This file is indexed.

/usr/share/pdb2pqr/src/inputgen.py is in pdb2pqr 2.1.1+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
""" inputgen class

    Create an APBS input file using psize data

    Written by Todd Dolinsky based on original sed script by Nathan Baker

        ----------------------------
   
    PDB2PQR -- An automated pipeline for the setup, execution, and analysis of
    Poisson-Boltzmann electrostatics calculations

    Copyright (c) 2002-2011, Jens Erik Nielsen, University College Dublin; 
    Nathan A. Baker, Battelle Memorial Institute, Developed at the Pacific 
    Northwest National Laboratory, operated by Battelle Memorial Institute, 
    Pacific Northwest Division for the U.S. Department Energy.; 
    Paul Czodrowski & Gerhard Klebe, University of Marburg.

	All rights reserved.

	Redistribution and use in source and binary forms, with or without modification, 
	are permitted provided that the following conditions are met:

		* Redistributions of source code must retain the above copyright notice, 
		  this list of conditions and the following disclaimer.
		* Redistributions in binary form must reproduce the above copyright notice, 
		  this list of conditions and the following disclaimer in the documentation 
		  and/or other materials provided with the distribution.
        * Neither the names of University College Dublin, Battelle Memorial Institute,
          Pacific Northwest National Laboratory, US Department of Energy, or University
          of Marburg nor the names of its contributors may be used to endorse or promote
          products derived from this software without specific prior written permission.

	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 
	ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
	WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 
	IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 
	INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 
	BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
	DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 
	LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 
	OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 
	OF THE POSSIBILITY OF SUCH DAMAGE.

    ----------------------------
"""

# User - Definable Variables: Default values

# cfac = 1.7                  # Factor by which to expand mol dims to
                              # get coarse grid dims
# fadd = 20                   # Amount to add to mol dims to get fine
                              # grid dims
# space = 0.50                # Desired fine mesh resolution
# gmemfac = 200               # Number of bytes per grid point required 
                              # for sequential MG calculation 
# gmemceil = 400              # Max MB allowed for sequential MG
                              # calculation.  Adjust this to force the
                              # script to perform faster calculations (which
                              # require more parallelism).
# ofrac = 0.1                  # Overlap factor between mesh partitions
# redfac = 0.25               # The maximum factor by which a domain
                              # dimension can be reduced during focusing
__date__ = "21 April 2007"
__author__ = "Todd Dolinsky, Nathan Baker, Yong Huang"

import string, sys
import psize
import pickle
import os.path
import utilities

class Elec:
    """
        An object for the ELEC section of an APBS input file
    """
    def __init__(self, pqrpath, size, method, asyncflag, istrng=0, potdx=False):
        """
            Initialize the variables that can be set in this object
            Users can modify any of these variables (that's why
            they're here!)
        """

        # If this is an async or parallel calc, we want to use
        # the per-grid dime rather than the global dime.
        
        self.dime = size.getFineGridPoints()
        gmem = 200.0 * self.dime[0] * self.dime[1] * self.dime[2] / 1024.0 / 1024.0
        if method == "": # method not named - use ceiling
            if gmem > size.getConstant("gmemceil"): method = "mg-para"
            else: method = "mg-auto"

        if method == "mg-para":
            self.dime = size.getSmallest()

        self.method = method
        self.istrng = istrng
        self.glen = size.getCoarseGridDims()
        self.cglen = size.getCoarseGridDims()
        self.fglen = size.getFineGridDims()
        self.pdime = size.getProcGrid()
        
        self.label = ""
        self.nlev = 4
        self.ofrac = 0.1
        self.async = 0
        self.asyncflag = asyncflag
        self.cgcent = "mol 1"
        self.fgcent = "mol 1"
        self.gcent = "mol 1"
        self.mol = 1
        self.lpbe = 1
        self.npbe = 0
        self.bcfl = "sdh"
        self.ion = [[-1,1.815],[1,1.875]] # Multiple ions possible
        self.pdie = 2.0
        self.sdie = 78.54
        self.srfm = "smol"
        self.chgm = "spl2"
        self.sdens = 10.0
        self.srad = 1.4
        self.swin = 0.3
        self.temp = 298.15
        self.gamma = 0.105
        self.calcenergy = "total"
        self.calcforce = "no"
        if potdx:
            self.write = [["pot", "dx", pqrpath]]
        else:
            self.write = [["pot", "dx", "pot"]] # Multiple write statements possible
    
    def __str__(self):
        """
            Return the elec statement as a string. Check the method
            to see which keywords to use.
        """
        text = "elec %s\n" % self.label
        text += "    %s\n" % self.method
        text += "    dime %i %i %i\n" % (self.dime[0], self.dime[1], self.dime[2])
        if self.method == "mg-manual":
            text += "    glen %.3f %.3f %.3f\n" % (self.glen[0], self.glen[1], self.glen[2])
            text += "    gcent %s\n" % self.gcent
        elif self.method == "mg-auto":
            text += "    cglen %.4f %.4f %.4f\n" % (self.cglen[0], self.cglen[1], self.cglen[2])
            text += "    fglen %.4f %.4f %.4f\n" % (self.fglen[0], self.fglen[1], self.fglen[2])
            text += "    cgcent %s\n" % self.cgcent
            text += "    fgcent %s\n" % self.fgcent
        elif self.method == "mg-para":
            text += "    pdime %i %i %i\n" % (self.pdime[0], self.pdime[1], self.pdime[2])
            text += "    ofrac %.1f\n" % self.ofrac
            text += "    cglen %.4f %.4f %.4f\n" % (self.cglen[0], self.cglen[1], self.cglen[2])
            text += "    fglen %.4f %.4f %.4f\n" % (self.fglen[0], self.fglen[1], self.fglen[2])
            text += "    cgcent %s\n" % self.cgcent
            text += "    fgcent %s\n" % self.fgcent
            if self.asyncflag == 1:
                text += "    async %i\n" % self.async
        text += "    mol %i\n" % self.mol
        if self.lpbe: text += "    lpbe\n"
        else: text += "    npbe\n"
        text += "    bcfl %s\n" % self.bcfl
        if self.istrng > 0:
            for ion in self.ion:
                text += "    ion charge %.2f conc %.3f radius %.4f\n" % (ion[0], self.istrng, ion[1])               
        text += "    pdie %.4f\n" % self.pdie                
        text += "    sdie %.4f\n" % self.sdie                
        text += "    srfm %s\n" % self.srfm                   
        text += "    chgm %s\n" % self.chgm
        text += "    sdens %.2f\n" % self.sdens
        text += "    srad %.2f\n" % self.srad          
        text += "    swin %.2f\n" % self.swin         
        text += "    temp %.2f\n" % self.temp     
        text += "    calcenergy %s\n" % self.calcenergy
        text += "    calcforce %s\n" % self.calcforce
        for write in self.write:
            text += "    write %s %s %s\n" % (write[0], write[1], write[2])
        text += "end\n"
        return text
        
class Input:
    """
        The input class.  Each input object is one APBS input file.
    """

    def __init__(self, pqrpath, size, method, asyncflag, istrng=0, potdx=False):
        """
            Initialize the input file class.  Each input file contains
            a PQR name, a list of elec objects, and a list of strings
            containing print statements.  For starters assume two
            ELEC statements are needed, one for the inhomgenous and
            the other for the homogenous dielectric calculations.

            Users can edit the elec statements and the print statements.

            This assumes you have already run psize, either by
                 size.runPsize(/path/to/pqr) or

                 size.parseString(string)
                 size.setAll()

            Parameters
                pqrpath:   The path to the PQR file (string)
                size:      The Psize object (psize)
                method:    The method (para, auto, manual, async) to use
                asyncflag: 1 if async is desired, 0 otherwise
        """ 

        self.pqrpath = pqrpath
        self.asyncflag = asyncflag

        # Initialize variables to default elec values

        elec1 = Elec(pqrpath, size, method, asyncflag, istrng, potdx)
        if not potdx:
            elec2 = Elec(pqrpath, size, method, asyncflag, istrng, potdx)
            setattr(elec2, "sdie", 2.0)
            setattr(elec2, "write", [])
        else:
            elec2 = ""
        self.elecs = [elec1, elec2]
     
        self.pqrname = os.path.basename(pqrpath)

        if not potdx:
            self.prints = ["print elecEnergy 2 - 1 end"]     
        else:
            self.prints = ["print elecEnergy 1 end"]

    def __str__(self):
        """
            Return the text of the input file
        """
        text  = "read\n"
        text += "    mol pqr %s\n" % self.pqrname
        text += "end\n"
        for elec in self.elecs:
            text += str(elec)            
        for prints in self.prints:
            text += prints
        text += "\nquit\n"
        return text
  
    def printInputFiles(self):
        """
            Make the input file(s) associated with this object
        """
        base_pqr_name = utilities.getPQRBaseFileName(self.pqrpath)
        if self.asyncflag == 1:
            outname = base_pqr_name + "-para.in"

            # Temporarily disable async flag
            for elec in self.elecs:
                elec.asyncflag = 0
            file = open(outname, "w")
            file.write(str(self))
            file.close()

            # Now make the async files
            elec = self.elecs[0]
            
            nproc = elec.pdime[0] * elec.pdime[1] * elec.pdime[2]
            for i in range(int(nproc)):
                outname = base_pqr_name + "-PE%i.in" % i
                for elec in self.elecs:
                    elec.asyncflag = 1
                    elec.async = i
                file = open(outname, "w")
                file.write(str(self))
                file.close()
        
        else:
            outname = base_pqr_name + ".in"
            file = open(outname, "w")
            file.write(str(self))
            file.close()

    def dumpPickle(self):
        """
            Make a Python pickle associated with the APBS input parameters
        """
        base_pqr_name = utilities.getPQRBaseFileName(self.pqrpath)
        outname = base_pqr_name + "-input.p"
        pfile = open(outname, "w")
        pickle.dump(self, pfile)
        pfile.close()
        

def splitInput(filename):
    """
        Split the parallel input file into multiple async file names

        Parameters
            filename:  The path to the original parallel input
                       file (string)
    """
    nproc = 0
    file = open(filename, 'rU')
    text = ""
    while 1:
        line = file.readline()
        if line == "": break
        text += line
        line = string.strip(line)
        if line.startswith("pdime"): # Get # Procs
            words = string.split(line)
            nproc = int(words[1]) * int(words[2]) * int(words[3])

    if nproc == 0:
        sys.stderr.write("%s is not a valid APBS parallel input file!\n" % filename)
        sys.stderr.write("The inputgen script was unable to asynchronize this file!\n")
        sys.exit(2)

    base_pqr_name = utilities.getPQRBaseFileName(filename)
    for i in range(nproc):
        outname = base_pqr_name + "-PE%i.in" % i
        outtext = string.replace(text, "mg-para\n","mg-para\n    async %i\n" % i)
        outfile = open(outname, "w")
        outfile.write(outtext)
        outfile.close()
          
def usage():
    """
        Display the usage information for this script
    """
    size = psize.Psize()
    usage = "\n"
    usage = usage + "Use this script to generate new APBS input files or split an existing\n"
    usage = usage + "parallel input file into multiple async files.\n\n"
    usage = usage + "Usage: inputgen.py [opts] <filename>\n"
    usage = usage + "Optional Arguments:\n"
    usage = usage + "  --help               : Display this text\n"
    usage = usage + "  --split              : Split an existing parallel input file to multiple\n"
    usage = usage + "                         async input files.\n"
    usage = usage + "  --potdx              : Create an input to compute an electrostatic potential map.\n"
    usage = usage + "  --method=<value>     : Force output file to write a specific APBS ELEC\n"
    usage = usage + "                         method.  Options are para (parallel), auto\n"
    usage = usage + "                         (automatic), manual (manual), or async (asynchronous).\n"
    usage = usage + "                         solve.  async will result in multiple input files.\n"
    usage = usage + "  --cfac=<value>       : Factor by which to expand molecular dimensions to\n"
    usage = usage + "                         get coarse grid dimensions.\n"
    usage = usage + "                         [default = %g]\n" % size.getConstant("cfac")
    usage = usage + "  --fadd=<value>       : Amount to add to molecular dimensions to get fine\n"
    usage = usage + "                         grid dimensions.\n"
    usage = usage + "                         [default = %g]\n" % size.getConstant("fadd")
    usage = usage + "  --space=<value>      : Desired fine mesh resolution\n"
    usage = usage + "                         [default = %g]\n" % size.getConstant("space")
    usage = usage + "  --gmemfac=<value>    : Number of bytes per grid point required\n"
    usage = usage + "                         for sequential MG calculation\n"
    usage = usage + "                         [default = %g]\n" % size.getConstant("gmemfac")
    usage = usage + "  --gmemceil=<value>   : Max MB allowed for sequential MG\n"
    usage = usage + "                         calculation.  Adjust this to force the\n"
    usage = usage + "                         script to perform faster calculations (which\n"
    usage = usage + "                         require more parallelism).\n"
    usage = usage + "                         [default = %g]\n" % size.getConstant("gmemceil")
    usage = usage + "  --ofrac=<value>       : Overlap factor between mesh partitions\n"
    usage = usage + "                         [default = %g]\n" % size.getConstant("ofrac")
    usage = usage + "  --redfac=<value>     : The maximum factor by which a domain\n"
    usage = usage + "                         dimension can be reduced during focusing\n"
    usage = usage + "                         [default = %g]\n" % size.getConstant("redfac")
    usage = usage + "  --istrng=<value>     : Ionic strength (M). Na+ anc Cl- ions will be used\n"
    sys.stderr.write(usage)
    sys.exit(2)

def main():

    import getopt
    filename = ""
    shortOptList = ""
    longOptList = ["help","split","potdx","method=","cfac=","space=","gmemceil=","gmemfac=","ofrac=","redfac=","istrng="]

    try:
        opts, args = getopt.getopt(sys.argv[1:], shortOptList, longOptList)
    except getopt.GetoptError, details:
        sys.stderr.write("Option error (%s)!\n" % details)
        usage()
        
    if len(args) != 1:
        sys.stderr.write("Invalid argument list!\n")
        usage()
    else:
        filename = args[0]

    method = ""
    size = psize.Psize()
    async = 0
    split = 0
    istrng = 0
    potdx = 0
    
    for o, a in opts:
        if o == "--help":
            usage()
        if o == "--split": split = 1
        if o == "--potdx": potdx = 1
        if o == "--method":
            if a == "para":
                sys.stdout.write("Forcing a parallel calculation\n")
                method = "mg-para"
            elif a == "auto":
                sys.stdout.write("Forcing a sequential calculation\n")
                method = "mg-auto"
            elif a == "async":
                sys.stdout.write("Forcing an asynchronous calculation\n")
                method = "mg-para"
                async = 1
            elif a == "manual":
                sys.stdout.write("Forcing a manual calculation\n")
                method = "mg-manual"
            else:
                sys.stdout.write("Incorrect method argument: %s\n" % a)
                sys.stdout.write("Defaulting to memory dependent result\n")
        if o == "--cfac":
            size.setConstant("cfac", float(a))
        if o == "--space":
            size.setConstant("space", float(a))
        if o == "--gmemfac":
            size.setConstant("gmemfac", int(a))
        if o == "--gmemceil":
            size.setConstant("gmemceil",  int(a))
        if o == "--ofrac":
            size.setConstant("ofrac", float(a))
        if o == "--redfac":
            size.setConstant("redfac", float(a))
        if o == "--istrng":
            istrng = float(a)

    if split == 1:
        splitInput(filename)
    else:
        size.runPsize(filename)
        input = Input(filename, size, method, async, istrng, potdx)
        input.printInputFiles()

if __name__ == "__main__": main()