This file is indexed.

/usr/lib/python2.7/dist-packages/cogent/maths/matrix_logarithm.py is in python-cogent 1.9-9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/env python
"""Alternate matrix log algorithms. A simple implementation of matrix log,
following Brett Easton's suggestion, and a taylor series expansion approach.

WARNING: The methods are not robust!
"""
from numpy import array, dot, eye, zeros, transpose, log, \
        allclose, inner as innerproduct, exp, diag, isclose, pi, argmin, ones
from numpy.linalg import inv as inverse, eig as eigenvectors, norm

from itertools import combinations

__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2014, The Cogent Project"
__credits__ = ["Rob Knight", "Gavin Huttley", "Von Bing Yap", "Ben Kaehler"]
__license__ = "GPL"
__version__ = "1.9"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"

def _is_Q_ok(Q):
    """Tests whether a square matrix is a valid transition rate matrix"""
    n = Q.shape[0]
    if not allclose(Q.imag, 0.):
        return False
    offd = Q * (1. - eye(n))
    if not allclose(offd[offd<0.], 0.):
        return False
    one = ones(n)
    if not allclose(Q.dot(one), 0.):
        return False
    return True

def is_generator_unique(Q):
    """Conservatively tests whether a transition rate matrix uniquely yields
    its transition probability matrix"""
    assert Q.shape[0] in (3, 4), 'Q must be 3x3 or 4x4'
    assert _is_Q_ok(Q), 'Q must be a valid transition rate matrix'

    e, V = eigenvectors(Q)
    n = len(e)

    # Assert that the matrix is diagonalisable
    if not allclose(V.dot(diag(e)).dot(inverse(V)), Q):
        raise ArithmeticError('matrix not diagonalisable')

    # Find the Perron-Frobenius eigenvalue
    PF_EV = argmin([norm(ones(n)/n-v/v.sum()) for v in V.T])
    # Don't mess with the P-F eigenvalue - it has a special job to do
    ix = range(0,PF_EV) + range(PF_EV+1,n)

    real_close = []
    expe = exp(e)
    for i, j in combinations(ix, 2):
        if isclose(e.real[i], e.real[j]):
            real_close.append((i, j))

        # Can't deal with non-primary roots yet
        if isclose(expe[i], expe[j]):
            raise NotImplementedError('non-primary root detected:\n'+repr(Q))
    
    # If the real parts of the eigenvalues are distinct, we're ok
    # For each candidate complex conjugate pair, check for equivalent Qs 
    for i, j in real_close:
        s = zeros(n)
        s[i] = 1.
        s[j] = -1.
        gen = 2.*pi*complex(0.,1.)*V.dot(diag(s)).dot(inverse(V))
        Qtest = Q + gen
        if _is_Q_ok(Qtest):
            return False
        Qtest = Q - gen
        if _is_Q_ok(Qtest):
            return False

    return True

def logm(P):
    """Returns logarithm of a matrix.

    This method should work if the matrix is positive definite and
    diagonalizable.
    """
    roots, ev = eigenvectors(P)
    evI = inverse(ev.T)
    evT = ev
    if not allclose(P, innerproduct(evT * roots, evI)):
        raise ArithmeticError("eigendecomposition failed")
    
    log_roots = log(roots)
    return innerproduct(evT * log_roots, evI)

def logm_taylor(P, tol=1e-30):
    """returns the matrix log computed using the taylor series. If the Frobenius
    norm of P-I is > 1, raises an exception since the series is not gauranteed
    to converge. The series is continued until the Frobenius norm of the current
    element is < tol.
    
    Note: This exit condition is theoretically crude but seems to work
    reasonably well.
    
    Arguments:
        tol - the tolerance
    """
    P = array(P)
    I = eye(P.shape[0])
    X = P - I
    assert norm(X, ord='fro') < 1, "Frobenius norm > 1"
    
    Y = I
    Q = zeros(P.shape, dtype="double")
    i = 1
    while norm(Y/i, ord='fro') > tol:
        Y = dot(Y,X)
        Q += ((-1)**(i-1)*Y/i)
        i += 1
    return Q