This file is indexed.

/usr/lib/python2.7/dist-packages/fpylll-0.2.3dev.egg-info is in python-fpylll 0.2.3+ds-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
Metadata-Version: 1.0
Name: fpylll
Version: 0.2.3dev
Summary: A Python interface for https://github.com/fplll/fplll
Home-page: https://github.com/fplll/fpylll
Author: Martin R. Albrecht
Author-email: fplll-devel@googlegroups.com
License: GNU General Public License, version 2 or later
Description: fpylll
        ======
        
        A Python (2 and 3) wrapper for `fplll <https://github.com/fplll/fplll>`__.
        
        .. image:: https://travis-ci.org/fplll/fpylll.svg?branch=master
            :target: https://travis-ci.org/fplll/fpylll
        
        .. code-block:: python
        
            >>> from fpylll import *
           
            >>> A = IntegerMatrix(50, 50)
            >>> A.randomize("ntrulike", bits=50, q=127)
            >>> A[0].norm()
            3564748886669202.5
        
            >>> M = GSO.Mat(A)
            >>> M.update_gso()
            >>> M.get_mu(1,0)
            0.815748944429783
        
            >>> L = LLL.Reduction(M)
            >>> L()
            >>> M.get_mu(1,0)
            0.41812865497076024
            >>> A[0].norm()
            24.06241883103193
        
        The basic BKZ algorithm can be implemented in about 60 pretty readable lines of Python code (cf. `simple_bkz.py <https://github.com/fplll/fpylll/blob/master/src/fpylll/algorithms/simple_bkz.py>`__).
                     
        Requirements
        ------------
        
        **fpylll** relies on the following C/C++ libraries:
        
        - `GMP <https://gmplib.org>`__ or `MPIR <http://mpir.org>`__ for arbitrary precision integer arithmetic.
        - `MPFR <http://www.mpfr.org>`__ for arbitrary precision floating point arithmetic.
        - `QD <http://crd-legacy.lbl.gov/~dhbailey/mpdist/>`__ for double double and quad double arithmetic (optional).
        - `fplll <https://github.com/fplll/fplll>`__ for pretty much everything.
        
        **fpylll** also relies on
        
        - `Cython <http://cython.org>`__ for linking Python and C/C++.
        - `cysignals <https://github.com/sagemath/cysignals>`__ for signal handling such as interrupting C++ code.
        - `py.test <http://pytest.org/latest/>`__ for testing Python.
        - `flake8 <https://flake8.readthedocs.org/en/latest/>`__ for linting.
        
        We also suggest
        
        - `IPython  <https://ipython.org>`__ for interacting with Python
        - `Numpy <http://www.numpy.org>`__ for numerical computations (e.g. with Gram-Schmidt values)
        
        Getting Started
        ---------------
        
        We recommend `virtualenv <https://virtualenv.readthedocs.org/>`__ for isolating Python build environments and `virtualenvwrapper <https://virtualenvwrapper.readthedocs.org/>`__ to manage virtual environments.
        
        1. Create a new virtualenv and activate it:
        
           .. code-block:: bash
        
             $ virtualenv env
             $ source ./env/bin/activate
        
           We indicate active virtualenvs by the prefix ``(fpylll)``.
        
        2. Install the required libraries – `GMP <https://gmplib.org>`__ or `MPIR <http://mpir.org>`__ and `MPFR <http://www.mpfr.org>`__  – if not available already. You may also want to install `QD <http://crd-legacy.lbl.gov/~dhbailey/mpdist/>`__.
        
        3. Install fplll:
        
           .. code-block:: bash
        
             $ (fpylll) ./install-dependencies.sh $VIRTUAL_ENV
        
        4. Then, execute:
        
           .. code-block:: bash
        
             $ (fpylll) pip install Cython
             $ (fpylll) pip install -r requirements.txt
        
           to install the required Python packages (see above).
        
        5. If you are so inclined, run:
        
           .. code-block:: bash
        
             $ (fpylll) pip install -r suggestions.txt
        
           to install suggested Python packages as well (optional).
        
        6. Build the Python extension:
        
           .. code-block:: bash
        
             $ (fpylll) export PKG_CONFIG_PATH="$VIRTUAL_ENV/lib/pkgconfig:$PKG_CONFIG_PATH"
             $ (fpylll) python setup.py build_ext
             $ (fpylll) python setup.py install
        
        7. To run **fpylll**, you will need to:
        
           .. code-block:: bash
        
             $ (fpylll) export LD_LIBRARY_PATH="$VIRTUAL_ENV/lib"
        
           so that Python can find fplll and friends.
        
        8. Start Python:
        
           .. code-block:: bash
        
            $ (fpylll) ipython
        
        To reactivate the virtual environment later, simply run:
        
           .. code-block:: bash
        
            $ source ./env/bin/activate
        
        Note that you can also patch ``activate`` to set ``LD_LIBRRY_PATH``. For this, add:
        
        .. code-block:: bash
        
            ### LD_LIBRARY_HACK
            _OLD_LD_LIBRARY_PATH="$LD_LIBRARY_PATH"
            LD_LIBRARY_PATH="$VIRTUAL_ENV/lib:$LD_LIBRARY_PATH"
            export LD_LIBRARY_PATH
            ### END_LD_LIBRARY_HACK
        
            ### PKG_CONFIG_HACK
            _OLD_PKG_CONFIG_PATH="$PKG_CONFIG_PATH"
            PKG_CONFIG_PATH="$VIRTUAL_ENV/lib/pkgconfig:$PKG_CONFIG_PATH"
            export PKG_CONFIG_PATH
            ### END_PKG_CONFIG_HACK
        
        towards the end and:
        
        .. code-block:: bash
        
            ### LD_LIBRARY_HACK
            if ! [ -z ${_OLD_LD_LIBRARY_PATH+x} ] ; then
                LD_LIBRARY_PATH="$_OLD_LD_LIBRARY_PATH"
                export LD_LIBRARY_PATH
                unset _OLD_LD_LIBRARY_PATH
            fi
            ### END_LD_LIBRARY_HACK
        
            ### PKG_CONFIG_HACK
            if ! [ -z ${_OLD_PKG_CONFIG_PATH+x} ] ; then
                PKG_CONFIG_PATH="$_OLD_PKG_CONFIG_PATH"
                export PKG_CONFIG_PATH
                unset _OLD_PKG_CONFIG_PATH
            fi
            ### END_PKG_CONFIG_HACK
        
        in the ``deactivate`` function in the ``activate`` script.
        
        Multicore Support
        -----------------
        
        **fpylll** supports parallelisation on multiple cores. For all C++ support to drop the `GIL <https://wiki.python.org/moin/GlobalInterpreterLock>`_ is enabled, allowing the use of threads to parallelise. Note, however, that because fplll’s enumeration is not thread safe, we using `locks <https://docs.python.org/2/library/threading.html#lock-objects>`_ to enforce only one thread calls it at any one point. Also, **fpylll** does not actually drop the GIL in all calls to C++ functions yet. In many scenarios using `multiprocessing <https://docs.python.org/2/library/multiprocessing.html>`_, which sidesteps the GIL and thread safety issues by using processes instead of threads, will be the better choice.
        
        The example below calls ``LLL.reduction`` on 128 matrices of dimension 30 on four worker processes.
        
        .. code-block:: python
        
            from fpylll import IntegerMatrix, LLL
            from multiprocessing import Pool
        
            d, workers, tasks = 30, 4, 128
            
            def run_it(p, f, A, prefix=""):
                """Print status during parallel execution."""         
                import sys
                r = []
                for i, retval in enumerate(p.imap_unordered(f, A, 1)):
                    r.append(retval)
                    sys.stderr.write('\r{0} done: {1:.2%}'.format(prefix, float(i)/len(A)))
                    sys.stderr.flush()
                sys.stderr.write('\r{0} done {1:.2%}\n'.format(prefix, float(i+1)/len(A)))
                return r
                
            A = [IntegerMatrix.random(d, "uniform", bits=30) for _ in range(tasks)]    
            A = run_it(Pool(workers), LLL.reduction)
        
        To test threading simply replace the line ``from multiprocessing import Pool`` with ``from multiprocessing.pool import ThreadPool as Pool``. For calling ``BKZ.reduction`` this way, which expects a second parameter with options, using `functools.partial <https://docs.python.org/2/library/functools.html#functools.partial>`_ is a good choice. 
            
        Contributing
        ------------
        
        **fpylll** welcomes contributions, cf. the list of `open issues <https://github.com/fplll/fpylll/issues>`_. To contribute, clone this repository, commit your code on a separate branch and send a pull request. Please write tests for your code. You can run them by calling::
        
            $ (fpylll) py.test
        
        from the top-level directory which runs all tests in ``tests/test_*.py``. We run `flake8 <https://flake8.readthedocs.org/en/latest/>`_ on every commit automatically, In particular, we run::
        
            $ (fpylll) flake8 --max-line-length=120 --max-complexity=16 --ignore=E22,E241 src
        
        Note that **fpylll** supports Python 2 and 3. In particular, tests are run using Python 2.7 and 3.5. See `.travis.yml <https://github.com/fplll/fpylll/blob/master/.travis.yml>`_ for details on automated testing.
        
        Attribution & License
        ---------------------
        
        **fpylll** is maintained by Martin Albrecht.
        
        The following people have contributed to **fpylll**
        
        - Martin Albrecht
        - Guillaume Bonnoron
        - Leo Ducas
        - Omer Katz
        
        We copied a decent bit of code over from Sage, mostly from it’s fpLLL interface.
        
        **fpylll** is licensed under the GPLv2+.  
        
Platform: UNKNOWN