This file is indexed.

/usr/lib/python2.7/dist-packages/cogent/maths/stats/distribution.py is in python-cogent 1.9-9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
#!/usr/bin/env python
"""Translations of functions from Release 2.3 of the Cephes Math Library, 
which is (c) Stephen L. Moshier 1984, 1995.
"""
from __future__ import division
from cogent.maths.stats.special import erf, erfc, igamc, igam, betai, log1p, \
    expm1, SQRTH, MACHEP, MAXNUM, PI, ndtri, incbi, igami, fix_rounding_error,\
    ln_binomial
    #ndtri import b/c it should be available via this module

from numpy import sqrt, exp, arctan as atan

__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2016, The Cogent Project"
__credits__ = ["Rob Knight", "Sandra Smit", "Gavin Huttley", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.9"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"

incbet = betai  #shouldn't have renamed it...

#Probability integrals: low gives left-hand tail, high gives right-hand tail.
def z_low(x):
    """Returns left-hand tail of z distribution (0 to x). 
    
    x ranges from -infinity to +infinity; result ranges from 0 to 1
    
    See Cephes docs for details."""
    y = x * SQRTH
    z = abs(y) #distribution is symmetric
    if z < SQRTH:
        return 0.5 + 0.5 * erf(y)
    else:
        if y > 0:
            return 1 - 0.5 * erfc(z)
        else:
            return 0.5 * erfc(z)

def z_high(x):
    """Returns right-hand tail of z distribution (0 to x). 
    
    x ranges from -infinity to +infinity; result ranges from 0 to 1
    
    See Cephes docs for details."""
    y = x * SQRTH
    z = abs(y)
    if z < SQRTH:
        return 0.5 - 0.5 * erf(y)
    else:
        if x < 0:
            return 1 - 0.5 * erfc(z)
        else:
            return 0.5 * erfc(z)

def zprob(x):
    """Returns both tails of z distribution (-inf to -x, inf to x)."""
    return 2 * z_high(abs(x))

def chi_low(x, df):
    """Returns left-hand tail of chi-square distribution (0 to x), given df.

    x ranges from 0 to infinity.
    
    df, the degrees of freedom, ranges from 1 to infinity (assume integers).
    Typically, df is (r-1)*(c-1) for a r by c table.
   
    Result ranges from 0 to 1.
    
    See Cephes docs for details.
    """
    x = fix_rounding_error(x)
    if x < 0:
        raise ValueError, "chi_low: x must be >= 0 (got %s)." % x
    if df < 1:
        raise ValueError, "chi_low: df must be >= 1 (got %s)." % df
    return igam(df/2, x/2)
    
def chi_high(x, df):
    """Returns right-hand tail of chi-square distribution (x to infinity).
    
    df, the degrees of freedom, ranges from 1 to infinity (assume integers).
    Typically, df is (r-1)*(c-1) for a r by c table.
    
    Result ranges from 0 to 1.
    
    See Cephes docs for details.
    """
    x = fix_rounding_error(x)
    
    if x < 0:
        raise ValueError, "chi_high: x must be >= 0 (got %s)." % x
    if df < 1:
        raise ValueError, "chi_high: df must be >= 1 (got %s)." % df
    return igamc(df/2, x/2)
 
def t_low(t, df):
    """Returns left-hand tail of Student's t distribution (-infinity to x).
    
    df, the degrees of freedom, ranges from 1 to infinity.
    Typically, df is (n-1) for a sample size of n.
    
    Result ranges from 0 to 1.
    
    See Cephes docs for details.
    """
    if df < 1:
        raise ValueError, "t_low: df must be >= 1 (got %s)." % df
    return stdtr(df, t)

def t_high(t, df):
    """Returns right-hand tail of Student's t distribution (x to infinity).
    
    df, the degrees of freedom, ranges from 1 to infinity.
    Typically, df is (n-1) for a sample size of n.
    
    Result ranges from 0 to 1.
    
    See Cephes docs for details.
    """
    if df < 1:
        raise ValueError, "t_high: df must be >= 1 (got %s)." % df
    return stdtr(df, -t) #distribution is symmetric

def tprob(t, df):
    """Returns both tails of t distribution (-infinity to -x, infinity to x)"""
    return 2 * t_high(abs(t), df)

def poisson_high(successes, mean):
    """Returns right tail of Poission distribution, Pr(X > x).
    
    successes ranges from 0 to infinity. mean must be positive.
    """
    return pdtrc(successes, mean)

def poisson_low(successes, mean):
    """Returns left tail of Poisson distribution, Pr(X <= x).

    successes ranges from 0 to infinity. mean must be positive.
    """
    return pdtr(successes, mean)

def poisson_exact(successes, mean):
    """Returns Poisson probablity for exactly Pr(X=successes).
    
    Formula is e^-(mean) * mean^(successes) / (successes)!
    """
    if successes == 0:
        return pdtr(0, mean)
    elif successes < mean:  #use left tail
            return pdtr(successes, mean) - pdtr(successes-1, mean)
    else: #successes > mean: use right tail
        return pdtrc(successes-1, mean) - pdtrc(successes, mean)

def binomial_high(successes, trials, prob):
    """Returns right-hand binomial tail (X > successes) given prob(success)."""
    if -1 <= successes < 0:
        return 1
    return bdtrc(successes, trials, prob)

def binomial_low(successes, trials, prob):
    """Returns left-hand binomial tail (X <= successes) given prob(success)."""
    return bdtr(successes, trials, prob)

def binomial_exact(successes, trials, prob):
    """Returns binomial probability of exactly X successes.
    
    Works for integer and floating point values.

    Note: this function is only a probability mass function for integer 
    values of 'trials' and 'successes', i.e. if you sum up non-integer 
    values you probably won't get a sum of 1.
    """
    if (prob < 0) or (prob > 1):
        raise ValueError, "Binomial prob must be between 0 and 1."
    if (successes < 0) or (trials < successes):
        raise ValueError, "Binomial successes must be between 0 and trials."
    return exp(ln_binomial(successes, trials, prob))

def f_low(df1, df2, x):
    """Returns left-hand tail of f distribution (0 to x).

    x ranges from 0 to infinity.
    
    Result ranges from 0 to 1.
    
    See Cephes docs for details.
    """
    return fdtr(df1, df2, x)
    
def f_high(df1, df2, x):
    """Returns right-hand tail of f distribution (x to infinity).
    
    Result ranges from 0 to 1.
    
    See Cephes docs for details.
    """
    return fdtrc(df1, df2, x)
  
def fprob(dfn, dfd, F, side='right'):
    """Returns both tails of F distribution (-inf to F and F to inf)

    Use in case of two-tailed test. Usually this method is called by
    f_two_sample, so you don't have to worry about choosing the right side.
    
    side: right means return twice the right-hand tail of the F-distribution.
        Use in case var(a) > var (b)
          left means return twice the left-hand tail of the F-distribution.
        Use in case var(a) < var(b)
    """
    if F < 0:
        raise ValueError, "fprob: F must be >= 0 (got %s)." % F
    if side=='right':
        return 2*f_high(dfn, dfd, F)
    elif side=='left':
        return 2*f_low(dfn, dfd, F)
    else:
        raise ValueError, "Not a valid value for side %s"%(side)

 
def stdtr(k, t):
    """Student's t distribution, -infinity to t.

    See Cephes docs for details.
    """
    if k <= 0:
        raise ValueError, 'stdtr: df must be > 0.'
    if t == 0:
        return 0.5
    if t < -2:
        rk = k
        z = rk / (rk + t * t)
        return 0.5 * betai(0.5 * rk, 0.5, z)
    #compute integral from -t to + t
    if t < 0:
        x = -t
    else:
        x = t

    rk = k  #degrees of freedom
    z = 1 + (x * x)/rk
    #test if k is odd or even
    if (k & 1) != 0:
        #odd k
        xsqk = x/sqrt(rk)
        p = atan(xsqk)
        if k > 1:
            f = 1
            tz = 1
            j = 3
            while (j <= (k-2)) and ((tz/f) > MACHEP):
                tz *= (j-1)/(z*j)
                f += tz
                j += 2
            p += f * xsqk/z
        p *= 2/PI
    else:
        #even k
        f = 1
        tz = 1
        j = 2
        while (j <= (k-2)) and ((tz/f) > MACHEP):
            tz *= (j-1)/(z*j)
            f += tz
            j += 2
        p = f * x/sqrt(z*rk)
    #common exit
    if t < 0:
        p = -p  #note destruction of relative accuracy
    p = 0.5 + 0.5 * p
    return p

def bdtr(k, n, p):
    """Binomial distribution, 0 through k.

    Uses formula bdtr(k, n, p) = betai(n-k, k+1, 1-p)

    See Cephes docs for details.
    """
    p = fix_rounding_error(p)
    if (p < 0) or (p > 1):
        raise ValueError, "Binomial p must be between 0 and 1."
    if (k < 0) or (n < k):
        raise ValueError, "Binomial k must be between 0 and n."
    if k == n:
        return 1
    dn = n - k
    if k == 0:
        return  pow(1-p, dn)
    else:
        return  betai(dn, k+1, 1-p)

def bdtrc(k, n, p):
    """Complement of binomial distribution, k+1 through n.

    Uses formula bdtrc(k, n, p) = betai(k+1, n-k, p)

    See Cephes docs for details.
    """
    p = fix_rounding_error(p)
    if (p < 0) or (p > 1):
        raise ValueError, "Binomial p must be between 0 and 1."
    if (k < 0) or (n < k):
        raise ValueError, "Binomial k must be between 0 and n."
    if k == n:
        return 0
    dn = n - k
    if k == 0:
        if p < .01:
            dk = -expm1(dn * log1p(-p))
        else:
            dk = 1 - pow(1.0-p, dn)
    else:
        dk = k + 1
        dk = betai(dk, dn, p)
    return dk
    
def pdtr(k, m):
    """Returns sum of left tail of Poisson distribution, 0 through k.

    See Cephes docs for details.
    """
    if k < 0:
        raise ValueError, "Poisson k must be >= 0."
    if m < 0:
        raise ValueError, "Poisson m must be >= 0."
    return igamc(k+1, m)

def pdtrc(k, m):
    """Returns sum of right tail of Poisson distribution, k+1 through infinity.

    See Cephes docs for details.
    """
    if k < 0:
        raise ValueError, "Poisson k must be >= 0."
    if m < 0:
        raise ValueError, "Poisson m must be >= 0."
    return igam(k+1, m)

def fdtr(a, b, x):
    """Returns left tail of F distribution, 0 to x.

    See Cephes docs for details.
    """
    if min(a, b) < 1:
        raise ValueError, "F a and b (degrees of freedom) must both be >= 1."
    if x < 0:
        raise ValueError, "F distribution value of f must be >= 0."
    w = a * x
    w /= float(b + w)
    return betai(0.5 * a, 0.5 * b, w)
    

def fdtrc(a, b, x):
    """Returns right tail of F distribution, x to infinity.

    See Cephes docs for details.
    """
    if min(a, b) < 1:
        raise ValueError, "F a and b (degrees of freedom) must both be >= 1."
    if x < 0:
        raise ValueError, "F distribution value of f must be >= 0."
    w = float(b) / (b + a * x)
    return betai(0.5 * b, 0.5 * a, w)

def gdtr(a, b, x):
    """Returns integral from 0 to x of Gamma distribution with params a and b.
    """
    if x < 0.0:
        raise ZeroDivisionError, "x must be at least 0."
    return igam( b, a * x)

def gdtrc(a, b, x):
    """Returns integral from x to inf of Gamma distribution with params a and b.
    """
    if x < 0.0:
        raise ZeroDivisionError, "x must be at least 0."
    return igamc(b, a * x)

#note: ndtri for the normal distribution is already imported

def chdtri(df, y):
    """Returns inverse of chi-squared distribution."""
    y = fix_rounding_error(y)
    if(y < 0.0 or y > 1.0 or df < 1.0):
        raise ZeroDivisionError, "y must be between 0 and 1; df >= 1"
    return 2 * igami(0.5*df, y)

def stdtri(k, p):
    """Returns inverse of Student's t distribution. k = df."""
    p = fix_rounding_error(p)
    # handle easy cases
    if k <= 0 or p < 0.0 or p > 1.0:
        raise ZeroDivisionError, "k must be >= 1, p between 1 and 0."
    rk = k
    #handle intermediate values
    if p > 0.25 and p < 0.75:
        if p == 0.5:
            return 0.0
        z = 1.0 - 2.0 * p;
        z = incbi(0.5, 0.5*rk, abs(z))
        t = sqrt(rk*z/(1.0-z))
        if p < 0.5:
            t = -t
        return t
    #handle extreme values
    rflg = -1
    if p >= 0.5:
            p = 1.0 - p;
            rflg = 1
    z = incbi(0.5*rk, 0.5, 2.0*p)

    if MAXNUM * z < rk:
        return rflg * MAXNUM
    t = sqrt(rk/z - rk)
    return rflg * t

def pdtri(k, p):
    """Inverse of Poisson distribution.

    Finds Poission mean such that integral from 0 to k is p.
    """
    p = fix_rounding_error(p)
    if k < 0 or p < 0.0 or p >= 1.0:
        raise ZeroDivisionError, "k must be >=0, p between 1 and 0."
    v = k+1;
    return igami(v, p)

def bdtri(k, n, y):
    """Inverse of binomial distribution.

    Finds binomial p such that sum of terms 0-k reaches cum probability y.
    """
    y = fix_rounding_error(y)
    if y < 0.0 or y > 1.0:
        raise ZeroDivisionError, "y must be between 1 and 0."
    if k < 0 or n <= k:
        raise ZeroDivisionError, "k must be between 0 and n"
    dn = n - k
    if k == 0:
        if y > 0.8:
            p = -expm1(log1p(y-1.0) / dn)
        else:
            p = 1.0 - y**(1.0/dn)
    else:
        dk = k + 1;
        p = incbet(dn, dk, 0.5)
        if p > 0.5:
            p = incbi(dk, dn, 1.0-y)
        else:
            p = 1.0 - incbi(dn, dk, y)
    return p

def gdtri(a, b, y):
    """Returns Gamma such that y is the probability in the integral.
    
    WARNING: if 1-y == 1, gives incorrect result. The scipy implementation
    gets around this by using cdflib, which is in Fortran. Until someone
    gets around to translating that, only use this function for values of
    p greater than 1e-15 or so!
    """
    y = fix_rounding_error(y)
    if y < 0.0 or y > 1.0 or a <= 0.0 or b < 0.0:
        raise ZeroDivisionError, "a and b must be non-negative, y from 0 to 1."
    return igami(b, 1.0-y) / a

def fdtri(a, b, y):
    """Returns inverse of F distribution."""
    y = fix_rounding_error(y)
    if( a < 1.0 or b < 1.0 or y <= 0.0 or y > 1.0):
        raise ZeroDivisionError, "y must be between 0 and 1; a and b >= 1"
    y = 1.0-y
    # Compute probability for x = 0.5
    w = incbet(0.5*b, 0.5*a, 0.5)
    # If that is greater than y, then the solution w < .5.
    # Otherwise, solve at 1-y to remove cancellation in (b - b*w).
    if w > y or y < 0.001:
            w = incbi(0.5*b, 0.5*a, y)
            x = (b - b*w)/(a*w)
    else:
            w = incbi(0.5*a, 0.5*b, 1.0-y)
            x = b*w/(a*(1.0-w))
    return x