This file is indexed.

/usr/lib/python2.7/dist-packages/cogent/draw/arrow_rates.py is in python-cogent 1.9-9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#!/usr/bin/env python
from matplotlib import use, rc
use('Agg')  #suppress graphical rendering
from pylab import rc, gcf, xlim, ylim, xticks, yticks, sqrt, text, clip, gca, \
    array, dot, ravel, draw, show, savefig
from fancy_arrow import arrow
"""Draws arrow plots representing rate matrices.

Note: currently requires dict of dinuc freqs, but should modify to work
with Rates objects from seqsim.

Based on graphical displays by Noboru Sueoka.
"""

__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2016, The Cogent Project"
__credits__ = ["Rob Knight"]
__license__ = "GPL"
__version__ = "1.9"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"

rc('text', usetex=True)
rates_to_bases={'r1':'AT', 'r2':'TA', 'r3':'GA','r4':'AG','r5':'CA','r6':'AC', \
            'r7':'GT', 'r8':'TG', 'r9':'CT','r10':'TC','r11':'GC','r12':'CG'}
numbered_bases_to_rates = dict([(v,k) for k, v in rates_to_bases.items()])
lettered_bases_to_rates = dict([(v, 'r'+v) for k, v in rates_to_bases.items()])
def add_dicts(d1, d2):
    """Adds two dicts and returns the result."""
    result = d1.copy()
    result.update(d2)
    return result

def make_arrow_plot(data, size=4, display='length', shape='right', \
        max_arrow_width=0.03, arrow_sep = 0.02, alpha=0.5, \
        normalize_data=False, ec=None, labelcolor=None, \
        head_starts_at_zero=True, rate_labels=lettered_bases_to_rates,\
        graph_name=None, \
        **kwargs):
    """Makes an arrow plot.

    Parameters:
    
    data: dict with probabilities for the bases and pair transitions.
    size: size of the graph in inches.
    display: 'length', 'width', or 'alpha' for arrow property to change.
    shape: 'full', 'left', or 'right' for full or half arrows.
    max_arrow_width: maximum width of an arrow, data coordinates.
    arrow_sep: separation between arrows in a pair, data coordinates.
    alpha: maximum opacity of arrows, default 0.8.
    
    **kwargs can be anything allowed by a Arrow object, e.g. 
    linewidth and edgecolor.
    """
    
    xlim(-0.5,1.5)
    ylim(-0.5,1.5)
    gcf().set_size_inches(size,size)
    xticks([])
    yticks([])
    max_text_size = size*12
    min_text_size = size
    label_text_size = size*2.5
    text_params={'ha':'center', 'va':'center', 'family':'sans-serif',\
        'fontweight':'bold'}
    r2 = sqrt(2)

    deltas = {\
        'AT':(1,0),
        'TA':(-1,0),
        'GA':(0,1),
        'AG':(0,-1),
        'CA':(-1/r2, 1/r2),
        'AC':(1/r2, -1/r2),
        'GT':(1/r2, 1/r2),
        'TG':(-1/r2,-1/r2),
        'CT':(0,1),
        'TC':(0,-1),
        'GC':(1,0),
        'CG':(-1,0)
        }

    colors = {\
        'AT':'r',
        'TA':'k',
        'GA':'g',
        'AG':'r',
        'CA':'b',
        'AC':'r',
        'GT':'g',
        'TG':'k',
        'CT':'b',
        'TC':'k',
        'GC':'g',
        'CG':'b'
        }

    label_positions = {\
        'AT':'center',
        'TA':'center',
        'GA':'center',
        'AG':'center',
        'CA':'left',
        'AC':'left',
        'GT':'left',
        'TG':'left',
        'CT':'center',
        'TC':'center',
        'GC':'center',
        'CG':'center'
        }

    def do_fontsize(k):
        return float(clip(max_text_size*sqrt(data[k]),\
            min_text_size,max_text_size))

    A = text(0,1, '$A_3$', color='r', size=do_fontsize('A'), **text_params)
    T = text(1,1, '$T_3$', color='k', size=do_fontsize('T'), **text_params)
    G = text(0,0, '$G_3$', color='g', size=do_fontsize('G'), **text_params)
    C = text(1,0, '$C_3$', color='b', size=do_fontsize('C'), **text_params)

    arrow_h_offset = 0.25  #data coordinates, empirically determined
    max_arrow_length = 1 - 2*arrow_h_offset

    max_arrow_width = max_arrow_width
    max_head_width = 2.5*max_arrow_width
    max_head_length = 2*max_arrow_width
    arrow_params={'length_includes_head':True, 'shape':shape, \
        'head_starts_at_zero':head_starts_at_zero}
    ax = gca()
    sf = 0.6   #max arrow size represents this in data coords

    d = (r2/2 + arrow_h_offset - 0.5)/r2    #distance for diags
    r2v = arrow_sep/r2                      #offset for diags
  
    #tuple of x, y for start position
    positions = {\
        'AT': (arrow_h_offset, 1+arrow_sep),
        'TA': (1-arrow_h_offset, 1-arrow_sep),
        'GA': (-arrow_sep, arrow_h_offset),
        'AG': (arrow_sep, 1-arrow_h_offset),
        'CA': (1-d-r2v, d-r2v),
        'AC': (d+r2v, 1-d+r2v),
        'GT': (d-r2v, d+r2v),
        'TG': (1-d+r2v, 1-d-r2v),
        'CT': (1-arrow_sep, arrow_h_offset),
        'TC': (1+arrow_sep, 1-arrow_h_offset),
        'GC': (arrow_h_offset, arrow_sep),
        'CG': (1-arrow_h_offset, -arrow_sep),
        }

    if normalize_data:
        #find maximum value for rates, i.e. where keys are 2 chars long
        max_val = 0
        for k, v in data.items():
            if len(k) == 2:
                max_val = max(max_val, v)
        #divide rates by max val, multiply by arrow scale factor
        for k, v in data.items():
            data[k] = v/max_val*sf

    def draw_arrow(pair, alpha=alpha, ec=ec, labelcolor=labelcolor):
        #set the length of the arrow 
        if display == 'length':
            length = max_head_length+(max_arrow_length-max_head_length)*\
                data[pair]/sf
        else:
            length = max_arrow_length
        #set the transparency of the arrow
        if display == 'alph':
            alpha = min(data[pair]/sf, alpha)
        else:
            alpha=alpha
        #set the width of the arrow
        if display == 'width':
            scale = data[pair]/sf
            width = max_arrow_width*scale
            head_width = max_head_width*scale
            head_length = max_head_length*scale
        else:
            width = max_arrow_width
            head_width = max_head_width
            head_length = max_head_length

        fc = colors[pair]
        ec = ec or fc

        x_scale, y_scale = deltas[pair]
        x_pos, y_pos = positions[pair]
        arrow(ax, x_pos, y_pos, x_scale*length, y_scale*length, \
            fc=fc, ec=ec, alpha=alpha, width=width, head_width=head_width, \
            head_length=head_length, **arrow_params)

        #figure out coordinates for text
        #if drawing relative to base: x and y are same as for arrow
        #dx and dy are one arrow width left and up
        #need to rotate based on direction of arrow, use x_scale and y_scale
        #as sin x and cos x?
        sx, cx = y_scale, x_scale

        alo = arrow_label_offset = 3.5*max_arrow_width

        where = label_positions[pair]
        if where == 'left':
            orig_position = array([[alo, alo]])
        elif where == 'absolute':
            orig_position = array([[max_arrow_length/2.0, alo]])
        elif where == 'right':
            orig_position = array([[length-alo, alo]])
        elif where == 'center':
            orig_position = array([[length/2.0, alo]])
        else:
            raise ValueError, "Got unknown position parameter %s" % where
            

        
        M = array([[cx, sx],[-sx,cx]])
        coords = dot(orig_position, M) + [[x_pos, y_pos]]
        x, y = ravel(coords)
        orig_label = rate_labels[pair]
        label = '$%s_{_{\mathrm{%s}}}$' % (orig_label[0], orig_label[1:])
   
        text(x, y, label, size=label_text_size, ha='center', va='center', \
            color=labelcolor or fc)

    for p in positions.keys():
        draw_arrow(p)
    
    if graph_name is not None:
        savefig(graph_name)

            
    #test data
all_on_max = dict([(i, 1) for i in 'TCAG'] + \
        [(i+j, 0.6) for i in 'TCAG' for j in 'TCAG'])

realistic_data = {
        'A':0.4,
        'T':0.3,
        'G':0.5,
        'C':0.2,
        'AT':0.4,
        'AC':0.3,
        'AG':0.2,
        'TA':0.2,
        'TC':0.3,
        'TG':0.4,
        'CT':0.2,
        'CG':0.3,
        'CA':0.2,
        'GA':0.1,
        'GT':0.4,
        'GC':0.1,
    }

extreme_data = {
        'A':0.75,
        'T':0.10,
        'G':0.10,
        'C':0.05,
        'AT':0.6,
        'AC':0.3,
        'AG':0.1,
        'TA':0.02,
        'TC':0.3,
        'TG':0.01,
        'CT':0.2,
        'CG':0.5,
        'CA':0.2,
        'GA':0.1,
        'GT':0.4,
        'GC':0.2,
    }

sample_data = {
        'A':0.2137,
        'T':0.3541,
        'G':0.1946,
        'C':0.2376,
        'AT':0.0228,
        'AC':0.0684,
        'AG':0.2056,
        'TA':0.0315,
        'TC':0.0629,
        'TG':0.0315,
        'CT':0.1355,
        'CG':0.0401,
        'CA':0.0703,
        'GA':0.1824,
        'GT':0.0387,
        'GC':0.1106,
    }


if __name__ == '__main__':
    from sys import argv
    if len(argv) > 1:
        if argv[1] == 'full':
            d = all_on_max
            scaled = False
        elif argv[1] == 'extreme':
            d = extreme_data
            scaled = False
        elif argv[1] == 'realistic':
            d = realistic_data
            scaled = False
        elif argv[1] == 'sample':
            d = sample_data
            scaled = True
    else:
        d = all_on_max
        scaled=False
    if len(argv) > 2:
        display = argv[2]
    else:
        display = 'length'

    size = 4
    gcf().set_size_inches(size,size)
    
    make_arrow_plot(d, display=display, linewidth=0.001, edgecolor=None,
        normalize_data=scaled, head_starts_at_zero=True, size=size,
        graph_name='arrows.png')