(output_map) == 0:
output_map[masks.flatten()] = UNSEEN
else:
for m, mask in zip(output_map, masks):
m[mask] = UNSEEN
return output_map
def pixwin(nside, pol = False):
"""Return the pixel window function for the given nside.
Parameters
----------
nside : int
The nside for which to return the pixel window function
pol : bool, optional
If True, return also the polar pixel window. Default: False
Returns
-------
pw or pwT,pwP : array or tuple of 2 arrays
The temperature pixel window function, or a tuple with both
temperature and polarisation pixel window functions.
"""
datapath = DATAPATH
if not pixelfunc.isnsideok(nside):
raise ValueError("Wrong nside value (must be a power of two).")
fname = os.path.join(datapath, 'pixel_window_n%04d.fits'%nside)
if not os.path.isfile(fname):
raise ValueError("No pixel window for this nside "
"or data files missing")
# return hfitslib._pixwin(nside,datapath,pol) ## BROKEN -> seg fault...
pw = pf.getdata(fname)
pw_temp, pw_pol = pw.field(0), pw.field(1)
if pol:
return pw_temp, pw_pol
else:
return pw_temp
def alm2map_der1(alm, nside, lmax = None, mmax = None):
"""Computes an Healpix map and its first derivatives given the alm.
The alm are given as a complex array. You can specify lmax
and mmax, or they will be computed from array size (assuming
lmax==mmax).
Parameters
----------
alm : array, complex
A complex array of alm. Size must be of the form mmax(lmax-mmax+1)/2+lmax
nside : int
The nside of the output map.
lmax : None or int, optional
Explicitly define lmax (needed if mmax!=lmax)
mmax : None or int, optional
Explicitly define mmax (needed if mmax!=lmax)
Returns
-------
m, d_theta, d_phi : tuple of arrays
The maps correponding to alm, and its derivatives with respect to
theta and phi. d_phi is already divided by sin(theta)
"""
if lmax is None:
lmax = -1
if mmax is None:
mmax = -1
return sphtlib._alm2map_der1(alm,nside,lmax=lmax,mmax=mmax)
def new_to_old_spectra_order(cls_new_order):
"""Reorder the cls from new order (by diagonal) to old order (by row).
For example : TT, EE, BB, TE, EB, BB => TT, TE, TB, EE, EB, BB
"""
Nspec = sphtlib._getn(len(cls_new_order))
if Nspec < 0:
raise ValueError("Input must be a list of n(n+1)/2 arrays")
cls_old_order = []
for i in six.moves.xrange(Nspec):
for j in six.moves.xrange(i, Nspec):
p = j - i
q = i
idx_new = p * (2 * Nspec + 1 - p) // 2 + q
cls_old_order.append(cls_new_order[idx_new])
return cls_old_order
def load_sample_spectra():
"""Read a sample power spectra for testing and demo purpose.
Based on LambdaCDM. Gives TT, EE, BB, TE.
Returns
-------
ell, f, cls : arrays
ell is the array of ell values (from 0 to lmax)
f is the factor ell*(ell+1)/2pi (in general, plots show f * cl)
cls is a sequence of the power spectra TT, EE, BB and TE
"""
cls = np.loadtxt(os.path.join(DATAPATH, 'totcls.dat'), unpack = True)
ell = cls[0]
f = ell * (ell + 1) / 2 / np.pi
cls[1:, 1:] /= f[1:]
return ell, f, cls[1:]
def gauss_beam(fwhm, lmax=512, pol=False):
"""Gaussian beam window function
Computes the spherical transform of an axisimmetric gaussian beam
For a sky of underlying power spectrum C(l) observed with beam of
given FWHM, the measured power spectrum will be
C(l)_meas = C(l) B(l)^2
where B(l) is given by gaussbeam(Fwhm,Lmax).
The polarization beam is also provided (when pol = True ) assuming
a perfectly co-polarized beam
(e.g., Challinor et al 2000, astro-ph/0008228)
Parameters
----------
fwhm : float
full width half max in radians
lmax : integer
ell max
pol : bool
if False, output has size (lmax+1) and is temperature beam
if True output has size (lmax+1, 4) with components:
* temperature beam
* grad/electric polarization beam
* curl/magnetic polarization beam
* temperature * grad beam
Returns
-------
beam : array
beam window function [0, lmax] if dim not specified
otherwise (lmax+1, 4) contains polarized beam
"""
sigma = fwhm / np.sqrt(8. * np.log(2.))
ell = np.arange(lmax + 1)
sigma2 = sigma ** 2
g = np.exp(-.5 * ell * (ell + 1) * sigma2)
if not pol: # temperature-only beam
return g
else: # polarization beam
# polarization factors [1, 2 sigma^2, 2 sigma^2, sigma^2]
pol_factor = np.exp([0., 2*sigma2, 2*sigma2, sigma2])
return g[:, np.newaxis] * pol_factor
|