This file is indexed.

/usr/lib/python2.7/dist-packages/cogent/maths/unifrac/fast_unifrac.py is in python-cogent 1.9-9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
#!/usr/bin/env python
"""Fast implementation of UniFrac for use with very large datasets"""

from random import shuffle
from numpy import ones, ma, where
from numpy.random import permutation
from cogent.maths.unifrac.fast_tree import *
# not imported by import *
from cogent.maths.unifrac.fast_tree import _weighted_unifrac, _branch_correct 
from cogent.parse.tree import DndParser
from cogent.cluster.metric_scaling import *
from cogent.core.tree import PhyloNode, TreeError
from cogent.cluster.UPGMA import UPGMA_cluster
from cogent.phylo.nj import nj
from StringIO import StringIO

__author__ = "Rob Knight and Micah Hamady"
__copyright__ = "Copyright 2007-2016, The Cogent Project"
__credits__ = ["Rob Knight", "Micah Hamady", "Daniel McDonald", 
    "Justin Kuczynski"]
__license__ = "GPL"
__version__ = "1.9"
__maintainer__ = "Rob Knight, Micah Hamady"
__email__ = "rob@spot.colorado.edu, hamady@colorado.edu"
__status__ = "Prototype"

UNIFRAC_DIST_MATRIX = "distance_matrix"
UNIFRAC_PCOA = "pcoa"
UNIFRAC_CLUST_ENVS = "cluster_envs"
UNIFRAC_NJ_ENVS = "nj_envs"
UNIFRAC_DIST_VECTOR = "distance_vector"
UNIFRAC_VALID_MODES = set([UNIFRAC_DIST_MATRIX, UNIFRAC_PCOA, 
    UNIFRAC_CLUST_ENVS,UNIFRAC_DIST_VECTOR, UNIFRAC_NJ_ENVS])
UNIFRAC_DEFAULT_MODES = set([UNIFRAC_DIST_MATRIX, UNIFRAC_PCOA,
    UNIFRAC_CLUST_ENVS])

TEST_ON_PAIRWISE = "Pairwise"
TEST_ON_TREE = "Tree"
TEST_ON_ENVS = "Envs"

def identity(x): return range(x)

def num_comps(num_envs):
    """ Calc number of comparisons for Bonferroni correction """
    return (num_envs * (num_envs-1.0)) / 2.0

def mcarlo_sig(real_val, sim_vals, num_comps, tail='low'):
    """ Calc significance value for Monte Carlo simulation
   
    real_val: real value of test
    sim_vals: numpy array of values from simulation runs
    num_envs: number of environments (for correction)
    tail: which side of distro to check, high=larger, low=smaller

    returns (raw pval, corrected pval)
    """
    if num_comps < 1:
        raise ValueError, "num_comps must be > 0"
    sim_vals = array(sim_vals) 
    out_count = 0
    pop_size = float(len(sim_vals))
    if tail == 'low':
        out_count = sum(sim_vals < real_val) 
    elif tail == 'high':
        out_count = sum(sim_vals > real_val) 
    else:
        raise ValueError, "tail must be 'low' or 'high'"
    raw_pval = out_count/pop_size
    cor_pval = raw_pval * num_comps
    # reset to 1.0 if corrected if > 1.0 
    if cor_pval > 1.0:
        cor_pval = 1.0
    elif raw_pval == 0.0:
        cor_pval = "<=%.1e" % (1.0/pop_size)
    return (raw_pval, cor_pval)

def fast_unifrac_file(tree_in, envs_in, weighted=False, metric=unifrac, is_symmetric=True, modes=UNIFRAC_DEFAULT_MODES):
    """Takes tree and envs file and returns fast_unifrac() results

    typical results: distance matrix, UPGMA cluster and PCoA

    tree_in: open file object or list of lines with tree in Newick format
    envs_in: open file object of list of lines with tab delimited sample mapping file
    see fast_unifrac() for further description
    """
    tree = DndParser(tree_in, UniFracTreeNode)
    envs = count_envs(envs_in)
    return fast_unifrac(tree, envs, weighted, metric, is_symmetric=is_symmetric, modes=modes)

def fast_unifrac_permutations_file(tree_in, envs_in, weighted=False, 
    num_iters=1000, verbose=False, test_on=TEST_ON_PAIRWISE):
    """ Wrapper to read tree and envs from files. """
    result = []
    t = DndParser(tree_in, UniFracTreeNode)
    envs = count_envs(envs_in)
    if test_on == TEST_ON_PAIRWISE:
        # calculate real values
        results = fast_unifrac(t, envs,weighted=weighted, metric=unifrac,
            is_symmetric=True, modes=[UNIFRAC_DIST_MATRIX])
        real_env_mat, unique_envs = results[UNIFRAC_DIST_MATRIX]
        num_uenvs = real_env_mat.shape[0] 
        cur_num_comps = num_comps(num_uenvs)
        for i in range(num_uenvs): 
            first_env = unique_envs[i]
            for j in range(i+1, num_uenvs): 
                second_env = unique_envs[j]
                real = real_env_mat[i][j]
                sim = fast_unifrac_permutations(t, envs, weighted, num_iters, 
                    first_env=first_env, second_env=second_env)
                raw_pval, cor_pval = mcarlo_sig(real, sim, cur_num_comps, 
                    tail='high')
                result.append((first_env, second_env, raw_pval, cor_pval))
                if verbose:
                    print "env %s vs %s" % (first_env, second_env)
                    print raw_pval, cor_pval, num_uenvs, cur_num_comps, 'high'
    # calculate single p-value for whole tree
    elif test_on == TEST_ON_TREE:
        # will be using env_unique_fraction
        real_ufracs, sim_ufracs = fast_unifrac_whole_tree(t, envs, num_iters)
        raw_pval, cor_pval = mcarlo_sig(sum(real_ufracs), [sum(x) for x in sim_ufracs], 1, tail='high')
        result.append(('whole tree', raw_pval, cor_pval))
    # calculate one p-value per env 
    elif test_on == TEST_ON_ENVS:
        unique_envs, num_uenvs = get_unique_envs(envs)
        real_ufracs, sim_ufracs = fast_unifrac_whole_tree(t, envs, num_iters)
        sim_m = array(sim_ufracs) 
        # for each env, cal paval
        for i in range(len(real_ufracs)):
            raw_pval, cor_pval = mcarlo_sig(real_ufracs[i], sim_m[:,i], 1, 
                tail='high')
            result.append((unique_envs[i], raw_pval, cor_pval))
    else:
        raise ValueError, "Invalid test_on value: %s" % str(test_on)
    return result

def fast_p_test_file(tree_in, envs_in, num_iters=1000, verbose=False, 
    test_on=TEST_ON_PAIRWISE):
    """ Wrapper to read tree and envs from files. """
    result = []
    t = DndParser(tree_in, UniFracTreeNode)
    envs = count_envs(envs_in)
    unique_envs, num_uenvs = get_unique_envs(envs)
    # calculate real, sim vals and p-vals for each pair of envs in tree 
    if test_on == TEST_ON_PAIRWISE:
        cur_num_comps = num_comps(num_uenvs) 
        for i in range(num_uenvs): 
            first_env = unique_envs[i]
            for j in range(i+1, num_uenvs): 
                second_env = unique_envs[j]
                real = fast_p_test(t, envs, num_iters=1, first_env=first_env, 
                    second_env=second_env, permutation_f=identity)[0]
                sim = fast_p_test(t, envs, num_iters, first_env=first_env, 
                    second_env=second_env)
                raw_pval, cor_pval = mcarlo_sig(real, sim, cur_num_comps, 
                    tail='low')
                result.append((first_env, second_env, raw_pval, cor_pval))
                if verbose:
                    print "P Test: env %s vs %s" % (first_env, second_env)
                    print raw_pval, cor_pval, num_uenvs, cur_num_comps, 'low'
    # calculate real, sim vals and p-vals for whole tree
    elif test_on == TEST_ON_TREE:
        real = fast_p_test(t, envs, num_iters=1, permutation_f=identity)[0]
        sim = fast_p_test(t, envs, num_iters)
        raw_pval, cor_pval = mcarlo_sig(real, sim, 1, tail='low')
        result.append(('Whole Tree', raw_pval))
    else:
        raise ValueError, "Invalid test_on value: %s" % str(test_on)

    return result

def _fast_unifrac_setup(t, envs, make_subtree=True):
    """Setup shared by fast_unifrac and by significance tests."""
    if make_subtree:
        t2 = t.copy()
        wanted = set(envs.keys())
        def delete_test(node):
            if node.istip() and node.Name not in wanted:
                return True
            return False
        t2.removeDeleted(delete_test)
        t2.prune()
        t = t2

    #index tree
    node_index, nodes = index_tree(t)
    #get good nodes, defined as those that are in the env file.
    good_nodes=dict([(i.Name,envs[i.Name]) for i in t.tips() if i.Name in envs])
    envs = good_nodes
    count_array, unique_envs, env_to_index, node_to_index = index_envs(envs, node_index)
    env_names = sorted(unique_envs)
    #Note: envs get sorted at the step above
    branch_lengths = get_branch_lengths(node_index)
    if not envs:
        raise ValueError, "No valid samples/environments found. Check whether tree tips match otus/taxa present in samples/environments"
    return envs, count_array, unique_envs, env_to_index, node_to_index, env_names, branch_lengths, nodes, t

def fast_unifrac_whole_tree(t, envs, num_iters, permutation_f=permutation):
    """Performs UniFrac permutations on whole tree """
    sim_ufracs = []
    envs, count_array, unique_envs, env_to_index, node_to_index, env_names, \
        branch_lengths, nodes, t = _fast_unifrac_setup(t, envs)
    
    bound_indices = bind_to_array(nodes, count_array)
    orig_count_array = count_array.copy()

    # calculate real values 
    bool_descendants(bound_indices)
    real_bl_sums, real_bl_ufracs = env_unique_fraction(branch_lengths, 
        count_array)
    tip_indices = [n._leaf_index for n in t.tips()]
    for i in range(num_iters):
        permute_selected_rows(tip_indices, orig_count_array, count_array, 
            permutation_f)
        bool_descendants(bound_indices)
        cur_bl_sums, cur_bl_ufracs = env_unique_fraction(branch_lengths, 
            count_array)
        sim_ufracs.append(cur_bl_ufracs)
    return real_bl_ufracs, sim_ufracs 

def PD_whole_tree(t, envs):
    """Run PD on t and envs for each env.

    Note: this is specific for PD per se, use PD_generic_whole_tree if you
    want to calculate a related metric.
    """
    envs, count_array, unique_envs, env_to_index, node_to_index, env_names, \
        branch_lengths, nodes, t = _fast_unifrac_setup(t, envs)
    count_array = count_array.astype(bool)
    bound_indices = bind_to_array(nodes, count_array)
    #initialize result
    bool_descendants(bound_indices)
    result = (branch_lengths * count_array.T).sum(1)
    return unique_envs, result

def PD_generic_whole_tree(t, envs, metric=PD):
    """Run PD on t and envs for each env.

    Note: this is specific for PD per se, use PD_generic_whole_tree if you
    want to calculate a related metric.
    """
    envs, count_array, unique_envs, env_to_index, node_to_index, env_names, \
        branch_lengths, nodes, t = _fast_unifrac_setup(t, envs)
    count_array = count_array.astype(bool)
    bound_indices = bind_to_array(nodes, count_array)
    #initialize result
    bool_descendants(bound_indices)
    result = PD_vector(branch_lengths, count_array,metric)
    return unique_envs, result

def fast_unifrac_permutations(t, envs, weighted, num_iters, first_env, 
    second_env, permutation_f=permutation, unifrac_f=_weighted_unifrac):
    """Performs UniFrac permutations between specified pair of environments.
    
    NOTE: this function just gives you the result of the permutations, need to 
    compare to real values from doing a single unifrac.
    """
    result = []
    envs, count_array, unique_envs, env_to_index, node_to_index, env_names, branch_lengths, nodes, t = _fast_unifrac_setup(t, envs)

    first_index,second_index = env_to_index[first_env], env_to_index[second_env]
    count_array = count_array[:,[first_index,second_index]] #ditch rest of array
    bound_indices = bind_to_array(nodes, count_array)
    orig_count_array = count_array.copy()
    first_col, second_col = count_array[:,0], count_array[:,1]
    tip_indices = [n._leaf_index for n in t.tips()]

    #figure out whether doing weighted or unweighted analysis: for weighted,
    #need to figure out root-to-tip distances, but can skip this step if
    #doing unweighted analysis.
    if weighted:
        tip_ds = branch_lengths.copy()[:,newaxis]
        bindings = bind_to_parent_array(t, tip_ds)
        tip_distances(tip_ds, bindings, tip_indices)
        if weighted == 'correct':
            bl_correct = True
        else:
            bl_correct = False
        first_sum, second_sum = [sum(take(count_array[:,i], tip_indices)) for i in range(2)]
        for i in range(num_iters):
            permute_selected_rows(tip_indices, orig_count_array, count_array, permutation_f)
            sum_descendants(bound_indices)
            curr = unifrac_f(branch_lengths, first_col, second_col, first_sum, second_sum)
            if bl_correct:
                curr /= _branch_correct(tip_ds, first_col, second_col, first_sum, second_sum)
            result.append(curr)
    else:
        for i in range(num_iters):
            permute_selected_rows(tip_indices, orig_count_array, count_array, permutation_f)

            # commenting out these (??)
            #first = count_array.copy()
            #permute_selected_rows(tip_indices, orig_count_array, count_array, permutation_f)
            #second = count_array.copy()

            bool_descendants(bound_indices)
            curr = unifrac(branch_lengths, first_col, second_col)
            result.append(curr)
    return result

def fast_p_test(t, envs, num_iters, first_env=None, second_env=None, 
    permutation_f=permutation):
    """Performs Andy Martin's p test between specified pair of environments.

    t: tree 
    envs: envs 
    first_env: name of first env, or None if doing whole tree
    second_env: name of second env, or None if doing whole tree

    NOTE: this function just gives you the result of the permutations, need to 
    compare to real Fitch parsimony values. Sleazy way to get the real values 
    is to set num_iters to 1, permutation_f to identity."""
    result = []
    envs, count_array, unique_envs, env_to_index, node_to_index, env_names, branch_lengths, nodes, t = _fast_unifrac_setup(t, envs)

    # check if doing pairwise
    if not (first_env is None or second_env is None):
        first_ix, second_ix = env_to_index[first_env], env_to_index[second_env]
        count_array = count_array[:,[first_ix,second_ix]] #ditch rest of array
    # else if both envs are none, we're doing whole tree 
    elif not (first_env is None and second_env is None):
        raise ValueError, "Both envs must either have a value or be None."

    bound_indices = bind_to_array(nodes, count_array)
    orig_count_array = count_array.copy()
    tip_indices = [n._leaf_index for n in t.tips()]
    for i in range(num_iters):
        count_array *= 0
        permute_selected_rows(tip_indices, orig_count_array, count_array, 
            permutation_f=permutation_f)
        curr = fitch_descendants(bound_indices)
        result.append(curr)
    return result

def shared_branch_length(t, envs, env_count=1):
    """Returns the shared branch length env_count combinations of envs
    
    t: phylogenetic tree relating the sequences.
    envs: dict of {sequence:{env:count}} showing environmental abundance.
    env_count: number of envs that must be within the subtree

    Returns {(env1,env2,...env_count):shared_branch_length}
    """

    envs, count_array, unique_envs, env_to_index, node_to_index, env_names, branch_lengths, nodes, t = _fast_unifrac_setup(t, envs)

    

    if len(unique_envs) < env_count:
        raise ValueError, "Not enough environments for env_count"

    index_to_env = dict([(i,e) for i,e in enumerate(unique_envs)])

    bound_indices = bind_to_array(nodes, count_array)
    bool_descendants(bound_indices)

    # determine what taxa meet the required number of environments
    count_array = where(count_array > 0, 1, 0)
    counts = count_array.sum(axis=1)
    taxa_to_investigate = (counts == env_count).nonzero()[0]

    # determine what environments corrispond to what taxa
    envs_to_investigate = {} 
    for row_index in taxa_to_investigate:
        taxa_envs = count_array[row_index]
        row_envs = tuple([index_to_env[i] for i,v in enumerate(taxa_envs) if v])
        try: 
            envs_to_investigate[row_envs].append(row_index)
        except KeyError:
            envs_to_investigate[row_envs] = [row_index]
            

    # compute shared branch length for each environments
    result = {}
    for envs_tuple, taxa_indices in envs_to_investigate.items():
        valid_rows = zeros(len(count_array))
        for i in taxa_indices:
            valid_rows[i] = 1.0
        result[envs_tuple] = sum(branch_lengths * valid_rows)

    return result

def shared_branch_length_to_root(t, envs):
    """Returns the shared branch length for a single env from tips to root
    
    t: phylogenetic tree relating sequences
    envs: dict of {sequence:{env:count}} showing environmental abundance

    Returns {env:shared_branch_length}
    """
    working_t = t.copy()
    result = {}

    # decorate nodes with environment information
    for n in working_t.postorder():
        # for tip, grab and set env information
        if n.isTip():  
            curr_envs = envs.get(n.Name, None)
            if curr_envs is None:
                n.Envs = set([])
            else:
                n.Envs = set(curr_envs.keys())
        # for internal node, collect descending env information
        else:  
            n.Envs = set([])  # should only visit each internal node once
            for c in n.Children:
                n.Envs.update(c.Envs)

    # collect branch length for each environment
    for n in working_t.preorder(include_self=False):
        if not hasattr(n, 'Length') or n.Length is None:
            continue

        for e in n.Envs:
            if e not in result:
                result[e] = 0.0
            result[e] += n.Length

    return result

def fast_unifrac(t, envs, weighted=False, metric=unifrac, is_symmetric=True, 
    modes=UNIFRAC_DEFAULT_MODES, weighted_unifrac_f=_weighted_unifrac,make_subtree=True):
    """ Run fast unifrac.
    
    t: phylogenetic tree relating the sequences.  pycogent phylonode object
    envs: dict of {sequence:{env:count}} showing environmental abundance.
    weighted: if True, performs the weighted UniFrac procedure.
    metric: distance metric to use.  currently you must use unifrac only
        if weighted=True.
        see fast_tree.py for metrics (e.g.: G, unnormalized_G, unifrac, etc.)
    modes: tasks to perform on running unifrac.  see fast_unifrac.py
        default is to get a unifrac distance matrix, pcoa on that matrix, and a
        cluster of the environments
    is_symmetric: if the desired distance matrix is symmetric 
        (dist(sampleA, sampleB) == dist(sampleB, sampleA)), then set this True
        to prevent calculating the same number twice

    using default modes, returns a dictionary with the following (key:value) pairs:

    'distance_matrix': a tuple with a numpy array of pairwise distances between 
    samples and a list of names describing the order of samples in the array 
    
    'cluster_envs': cogent.core.PhyloNode object containing results of running 
    UPGMA on the distance matrix.
    
    'pcoa': a cogent.util.Table object with the results of running Principal 
    Coordines Analysis on the distance matrix.

    Usage examples: (these assume the example files exist)
    from cogent.parse.tree import DndParser
    from cogent.maths.unifrac.fast_unifrac import count_envs, fast_unifrac
    from cogent.maths.unifrac.fast_tree import UniFracTreeNode, count_envs, G
    tree_in = open('Crump_et_al_example.tree')
    envs_in = open('Crump_et_al_example_env_file.txt')
    tree = DndParser(tree_in, UniFracTreeNode)
    envs = count_envs(envs_in)
    unifrac_result = fast_unifrac(tree, envs)
    G_result = fast_unifrac(tree, envs, metric=G, is_symmetric=False)

    WARNING: PCoA on asymmetric matrices (e.g.: G metric) is meaningless
    because these are not distance matrices.
    """
    modes = set(modes)  #allow list, etc. of modes to be passed in.
    if not modes or modes - UNIFRAC_VALID_MODES:
        raise ValueError, "Invalid run modes: %s, valid: %s" % (str(modes),str(UNIFRAC_VALID_MODES))

    envs, count_array, unique_envs, env_to_index, node_to_index, env_names, branch_lengths, nodes, t = _fast_unifrac_setup(t, envs, make_subtree)
    bound_indices = bind_to_array(nodes, count_array)
    #initialize result
    result = {}
    
    #figure out whether doing weighted or unweighted analysis: for weighted,
    #need to figure out root-to-tip distances, but can skip this step if
    #doing unweighted analysis.
    if weighted:
        tip_indices = [n._leaf_index for n in t.tips()]
        sum_descendants(bound_indices)
        tip_ds = branch_lengths.copy()[:,newaxis]
        bindings = bind_to_parent_array(t, tip_ds)
        tip_distances(tip_ds, bindings, tip_indices)
        if weighted == 'correct':
            bl_correct = True
        else:
            bl_correct = False
        u = weighted_unifrac_matrix(branch_lengths, count_array, tip_indices, \
            bl_correct=bl_correct, tip_distances=tip_ds, \
            unifrac_f=weighted_unifrac_f)
        #figure out if we need the vector
        if UNIFRAC_DIST_VECTOR in modes:
            result[UNIFRAC_DIST_VECTOR] = (weighted_unifrac_vector(
                branch_lengths, count_array, tip_indices, 
                bl_correct=bl_correct, tip_distances=tip_ds, 
                unifrac_f=weighted_unifrac_f), env_names)
    else:
        bool_descendants(bound_indices)
        u = unifrac_matrix(branch_lengths, count_array, metric=metric, is_symmetric=is_symmetric)
        if UNIFRAC_DIST_VECTOR in modes:
            result[UNIFRAC_DIST_VECTOR] = (unifrac_vector(branch_lengths, 
                count_array), env_names)
    
    #check if we have to do the matrix calculations, which are expensive
    if modes - set([UNIFRAC_DIST_VECTOR]):
        result.update(unifrac_tasks_from_matrix(u, env_names, modes=modes))
    return result

def fast_unifrac_one_sample(one_sample_name, t, envs, weighted=False, 
    metric=unifrac, weighted_unifrac_f=_weighted_unifrac, make_subtree=False):
    """ performs fast unifrac between a specified sample and all other samples
    
    one_sample_name: unifrac will be calculated bet this and each other sample
    t: phylogenetic tree relating the sequences.  pycogent phylonode object
    envs: dict of {sequence:{env:count}} showing environmental abundance.
    weighted: if True, performs the weighted UniFrac procedure.  If "correct",
        performs weighted unifrac with branch length correction.  If false
        (default), performs supplied metric (default: unweighted unifrac)
    metric: distance metric to use, unless weighted=True
        see fast_tree.py for metrics (e.g.: G, unnormalized_G, unifrac, etc.)

    returns distances, environments. e.g. when one_sample_name = 'B': 
    array([ 0.623, 0., 0.4705]), ['A', 'B', 'C']
    returns a ValueError if we have no data on one_sample_name
    """
    envs, count_array, unique_envs, env_to_index, node_to_index, env_names, \
        branch_lengths, nodes, t = _fast_unifrac_setup(t, envs, make_subtree)
    bound_indices = bind_to_array(nodes, count_array)
    result = {}
    try:
        one_sample_idx = env_names.index(one_sample_name)
    except ValueError:
        raise ValueError('one_sample_name not found, ensure that there are'+\
            ' tree tips and corresponding envs counts for sample ' +\
            one_sample_name )

    if weighted:
        tip_indices = [n._leaf_index for n in t.tips()]
        sum_descendants(bound_indices)
        tip_ds = branch_lengths.copy()[:,newaxis]
        bindings = bind_to_parent_array(t, tip_ds)
        tip_distances(tip_ds, bindings, tip_indices)
        if weighted == 'correct':
            bl_correct = True
        else:
            bl_correct = False
        u = weighted_one_sample(one_sample_idx, branch_lengths, count_array,
            tip_indices, bl_correct=bl_correct, tip_distances=tip_ds, \
            unifrac_f=weighted_unifrac_f)
    else: # unweighted
        bool_descendants(bound_indices)
        u = unifrac_one_sample(one_sample_idx, branch_lengths, count_array, 
            metric=metric)

    return (u, env_names)
        
def unifrac_tasks_from_matrix(u, env_names, modes=UNIFRAC_DEFAULT_MODES):
    """Returns the UniFrac matrix, PCoA, and/or cluster from the matrix."""
    result = {}

    if UNIFRAC_DIST_MATRIX in modes:
        result[UNIFRAC_DIST_MATRIX] = (u, env_names)

    if UNIFRAC_PCOA in modes:
        point_matrix, eigvals = principal_coordinates_analysis(u)
        result[UNIFRAC_PCOA] =  output_pca(point_matrix, eigvals, env_names)

    if UNIFRAC_CLUST_ENVS in modes:
        nodes = map(PhyloNode, env_names)
        BIG = 1e305
        U = u.copy()
        for i in range(len(U)):
            U[i,i] = BIG
        c = UPGMA_cluster(U, nodes, BIG)
        result[UNIFRAC_CLUST_ENVS] = c

    if UNIFRAC_NJ_ENVS in modes:
        c = nj(dists_to_nj(u, env_names))
        result[UNIFRAC_NJ_ENVS] = c

    return result

def unifrac_recursive(tree, envs, ref_tree):#, metric=weighted):
    """Performs UniFrac recursively over a tree.

    Specifically, for each node in the tree, performs UniFrac clustering.
    Then compares the UniFrac tree to a reference tree of the same taxa using
    the tip-to-tip distances and the subset distances. Assumption is that if
    the two trees match, the node represents a group in which evolution has
    mirrored the evolution of the reference tree.

    tree: contains the tree on which UniFrac will be performed recursively.
    envs: environments for UniFrac clustering (these envs should match the
          taxon labels in the ref_tree)
    ref_tree: reference tree that the clustering is supposed to match.
    metric: metric for UniFrac clustering.

    Typically, will want to estimate significance by comparing the actual
    values from ref_tree to values obtained with one or more shuffled versions
    of ref_tree (can make these with permute_tip_labels).
    """
    lengths, dists, sets = [], [], []
    for node in tree.traverse(self_before=True, self_after=False):
        try:
            result = fast_unifrac(node, envs, weighted=False, modes=set([UNIFRAC_CLUST_ENVS]))
            curr_tree = result[UNIFRAC_CLUST_ENVS]
        except AttributeError:
            #hit a zero branch length
            continue
        if curr_tree is None:
            #hit single node?
            continue
        try:
            l = len(curr_tree.tips())
            d = curr_tree.compareByTipDistances(ref_tree)
            s = curr_tree.compareBySubsets(ref_tree, True)
            #want to calculate all values before appending so we can bail out
            #if any of the calculations fails: this ensures that the lists
            #remain synchronized.
            lengths.append(l)
            dists.append(d)
            sets.append(s)
        except ValueError:
            #no common taxa
            continue
    return lengths, dists, sets

def dists_to_nj(matrix, labels):
    """Wraps matrix and labels together for format NJ requires."""
    result = {}
    for outer, row in zip(labels, matrix):
        for inner, i in zip(labels, row):
            result[(outer, inner)] = i
    return result

def shuffle_tipnames(t):
    """Returns copy of tree t with tip names shuffled."""
    result = t.copy()
    names = [i.Name for i in t.tips()]
    shuffle(names)
    for name, tip in zip(names, result.tips()):
        tip.Name = name
    return result

def weight_equally(tree_list, envs_list):
    """Returns equal weights for all trees."""
    num_trees = len(tree_list)
    return ones(num_trees)

def weight_by_num_tips(tree_list, envs_list):
    """Weights each tree by the number of tips it contains."""
    return array([len(list(t.tips())) for t in tree_list])

def weight_by_branch_length(tree_list, envs_list):
    """Weights each tree by the sum of its branch length."""
    return array([sum(filter(None, [i.Length for i in \
        t.traverse(self_before=True,self_after=False) if hasattr(i, 'Length')])) for t in tree_list])

def weight_by_num_seqs(tree_list, envs_list):
    """Weights each tree by the number of seqs it contains."""
    return array(map(sum_env_dict, envs_list))

def get_all_env_names(envs):
    """Returns set of all env names from envs."""
    result = set()
    for e in envs.values():
        result.update(e.keys())
    return result

def consolidate_skipping_missing_matrices(matrices, env_names, weights, 
    all_env_names):
    """Consolidates matrices, skipping any that are missing envs"""
    weight_sum = 0
    result = zeros((len(all_env_names),len(all_env_names)), float)
    for m, e, w in zip(matrices, env_names, weights):
        if e == all_env_names: #note -- assumes sorted
            result += m * w
            weight_sum += w
    #readjust weights for missing matrices
    result /= weight_sum
    return result

def consolidate_missing_zero(matrices, env_names, weights, all_env_names):
    """Consolidates matrices, setting missing values to 0 distance"""
    result = zeros((len(all_env_names),len(all_env_names)), float)
    for m, e, w in zip(matrices, env_names, weights):
        result += reshape_by_name(m, e, all_env_names, 0) * w
    return result

def consolidate_missing_one(matrices, env_names, weights, all_env_names):
    """Consolidates matrices, setting missing values to 1 distance"""
    result = zeros((len(all_env_names),len(all_env_names)), float)
    for m, e, w in zip(matrices, env_names, weights):
        result += reshape_by_name(m, e, all_env_names, 1) * w
    return result

def consolidate_skipping_missing_values(matrices, env_names, weights, 
    all_env_names):
    """Consolidates matrices, skipping only values from missing envs"""
    result = []
    for m, e, w in zip(matrices, env_names, weights):
        reshaped = reshape_by_name(m, e, all_env_names, masked=True)
        reshaped *= w
        result.append(reshaped)

    data = array([i.data for i in result], float)
    masks = array([i.mask for i in result], bool)
    masked_result = ma.array(data, mask=masks)
    #figure out mask of weights so we can figure out per-element weighting
    masked_weights = ma.array(zeros(data.shape), mask=masks) + \
        array(weights,float).reshape((len(weights),1,1))
    return masked_result.sum(0)/masked_weights.sum(0)

def reshape_by_name(m, old_names, new_names, default_off_diag=0,default_diag=0, 
    masked=False):
    """Reshape matrix m mapping slots from old names to new names.  """
    num_names = len(new_names)
    result = zeros((num_names,num_names), float) + default_off_diag
    for i in range(num_names):
        result[i,i] = default_diag
    pairs = {}
    for i, n in enumerate(old_names):
        if n in new_names:
            pairs[i] = new_names.index(n)
    for i, row in enumerate(m):
        new_i = pairs[i]
        for j, val in enumerate(row):
            new_j = pairs[j]
            result[new_i, new_j] = val
    if masked:
        mask = ones((num_names, num_names), float)
        for i in pairs.values():
            for j in pairs.values():
                mask[i,j] = 0
        result = ma.array(result, mask=mask)
    return result

def meta_unifrac(tree_list, envs_list, weighting_f, 
    consolidation_f=consolidate_skipping_missing_values, 
    modes=UNIFRAC_DEFAULT_MODES, **unifrac_params):
    """Perform metagenomic UniFrac on a list of trees and envs.

    tree_list: list of tree objects
    env_list: list of sample x env count arrays
    weighting_f: f(trees, envs) -> weights
    consolidation_f: f(matrix_list, name_list, weight_list, all_env_names) -> matrix
    unifrac_params: parameters that will be passed to unifrac to build the matrix

    Notes:
    - tree list and env list must be same length and consist of matched pairs,
      i.e. each tree must have a corresponding envs array.
    """
    all_weights = weighting_f(tree_list, envs_list)
    all_env_names = set()
    for e in envs_list:
        all_env_names.update(get_all_env_names(e))
    all_env_names = sorted(all_env_names)
    matrices = []
    env_names = []
    weights = []
    #need to be robust to failure to build UniFrac tree, and to combine the
    #matrices that survive in a reasonable way that handles missing data
    for t, e, w in zip(tree_list, envs_list, all_weights):
        #try:
            u, en = fast_unifrac(t, e, modes=[UNIFRAC_DIST_MATRIX], **unifrac_params)[UNIFRAC_DIST_MATRIX]
            matrices.append(u)
            env_names.append(en)
            weights.append(w)
        #except ValueError:
        #    pass
    #normalize weights so sum to 1
    weights = array(weights, float)/sum(weights)
    final_matrix = consolidation_f(matrices, env_names, weights, all_env_names)
    return unifrac_tasks_from_matrix(final_matrix, all_env_names, modes)

# Crump example tree 
CRUMP_TREE = """((((((((((((((((AF141409:0.25346,(((AF141563:0.00000,AF141568:0.00000):0.03773,AF141410:0.06022)Pseudomonadaceae:0.08853,((AF141521:0.12012,AF141439:0.03364):0.01884,(((((((((((AF141494:0.00000,AF141503:0.00000):0.00000,AF141553:0.00000):0.00000,AF141555:0.00000):0.00000,AF141527:0.00000):0.00000,AF141477:0.00513):0.00000,AF141554:0.00000):0.00000,AF141438:0.00000):0.00000,AF141493:0.00000):0.00000,AF141489:0.00000):0.00000,AF141437:0.00513):0.00000,AF141490:0.00771):0.07637):0.00573):0.00896):0.00327,((AF141546:0.03666,AF141510:0.04080):0.03273,AF141586:0.05358):0.00492):0.02041,((AF141577:0.04055,((AF141558:0.00000,AF141569:0.00771):0.01436,AF141430:0.01282):0.01144)Legionellaceae:0.06630,(AF141501:0.01323,AF141528:0.00000)SUP05:0.06854):0.02220):0.00651,AF141498:0.12862):0.00081,AF141428:0.08582):0.00570,((((((((((AF141464:0.00485,AF141422:0.00256):0.00000,AF141473:0.00770)Alcaligenaceae:0.06178,((((((AF141492:0.01026,AF141453:0.00513):0.00000,AF141443:0.01027):0.00323,(AF141441:0.00162,(AF141404:0.00000,AF141398:0.00000):0.00161):0.02267):0.01703,((AF141465:0.00513,AF141491:0.00256):0.00000,AF141405:0.00256):0.01214)Polynucleobacter:0.02121,AF141431:0.03263)Ralstoniaceae:0.01786,AF141456:0.01328):0.01630):0.00325,((((((((AF141462:0.01064,AF141414:0.00513):0.00000,AF141457:0.00000):0.00161,AF141413:0.00383):0.00646,AF141459:0.08285):0.02827,((((((AF141468:0.00256,AF141392:0.00256):0.00324,AF141394:0.00000):0.00323,AF141388:0.05424):0.01136,AF141581:0.00998):0.00323,(AF141444:0.00000,AF141446:0.00000):0.01673):0.02266,AF141478:0.02523):0.00162):0.02266,AF141595:0.05097):0.02108,((AF141393:0.00513,AF141458:0.00256):0.02621,AF141469:0.03147):0.02285):0.01541,AF141538:0.10137)Comamonadaceae:0.06378):0.01134,AF141449:0.06970)Burkholderiales:0.02283,(AF141600:0.07983,AF141482:0.04023):0.00573):0.01304,(((AF141486:0.00000,AF141403:0.00256):0.00000,AF141525:0.01542):0.01546,AF141461:0.01645)Methylophilales:0.06427):0.00326,(AF141551:0.02426,AF141507:0.04615)Neisseriales:0.09487)Betaproteobacteria:0.07947,AF141517:0.09902):0.05527,((AF141532:0.01292,AF141542:0.00257):0.00000,AF141424:0.00262)Ellin307/WD2124:0.12728):0.01546)Gamma_beta_proteobacteria:0.02854,((((((AF141557:0.00513,AF141480:0.00256)Roseobacter:0.13561,((AF141529:0.01265,AF141434:0.03671):0.02966,(((AF141526:0.00256,AF141495:0.00000):0.00000,AF141556:0.00513):0.00000,AF141548:0.00514):0.00164)Rhodobacter:0.04051)Rhodobacterales:0.22265,(AF141421:0.04514,AF141432:0.01539)Beijerinckiaceae:0.06527):0.00244,(((AF141544:0.00000,AF141545:0.00000):0.11111,AF141450:0.02767):0.10513,AF141396:0.07575):0.00653):0.00487,((AF141530:0.00000,AF141531:0.00000):0.02863,AF141448:0.04585)Sphingomonadales:0.13392):0.04010,(((((((((((AF141598:0.00323,AF141479:0.00836):0.00646,AF141593:0.01564):0.01291,AF141588:0.01033)Pelagibacter:0.00646,AF141583:0.00257):0.00000,AF141539:0.00000):0.01778,(AF141601:0.00162,AF141580:0.00769):0.02595):0.06022,(((AF141582:0.00000,AF141585:0.00000):0.02425,AF141590:0.02328):0.02274,AF141395:0.04863):0.00498)SAR11:0.04348,(AF141447:0.05616,(AF141594:0.00256,AF141584:0.00000):0.06659):0.02347):0.00663,AF141567:0.22932):0.01333,AF141589:0.05577):0.01247,AF141435:0.09271)Consistiales:0.05054)Alphaproteobacteria:0.08879):0.07221,((((AF141472:0.16321,(AF141537:0.01302,AF141496:0.00838)Desulfobulbaceae:0.12237):0.01639,AF141454:0.14646):0.01228,AF141504:0.15471):0.01396,AF141505:0.13406)'Deltaproteobacteria':0.00581)Proteobacteria:0.00332,AF141560:0.18908):0.00658,((((((AF141549:0.10860,((((((((AF141499:0.00258,AF141547:0.00258):0.00000,AF141559:0.00258):0.07190,AF141518:0.07560):0.04246,AF141474:0.07724)Cytophaga:0.01871,((((AF141515:0.02581,(AF141519:0.02952,AF141452:0.04379):0.01140):0.00484,AF141451:0.02101):0.01471,AF141466:0.06719)Sporocytophaga:0.02370,AF141524:0.04740):0.01239):0.01304,((AF141500:0.00256,AF141552:0.00000):0.00000,AF141502:0.00000):0.02059):0.04357,AF141407:0.14560):0.03134,AF141488:0.10821)Flavobacteriales:0.01232):0.02462,AF141543:0.10581):0.00743,AF141397:0.07576):0.04542,((AF141436:0.01862,AF141497:0.00325):0.00162,AF141460:0.00797)Flexibacteraceae:0.13515):0.00494,(AF141550:0.09051,AF141418:0.03264)Saprospiraceae:0.16732):0.01398,AF141514:0.25839)Bacteroidetes:0.13111):0.00907,((((AF141516:0.06810,AF141562:0.03493)'"Planctomycetacia"':0.09418,(AF141399:0.00528,AF141417:0.00262)'"Gemmatae"':0.21158)Planctomycetes:0.09116,((AF141391:0.02575,(AF141508:0.16401,(((AF141475:0.07537,AF141487:0.02921):0.02882,AF141513:0.08164):0.03217,AF141541:0.05472):0.02157)'Verrucomicrobiae(1)':0.00906):0.03990,((AF141455:0.00512,AF141387:0.00256):0.01132,(AF141408:0.00767,AF141406:0.00257):0.00815)'Opitutae(4)':0.18896)Verrucomicrobia:0.10524):0.01404,AF141536:0.11511):0.00906):0.00332,((((AF141463:0.01550,AF141476:0.01081)'Agrococcusetal.':0.09011,(((((AF141592:0.00664,AF141426:0.01026):0.02268,(AF141402:0.01525,(AF141484:0.00418,AF141445:0.00257):0.00486):0.00811):0.00486,AF141587:0.00170):0.02354,(AF141442:0.00674,AF141389:0.00000):0.01457):0.00489,AF141411:0.06787)Cellulomonadaceae:0.10377)Actinobacteridae:0.09674,((((AF141471:0.01091,AF141467:0.01136):0.01798,((AF141400:0.00767,AF141481:0.00000):0.05116,(AF141401:0.00512,AF141433:0.00256):0.03594):0.01066):0.01065,(((AF141522:0.00000,AF141423:0.01279):0.00000,AF141427:0.00000):0.00000,AF141420:0.00257):0.04350):0.09155,(((AF141440:0.00421,AF141520:0.00256):0.00161,AF141597:0.00256):0.00000,AF141485:0.00256)'BD2-10group':0.11726)Acidimicrobidae:0.04260)Actinobacteria:0.05311,((((((((AF141574:0.00000,AF141591:0.00256):0.00000,AF141579:0.00256):0.00000,AF141572:0.00769):0.00000,AF141565:0.00256):0.00000,AF141571:0.00513):0.00000,AF141575:0.00771):0.00324,((AF141596:0.00000,AF141564:0.00513):0.00162,(AF141599:0.00256,AF141578:0.01026):0.00162):0.00809)Prochlorales:0.18823,((((((AF141523:0.01285,AF141425:0.00258):0.00000,AF141429:0.00260):0.02350,AF141470:0.10407):0.00486,((AF141534:0.00809,AF141533:0.04316):0.00647,(AF141412:0.00000,AF141419:0.00257):0.00162):0.01456):0.04144,(((((AF141561:0.00372,AF141570:0.00000):0.00000,AF141576:0.00000):0.00000,AF141506:0.00743):0.00000,AF141573:0.00743):0.05520,AF141566:0.02577):0.01571)'Euglenaetal.chloroplasts':0.08248,AF141512:0.08318)Chloroplasts:0.03457)Cyanobacteria:0.16029):0.00661):0.01395,(AF141416:0.20329,AF141511:0.19093)'"Anaerolines"':0.09929):0.00986,AF141540:0.22389):0.03152,(AF141509:0.23520,(AF141390:0.25622,AF141483:0.15819)OP11-5:0.02369):0.08699):0.00913,(AF141415:0.00647,AF141535:0.00260)OP10:0.19926)Bacteria; 
"""

# Crump example envs
CRUMP_ENVS = """AF141399	R_FL	1
AF141411	R_FL	1
AF141408	R_FL	2
AF141403	R_FL	1
AF141410	R_FL	1
AF141398	R_FL	2
AF141391	R_FL	1
AF141389	R_FL	1
AF141395	R_FL	1
AF141401	R_FL	1
AF141390	R_FL	1
AF141393	R_FL	1
AF141396	R_FL	1
AF141402	R_FL	1
AF141407	R_FL	1
AF141387	R_FL	1
AF141394	R_FL	2
AF141409	R_FL	1
AF141400	R_FL	1
AF141397	R_FL	1
AF141405	R_FL	1
AF141388	R_FL	1
AF141424	R_PA	1
AF141421	R_PA	1
AF141433	R_PA	1
AF141428	R_PA	1
AF141432	R_PA	1
AF141426	R_PA	1
AF141430	R_PA	1
AF141413	R_PA	1
AF141419	R_PA	1
AF141423	R_PA	2
AF141429	R_PA	2
AF141422	R_PA	1
AF141431	R_PA	1
AF141415	R_PA	1
AF141418	R_PA	1
AF141416	R_PA	1
AF141420	R_PA	1
AF141417	R_PA	1
AF141434	R_PA	1
AF141412	R_PA	1
AF141414	R_PA	1
AF141463	E_FL	1
AF141493	E_FL	14
AF141459	E_FL	1
AF141461	E_FL	1
AF141447	E_FL	1
AF141479	E_FL	1
AF141449	E_FL	1
AF141465	E_FL	2
AF141435	E_FL	1
AF141457	E_FL	3
AF141468	E_FL	1
AF141487	E_FL	1
AF141472	E_FL	1
AF141466	E_FL	1
AF141444	E_FL	4
AF141473	E_FL	3
AF141439	E_FL	1
AF141436	E_FL	1
AF141455	E_FL	1
AF141443	E_FL	3
AF141483	E_FL	1
AF141476	E_FL	1
AF141441	E_FL	1
AF141440	E_FL	2
AF141474	E_FL	1
AF141486	E_FL	1
AF141481	E_FL	1
AF141480	E_FL	1
AF141470	E_FL	1
AF141458	E_FL	1
AF141460	E_FL	1
AF141478	E_FL	1
AF141450	E_FL	1
AF141471	E_FL	2
AF141442	E_FL	1
AF141454	E_FL	1
AF141488	E_FL	1
AF141451	E_FL	1
AF141456	E_FL	1
AF141452	E_FL	1
AF141482	E_FL	1
AF141448	E_FL	1
AF141484	E_FL	3
AF141475	E_FL	1
AF141548	E_PA	4
AF141520	E_PA	1
AF141508	E_PA	1
AF141523	E_PA	1
AF141547	E_PA	3
AF141530	E_PA	2
AF141510	E_PA	1
AF141513	E_PA	1
AF141524	E_PA	1
AF141516	E_PA	1
AF141543	E_PA	1
AF141503	E_PA	11
AF141498	E_PA	1
AF141532	E_PA	2
AF141549	E_PA	1
AF141501	E_PA	2
AF141525	E_PA	1
AF141534	E_PA	1
AF141506	E_PA	1
AF141519	E_PA	1
AF141550	E_PA	1
AF141496	E_PA	1
AF141535	E_PA	3
AF141512	E_PA	1
AF141514	E_PA	1
AF141537	E_PA	1
AF141533	E_PA	2
AF141511	E_PA	1
AF141539	E_PA	1
AF141545	E_PA	2
AF141500	E_PA	3
AF141505	E_PA	1
AF141497	E_PA	1
AF141541	E_PA	1
AF141518	E_PA	1
AF141551	E_PA	1
AF141504	E_PA	1
AF141546	E_PA	1
AF141515	E_PA	1
AF141529	E_PA	1
AF141507	E_PA	1
AF141540	E_PA	1
AF141521	E_PA	1
AF141538	E_PA	1
AF141522	E_PA	1
AF141509	E_PA	1
AF141517	E_PA	1
AF141536	E_PA	1
AF141557	O_UN	1
AF141569	O_UN	2
AF141561	O_UN	4
AF141578	O_UN	2
AF141567	O_UN	1
AF141566	O_UN	1
AF141568	O_UN	2
AF141579	O_UN	6
AF141562	O_UN	1
AF141559	O_UN	1
AF141560	O_UN	1
AF141577	O_UN	1
AF141583	O_FL	2
AF141595	O_FL	1
AF141599	O_FL	2
AF141582	O_FL	2
AF141600	O_FL	1
AF141594	O_FL	2
AF141592	O_FL	1
AF141597	O_FL	1
AF141590	O_FL	3
AF141581	O_FL	1
AF141587	O_FL	1
AF141588	O_FL	1
AF141586	O_FL	1
AF141591	O_FL	1
AF141589	O_FL	1
AF141593	O_FL	1
"""

def _load_tree(tree_str, envs_str, title):
    """Load tree and return """
    tree_in = StringIO(CRUMP_TREE)
    envs_in = StringIO(CRUMP_ENVS)
    print """\n(((((Running: %s""" % title
    return  tree_in, envs_in

def _display_results(out):
    print "Results:", out, "\n)))))"

if __name__ == '__main__':
    """
    Examples below using Crump tree and envs
    """
    from StringIO import StringIO

    tree_in, envs_in = _load_tree(CRUMP_TREE, CRUMP_ENVS, "unifrac - pairwise example (unweighted)")
    out = fast_unifrac_permutations_file(tree_in, envs_in, weighted=False, num_iters=100, verbose=True)
    _display_results(out)

    tree_in, envs_in = _load_tree(CRUMP_TREE, CRUMP_ENVS, "unifrac - pairwise example (weighted, normalized)")
    out = fast_unifrac_permutations_file(tree_in, envs_in, weighted='correct', num_iters=100, verbose=True)
    _display_results(out)

    tree_in, envs_in = _load_tree(CRUMP_TREE, CRUMP_ENVS, "unifrac - pairwise example (weighted)")
    out = fast_unifrac_permutations_file(tree_in, envs_in, weighted=True, num_iters=100, verbose=True)
    _display_results(out)

    tree_in, envs_in = _load_tree(CRUMP_TREE, CRUMP_ENVS, "unifrac - whole tree example")
    out = fast_unifrac_permutations_file(tree_in, envs_in, weighted=True, num_iters=100, verbose=True, test_on=TEST_ON_TREE) 
    _display_results(out)

    tree_in, envs_in = _load_tree(CRUMP_TREE, CRUMP_ENVS, "unifrac - each env example")
    out = fast_unifrac_permutations_file(tree_in, envs_in, weighted=True, num_iters=100, verbose=True, test_on=TEST_ON_ENVS) 
    _display_results(out)
    
    tree_in, envs_in = _load_tree(CRUMP_TREE, CRUMP_ENVS, "p test - pairwise example")
    out = fast_p_test_file(tree_in, envs_in, num_iters=10, verbose=True, test_on=TEST_ON_PAIRWISE)
    _display_results(out)

    tree_in, envs_in = _load_tree(CRUMP_TREE, CRUMP_ENVS, "p test - whole tree example")
    out = fast_p_test_file(tree_in, envs_in, num_iters=10, verbose=True, test_on=TEST_ON_TREE)
    _display_results(out)

    print "Done examples."